IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社トプコンの特許一覧

<>
  • 特許-ターゲット装置、測量システム 図1
  • 特許-ターゲット装置、測量システム 図2
  • 特許-ターゲット装置、測量システム 図3
  • 特許-ターゲット装置、測量システム 図4
  • 特許-ターゲット装置、測量システム 図5
  • 特許-ターゲット装置、測量システム 図6
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-10-18
(45)【発行日】2022-10-26
(54)【発明の名称】ターゲット装置、測量システム
(51)【国際特許分類】
   G01C 15/06 20060101AFI20221019BHJP
   G01C 15/00 20060101ALI20221019BHJP
【FI】
G01C15/06 T
G01C15/00 104C
G01C15/00 103A
【請求項の数】 7
(21)【出願番号】P 2018058028
(22)【出願日】2018-03-26
(65)【公開番号】P2019168406
(43)【公開日】2019-10-03
【審査請求日】2021-03-18
(73)【特許権者】
【識別番号】000220343
【氏名又は名称】株式会社トプコン
(74)【代理人】
【識別番号】100187322
【弁理士】
【氏名又は名称】前川 直輝
(72)【発明者】
【氏名】佐々木 陽
【審査官】櫻井 仁
(56)【参考文献】
【文献】特開2016-205909(JP,A)
【文献】特開2016-017931(JP,A)
【文献】特開2012-071645(JP,A)
【文献】米国特許出願公開第2014/0343890(US,A1)
【文献】特開昭60-080707(JP,A)
【文献】特開2018-119882(JP,A)
【文献】特開2019-074386(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01C 1/00- 1/14
G01C 5/00-15/14
(57)【特許請求の範囲】
【請求項1】
測量対象となるターゲット装置であって、
入射した光を入射方向と同一方向に反射する多面体のプリズムである反射部と、
前記反射部を支持する支持部と、
前記プリズムの頂点に形成され、前記反射部の方向を示す方向標識部と、
を備えたターゲット装置。
【請求項2】
前記方向標識部は、外観表示によって区別されることで前記反射部の方向を示す請求項1記載のターゲット装置。
【請求項3】
測量対象となるターゲット装置であって、
入射した光を入射方向と同一方向に反射する多面体のプリズムである反射部と、
前記反射部を支持する支持部と、
前記反射部又は前記支持部において前記プリズムの底面の辺に前記プリズムの各側面に対応して異なるように形成され、前記反射部の方向を示す方向標識部と、
を備えたターゲット装置。
【請求項4】
測量装置に、前記プリズムを含むターゲット画像を撮影させて、前記方向標識部の写り込んでいる長さの比率から姿勢を検出させる請求項3に記載のターゲット装置。
【請求項5】
請求項1から4のいずれか一項に記載のターゲット装置を測量対象とする測量システムであって、
前記ターゲット装置の前記反射部を視準して当該反射部の位置を測量する測量部と、
前記測量部による視準方向と同方向に指向し、前記反射部を含むターゲット画像を撮影するターゲット撮像部と、
ーゲット画像に写り込んだ前記方向標識部から前記ターゲット装置の姿勢を検出する姿勢検出部と、
を備えた測量システム。
【請求項6】
前記ターゲット装置は移動体に設けられ、前記姿勢検出部は前記ターゲット装置の姿勢から移動体の姿勢を検出する請求項5記載の測量システム。
【請求項7】
前記移動体は飛行体であり、
前記飛行体に搭載され、写真測量用の画像を撮影するカメラと、
前記姿勢検出部により検出した前記移動体の姿勢に関する情報を前記測量部により測量した測量結果に付加し、当該測量結果と前記カメラにより撮影した画像とを対応付けて写真測量用データを生成する測量制御部と、を備える請求項6記載の測量システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、測量装置により測量対象となるターゲット装置、当該ターゲット装置を用いた測量システムの技術に関する。
【背景技術】
【0002】
測量装置であるトータルステーション(以下、TSともいう)を用いた測量では、反射プリズムを備えた棒状の部材を備えたターゲット装置が用いられる(例えば、特許文献1を参照)。このターゲット装置を用いた測量では、垂直にした棒状の部材の先端を地上に接触させた状態で、反射プリズムを対象にTSによる測位を行い、それにより棒状の部材の先端を接触させた位置の座標を取得する。そして、測量対象となる土地の各所においてこの作業を行うことで、当該土地の測量が行われる。
【0003】
上記の作業では、作業員がターゲット装置を手に持ち、歩いて移動しながら複数の位置における測量が行われる。この際、当該作業員が手にする端末等を用いて、TS側から次の測量位置への誘導が行われる。この際、TSに対するターゲット装置の水平角(水平面における方向)が判ると便利である。通常は、磁気センサやジャイロセンサを用いて上記の水平角の検出が行われている。また、GPSを用いて方位の検出を行う技術も公知である。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2009-229192号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
磁気センサによる水平角の検出では、金属構造物の影響を受ける。例えば、橋梁の近くでは、コンクリート中の鉄筋や鉄骨の影響を受ける。また、地盤を補強するために波型の鋼材を地中に打ち込む技術があるが、この地中の鋼材の影響を受け、磁気センサの精度が低下する場合がある。また、ジャイロセンサは出力のドリフトの問題がある。この点を改良したジャイロセンサもあるが、高価、且つ、大型となる。GPSは、航法衛星の見えない場所(谷間、橋梁の下、トンネル内、屋内、地下、森林等)では使用できない。
【0006】
以上の問題は、TSに対するUAV(Unmanned Aerial Vehicle)の向きを知りたい場合にも生じる。例えば、TSによりUAVの姿勢を知ることで写真測量において効率的なオーバラップ撮影が可能となるが、上記の方位センサ、ジャイロセンサ、GPSを用いた姿勢の検出では、上述したのと同様な問題が生じる。
【0007】
本発明はこのような問題点を解決するためになされたもので、その目的とするところは容易な構成でターゲット装置の姿勢を検出することのできるターゲット装置及び測量システムを提供することである。
【課題を解決するための手段】
【0008】
上記した目的を達成するために、本発明に係るターゲット装置は、測量対象となるターゲット装置であって、入射した光を入射方向と同一方向に反射する反射部と、前記反射部を支持する支持部と、前記反射部又は前記支持部に形成され、前記反射部の方向を示す方向標識部と、を備える。
【0009】
また、上述の測距用ターゲット装置として、前記方向標識部は、外観表示によって区別されることで前記反射部の方向を示してもよい。
【0010】
また、上述の測距用ターゲット装置として、前記反射部は、多面体のプリズムであり、前記方向標識部は前記プリズムの各側面に対応して形成されてもよい。
【0011】
また、上述の測距用ターゲット装置として、前記反射部は、多面体のプリズムであり、前記方向標識部は前記プリズムの頂点に形成されてもよい。
【0012】
また、上記した目的を達成するために、本発明に係る測量システムは、ターゲット装置を測量対象とする測量システムであって、前記ターゲット装置の反射部を視準して測距光を送光及び受光して当該反射部の位置を測量する測量部と、前記測量部による視準方向と同方向に指向し、前記反射部を含むターゲット画像を撮影するターゲット撮像部と、前記ターゲット画像に写り込んだ前記方向標識部から前記ターゲット装置の姿勢を検出する姿勢検出部と、を備えている。
【0013】
上述の測量システムにおいて、前記ターゲット装置は移動体に設けられ、前記姿勢検出部は前記ターゲット装置の姿勢から移動体の姿勢を検出してもよい。
【0014】
また、上述の測量システムにおいて、前記移動体は飛行体であり、前記飛行体に搭載され、写真測量用の画像を撮影するカメラと、前記姿勢検出部により検出した前記移動体の姿勢に関する情報を前記測量部により測量した測量結果に付加し、当該測量結果と前記カメラにより撮影した画像とを対応付けて写真測量用データを生成する測量制御部と、を備えてもよい。
【発明の効果】
【0015】
上記手段を用いる本発明によれば、容易な構成でターゲット装置の姿勢を検出することができる。
【図面の簡単な説明】
【0016】
図1】本発明の一実施形態に係るターゲット装置を含む測量システムの全体構成図である。
図2】(a)ターゲット装置の斜視図及び(b)ターゲット装置におけるプリズムの上面視簡略図である。
図3】本発明の一実施形態に係る測量システムの制御系のブロック図である。
図4】(a)測量装置の視準方向とUAVの進行方向が同一の場合の位置関係図及び(b)このときのターゲット画像の一例である。
図5】(a)測量装置に対してUAVの進行方向60°の場合の位置関係図及び(b)このときのターゲット画像及び方向標識部の関係図である。
図6】(a)~(c)UAV方位角の説明図である。
【発明を実施するための形態】
【0017】
以下、本発明の実施形態を図面に基づき説明する。
【0018】
図1には本発明の一実施形態に係るターゲット装置を含む測量システムの全体構成図、図2には(a)ターゲット装置の斜視図及び(b)ターゲット装置におけるプリズムの上面視簡略図が示されている。本発明の実施形態に係るターゲット装置及び測量システムの構成を図1図2を用いて説明する。
【0019】
測量システム1は、写真測量を行う測量システムであり、移動しつつ写真測量用の画像を撮影する移動撮影装置2と、当該移動撮影装置2の位置及び姿勢を測量する測量装置3と、撮影結果と測量結果を解析して写真測量のためのデータを生成する解析装置4を有している。
【0020】
移動撮影装置2は、移動体であるUAV10に、写真測量用の画像を撮影するカメラ11が搭載されて構成されている。なお、カメラ11が撮影する画像は静止画像でも、動画像でもよい。
【0021】
詳しくは、UAV10は、予め定められた飛行経路を飛行したり、遠隔操作により自由に飛行したりすることが可能な飛行移動体である。当該UAV10には飛行を行うための飛行機構10aの下部にジンバル機構10bが設けられている。
【0022】
カメラ11はUAV10のジンバル機構10bにより支持されており、当該ジンバル機構10bによって撮影方向を自由に変更可能であるとともに、所定の方向を撮影するよう姿勢を安定化させることが可能である。本実施形態では、カメラ11は常に下方向に向けられており、水平方向の姿勢においてはUAV10と一体をなすように支持されている。
【0023】
カメラ11には、GPS信号を受信可能なGPSユニット12が設けられている。また、カメラ11は、カメラ本体正面にレンズ部11aが形成されており、当該レンズ部11aにターゲット装置20が設けられている。
【0024】
ターゲット装置20は、図2(a)に詳しく示すように、カメラ11のレンズ部11aの先端に支持部材21(支持部)が取り付けられており、当該支持部材21にプリズム22(反射部)が支持されている。
【0025】
支持部材21は、レンズ部11aの径に合わせて形成され、レンズ部11aの先端に嵌め込まれる環状部21aと、当該環状部21aから外方向に延びた平板状の板状部21bとからなる。
【0026】
本実施形態のプリズム22は四面体からなるコーナーキューブプリズムを4つ組み合わせて底面が正方形をなす正四角錐をなしている。当該プリズム22は底面22aを除く四側面に入射した光を入射方向と同一方向に反射する、いわゆる全方向反射体である。プリズム22は、底面22aが支持部材21の板状部21bの表面に接着されている。したがって、プリズム22は、レンズ部11aの先端面よりも突出しており、レンズ部11aに遮られることなく、測距光を受けることが可能である。
【0027】
また、図2(a)(b)に示すように、プリズム22の底面22aの四辺には、それぞれ各側面に対応して異なる色からなることで当該プリズムの方向を示す方向標識部23a、23b、23c、23d(まとめて方向標識部23とも記す)が形成されている。なお、図面においては、方向標識部23の色を線種の違いにより示しており、例えば赤色の第1の方向標識部23aを太線、青色の第2の方向標識部23bを太い点線、黄色の第3の方向標識部23cを二重線、緑色の第4の方向標識部23dを太い一点鎖線により示している。
【0028】
ターゲット装置20は、このようにプリズム22に4種類の方向標識部23を形成することで、ターゲット装置20の姿勢、つまりはターゲット装置20と一体をなしているカメラ11及びUAV10を含む移動撮影装置2の姿勢を識別可能としている。例えば、本実施形態のターゲット装置20は、第1の方向標識部23aがUAV10の正面(進行方向)に、第2の方向標識部23bがUAV10の右側に、第3の方向標識部23cがUAV10の背面に、第4の方向標識部23dがUAV10の左側に、それぞれ対応するようにプリズム22が配置されている。
【0029】
図1に戻り、測量装置3は、測量対象を自動追尾可能なトータルステーションであり、本体部3aに、水平方向に回転駆動可能な水平回転駆動部30と、鉛直方向に回転可能な鉛直回転駆動部31を介して望遠鏡部32が設けられている。また望遠鏡部32には、ターゲット装置20(厳密にはプリズム22)に測距光を送光及び受光して斜距離を測定する光波距離計(EDM)33(測量部)とターゲット装置20を撮影するターゲット撮像部34が設けられている。さらに、測量装置3は三脚35の上に載置されている。また測量装置3にもGPSユニット36が設けられている。
【0030】
詳しくは、測量装置3は、ターゲット装置20のプリズム22を測量対象としたプリズム測量により、測量装置3からプリズム22までの距離測定(測距)が可能であると共に水平角、鉛直角が測定可能である。したがって、測量装置3を既知の位置に設置して、姿勢を整準させてプリズム22の測量を行うことで、測量結果(斜距離、水平角、鉛直角)からプリズム22の座標、即ちカメラ11の位置を算出可能である。ターゲット撮像部34は、望遠鏡部32を介することで測量装置3の視準方向と同方向に指向し、当該望遠鏡部32を通して写り込む画像を撮像する機能を有しており、詳しくは後述する。
【0031】
解析装置4は、測量装置3により測量した測量結果を、移動撮影装置2により撮影した各画像の撮影位置に対応付けて写真測量用のデータを生成可能なパーソナルコンピュータ等の情報処理端末である。
【0032】
測量システム1は、図1に示すように、移動撮影装置2により上空を移動しながら所定の撮影周期ΔSで写真測量用の画像P1、P2、…Pnを複数撮影するとともに、測量装置3により移動撮影装置2(厳密にはプリズム22)を追尾して測量を行う。すべての撮影が終了した後、解析装置4により移動撮影装置2により撮影した画像P1、P2、…Pnと測量装置3により測量した測量結果R1、R2、…Rmとを対応付けることで写真測量用のデータを生成する。
【0033】
本実施形態の測量システム1では、この画像P1~Pnと、測量結果R1~Rmとの対応付けを移動撮影装置2及び測量装置3のGPSユニット12、36を用いて、GPS(衛星測位システム)衛星より取得可能なGPS時刻に基づき行う。つまり、移動撮影装置2は画像を撮影するごとに、当該画像にGPS時刻に基づく撮影時刻情報を付与する。一方、測量装置3は移動撮影装置2の位置を測量するごとに、当該測量結果にGPS時刻に基づく測量時刻情報を付与する。そして、すべての撮影を終えた後、解析装置4において、各画像の撮影時刻に適合する測量時刻が付与された測量結果を対応付けることで、測量装置3により測量した精密な測量結果を画像の撮影位置として対応付ける。解析装置4は、このような撮影位置を含む各画像(写真測量用データ)から写真測量に基づく計算を行う。
【0034】
さらに本実施形態の測量システム1において、測量装置3は、移動撮影装置2の追尾測量の制御とともに、プリズム22に付された方向標識部23に基づき移動撮影装置2の姿勢を検出可能である。
【0035】
このような測量装置3の制御について、詳しくは、図3に測量システム1に係る制御系のブロック図が示されており、同図に基づき測量システム1の制御系の構成について説明する。
【0036】
図3に示すように、測量装置3は、測量制御部40に上述の水平回転駆動部30、鉛直回転駆動部31、EDM33、ターゲット撮像部34の他に、水平角検出部41(測量部)、鉛直角検出部42(測量部)、表示部43、操作部44、追尾光送光部45、追尾光受光部46、時刻取得部47、記憶部48が接続されている。
【0037】
水平角検出部41は、水平回転駆動部30による水平方向の回転角を検出することで、望遠鏡部32で視準している水平角を検出可能である。鉛直角検出部42は、鉛直回転駆動部31による鉛直方向の回転角を検出することで、望遠鏡部32が視準している鉛直角を検出可能である。これら水平角検出部41及び鉛直角検出部42により、測量結果としての水平角及び鉛直角を検出する。
【0038】
表示部43は、例えば液晶モニタであり、測量結果(距離、水平角、鉛直角)等の各種情報を表示するものである。
【0039】
操作部44は、例えば、電源のオン・オフの切替、測量開始のトリガ、測量モードの切替、測量周期の設定等があり、測量制御部40に各種の動作指示や設定を入力するための操作手段である。
【0040】
追尾光送光部45は、移動撮影装置2に設けられたターゲット装置20のプリズム22に向けて追尾光を照射し、追尾光受光部46はプリズム22により反射された追尾光を受光する部分である。測量制御部40が、この追尾光送光部45からの追尾光を追尾光受光部46が受光し続けるように水平回転駆動部30及び鉛直回転駆動部31を制御することで、ターゲット装置20の追尾機能を実現する。
【0041】
ターゲット撮像部34は、望遠鏡部32を介した像を撮影可能であり、光学像を電気信号に変換するCCDやCMOS素子等の撮像素子やシャッターを有する。ターゲット撮像部34は、視準しているプリズム22を含むターゲット画像を撮影する。撮影した画像データは後述する記憶部48に記憶される。なお、ターゲット画像Tpは静止画像でも動画像でもよいが、本実施形態のターゲット撮像部34は測量のタイミングと同時に静止画像を撮影するものとする。
【0042】
時刻取得部47は、GPSユニット36を用いてGPS衛星から時刻情報(以下、GPS時刻という)を含むGPS信号を受信し、当該GPS時刻を取得する機能を有している。
【0043】
記憶部48は、上記の追尾プログラム、測量方法に関する各種プログラム、ターゲット装置の種類特徴、測量データ、GPS時刻、ターゲット撮像部34が撮影した画像データ等の各種データを記憶可能である。
【0044】
測量制御部40は、ターゲット装置20のプリズム22を追尾しつつ、各測量部(EDM33、水平角検出部41、鉛直角検出部42)に測量データ(距離、水平角、鉛直角)等を取得させるとともに、時刻取得部47により取得したGPS時刻(測量時刻情報)を測量結果に付与する。
【0045】
さらに、測量制御部40は、上述の測量と同タイミングでターゲット撮像部34による撮影を行い、撮影したターゲット画像Tpを記憶部48に記憶させる。なお、図面に示しているターゲット画像は説明を簡略化するためプリズム22のみを記載している。
【0046】
そして、測量制御部40は、記憶部48に記憶されたターゲット画像Tp内の方向標識部23の写り込み具合からプリズム22の姿勢、つまりは測量時におけるカメラ11及びUAV10の姿勢(向き)を検出する姿勢検出部としての機能も有している。
【0047】
詳しくは、図4から図6を参照すると、図4には(a)測量装置の視準方向とUAVの進行方向が同一の場合の位置関係図及び(b)このときのターゲット画像の一例が、図5には(a)測量装置に対してUAVの進行方向60°の場合の位置関係図及び(b)このときのターゲット画像及び方向標識部の関係図が、図6には(a)~(c)UAV方位角の説明図がそれぞれ示されており、以下これらの図に基づき、ターゲット画像TpからUAV10の向きを検出する仕組みについて説明する。なお、図4から図6では、説明をわかりやすくするために、UAV10に対してプリズム22を大きく且つ中央に示している。また本実施形態では、水平面において測量装置3の視準方向を基準とし、視準方向から右回り(時計回り)を正の角度として説明する。
【0048】
図4(a)に示すように、測量装置3の視準方向とUAV10の進行方向が同じ位置関係にあるときは、図4(b)に示すようにターゲット画像Tp内にはUAV10の背面に対応した第3の方向標識部23cのみが写り込む。このような場合、測量制御部40は、測量装置3の視準方向に対する移動撮影装置2の回転角度(以下、UAV回転角という)を0°として検出する。
【0049】
また、図5(a)に示すように、測量装置3の視準方向に対してUAV10の進行方向が60°右向きであるときは、図5(b)に示すようにターゲット画像Tp内にはUAVの右側に対応した第2の方向標識部23b及びUAV10の背面に対応した第3の方向標識部23cが写り込む。このような場合、測量制御部40は、第2の方向標識部23b及び第3の方向標識部23cの写り込んでいる比率からUAV10の姿勢を検出する。
【0050】
例えばプリズム22の底面22aの一辺xを10cmとしてUAV回転角θ=60°とすると、図5(b)に示すように第2の方向標識部23bの写り込みの長さA及び第3の方向標識部23cの写り込みの長さBは下記式(1)、(2)となる。つまり、下記式(3)に示すようにUAV回転角θは各写り込みの長さA及びBの比率から算出可能である。
A=x×cos(90-θ)=10×cos(30°)=8.66・・・(1)
B=x×cos(θ)=10×cos(60°)=5.00・・・(2)
θ=tan-1(A/B)=tan-1(8.66/5.00)=59.99・・・(3)
【0051】
このように測量制御部40は、ターゲット画像Tp内に写り込む方向標識部23の長さの比率から測量装置3に対するUAV回転角を検出可能である。そして、測量制御部40は、UAV回転角と水平角検出部41による測量結果(水平角)を用いることでUAV10の進行方向の方位角(以下、UAV方位角という)も検出可能である。
【0052】
例えば、図6(a)に示すように、測量装置3の水平角検出部41により検出される視準方向の方位角(以下、TS方位角という)が0°であって、UAV回転角が0°である場合は、UAV方位角は真北を示す0°(=0°+0°)となる。
【0053】
図6(b)の場合は、TS方位角が315°であって、UAV回転角が90°である場合は、UAV方位角は北東を示す45°(=315°+90°)となる。また、図6(c)の場合はTS方位角が270°であって、UAV回転角が60°である場合は、UAV方位角は330°(=270°+60°)となる。
【0054】
このように測量制御部40は、TS方位角にUAV回転角を加算することでUAV方位角を算出可能であり、UAV10の姿勢に関する情報として当該UAV方位角を測量結果に付加する。
【0055】
移動撮影装置2において全ての撮影を終了した後、解析装置4は測量装置3からUAV方位角が付加された測量結果を取得し、GPS時刻に基づいて移動撮影装置2のカメラ11により撮影した画像との対応付けを行うことで、当該画像の向きが判別可能となる。このような画像の向きも判別可能であることで写真測量におけるオーバラップ領域をより正確に算出することができ、写真測量の精度を向上させることができる。なお、画像と測量結果の対応付けについて、本実施形態では写真撮影終了後に行っているが、これに限定されるものではない。例えば、移動撮影装置2の飛行中において、測量装置3で算出したUAV方位角等の姿勢情報をUAV10の操縦者やUAV10の制御部に逐次通知してもよい。これにより、操縦者又はUAV10自体が、UAV10(移動撮影装置2)の姿勢を写真測量のオーバラップの条件を満たすように適宜修正することができ、より写真測量の精度を向上させることができる。
【0056】
このようにUAV10やカメラ11の向きを判別可能とするターゲット装置20は、プリズム22の底面22aの各辺に色違いの方向標識部23を設けるだけの簡単な構成で、当該ターゲット装置20の姿勢を検出することができる。
【0057】
特に、方向標識部23は色のような外観表示により区別可能とすることで、磁気センサ、ジャイロセンサ、GPS等による水平角の検出よりも環境の影響を受けることなく、ターゲット装置20の姿勢を検出することができる。
【0058】
また、本実施形態のプリズム22のように正四角錐においては、各側面に対応して方向標識部23を形成することで、ターゲット画像Tp内に写り込む各方向標識部23の長さの比から容易にターゲット装置20の姿勢を検出することができる。
【0059】
以上のように本発明の実施形態に係るターゲット装置及び測量システムによれば、容易な構成でターゲット装置の姿勢を検出することができる。
【0060】
以上で本発明の実施形態の説明を終えるが、本発明の態様はこの実施形態に限定されるものではない。
【0061】
上記実施形態では、プリズム22の底面22aの各辺に方向標識部23を形成しているが、方向標識部を形成するのはプリズムに限られず、プリズムの支持部に形成してもよい。
【0062】
また、上記実施形態では、方向標識部23は、色によって区別されているが、これに限られるものではない。例えば、バーコードや特定の模様、文字、LED等の発光体による光の色や発光パターン等の他の外観表示により区別してもよい。
【0063】
また上記実施形態では、プリズム22の全ての側面に対応して方向標識部23を形成しているが、必ずしも全ての側面に対応して方向標識部23を形成する必要はない。例えば、上記実施形態における第1の方向標識部23aと第3の方向標識部23cをなくしても、UAV10の前後方向はプリズムに対して支持部が延びている方向等、位置関係等の他の情報から識別することも可能である。つまり、測量装置から視たターゲット装置の相対位置等の情報から方向標識部を減らすことができる。
【0064】
また、方向標識部を形成する位置はプリズムの辺に限られず、頂点に形成してもよい。これにより、より単純に方向標識部を形成することができる。
【0065】
また、上記実施形態におけるターゲット装置20は、プリズム22が四角錐であるが、これに限らず、三角錐、正八面体等の他の多面体形状にも本発明を適用可能である。
【0066】
また、上記実施形態では、移動撮影装置2はUAV10を移動体として用いているが、移動体はこれに限られず、例えば、車や重機等、人が移動させる棒状部材であってもよい。つまり、本発明のターゲット装置の適用は写真測量の測量システムに限られず、他の測量システムにも適用可能である。
【0067】
また、上記実施形態では、測量装置3の測量制御部40に姿勢検出部としての機能を持たせているが、解析装置に姿勢検出部を設けてもよい。また、測量装置に解析装置の機能を持たせてもよい。
【0068】
また、上記実施形態の測量システムはGPS時刻に基づいて測量結果と撮影した画像との同期を行っているが、測量結果と画像との同期方法はこれに限られるものではない。
【0069】
1 測量システム
2 移動撮影装置
3 測量装置
4 解析装置
10 UVA
11 カメラ
11a レンズ部
20 ターゲット装置
21 支持部
22 プリズム(反射部)
23 方向標識部
33 EDM
34 ターゲット撮像部
41 水平角検出部
42 鉛直角検出部
図1
図2
図3
図4
図5
図6