(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-10-19
(45)【発行日】2022-10-27
(54)【発明の名称】樹脂粒子及びその製造方法、並びに該樹脂粒子を含む親水性付与剤
(51)【国際特許分類】
C08F 220/10 20060101AFI20221020BHJP
C08F 212/36 20060101ALI20221020BHJP
C08F 236/06 20060101ALI20221020BHJP
【FI】
C08F220/10
C08F212/36
C08F236/06
(21)【出願番号】P 2021511241
(86)(22)【出願日】2020-02-27
(86)【国際出願番号】 JP2020008113
(87)【国際公開番号】W WO2020202938
(87)【国際公開日】2020-10-08
【審査請求日】2021-09-27
(31)【優先権主張番号】P 2019067834
(32)【優先日】2019-03-29
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000004628
【氏名又は名称】株式会社日本触媒
(74)【代理人】
【識別番号】110002837
【氏名又は名称】特許業務法人アスフィ国際特許事務所
(72)【発明者】
【氏名】松本 和明
【審査官】常見 優
(56)【参考文献】
【文献】特開2007-254727(JP,A)
【文献】特開2008-299096(JP,A)
【文献】特開2008-163187(JP,A)
【文献】特開2007-046044(JP,A)
【文献】特開2017-105906(JP,A)
【文献】特開平10-158471(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C08F 6/00-246/00
C08F301/00
CAplus/REGISTRY(STN)
(57)【特許請求の範囲】
【請求項1】
下記一般式(1)で示される単量体の少なくとも1種と、多官能エチレン性不飽和単量体とが架橋した架橋構造を含むことを特徴とする樹脂粒子。
【化1】
(R
1は、炭素数1~4のアルキル基、水素原子、アルカリ金属原子また
はアンモニウムを表す。)
【請求項2】
前記多官能エチレン性不飽和単量体が非加水分解性単量体である請求項1に記載の樹脂粒子。
【請求項3】
前記多官能エチレン性不飽和単量体がエーテル結合を有していてもよい炭化水素系架橋剤であり、エチレン性不飽和結合を2以上有する請求項1又は2に記載の樹脂粒子。
【請求項4】
前記多官能エチレン性不飽和単量体はジビニルベンゼン及び1,3-ブタジエンの少なくとも1種である請求項1~3のいずれか1項に記載の樹脂粒子。
【請求項5】
前記一般式(1)由来の単量体単位が合計で30~99.99質量%である請求項1~4のいずれか1項に記載の樹脂粒子。
【請求項6】
吸湿率が2.5質量%以上である請求項1~5のいずれか1項に記載の樹脂粒子。
【請求項7】
水と、その水中に分散した請求項1~6のいずれか1項に記載の樹脂粒子と、を含む水分散体。
【請求項8】
前記樹脂粒子の体積平均粒子径が10nm~10μmである請求項7に記載の水分散体。
【請求項9】
請求項1~6のいずれか1項に記載の樹脂粒子を含む親水性付与剤。
【請求項10】
樹脂粒子の製造方法であって、乳化剤の存在下、式(2)で示される単量体の少なくとも1種と、多官能エチレン性不飽和単量体とを水系溶媒に分散させて重合反応を行う乳化重合を含むことを特徴とする樹脂粒子の製造方法。
【化2】
(R
2は、炭素数1~4のアルキル基を表す。)
【発明の詳細な説明】
【技術分野】
【0001】
本発明は樹脂粒子及びその製造方法、並びに該樹脂粒子を含む親水性付与剤に関する。
【背景技術】
【0002】
従来、樹脂組成物やコーティング剤に架橋性親水性粒子を添加することにより、樹脂組成物を用いて形成されたフィルムやコーティング剤を用いて形成された塗膜に親水性を付与し、かつ、フィルムや塗膜の表面構造を制御できることが知られている。
【0003】
架橋性親水性粒子の製法としては、親水性モノマーを溶剤系溶媒中で重合する方法、疎水性モノマーを水系溶媒中で重合した後で重合物を加水分解する方法が挙げられる。親水性モノマーを溶剤系溶媒中で重合する方法として、例えば、特許文献1には、アルコール等の水混和性有機溶媒を含む溶媒中でアクリルアミド及びその誘導体を重合する親水性微粒子の製造方法が開示されており、特許文献2には、有機溶媒中に所定の親水性モノマー、(メタ)アクリルアミド系モノマー、架橋性不飽和モノマー等を添加して作製された親水性架橋重合体微粒子が開示されている。また、疎水性モノマーを水系溶媒中で重合した後で重合物を加水分解する方法としては、例えば、特許文献3及び4には、アクリロニトリルと架橋性を有するモノマーとを水系媒体中で重合し、得られた粒子に水酸化ナトリウム等のアルカリ金属水酸化物を添加し加水分解を行うことにより水分散体が得られることが開示されている。
【先行技術文献】
【特許文献】
【0004】
【文献】特開平4-132705号公報
【文献】特開平8-3251号公報
【文献】特開昭55-27346号公報
【文献】特開2017-56404号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかし、上記特許文献1及び2のように溶剤系溶媒で重合した樹脂粒子は、溶剤系溶媒を使用する点で環境に優しくないという問題があった。一方、上記特許文献3及び4のように窒素原子を含むモノマーを用いて形成された樹脂粒子を含む樹脂組成物を用いてフィルムや塗膜を形成した場合、フィルムや塗膜が着色するという問題があった。また、特許文献3及び4では親水性を有する樹脂粒子や水分散体を得るために、加水分解反応を水酸化ナトリウム水溶液(苛性ソーダ)を用いて90~95℃という過酷な条件で行う必要があった。
【0006】
一方、親水性モノマーを水系溶媒中で重合すると、環境への負荷が小さく、かつ苛酷な加水分解条件も不要となるが、重合物が水系溶媒中でゲル化したりして、粒子状の重合物を得ることができない。
【0007】
また、架橋ポリアクリル酸粒子を溶媒に添加し水分散体とすることも考えられるが、架橋ポリアクリル酸粒子は親水性が高い一方で水分散体の粘度も高くなるため、各種添加剤として使用する場合、増粘してしまい配合が困難になるという問題があった。
【0008】
本発明の課題は、過大な増粘が発現せず、マイルドな条件で製造可能であり、環境への負荷が小さい粒子状の親水性樹脂を提供することにある。また、各種添加剤として使用しても過大な増粘が発現しない該粒子の製造方法及び該粒子を含む親水性付与剤を提供することにある。
【課題を解決するための手段】
【0009】
本発明者は、前記課題を解決するために鋭意研究を重ねた結果、親水性単量体である特定のヒドロキシメチルアクリル酸系単量体と多官能エチレン性不飽和単量体とが架橋した架橋構造を含む樹脂粒子は、水系溶媒中で重合しても、粒状に重合でき、かつ苛酷な加水分解条件が不要であることを見出した。この様にして得られる樹脂粒子は、溶剤系溶媒を使用しないために環境にやさしい。
すなわち、本発明は、以下の発明を含む。
【0010】
[1]下記一般式(1)で示される単量体の少なくとも1種と、多官能エチレン性不飽和単量体とが架橋した架橋構造を含むことを特徴とする樹脂粒子。
【化1】
(R
1は、炭素数1~4のアルキル基、水素原子、アルカリ金属原子または4級アンモニウムを表す。)
[2]前記多官能エチレン性不飽和単量体が非加水分解性単量体である[1]に記載の樹脂粒子。
[3]前記多官能エチレン性不飽和単量体がエーテル結合を有していてもよい炭化水素系架橋剤であり、エチレン性不飽和結合を2以上有する[1]又は[2]に記載の樹脂粒子。
[4]前記多官能エチレン性不飽和単量体はジビニルベンゼン及び1,3-ブタジエンの少なくとも1種である[1]~[3]のいずれかに記載の樹脂粒子。
[5]前記一般式(1)由来の単量体単位が合計で30~99.99質量%である[1]~[4]のいずれかに記載の樹脂粒子。
[6]吸湿率が2.5質量%以上である[1]~[5]のいずれかに記載の樹脂粒子。
[7]水と、その水中に分散した[1]~[6]のいずれかに記載の樹脂粒子と、を含む水分散体。
[8]前記樹脂粒子の体積平均粒子径が10nm~10μmである[7]に記載の水分散体。
[9]前記[1]~[6]のいずれかに記載の樹脂粒子を含む親水性付与剤。
[10]樹脂粒子の製造方法であって、乳化剤の存在下、式(2)で示される単量体の少なくとも1種と、多官能エチレン性不飽和単量体とを水系溶媒に分散させて重合反応を行う乳化重合を含むことを特徴とする樹脂粒子の製造方法。
【化2】
(R
2は、炭素数1~4のアルキル基を表す。)
【発明の効果】
【0011】
上記一般式(1)で示される単量体(ヒドロキシメチルアクリル酸系単量体)は、架橋性単量体と共重合することで、水系溶媒中で重合しても粒状化が可能であり、溶剤系溶媒を使用することなく親水性樹脂粒子を作製することができる。また、ヒドロキシメチルアクリル酸系単量体を用いることにより過酷な条件で加水分解を行うことなく、親水性樹脂粒子を作製できる。
また、本発明の樹脂粒子を用いた場合、類似骨格のポリアクリル酸架橋体と比較すると、粒子分散体の粘度が極めて低く、各種樹脂組成物やコーティング剤に添加し、容易に配合組成物を得ることができる。
【発明を実施するための形態】
【0012】
1.樹脂粒子
本発明の樹脂粒子は、下記一般式(1)で示される単量体(以下、ヒドロキシメチルアクリル酸系単量体という)の少なくとも1種と、多官能エチレン性不飽和単量体とが架橋した架橋構造を含む。
【0013】
【化3】
(R
1は、炭素数1~4のアルキル基、水素原子、アルカリ金属原子または4級アンモニウムを表す。なお水素原子、アルカリ金属原子、4級アンモニウムは、R
1が炭素数1~4のアルキル基であるヒドロキシメチルアクリル酸系単量体を重合して樹脂粒子にした後で、R
1を加水分解することで導入されたものであってもよい。)
【0014】
R1で表される炭素数1~4のアルキル基は、炭素数1~2のアルキル基であることが好ましく、炭素数1のアルキル基(メチル基)であることがより好ましい。また本発明の樹脂粒子は、ヒドロキシメチルアクリル酸系単量体に由来する単量体単位(構造単位ともいう。炭素二重結合が重合に関与した後の残基の意味。以下、同じ)を有するものであるところ、該樹脂粒子は、未加水分解物、部分加水分解物、完全加水分解物、加水分解中和物のいずれでもよい。未加水分解物は、R1が炭素数1~4のアルキル基であるヒドロキシメチルアクリル酸系単量体に由来する単量体単位を含み、R1が水素原子、アルカリ金属原子、又は4級アンモニウムであるヒドロキシメチルアクリル酸系単量体に由来する単量体単位を実質的に含まない。部分加水分解物又はその中和物は、R1が炭素数1~4のアルキル基であるヒドロキシメチルアクリル酸系単量体に由来する単量体単位と、R1が水素原子、アルカリ金属原子、又は4級アンモニウムであるヒドロキシメチルアクリル酸系単量体に由来する単量体単位の両方を含む。完全加水分解物又はその中和物はR1が炭素数1~4のアルキル基であるヒドロキシメチルアクリル酸系単量体に由来する単量体単位を実質的に含まず、R1が水素原子、アルカリ金属原子、又は4級アンモニウムであるヒドロキシメチルアクリル酸系単量体に由来する単量体単位を含む。
【0015】
樹脂粒子中におけるヒドロキシメチルアクリル酸系単量体由来の単量体単位(構造単位)は、20質量%以上であることが好ましく、30質量%以上であることがより好ましく、50質量%以上であることがさらに好ましく、70質量%以上であることがよりさらに好ましく、80質量%以上であることが特に好ましく、90質量%以上であることが最も好ましく、99.99質量%以下であることが好ましく、99.9質量%以下であることがより好ましく、99質量%以下であることがさらに好ましく、97質量%以下であることが特に好ましく、95質量%以下であることが最も好ましい。多官能エチレン性不飽和単量体由来の単量体単位(構造単位)の割合を所定量とすることで、高い親水性を有する樹脂粒子を得ることができる。
【0016】
多官能エチレン性不飽和単量体としては、1種又は2種以上を使用でき、前記多官能エチレン性不飽和単量体が非加水分解性単量体であることが好ましい。また、後述のとおり、水分散体に含まれている本発明の樹脂粒子に対して、水酸化ナトリウム水溶液、アンモニア水溶液、シクロヘキシルアミン水溶液等の塩基性水溶液を添加することで加水分解を行うことができるため、該非加水分解性単量体は耐塩基加水分解性を有することがより好ましい。該非加水分解性単量体は、炭素原子と水素原子のみから構成される多官能性単量体(炭化水素類)であることが好ましく、必要に応じてエーテル結合を有していてもよい。このエーテル結合を有していてもよい炭化水素類としての多官能性単量体を、本明細書では、エーテル結合を有していてもよい炭化水素系架橋剤と称する。該エーテル結合を有していてもよい炭化水素系架橋剤は、エチレン性不飽和結合を2以上有することが好ましく、エチレン性不飽和結合を2つ有することがさらに好ましい。エーテル結合を有していてもよい炭化水素系架橋剤としては、具体的には、ジビニルベンゼン;1,3-ブタジエン;トリビニルベンゼン;ジビニルナフタレン;トリビニルシクロヘキサン;ジビニルエーテル;ジアリルエーテル;多価メタクリル酸エステル等が挙げられる。ジアリルエーテルとしては、例えば、ジエチレングリコールジアリルエーテル、ジプロピレングリコールジアリルエーテル、ジブチレングリコールジアリルエーテル等のジアルキレングリコールジアリルエーテル;ポリエチレングリコールジアリルエーテル、ポリプロピレングリコールジアリルエーテル、ポリブチレングリコールジアリルエーテル等のポリアルキレングリコールジアリルエーテルが挙げられる。また、多価メタクリル酸エステルとしては、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレート、ポリエチレングリコールジメタクリレート、1,3-ブタンジオールジメタクリレート、1,4-ブタンジオールジメタクリレート、1,6-ヘキサンジオールジメタクリレート、1,9-ノナンジオールジメタクリレート、ネオペンチルグリコールジメタクリレート、ジプロピレングリコールジメタクリレート、ポリプロピレングリコールジメタクリレート、トリメチロールプロパントリメタクリレート、ペンタエリトリトールトリメタクリレート、ペンタエリトリトールテトラメタクリレート、ジペンタエリトリトールヘキサメタクリレート、メタクリル変性ポリジメチルシロキサンなどが挙げられる。
該エーテル結合を有していてもよい炭化水素系架橋剤は、エチレン性不飽和結合を2以上有することが好ましく、エチレン性不飽和結合を2つ有することがさらに好ましい。エーテル結合を有していてもよい炭化水素系架橋剤としては、具体的には、ジビニルベンゼン;1,3-ブタジエン;トリビニルベンゼン;ジビニルナフタレン;トリビニルシクロヘキサン;ジビニルエーテル;ジアリルエーテル;多価メタクリル酸エステル;等が挙げられるが、中でも、ジビニルベンゼン、1,3-ブタジエン、ジアリルエーテル、及び多価メタクリル酸エステルの少なくとも1種であることがより好ましく、ジビニルベンゼン及び1,3-ブタジエンの少なくとも1種であることがさらに好ましく、ジビニルベンゼンであることが特に好ましい。
【0017】
多官能エチレン性不飽和単量体中における二官能不飽和単量体の割合は、50質量%以上であることが好ましく、70質量%以上であることがより好ましく、90質量%以上であることがさらに好ましく、95質量%以上であることが特に好ましく、100質量%である(多官能エチレン性不飽和単量体は二官能不飽和単量体のみからなる)ことが最も好ましい。
【0018】
樹脂粒子中における多官能エチレン性不飽和単量体由来の単量体単位は、0.01質量%以上であることが好ましく、0.1質量%以上であることがより好ましく、0.5質量%以上であることがさらに好ましく、2質量%以上であることが特に好ましく、5質量%以上であることが最も好ましく、70質量%以下であることが好ましく、50質量%以下であることがより好ましく、30質量%以下であることがさらに好ましく、20質量%以下であることが特に好ましく、10質量%以下であることが最も好ましい。多官能エチレン性不飽和単量体由来の単量体単位の割合を所定量とすることで、高い親水性を有する樹脂粒子を得ることができる。
【0019】
樹脂粒子中には、ヒドロキシメチルアクリル酸系単量体及び多官能エチレン性不飽和単量体以外の単量体に由来する単量体単位が含まれていてもよいが、単量体単位で75質量%以下であることが好ましく、65質量%以下であることがより好ましく、50質量%以下であることがさらに好ましく、30質量%以下であることが好ましく、20質量%以下であることがより好ましく、10質量%以下であることがさらに好ましく、5質量%以下であることが特に好ましく、2質量%以下であることが最も好ましい。
【0020】
樹脂粒子には、実質的に共有結合で窒素原子を含有する単量体に由来する単量体単位は含まれていないことが好ましい。窒素原子を含むモノマーを含む樹脂組成物を用いてフィルム等を形成した場合、フィルム等が着色するおそれがある。具体的には、樹脂粒子中に窒素原子が1質量%以下であり、0.5質量%以下であることが好ましく、0.1質量%以下であることがより好ましい。
【0021】
本発明の樹脂粒子は、コア部とその表面に設けられたシェル部で構成されるコアシェル粒子であってもよい。コアシェル構造とすることによって、樹脂粒子表面の親水性と樹脂粒子全体の吸湿性(吸水性)とのバランスを容易に調整することができる。コアシェル粒子である場合、シェル部がヒドロキシメチルアクリル酸系単量体の少なくとも1種と、多官能エチレン性不飽和単量体とが架橋した架橋構造を含む上述の構成であればよい。一方、コア部は単官能(メタ)アクリル系モノマーに由来する単量体単位が含まれていることが好ましい。単官能(メタ)アクリル系モノマーとしては、(メタ)アクリル酸のC1-12アルキルエステルが好ましく、(メタ)アクリル酸のC1-4アルキルエステルであることがより好ましい。単官能(メタ)アクリル系モノマーとして、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート等が挙げられ、1種又は2種以上を使用できる。コア部は単官能(メタ)アクリル系モノマーに由来する単量体単位が50質量%以上であることが好ましく、70質量%以上であることがより好ましく、90質量%以上であることがさらに好ましく、100質量%であることが特に好ましい。なお、コア部にはヒドロキシメチルアクリル酸系単量体及び多官能エチレン性不飽和単量体に由来する単量体単位が含まれていてもよく含まれていなくてもよい。
単官能(メタ)アクリル系モノマー以外の単量体を含んでもよく、単官能(メタ)アクリル系モノマー以外の単量体としては、例えば、単官能スチレン系単量体が挙げられる。スチレン系単量体としては、例えば、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、α-メチルスチレン、エチルビニルベンゼン、p-t-ブチルスチレン等のアルキルスチレン類;o-クロロスチレン、m-クロロスチレン、p-クロロスチレン等のハロゲン基含有スチレン類等のスチレン系単官能単量体等が挙げられる。これらの単量体は、それぞれ単独で用いてもよく、2種以上を併用してもよい。
【0022】
樹脂粒子の体積平均粒子径が10nm~10μmであることが好ましく、50nm~5μmであることがより好ましく、100nm~1μmであることがさらに好ましく、150~500nmであることが特に好ましい。
【0023】
上記樹脂粒子の温度25℃、相対湿度60%における吸湿率(吸水率)は、2.5質量%以上であることが好ましく、3~25質量%であることがより好ましく、5~15質量%であることがさらに好ましい。なお、吸湿率の決定は、より詳細には実施例に記載の手順に従って行う。
【0024】
2.重合方法
本発明の樹脂粒子は、式(1)で表されるヒドロキシメチルアクリル酸系単量体のうちR1が炭素数1~4のアルキル基であるもの(以下、ヒドロキシメチルアクリル酸エステルという)と、多官能エチレン性不飽和単量体と(以下、これらをまとめて「原料単量体成分」という場合がある)を水系溶媒中で重合し、必要に応じ、部分的に又は完全に加水分解することにより得られる。親水性モノマーとしてヒドロキシメチルアクリル酸エステルを用いると、水系溶媒中で重合しても、生成物を粒子状にできる。また多官能エチレン性不飽和単量体を用いて架橋構造を導入しているため、重合後に加水分解しても、加水分解物は粒子状態を維持できる。上記重合により、水と、その水中に分散した上記樹脂粒子と、を含む水分散体が得られるが、水分散体については後述する。
【0025】
重合方法としては、懸濁重合、乳化重合、分散重合等が挙げられる。中でも、乳化剤の存在下、上記原料単量体成分を反応溶媒に分散させて(ラジカル)重合反応を行う乳化重合が好ましく、具体的には、本発明の樹脂粒子の製造方法としては、乳化剤の存在下、式(2)で示される単量体の少なくとも1種と、多官能エチレン性不飽和単量体とを水系溶媒に分散させて重合反応を行う乳化重合を含むことが好ましい。なお、本発明の樹脂粒子を上記の乳化重合で製造する方法にあっては、乳化重合で形成されるように乳化重合に使用する単量体成分の分量を調整する。また、本発明の樹脂粒子がコア部とその表面に設けられたシェル部で構成されるコアシェル粒子である場合、シェル部がヒドロキシメチルアクリル酸系単量体の少なくとも1種と多官能エチレン性不飽和単量体とが架橋した架橋構造を含むように乳化重合を行う。乳化重合は、1段階のみで行ってもよく多段階で行ってもよい。
【0026】
【化4】
(R
2は、炭素数1~4のアルキル基を表す。)
【0027】
前記乳化剤としては、1種又は2種以上を用いることができ、非反応型界面活性剤であっても、ラジカル重合可能な基を構造中に有する反応型界面活性剤であってもよい。
【0028】
非反応型界面活性剤には、アニオン性、ノニオン性の界面活性剤が包含される。アニオン性界面活性剤としては、脂肪酸塩、アルキル(アリル)スルホン酸塩、アルキル硫酸エステル塩、ポリオキシエチレンアルキル(フェニル)エーテル硫酸塩等が挙げられ、ノニオン性界面活性剤としては、ポリオキシエチレンアルキル(フェニル)エーテル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレンポリオキシプロピレンブロックポリマー等が挙げられる。
【0029】
反応型界面活性剤には、アニオン性、ノニオン性の界面活性剤が包含される。アニオン性反応型界面活性剤としては、エーテルサルフェート型反応型界面活性剤、リン酸エステル系反応型界面活性剤が挙げられるが、これに限定されない。
【0030】
エーテルサルフェート型反応型界面活性剤には、ポリオキシアルキレンアルキルエーテル硫酸塩又はポリオキシアルキレンフェニルエーテル硫酸塩を基本骨格とし、重合性のアルケニル基(例えば、アリル基)、(メタ)アクリロイル基等を有する化合物が包含される。例えばラテムルPD-104、PD-105(花王株式会社製)、エレミノールRS-30、NHS-20(三洋化成工業株式会社製)、アクアロンKH-5、KH-10、KH-20(第一工業製薬株式会社製)、アデカリアソープSR-10、SR-20等(株式会社ADEKA製)がある。
【0031】
リン酸エステル系反応型界面活性剤には、アルキルリン酸エステル又は、ポリオキシアルキレンアルキルエーテルリン酸(塩)又はポリオキシアルキレンフェニルエーテルリン酸(塩)を基本骨格とし、重合性のアルケニル基(例えば、アリル基)、(メタ)アクリロイル基等を有する化合物が含まれる。例えばSIPOMER PZ-100(ソルベイ日華株式会社製)、H-3330PL、ニューフロンティアS-510(第一工業製薬株式会社製)、Maxemul6106、6112(クローダ社製)、アデカリアソープPP-70(株式会社ADEKA製)等がある。
【0032】
その他のアニオン性反応型界面活性剤としては、SIPOMER COPS1(ソルベイ日華株式会社製)、エレミノールJS-20(三洋化成工業株式会社製)、Maxemul 5010、5011(クローダ社製)等がある。
【0033】
一方、ノニオン性反応型界面活性剤には、ポリオキシアルキレンアルキルエーテルを基本骨格とし、重合性のアルケニル基(例えば、アリル基)、(メタ)アクリロイル基等を有する化合物が包含される。例えば、アデカリアソープNE-10、NE-20、NE-30、ER-10、ER-20、ER-30(株式会社ADEKA製)、ラテムルPD-420、PD-430、PD-450(株式会社花王製)、アクアロンRN-10、RN-20、RN-30、RN-50(第一工業製薬株式会社製)等がある。
【0034】
ヒドロキシメチルアクリル酸エステルの乳化重合用の界面活性剤としては、反応型界面活性剤を含むことが好ましく、アニオン性反応型界面活性剤を含むことがより好ましく、中でもエーテルサルフェート型反応型界面活性剤を含むことがさらに好ましい。
【0035】
乳化剤は、原料単量体成分の合計100質量部に対して、0.05質量部以上であることが好ましく、より好ましくは0.1質量部以上、さらに好ましくは0.3質量部以上であり、20質量部以下であることが好ましく、より好ましくは10質量部以下、さらに好ましくは5質量部以下、特に好ましくは3質量部以下である。
【0036】
前記水系溶媒とは、水単独、または水と水混和性有機溶媒との混合溶媒が挙げられるが、水単独であることが好ましい。水系溶媒とは、典型的には、水の含有量が50体積%を超える溶媒を指す。水としては、イオン交換水(脱イオン水)、蒸留水、純水等を用いることができる。水混和性有機溶媒としては、水と均一に混合し得る有機溶剤(低級アルコール等)を用いることができる。樹脂粒子中に有機溶媒が極力残存しないようにする観点から、水系溶媒の80体積%以上が水である水系溶媒が好ましく、水系溶媒の90体積%以上が水である水系溶媒がより好ましく、水系溶媒の95体積%以上が水である水系溶媒がさらに好ましく、実質的に水からなる水系溶媒(99.5体積%以上が水である水系溶媒)が特に好ましく、水単独であることが最も好ましい。
【0037】
前記水系溶媒は、単量体組成物100質量部に対して、例えば100質量部以上であり、好ましくは200質量部以上、より好ましくは400質量部以上、さらに好ましくは700質量部以上であり、2000質量部以下であることが好ましく、1500質量部以下であることがより好ましく、1000質量部以下であることがさらに好ましい。
【0038】
反応系内への原料単量体成分の添加態様については特に限定されず、重合開始剤の添加前に全量を一度に反応容器へと仕込む態様;単量体組成物の一部を重合させた後、残部を一度に、あるいは、分割して反応系内へと添加する態様;単量体組成物を一定の割合で連続的に反応系内へと添加する態様;等、様々な態様を採用することができる。粗大な重合体が生成するのを防止する観点から、単量体組成物の一部を重合させた後、残部を反応系内へと(一度または連続的に)添加する態様が好ましい。この場合、単量体組成物の一部の重合を開始した後、重合が完結する前に、重合温度に保ったまま残部を添加することが好ましい。
【0039】
原料単量体成分を重合する際には、例えば、重合開始剤、紫外線や放射線の照射、熱の印加等の手段が用いられ、重合開始剤を使用することが好ましく、原料単量体成分の分散性の観点から、酸化剤及び還元剤を組み合わせた重合開始剤(レドックス型重合開始剤)が好ましい。
【0040】
前記酸化剤としては、1種又は2種以上を用いることができ、例えば、過酸化水素、t-ブチルヒドロパーオキサイド、クメンヒドロパーオキサイド、p-メンタンヒドロパーオキサイド、ジイソプロピルベンゼンパーオキサイド、1,1,3,3-テトラメチルヒドロパーオキサイド、2,4,4-トリメチルペンチル-2-ヒドロパーオキサイドなどのヒドロパーオキサイド;メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド、アセチルケトンパーオキサイドなどケトンパーオキサイド類;硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム等の過硫酸塩類;が挙げられる。
【0041】
還元剤としては、1種又は2種以上を用いることができ、例えば、アスコルビン酸およびアスコルビン酸ナトリウム、アスコルビン酸カリウム等のアスコルビン酸塩類;エリソルビン酸およびエリソルビン酸ナトリウム、エリソルビン酸カリウム等のエリソルビン酸塩類;酒石酸および酒石酸ナトリウム、酒石酸カリウムなどの酒石酸塩類;亜燐酸および亜燐酸ナトリウム、亜燐酸カリウム等の亜燐酸塩類;亜燐酸水素ナトリウム、亜燐酸水素カリウム等の亜燐酸水素塩類;亜硫酸ナトリウム、亜硫酸カリウム等の亜硫酸塩類;亜硫酸水素ナトリウム、亜硫酸水素カリウム等の亜硫酸水素塩類;チオ硫酸ナトリウム、チオ硫酸カリウム等のチオ硫酸塩類;チオ亜硫酸ナトリウム、チオ亜硫酸カリウム等のチオ亜硫酸塩類;ピロ亜硫酸ナトリウム、ピロ亜硫酸カリウムなどのピロ亜硫酸塩類;ピロ亜硫酸水素ナトリウム、ピロ亜硫酸水素カリウム等のピロ亜硫酸水素塩類;ピロリン酸ナトリウム、ピロリン酸カリウムなどのピロリン酸塩類;ヒドロキシメタンスルホン酸ナトリウム(ホルムアルデヒドスルホキシル酸ナトリウム)等が挙げられる。また、必要に応じて、鉄、ニッケル、クロム、モリブデン、あるいはセリウム等の重金属の硫酸塩または塩化物塩を併用することもできる。
【0042】
レドックス型重合開始剤としては、ヒドロパーオキサイド類から選択される1種以上の酸化剤と、アスコルビン酸およびアスコルビン酸塩類から選択される1種以上の還元剤との組合せた重合開始剤であることが好ましく、過酸化水素(酸化剤)とアスコルビン酸(還元剤)とを組合せた重合開始剤であることがより好ましい。
【0043】
還元剤及び酸化剤の合計量は、原料単量体成分の合計100質量部に対して、0.1質量部以上であることが好ましく、より好ましくは0.5質量部以上、さらに好ましくは1質量部以上であり、5質量部以下であることが好ましく、より好ましくは3質量部以下、さらに好ましくは2質量部以下である。
【0044】
また、重合開始剤は、最初(反応開始前)に全量仕込んでおいてもよく、最初に一部を仕込んでおき、残りを連続フィード添加してもよく、断続的にパルス添加してもよく、これらを組み合わせた方法で添加してもよい。
【0045】
重合反応を行う際の反応温度は、例えば、30℃以上とするのが好ましく、より好ましくは60℃以上であり、100℃以下が好ましく、より好ましくは95℃以下である。反応温度がこの範囲にあれば、重合反応の制御が容易である。反応時間は、通常、10分~1200分が好ましく、より好ましくは30分~360分である。
【0046】
3.水分散体
上述した水と、その水中に分散した上記樹脂粒子と、を含む水分散体も本発明の範囲に包含される。本発明の水分散体は、樹脂粒子が、エステル基及びヒドロキシメチル基を有しており、親水性に優れている。また水に対する分散性が良好であり、分散体としての貯蔵安定性も良好であり、さらに容易に加水分解を行うことが可能である。加水分解及びその後、必要に応じて中和を行う場合、水分散体に含まれている樹脂粒子に対して、例えば、水酸化ナトリウム水溶液、アンモニア水溶液、シクロヘキシルアミン水溶液等の塩基性水溶液を添加することで加水分解を行うことができる。さらに、加水分解液に適宜酸を添加することで、部分中和又は完全中和を行うことができる。加水分解及び中和を行うことで、式(1)のR1に該当する基を水素原子、アルカリ金属原子、または4級アンモニウムにできる。重合時、加水分解時、及び中和時に用いる酸や塩基の量を調整したり、R1が水素原子である単量体単位の割合を調整することで、樹脂粒子のpH及び体積平均粒子径を容易に調整することができるため、樹脂粒子を幅広い用途で用いることができる。
【0047】
上記加水分解を行っていない樹脂粒子のpHは1.5以上7未満であることが好ましく、2以上6以下であることがより好ましく、2.5以上5.5以下であることがさらに好ましく、2.7以上5.0以下が特に好ましい。一方、上記加水分解を行った樹脂粒子のpHは5以上14未満であることが好ましく、6以上13.9以下であることがより好ましく、6.5以上13.8以下であることがさらに好ましく、7.5以上13.7以下であることが特に好ましい。
【0048】
水分散体に含まれる樹脂粒子の体積平均粒子径は10nm~10μmであることが好ましく、50nm~5μmであることがより好ましく、100nm~1μmであることがさらに好ましく、150~500nmであることが特に好ましい。
【0049】
本願は、2019年3月29日に出願された日本国特許出願第2019-067834号に基づく優先権の利益を主張するものである。2019年3月29日に出願された日本国特許出願第2019-067834号の明細書の全内容が、本願に参考のため援用される。
【実施例】
【0050】
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
【0051】
<架橋微粒子の体積平均粒子径の測定>
得られた架橋微粒子分散体をイオン交換水で希釈して光散乱粒度分布測定機(Particle Sizing Systems社製「NicompMODEL380」)にて測定して、体積平均粒子径(nm)を求め、この値を架橋微粒子の体積平均粒子径とした。
【0052】
<吸湿性評価>
内径4cmのガラス製のシャーレに架橋微粒子分散体を10質量部計量し、送風定温恒温器(ヤマト科学社製「DNF400」)にて105℃で2時間乾燥した。得られた乾燥粉体をメノウ鉢ですりつぶし乾燥粉末とした。続いて、乾燥粉末を再度送風定温恒温器にて105℃で60分乾燥させ、試験用粉末を得た。
蓋つきの内径4cmのガラス製のシャーレを用意し、シャーレの質量を測定し、測定した質量をX(g)とした。次に、得られた試験用粉末約0.5質量部を蓋つきの内径4cmのガラス製のシャーレに入れた後に蓋をして、正確に質量を測定し、測定した質量をY(g)とした。続いて、試験用粉末入りのシャーレの蓋を外した状態で、恒温恒湿器(エスペック社製「SH-241」)に入れて温度25℃、相対湿度60%の条件下で24時間保存し、その後、シャーレに蓋をして取り出して、吸湿後の質量を測定し、測定した質量をZ(g)とした。吸湿率(吸水率)は以下の計算式で計算した。
吸湿率(%)=[(Z-Y)/(Y-X)]×100
【0053】
<評価用塗膜作製(アクリル板)>
アクリル樹脂エマルション(日本触媒社製「ユーダブルEF-015」、ポリマー固形分:50質量%)5.0質量部に架橋微粒子分が0.25質量部となるように架橋微粒子分散体を配合した後、スターラーチップで十分に攪拌し、評価用塗料を得た。得られた評価用塗料を透明なアクリル板(日本テストパネル社製、縦:70mm、横:150mm、厚さ:2mm)に、塗工後の膜厚が50μmとなるようにアプリケーターで塗布し、送風定温恒温器(ヤマト科学社製「DNF400」)にて100℃で10分間乾燥して、塗膜が積層されたアクリル板(A)を作製した。
【0054】
<評価用塗膜作製(ポリエチレンテレフタレートフィルム)>
アクリル樹脂エマルション(日本触媒社製「ユーダブルEF-015」、ポリマー固形分:50質量%)5.0質量部に架橋微粒子分が0.25質量部となるように架橋微粒子分散体を配合した後、混合装置(泡とり練太郎 ARE-310 シンキー社製)で十分に攪拌し、評価用塗料を得た。得られた評価用塗料を透明なポリエチレンテレフタレートフィルム(東洋紡社製、コスモシャインA4300 縦:297mm、横:210mm、厚さ:0.100mm)に、塗工後の膜厚が50μmとなるようにバーコーターで塗布し、送風定温恒温器(ヤマト科学社製「DNF400」)にて100℃で10分間乾燥して、塗膜が積層されたポリエチレンテレフタレートフィルム(B)を作製した。
【0055】
<評価用塗膜作製(アルミニウム板)>
アルミテストパネル(日本テストパネル社製、A1050P 縦:150mm、横:70mm、厚さ:0.800mm)の塗工面をアセトンを含ませたキムワイプで、キムワイプに黒い汚れがつかなくなるまで拭いた。次に、ウルトラシーラーIII(日本ペイント社製)をアセトン洗浄したアルミテストパネルに、塗工後の膜厚が11.5μmとなるようにバーコーターで塗布し、送風定温恒温器(ヤマト科学社製「DNF400」)にて100℃で10分間乾燥して、表面が改質されたアルミテストパネルを準備した。クラレポバール28-98(クラレ社製 けん化度98%以上、重合度1700)をイオン交換水で有効成分10.0質量%に希釈したもの(以下、「PVA(有効成分10.0質量%)」という)を5.0質量部に、ポリエチレングリコール3400(富士フィルム和光純薬社製 分子量3400)をイオン交換水で有効成分10.0質量%に希釈したもの(以下、「PEG(有効成分10.0質量%)」という)を5.0質量部加え、スターラーチップで十分に攪拌して、親水性バインダー(有効成分10.0質量%)を得た。続いて、親水性バインダー(有効成分10.0質量%)10.0質量部に架橋微粒子分が0.20質量部となるように架橋微粒子分散体を配合した後、混合装置(泡とり練太郎 ARE-310 シンキー社製)で十分に攪拌し、評価用塗料を得た。得られた評価用塗料を表面改質されたアルミテストパネルに、塗工後の膜厚が11.5μmとなるようにバーコーターで塗布し、送風定温恒温器(ヤマト科学社製「DNF400」)にて200℃で1分間乾燥して、塗膜が積層されたアルミニウム板(C)を作製した。
【0056】
<塗膜親水性評価(アクリル板)>
得られた塗膜が積層されたアクリル板(A)を温度23℃、相対湿度65%の雰囲気中に一晩静置した後、静的接触角測定装置(協和界面化学社製「DM-500」)を用い、塗膜に純水を2μL滴下して、水滴が塗膜の表面に接触した30秒後の接触角を測定した。なお、表1中に参考例として記載したが、塗膜を積層していない上記アクリル板(A)の接触角は84.9°であった。
【0057】
<塗膜親水性評価(ポリエチレンテレフタレートフィルム、アルミニウム板)>
上記アクリル板(A)を上記ポリエチレンテレフタレートフィルム(B)又は上記アルミニウム板(C)に代えた以外は「塗膜親水性評価(アクリル板)」に記載の方法と同じ方法で接触角を測定した。
【0058】
<pHの測定>
pHメーター(堀場製作所社製「F-72」)により25℃での値を測定した。
【0059】
<実施例1>
攪拌機、温度計および冷却機を備えたステンレス製の反応釜に、脱イオン水832.0質量部およびエーテルサルフェート型アンモニウム塩を主成分とするアニオン性反応型界面活性剤アデカリアソープSR-20(有効成分100質量%、ADEKA社製)をイオン交換水で有効成分25.0質量%に希釈したもの(以下、「SR-20(有効成分25.0質量%)」という)を0.96質量部加え、内温を75℃まで昇温し、同温度に保った。他方、上記反応釜とは異なる容器で、2-ヒドロキシメチルアクリル酸メチル(以下「RHMA」と称する)180.0質量部とジビニルベンゼン(新日鉄住金化学社製、ジビニルベンゼン純度81%、以下「DVB810」と称する)20.0質量部とを混合して、単量体組成物200.0質量部を調製した。次に、上記反応釜内を窒素ガスで置換した後、上記単量体組成物40.0質量部、過酸化水素水(過酸化水素濃度1.28質量%)21.0質量部、及びL-アスコルビン酸水溶液(L-アスコルビン酸濃度1.90質量%)21.0質量部を上記反応釜内に添加して、初期重合反応を行った。続いて、上記単量体組成物の残部160.0質量部、過酸化水素水(過酸化水素濃度0.22質量%)479.0質量部、及びL-アスコルビン酸水溶液(L-アスコルビン酸濃度0.33質量%)479.0質量部とSR-20(有効成分25.0質量%)7.04質量部との混合組成物486.04質量部を、各々異なる投入口より反応釜へ4時間かけて均一に滴下した。滴下終了後、内温を85℃まで昇温し、同温度で2時間保持して熟成した後、反応溶液を冷却して、架橋微粒子(1)が分散した架橋微粒子分散体(1a)を得た。得られた架橋微粒子分散体(1a)を用いて測定した各種物性を表1に示した。
【0060】
<実施例2>
架橋微粒子分散体(1a)10.0質量部およびアンモニア水溶液(アンモニア濃度2.8質量%)4.6質量部を反応釜に加え、25℃で30分撹拌し、架橋微粒子(2)が分散した架橋微粒子分散体(2a)を得た。なお、架橋微粒子分散体(1a)を作製する際に添加されたRHMA中におけるメトキシカルボニル基のモル数と架橋微粒子分散体(1a)に添加したアンモニアのモル数は同じであった。得られた架橋微粒子分散体(2a)を用いて測定した各種物性を表1に示した。
【0061】
<実施例3>
攪拌機、温度計および冷却機を備えたステンレス製の反応釜に、脱イオン水1472.6質量部とSR-20(有効成分25.0質量%)0.16質量部とを加え、内温を75℃まで昇温し、同温度に保った。他方、上記反応釜とは異なる容器で、RHMA198.0質量部とDVB810 2.0質量部とを混合して、単量体組成物200.0質量部を調製した。次に、上記反応釜内を窒素ガスで置換した後、上記単量体組成物100.0質量部、過酸化水素水(過酸化水素濃度2.68質量%)20.0質量部、及びL-アスコルビン酸水溶液(L-アスコルビン酸濃度4.00質量%)20.0質量部を上記反応釜内に添加して、初期重合反応を行った。続いて、上記単量体組成物の残部100.0質量部、過酸化水素水(過酸化水素濃度0.50質量%)160.0質量部、及びL-アスコルビン酸水溶液(L-アスコルビン酸濃度0.75質量%)160.0質量部とSR-20(有効成分25.0質量%)7.84質量部とアンモニア水溶液(アンモニア濃度28.0質量%)0.36質量部との混合組成物168.2質量部を、各々異なる投入口より反応釜へ4時間かけて均一に滴下した。滴下終了後、内温を85℃まで昇温し、同温度で2時間保持して熟成した後、反応溶液を冷却して、架橋微粒子(3)が分散した架橋微粒子分散体(3a)を得た。得られた架橋微粒子分散体(3a)を用いて測定した各種物性を表1に示した。
【0062】
<実施例4>
架橋微粒子分散体(3a)10.0質量部およびアンモニア水溶液(アンモニア濃度2.8質量%)5.1質量部を反応釜に加え、25℃で30分撹拌し、架橋微粒子(4)が分散した架橋微粒子分散体(4a)を得た。なお、架橋微粒子分散体(3a)を作製する際に添加されたRHMA中におけるメトキシカルボニル基のモル数と架橋微粒子分散体(3a)に添加したアンモニアのモル数は同じであった。得られた架橋微粒子分散体(4a)を用いて測定した各種物性を表1に示した。なお、架橋微粒子(4)は粒子状となってはいるが、粒子が水を含み膨潤しているため、散乱強度が低く正確な粒子径を測定できなかった。
【0063】
<比較例1>
攪拌機、温度計および冷却機を備えたステンレス製の反応釜に、脱イオン水832.0質量部とドデシルベンゼンスルホン酸ナトリウム水溶液(有効成分6.5質量%、以下「DBSNa(有効成分6.5質量%)」と称する)0.92質量部とを加え、内温を75℃まで昇温し、同温度に保った。他方、上記反応釜とは異なる容器で、メタクリル酸メチル(以下「MMA」と称する)180.0質量部とDVB810 20.0質量部を混合して、単量体組成物200.0質量部を調製した。次に、上記反応釜内を窒素ガスで置換した後、上記単量体組成物40.0質量部、過酸化水素水(過酸化水素濃度1.28質量%)21.0質量部、及びL-アスコルビン酸水溶液(L-アスコルビン酸濃度1.90質量%)21.0質量部を上記反応釜内に添加して、初期重合反応を行った。続いて、上記単量体組成物の残部160.0質量部、過酸化水素水(過酸化水素濃度0.22質量%)479.0質量部、及びL-アスコルビン酸水溶液(L-アスコルビン酸濃度0.33質量%)479.0質量部とDBSNa(有効成分6.5質量%)6.77質量部との混合組成物485.77質量部を、各々異なる投入口より反応釜へ4時間かけて均一に滴下した。滴下終了後、内温を85℃まで昇温し、同温度で2時間保持して熟成した後、反応溶液を冷却して、架橋微粒子(c1)が分散した架橋微粒子分散体(c1a)を得た。得られた架橋微粒子分散体(c1a)を用いて測定した各種物性を表1に示した。
【0064】
<比較例2>
架橋微粒子分散体(c1a)10.0質量部およびアンモニア水溶液(アンモニア濃度28質量%)0.5質量部を反応釜に加え、25℃で30分撹拌し、架橋微粒子(c2)が分散した架橋微粒子分散体(c2a)を得た。なお、架橋微粒子分散体(c1a)を作製する際に添加されたMMA中におけるメトキシカルボニル基のモル数と架橋微粒子分散体(c1a)に添加したアンモニアのモル数は同じであった。得られた架橋微粒子分散体(c2a)を用いて測定した各種物性を表1に示した。
【0065】
【0066】
<実施例5-1~5-3>
アンモニア水溶液(アンモニア濃度2.8質量%)の添加量を表2に記載の値(1.2質量部(実施例5-1)、2.3質量部(実施例5-2)、9.2質量部(実施例5-3))に変更した以外は実施例2と同様に架橋微粒子分散体(5-1a、5-2a、5-3a)を作製した。得られた架橋微粒子分散体(5-1a、5-2a、5-3a)を用いてpH及び平均粒子径を測定し、測定結果を表2に示した。なお、架橋微粒子分散体(1a)(実施例1)及び架橋微粒子分散体(2a)(実施例2)についてもpHを測定し、表2にpH及び体積平均粒子径を示しており、表2中の「モル%」は実施例2でのアンモニア水溶液の添加量を基準(100モル%)としたときの各実施例におけるアンモニア水溶液の添加量の比率を記載した。
【0067】
<実施例6-1~6-4>
アンモニア水溶液に代えて水酸化ナトリウム水溶液(水酸化ナトリウム濃度6.6質量%)を1.2質量部(実施例6-1)、2.3質量部(実施例6-2)、4.6質量部(実施例6-3)、9.2質量部(実施例6-4)添加した以外は実施例2と同様に架橋微粒子分散体(6-1a、6-2a、6-3a、6-4a)を作製した。得られた架橋微粒子分散体(6-1a、6-2a、6-3a、6-4a)を用いてpH及び平均粒子径を測定し、測定結果を表2に示した。なお、実施例6-3では、架橋微粒子分散体(1a)を作製する際に添加されたRHMA中におけるメトキシカルボニル基のモル数と架橋微粒子分散体(1a)に添加した水酸化ナトリウムのモル数は同じであった。表2中の「モル%」は水酸化ナトリウム水溶液を4.6質量部添加した場合の添加量を基準(100モル%)としたときの各実施例における水酸化ナトリウム水溶液の添加量の比率を記載した。
【0068】
<実施例7-1~7-3>
アンモニア水溶液(アンモニア濃度2.8質量%)の添加量を表2に記載の値(1.3質量部(実施例7-1)、2.5質量部(実施例7-2)、10.2質量部(実施例7-3))に変更した以外は実施例4と同様に架橋微粒子分散体(7-1a、7-2a、7-3a)を作製した。得られた架橋微粒子分散体(7-1a、7-2a、7-3a)を用いてpH及び平均粒子径を測定し、測定結果を表2に示した。なお、実施例3及び実施例4についてもpHを測定し、表2にpHを示しており、表2中の「モル%」は実施例4でのアンモニア水溶液の添加量を基準(100モル%)としたときの各実施例におけるアンモニア水溶液の添加量の比率を記載した。また、架橋微粒子(7-1a、7-2a、7-3a)は粒子状となってはいるが、粒子が水を含み膨潤しているため、散乱強度が低く正確な粒子径を測定できなかった。
【0069】
<実施例8-1~8-4>
アンモニア水溶液に代えて水酸化ナトリウム水溶液(水酸化ナトリウム濃度6.6質量%)を1.3質量部(実施例8-1)、2.5質量部(実施例8-2)、5.1質量部(実施例8-3)、10.2質量部(実施例8-4)添加した以外は実施例4と同様に架橋微粒子分散体(8-1a、8-2a、8-3a、8-4a)を作製した。得られた架橋微粒子分散体(8-1a、8-2a、8-3a、8-4a)を用いてpHを測定し、測定結果を表2に示した。なお、実施例8-3では、架橋微粒子分散体(3a)を作製する際に添加されたRHMA中におけるメトキシカルボニル基のモル数と架橋微粒子分散体(3a)に添加した水酸化ナトリウムのモル数は同じであった。表2中の「モル%」は水酸化ナトリウム水溶液を5.1質量部添加した場合の添加量を基準(100モル%)としたときの各実施例における水酸化ナトリウム水溶液の添加量の比率を記載した。また、架橋微粒子(8-1a、8-2a、8-3a、8-4a)は粒子状となってはいるが、粒子が水を含み膨潤しているため、散乱強度が低く正確な粒子径を測定できなかった。
【0070】
【0071】
<実施例9-1~9-2>
アンモニア水溶液に代えてシクロヘキサンアミン(シクロヘキサンアミン濃度100質量%)を0.38質量部(実施例9-1)、0.75質量部(実施例9-2)添加した以外は実施例2と同様に架橋微粒子分散体(9-1a、9-2a)を作製した。なお、実施例9-2では、架橋微粒子分散体(1a)を作製する際に添加されたRHMA中におけるメトキシカルボニル基のモル数と架橋微粒子分散体(1a)に添加したシクロヘキサンアミンのモル数は同じであった。表3中の「モル%」はシクロヘキサンアミン水溶液を0.75質量部添加した場合の添加量を基準(100モル%)としたときの各実施例におけるシクロヘキサンアミン水溶液の添加量の比率を記載した。
【0072】
<実施例10~14>
粒子組成を表3に記載の粒子組成に変更し、アンモニア水溶液に代えて水酸化ナトリウム水溶液を添加した以外は実施例2と同様に架橋微粒子分散体(10a~14a)を作製した。得られた架橋微粒子分散体(10a~14a)を用いて接触角を測定し、測定結果を表3に示した。表3中の「モル%」は水酸化ナトリウム水溶液を4.6質量部添加した場合の添加量を基準(100モル%)としたときの各実施例における水酸化ナトリウム水溶液の添加量の比率を記載した。なお、表3中の「PEGDAE」はポリエチレングリコールジアリルエーテルのことであり、「4EGDMA」はテトラエチレングリコールジメタクリレートのことであり、ポリエチレングリコールジアリルエーテルとしては、日油社製ユニオックス(登録商標)AA-480Rを、テトラエチレングリコールジメタクリレートとしては、共栄社化学社製ライトエステル4EGを用いた。
【0073】
<実施例15>
攪拌機、温度計及び冷却機を備えたステンレス製の第1の反応釜に、脱イオン水1378.0質量部、及びエーテルサルフェート型アンモニウム塩を主成分とするアニオン性反応性乳化剤アデカリアソープSR-20(有効成分100質量%、ADEKA社製)をイオン交換水で有効成分10質量%に希釈したもの(以下「SR-20(有効成分25質量%)」という)0.96質量部を加え、内温を75℃まで昇温し、同温度に保った。他方、第1の反応釜とは異なる第2の反応釜で、MMA100質量部を投入し、単量体組成物A 100質量部を調製した。さらに、第1の反応釜、第2の反応釜とは異なる第3の反応釜で、RHMA90質量部と、DVB810 10質量部とを混合して、単量体組成物B100質量部を調製した。
次に、第1の反応釜内を窒素ガスで置換した後、前記単量体組成物A100質量部、過酸化水素水(濃度3.35質量%)20質量部、及びL-アスコルビン酸水溶液(濃度5.0質量%)20質量部を第1の反応釜内に添加して、初期重合反応を行った。続いて、前記単量体組成物B100質量部、過酸化水素水(濃度0.83質量%)100質量部、及びL-アスコルビン酸水溶液(濃度1.25質量%)100質量部、SR-20(有効成分10質量%)7.04質量部とアンモニア水溶液(濃度28質量%)0.36質量部とイオン交換水92.6質量%との混合組成物100質量部を、各々異なる投入口より、第1の反応釜へ3時間かけて均一に滴下した。滴下終了後、第1の反応釜の内温を75℃に保持し、同温度で2時間保持して熟成した後、反応溶液を冷却して、重合体(15)が分散した重合体水分散体(15)を得た。
前記で得られた重合体水分散体(15)10質量部、及び塩基性水溶液として水酸化ナトリウム水溶液(濃度10.0質量%)0.76質量部を第1の反応釜に加え、25℃で終夜撹拌することにより、部分的に加水分解された重合体が分散した重合体水分散体(15)を得た。
【0074】
<実施例16、実施例17>
粒子組成を表3に記載の粒子組成に変更した以外は実施例15(と同様に架橋微粒子分散体(16~17)を作製した。なお、表3中の「BA」はn-ブチルアクリレートである。
【0075】
<比較例3>
粒子組成を表3に記載の粒子組成に変更した以外は実施例1と同様に架橋微粒子分散体(c3a)を作製した。得られた架橋微粒子分散体(c3a)を用いて接触角を測定し、測定結果を表3に示した。
【0076】
<比較例4>
攪拌機、滴下装置および温度計を備えた容量10Lのガラス製反応器に、有機溶媒としてのメチルアルコール4266.5gと、28重量%アンモニア水(水および触媒)333.0gとを仕込み、攪拌しながら液温を20±0.5℃に調節した。一方、滴下装置に、シリコン化合物としてのテトラメトキシシラン333.0gをメチルアルコール533.0gに溶解してなる溶液を仕込んだ。そして、滴下装置から該溶液を1時間かけて滴下した。滴下終了後、さらに1時間攪拌することにより、テトラメトキシシランの加水分解,縮合を行い、シリカ粒子の懸濁液を得た。該シリカ粒子の平均粒子径は100nmであった。得られた懸濁液を瞬間真空蒸発装置を用いて乾燥させることにより、粉体状のシリカ粒子を取り出した。瞬間真空乾燥装置としては、クラックス・システム 8B型(ホソカワミクロン株式会社製)を使用した。また乾燥条件として、加熱管温度175℃、減圧度200torrを採用した。上記の瞬間真空蒸発装置は、加熱水蒸気が供給されるジャケットで覆われた内径8mm、長さ9mのステンレス鋼管と、該鋼管の一端部に懸濁液を供給する供給部と、鋼管の他端部に接続された、粉体と蒸気とを分離するバッグフィルタが設けられた減圧状態の粉体捕集室とを備えていた。そして、供給部から供給された懸濁液は、鋼管内を通過する際に加熱されて粉体と蒸気とに分離し、粉体はバッグフィルタによって捕集され、蒸気は凝縮された後、装置外に排出される構成となっていた。
粒子として粉体状の上記シリカ粒子を用いた以外は実施例1と同様に架橋微粒子分散体(c4a)を作製した。得られた架橋微粒子分散体(c4a)を用いて接触角を測定し、測定結果を表3に示した。
【0077】
<比較例5>
攪拌機、温度計、および冷却機を備えたステンレス製の反応釜に、脱イオン水1400部および65重量%DBSNa6部を加え、内温を90℃まで昇温し、同温度に保った。
他方、上記反応釜とは異なる上記と同一設備を保有した反応容器に、メラミン100部、37重量%ホルマリン193部、25重量%アンモニア水3部を加え、70℃まで昇温して、同温度で40分間保持した後、上記90℃に保持された65重量%DBSNa水溶液中に投入した。その後、10重量%DBS水溶液50部を投入して、さらに90℃にて5時間保持して熟成を行い、アミノ樹脂粒子を含有する分散液を得た。上記アミノ樹脂粒子を含有する分散液1752部に10重量%硫酸バンド水溶液30部を添加して、30分攪拌を行った。その後、その分散液を遠心分離機により固液分離を行い、得られたケーキを窒素雰囲気下の190℃で保持された熱風乾燥機乾燥にて5時間保持し、乾燥を行った後、ジェットミル粉砕機(粉砕圧:0.7MPa)による粉砕と気流分級を行い、メラミン樹脂粒子を得た。該メラミン粒子の平均粒子径は200nmであった。
粒子として上記メラミン粒子を用いた以外は実施例1と同様に架橋微粒子分散体(c5a)を作製した。得られた架橋微粒子分散体(c5a)を用いて接触角を測定し、測定結果を表3に示した。
【0078】
<比較例6>
粒子として架橋ポリアクリル酸(富士フイルムワコーケミカル社製100CLPAH)を用いた以外は実施例1と同様に架橋微粒子分散体(c6a)を作製した。しかし、上記架橋ポリアクリル酸を用いた比較例6では粘度が高すぎるため、配合することができなかった。
【0079】
<水分散体の粘度>
架橋微粒子分散体(6-3a)を、スプレードライヤー(ヤマト科学社製 GA-32)で乾燥させ、架橋微粒子粉体(6-3b)を得た。架橋微粒子粉体(6-3b)1.0質量部にイオン交換水9.0質量部を加え、スターラーチップで十分に攪拌し、10質量%の水分散体を調製した。続いて、コーンプレート型粘度計(DV-II+Pro ブルックフィールド社 ローターNo.CPE-42 回転数30rpm)を用いて、試料皿に1質量部の水分散体を入れ、25℃における粒子水分散体の粘度を測定したところ、5.62mPa・sであった。
比較例6で用いた架橋ポリアクリル酸粒子についても同様にして、0.1質量%の水分散体の粘度を測定したところ、10.4mPa・sであり、0.1質量%しか架橋ポリアクリル酸粒子を含有していないにもかかわらず粘度が非常に高くなった。
このことから本発明の樹脂粒子は、各種添加剤として使用する場合の配合性が極めて高いといえる。
【0080】
【産業上の利用可能性】
【0081】
本発明の樹脂粒子は、親水性付与剤、吸湿剤、カラム充填剤、帯電防止剤として用いたり、耐汚染塗料、吸水性樹脂、マット剤、医療診断薬、コーティング剤、保水剤、吸放湿剤、屈折率調整剤、アンチブロッキング剤、防曇剤、等に利用したりすることができる。