(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-10-20
(45)【発行日】2022-10-28
(54)【発明の名称】モータ
(51)【国際特許分類】
H02K 29/08 20060101AFI20221021BHJP
【FI】
H02K29/08
(21)【出願番号】P 2018183961
(22)【出願日】2018-09-28
【審査請求日】2021-07-26
(73)【特許権者】
【識別番号】000228730
【氏名又は名称】日本電産サーボ株式会社
(73)【特許権者】
【識別番号】000001133
【氏名又は名称】株式会社小糸製作所
(74)【代理人】
【識別番号】110001634
【氏名又は名称】弁理士法人志賀国際特許事務所
(72)【発明者】
【氏名】丸山 莉奈
(72)【発明者】
【氏名】旦野 太郎
(72)【発明者】
【氏名】小島 誠二
(72)【発明者】
【氏名】木戸間 敏
【審査官】池田 貴俊
(56)【参考文献】
【文献】特開2006-311665(JP,A)
【文献】特開2018-148682(JP,A)
【文献】特開2006-191738(JP,A)
【文献】特開2003-230239(JP,A)
【文献】特開2016-123206(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H02K 29/08
(57)【特許請求の範囲】
【請求項1】
中心軸に沿って延びるシャフトを有する有蓋円筒状のロータコアと、前記ロータコアの内周側に設けられる中空円筒状のマグネットと、を有するロータと、
前記マグネットの磁束密度を検出する検出素子と、
前記磁束密度に基づいて前記ロータの回転速度に関する信号を出力する信号出力部と、を備え、
前記マグネットは、周方向に沿って第1極および第2極が交互に配置されるとともに、回転方向と逆方向に前記第1極および前記第2極が並ぶ第1着磁境界部と前記回転方向と逆方向に前記第2極および前記第1極が並ぶ第2着磁境界部とを含み、
前記中心軸に沿う方向から平面視した際、
前記検出素子および前記第1着磁境界部が、前記マグネットの中心を通るマグネット中心軸と前記中心軸とを通る直線上に位置して
おり、
前記信号出力部は、前記第1着磁境界部が前記検出素子の一つを通過するタイミングに応じて前記信号を出力する、
モータ。
【請求項2】
前記ロータに対向して配置される基板をさらに備え、
前記検出素子は、前記基板の前記ロータに対向する面に設けられている、
請求項
1に記載のモータ。
【請求項3】
前記信号出力部は、前記基板に設けられる
請求項
2に記載のモータ。
【請求項4】
前記マグネットは、前記ロータコアに接着剤で貼り付けられている、
請求項1から
3のいずれか一項に記載のモータ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、モータに関する。
【背景技術】
【0002】
近年、電子機器に搭載されるモータとしてブラシレスDCモータが用いられている。下記特許文献1には、アウターロータ型のブラシレスDCモータにおいてロータの回転速度に関するFG信号を用いることで回転制御を行う技術が開示されている。このブラシレスDCモータでは、ロータに設けたマグネットからの磁気をセンサで検出し、検出結果に基づいてFG信号を生成している。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
ロータはロータコアの内周にマグネットを貼り付けて構成されるが、ロータコアとマグネットとを正確に貼り合わせることは難しく、ロータコアおよびマグネットは互いの中心軸がずれた状態となる。このようにロータコアに対して位置ずれのあるマグネットはロータの回転時に偏芯する。偏芯状態で回転するマグネットはセンサに対する位置が径方向に変動するため、ロータの回転の精度は良いもののFG信号の回転精度だけが悪化してしまう。
【0005】
本発明は、上記事情に鑑みて、ロータ回転時に偏芯が生じる場合でもFG信号の回転精度の悪化を低減できる、モータを提供することを目的の一つとする。
【課題を解決するための手段】
【0006】
本発明のモータの一つの態様は、中心軸に沿って延びるシャフトを有する有蓋円筒状のロータコアと、前記ロータコアの内周側に設けられる中空円筒状のマグネットと、を有するロータと、前記マグネットの磁束密度を検出する検出素子と、前記磁束密度に基づいて前記ロータの回転速度に関する信号を出力する信号出力部と、を備え、前記マグネットは、周方向に沿って第1極および第2極が交互に配置されるとともに、回転方向と逆方向に前記第1極および前記第2極が並ぶ第1着磁境界部と前記回転方向と逆方向に前記第2極および前記第1極が並ぶ第2着磁境界部とを含み、前記中心軸に沿う方向から平面視した際、前記検出素子および前記第1着磁境界部が、前記マグネットの中心を通るマグネット中心軸と前記中心軸とを通る直線上に位置しており、前記信号出力部は、前記第1着磁境界部が前記検出素子の一つを通過するタイミングに応じて前記信号を出力する。
【発明の効果】
【0007】
本発明の一つの態様によれば、ロータ回転時に偏芯が生じる場合でもFG信号の回転精度の悪化を低減できるモータが提供される。
【図面の簡単な説明】
【0008】
【
図2】ロータを構成するマグネットの平面図である。
【
図3】磁束密度とFG信号との関係を示す図である。
【
図4】偏芯のないロータにおける検出素子とマグネットとの位置関係を示す図である。
【
図6】第3ロータの回転時におけるマグネットと検出素子との位置関係の変化を示す図である。
【発明を実施するための形態】
【0009】
以下、図面を参照しながら、本発明の実施形態について説明する。なお、本発明の範囲は、以下の実施の形態に限定されず、本発明の技術的思想の範囲内で任意に変更可能である。
【0010】
本実施形態のモータは、車両用前照灯に組み込まれた配光パターンを形成する回転リフレクタを駆動するために用いられるモータに関するものである。
【0011】
図1は、本実施形態におけるモータの断面図である。本実施形態のモータはアウターロータ式のモータである。
図1に示すように、本実施形態のモータ10は、ステータ1と、ロータ2と、ベアリング3と、回路基板4と、検出素子5と、を備える。本実施形態のモータ10は、ステータ1の外周側にロータ2を配置したアウターロータ型のモータである。
【0012】
図1を含む以下の図面においては、各構成をわかりやすくするために、実際の構造と各構造における縮尺や数等を異ならせる場合がある。特に断りのない限り、中心軸Jに平行な方向を単に「軸方向」と呼び、中心軸Jを中心とする径方向を単に「径方向」と呼び、中心軸Jを中心とする周方向、すなわち、中心軸Jの軸周りを単に「周方向」と呼ぶ。さらに、以下の説明において、「平面視」とは、軸方向から見た状態を意味する。
【0013】
ステータ1は、中心軸Jを中心とする略円筒状のベアリング保持部1aと、ベアリング保持部1aの径方向外側に取り付けられたステータコア1bと、ステータコア1bに装着されたコイル1cとを有する。ベアリング保持部1aは、軸受機構の一部となるベアリング3を軸方向において2つ支持する。ステータコア1bは、複数枚の板状体を積層した積層体として形成されている。ステータコア1bの外周部には、各磁極としての複数のティースが円周方向に所定間隔で配置されている。また、各ティースの内側の磁気回路を構成する腕部に、インシュレータ(不図示)を介してコイル1cが巻回されている。このようにして、ステータコア1bにコイル1cを巻回したステータ1が構成される。
【0014】
ロータ2は、ベアリング3を介して中心軸Jを中心にステータ1に対して回転可能に支持される。ロータ2は、中心軸Jを中心とする略有蓋筒状であって磁性を有する金属製のロータコア8と、ロータコア8の側壁部の内側(すなわち、内周側)に設けられてステータ1のコイル1cと対向して配置されるマグネット6と、ロータコア8から中心軸Jに沿って延びるシャフト9とを備える。シャフト9の中心は中心軸Jと一致する。なお、シャフト9はロータコア8と同一の部材で構成されていてもよいし、ロータコア8とは別の部材で構成されていてもよい。シャフト9には、モータ10により回転させる回転体(不図示)が取り付けられる。モータ10はシャフト9に取り付けた回転体の回転を制御する。
【0015】
本実施形態のロータ2は、ロータコア8の内周側に接着剤7を介してマグネット6を固定することで構成される。これにより、本実施形態のロータ2では、ロータコア8とマグネット6とを簡便に固定できるため、ロータ2の製造工程が容易なものとなっている。
【0016】
図2はロータを構成するマグネットの平面図である。
図2に示すように、マグネット6はマグネット中心軸6Cに沿って延びる略中空円筒状からなり、周方向に沿ってS極(第1極)6sおよびN極(第2極)6nが交互に2個ずつ配置される。マグネット中心軸6Cはマグネット6の重心を通る。本実施形態のマグネット6では、複数の着磁境界部15が周方向にわたって90°間隔で設けられている。着磁境界部15はS極6sおよびN極6nの境界を構成する。
本実施形態のロータ2は4極ロータを構成している。本実施形態のロータ2は、平面視した状態において反時計回りとなる回転方向Rに回転する。
【0017】
複数の着磁境界部15は、一対の第1着磁境界部16a,16bと、一対の第2着磁境界部17a,17bと、を含む。第1着磁境界部16a,16bは、マグネット6の回転方向Rと逆方向にS極6sおよびN極6nが並んだ着磁境界である。第2着磁境界部17a,17bは、マグネット6の回転方向Rと逆方向にN極6nおよびS極6sが並んだ着磁境界である。
【0018】
図1に戻り、回路基板4は、ステータ1のベアリング保持部1aに挿入されることで保持される。回路基板4は略円環板状であり、ステータ1のコイル1cから引き出された引出線(不図示)と電気的に接続され、ロータ2の回転を制御する。回路基板4には、検出素子5のほか、例えば集積回路およびコンデンサ(図示省略)等が実装されている。
【0019】
本実施形態のモータ10は、コイル1cに交番電流を通電することで各ティースから交互に磁界を発生させ、各ティースからの磁界とマグネット6との間で吸引力と反発力を発生させる。これにより、ロータ2が中心軸Jの周りに回転するようになっている。
【0020】
本実施形態において、検出素子5は、回路基板4のロータ2に対向する上面4aに設けられている。検出素子5はホールIC等のホール素子で構成される。検出素子5は、回転するロータ2におけるマグネット6の磁束密度を検出し、検出結果を回路基板4に送信する。回路基板4は、マグネット6の磁束密度に基づいてFG信号を出力する出力部4bを含む。FG信号は、ロータ2の回転速度に応じた周波数成分を含む信号であり、回路基板4の出力部4bから出力される。FG信号は、後述する回転リフレクタ124(
図9参照)における配光制御に利用される。
【0021】
ここで、磁束密度とFG信号の関係について図面を参照しつつ説明する。
図3は磁束密度とFG信号との関係を示す図である。
図3の上段は、検出素子5が検出する磁束密度を示しており、横軸はモータの回転角度(単位はdeg)に相当し、縦軸は磁束密度(単位はmT)に相当する。また、
図3の下段は、磁束密度に基づいて出力されるFG信号を示している。
【0022】
まず、磁束密度について説明する。マグネット6のS極6sからの磁力線が検出素子5で検出されると、検出素子5による磁束密度の第1検出値は「負」となる。また、マグネット6のN極からの磁力線が検出素子5で検出されると、検出素子5による磁束密度の第2検出値は「正」となる。したがって、ロータ2の回転に伴って検出素子5に対するマグネット6の磁極位置が変化するので、磁束密度は
図3に示すような周期的に変化する波形で規定される。
【0023】
ロータ回転時に第1着磁境界部16a,16bが検出素子5を通過する前後において、検出素子5で検出される磁極はS極6sからN極6nへ切り替わる。つまり、第1着磁境界部16a,16bが検出素子5を通過すると、検出素子5による磁束密度が第1検出値(負の値)から第2検出値(正の値)に変化する。
【0024】
一方、ロータ回転時に第2着磁境界部17a,17bが検出素子5を通過する前後において、検出素子5による検出される磁極はN極6nからS極6sへと切り替わる。つまり、第2着磁境界部17a,17bが検出素子5を通過すると、検出素子5による磁束密度が第2検出値(正の値)から第1検出値(負の値)となる。
【0025】
本実施形態の回路基板4は、出力部4bにより、検出素子5から送信される磁束密度が第1検出値から第2検出値に変化する切り替わるタイミングに応じてFG信号を生成して出力する。すなわち、FG信号は、第1着磁境界部16a,16bが検出素子5を通過するタイミングに応じて生成されるとも換言できる。
【0026】
FG信号は、第1着磁境界部16a,16bが検出素子5を通過するタイミングで「HIGH」から「LOW」に立ち下がり、第2着磁境界部17a,17bが検出素子5を通過するタイミングで「LOW」から「HIGH」に立ちあがるパルスで規定される。
【0027】
上述したように本実施形態のロータ2は、
図1に示したように、ロータコア8の内周側に接着剤7を介してマグネット6を固定することで構成されている。
しかしながら、接着剤7は硬化前後の体積変化によって厚みが場所によって不均一になり易い。そのため、本実施形態のロータ2において、マグネット6はロータコア8に対して位置ずれが生じている。具体的に、本実施形態のロータ2は、ロータコア8の中心軸Jとマグネット6のマグネット中心軸6Cとが互いに異なる場所に配置されている。そのため、本実施形態のロータ2において、マグネット6はロータ2の回転軸であるシャフト9(中心軸J)に対して偏芯した状態で回転する。以下、マグネット6が偏芯した状態で回転するロータ2を「偏芯のあるロータ」と呼び、マグネットが偏芯しない理想的な状態で回転するロータ2を「偏芯のないロータ」と呼ぶことにする。
【0028】
ここで、比較として、偏芯のないロータについて考える。すなわち、偏芯のないロータは上述した接着剤7における厚みが均一であり、ロータコア8の中心軸Jとマグネット6のマグネット中心軸6Cとが一致した状態を意味する。このような偏芯のないロータは、ロータコア8の中心軸Jとマグネット6のマグネット中心軸6Cとが一致した状態で回転する。この場合、偏芯のないロータにおいて、マグネット6はマグネット中心軸6C周りに回転することになる。
【0029】
図4は偏芯のないロータにおける検出素子とマグネットとの位置関係を示す図である。
図4は、偏芯のないロータ12の回転角が0°から90°ずつ変化していく際の検出素子5とマグネット6との位置関係の変化を示している。なお、
図4では、図を見やすくする都合上、検出素子5の位置をマグネット6の径方向外側に移動して図示している。
【0030】
図4では、マグネット6の第1着磁境界部16aが検出素子5および中心軸Jを通る線(以下、基準線Kと称す)上に位置するロータ12の回転角を0°とした。ロータ12における回転角0°の場合に、第1着磁境界部16aが基準線K上に位置する状態は、検出素子5における磁束密度が第1検出値(負)から第2検出値(正)に切り替わるタイミングに相当する。なお、偏芯のないロータ12は、回転中において中心軸J(マグネット中心軸6C)と検出素子5との位置関係は変化せず一定である。
【0031】
図4に示すように、偏芯のないロータ12では、第1着磁境界部16aが基準線Kを通過した後、第1着磁境界部16bが基準線Kを通過するまでにマグネット6が180°回転する。同様に、第1着磁境界部16bが基準線Kを通過した後、第1着磁境界部16aが基準線Kを通過するまでにマグネット6が180°回転する。よって、偏芯のないロータ12では、180°回転するごとに、検出素子5における磁束密度が「負:第1検出値」から「正:第2検出値」に切り替わる。
【0032】
このように偏芯のないロータ12によれば、磁束密度が一定の周期(ロータ半回転の周期)で変化する。そのため、磁束密度に基づいて出力されるFG信号の回転精度も高くなる。ここで、FG信号の回転精度が高いとは、
図3に示したFG信号の1パルスの時間が一定となっている状態をいう。
【0033】
したがって、偏芯のないロータ12であれば、高い回転精度のFG信号を生成することが可能である。一方、偏芯のあるロータにおいては、後述のように磁束密度の周期が変動するため、磁束密度に基づいて出力されるFG信号の回転精度が低下する問題が生じる。
【0034】
これに対し、本発明者らは、マグネット中心軸6Cと、中心軸Jと、第1着磁境界部16a、16bとの位置関係を適切に設定することで、偏芯のあるロータ2であってもFG信号の回転精度の悪化を低減できることを見出した。そして、本実施形態のロータ2を完成させた。すなわち、本実施形態のロータ2によれば、後述するように、マグネット6が偏芯した状態で回転する、すなわち偏芯のあるロータ2であってもFG信号の回転精度の悪化を低減可能である。
【0035】
ここで、中心軸Jに対するマグネット中心軸6Cの偏芯方向をそれぞれ異ならせた第1ロータ、第2ロータおよび第3ロータを例に挙げて説明する。第1ロータ、第2ロータおよび第3ロータは、
図4に示した偏芯のないロータ12における回転角0°のマグネット6の位置を中心軸Jからそれぞれ異なる方向に偏芯させた構成を有する。
【0036】
図5Aは第1ロータの平面図である。
図5Aに示すように、第1ロータ2Aは、中心軸Jに対してマグネット中心軸6Cが基準線Kと45°の角度で交差する斜め方向の一方側(例えば、左下側)に偏芯している。なお、マグネット6は中心軸J周りに反時計回りに回転する。
【0037】
ここで、第1着磁境界部16aの径方向内側の端面16a1と中心軸Jとを結んだ第1仮想線L1と、第1着磁境界部16bの径方向内側の端面16b1と中心軸Jとを結んだ第2仮想線L2とを規定する。
【0038】
そして、第1仮想線L1と該第1仮想線L1に対して時計回り方向に位置する第2仮想線L2とがなす角度を第1角度θ1とし、第1仮想線L1と該第1仮想線L1に対して反時計回り方向にある第2仮想線L2とがなす角度を第2角度θ2とする。第1角度θ1は180°よりも小さく、第2角度θ2は180°よりも大きい。
【0039】
第1角度θ1は、第1着磁境界部16a,16bが検出素子5をそれぞれ通過するまでの第1ロータ2Aにおける第1回転角度に相当する。また、第2角度θ2は、第1着磁境界部16b,16aが検出素子5をそれぞれ通過するまでの第1ロータ2Aにおける第2回転角度に相当する。
【0040】
このように第1回転角度および第2回転角度に差が生じる場合、第1ロータ2Aが第1回転角度だけ回転することで生成される第1磁束密度の第1周期と、第1ロータ2Aが第2回転角度角だけ回転して生成される第2磁束密度の第2周期との間に差が生じる。具体的に、第1ロータ2Aにおける回転角度(第1回転角)が小さい第1周期は、第1ロータ2Aにおける回転角度(第2回転角)が大きい第2周期よりも短くなる。
【0041】
このように第1磁束密度および第2磁束密度の周期に差が生じると、第1磁束密度および第2磁束密度に基づいてそれぞれ出力されるFG信号のパルス周期間も一定にならない。すなわち、第1磁束密度および第2磁束密度に基づいてそれぞれ出力されるFG信号の1パルスの時間に差が生じる。そのため、生成されるFG信号の回転精度が低下してしまう。
【0042】
なお、第1ロータ2Aにおいて、中心軸Jに対するマグネット中心軸6Cの偏芯方向を左斜め下側として説明したが、マグネット中心軸6Cの偏芯方向はこれに限られない。すなわち、マグネット中心軸6Cの偏芯方向は基準線Kと45°以外(後述する90°を除く)の角度で交差する方向であれば特に限定されない。例えば、中心軸Jに対するマグネット中心軸6Cの偏芯方向は、右斜め上側、右斜め下側あるいは左斜め上側であってもよい。
【0043】
したがって、本実施形態のロータ2として、仮に第1ロータ2Aの構造を採用した場合、偏芯の影響を受けることで生成されるFG信号の精度が低下してしまう。そのため、本実施形態のロータ2は、第1ロータ2Aとは異なる構成を採用した。
【0044】
図5Bは第2ロータの平面図である。
図5Bに示すように、第2ロータ2Bでは、中心軸Jに対してマグネット中心軸6Cが基準線Kと90°の角度で交差(直交)する上下方向の一方側(例えば、下側)に偏芯している。なお、マグネット6は中心軸J周りに反時計回りに回転する。
【0045】
第2ロータ2Bにおいても上記第1ロータ2Aと同様、第1仮想線L1、第2仮想線L2、第1角度θ
1および第2角度θ
2を規定する。
図5Bに示すように、第1角度θ
1は180°よりも小さく、第2角度θ
2は180°よりも大きい。
【0046】
図5Bに示すように、第2ロータ2Bにおいても第1回転角度および第2回転角度に差が生じるので、第1磁束密度および第2磁束密度の周期に差が生じる。そのため、第1磁束密度および第2磁束密度に基づいてそれぞれ出力されるFG信号のパルス周期間が一定にならない。すなわち、第1磁束密度および第2磁束密度に基づいてそれぞれ出力されるFG信号の1パルスの時間に差が生じる。そのため、生成されるFG信号の回転精度が低下してしまう。
【0047】
なお、第2ロータ2Bにおいて、中心軸Jに対するマグネット中心軸6Cの偏芯方向を下側として説明したが、マグネット中心軸6Cの偏芯方向はこれに限られない。すなわち、中心軸Jに対するマグネット中心軸6Cの偏芯方向は上側であってもよい。
【0048】
したがって、本実施形態のロータ2として、仮に第2ロータ2Bの構造を採用した場合、偏芯の影響を受けることで生成されるFG信号の回転精度が低下する。そのため、本実施形態のロータ2は、第2ロータ2Bとは異なる構成を採用した。
【0049】
図5Cは第3ロータの平面図である。
図5Cに示すように、第3ロータ2Cでは、中心軸Jに対してマグネット中心軸6Cが基準線Kに沿う方向の一方側(例えば、左側)に偏芯している。なお、マグネット6は中心軸J周りに反時計回りに回転する。なお、本実施形態のロータ2は第3ロータ2Cの構造を採用している。以下、第3ロータ2Cを採用する理由について説明する。
【0050】
具体的に第3ロータ2Cでは、第1着磁境界部16a、16bがマグネット中心軸6Cと中心軸Jとを通る直線L上に位置している。すなわち、第1着磁境界部16a、16b、マグネット中心軸6Cおよび中心軸Jが直線L上に並んでいる。
【0051】
本実施形態において、第1着磁境界部16a、16bは周方向において所定の幅を有する。そのため、本実施形態において、第1着磁境界部16a、16b、マグネット中心軸6Cおよび中心軸Jが直線L上に並ぶとは、第1着磁境界部16a、16bの周方向における中心と直線Lとが完全に一致した状態のみに限定されず、例えば、第1着磁境界部16a、16bの少なくとも一部が周方向において直線Lに重なる状態も含む。
【0052】
第3ロータ2Cにおいても上記第1ロータ2Aおよび第2ロータ2Bと同様、第1仮想線L1、第2仮想線L2、第1角度θ
1および第2角度θ
2を規定する。
図5Cに示すように、第3ロータ2Cでは、第1着磁境界部16a、16bおよび中心軸Jが直線上に並ぶため、第1角度θ
1および第2角度θ
2がそれぞれ180°となる。
【0053】
第3ロータ2Cでは、第1着磁境界部16a,16bが検出素子5を順に通過するまでのロータ回転角(第1回転角)と、第1着磁境界部16b,16aが検出素子5を順に通過するまでのロータ回転角(第2回転角)とがいずれも180°となる。
【0054】
図6は第3ロータの回転時におけるマグネットと検出素子との位置関係の変化を示す図である。
図6に示すように、第3ロータ2Cでは、マグネット6が偏芯した状態で回転するものの、ロータが180°回転する毎に、第1着磁境界部16a、16bが検出素子5を通過するようになる。
【0055】
そのため、第3ロータ2Cが半回転(180°回転)する毎に生成される第1磁束密度および第2磁束密度の周期はそれぞれ等しくなる。よって、第1磁束密度に基づいて出力されるFG信号のパルス周期(1パルスの時間)と第2磁束密度に基づいて出力されるFG信号のパルス周期(1パルスの時間)とが一定となる。すなわち、第1磁束密度および第2磁束密度に基づいてそれぞれ出力されるFG信号の1パルスの時間に差が生じないので、マグネット6の偏芯の影響を受けることなく、高い回転精度のFG信号を出力することができる。
【0056】
なお、第3ロータ2Cにおいて、中心軸Jに対するマグネット中心軸6Cの偏芯方向を基準線Kに沿う方向の左側として説明したが、マグネット中心軸6Cの偏芯方向はこれに限られない。すなわち、マグネット中心軸6Cの偏芯方向は基準線Kに沿う方向であれば特に限定されず、例えば、基準線Kに沿う方向の右側であってもよい。
【0057】
以上説明した理由から本実施形態のロータ2は上記第3ロータ2Cの構造を採用している。すなわち、本実施形態のロータ2では、第1着磁境界部16a、16b、マグネット中心軸6Cおよび中心軸Jが直線L上に並んで配置されている。そのため、第3ロータ2Cの構造を採用したロータ2を有する本実施形態のモータ10によれば、マグネット6が偏芯した状態で回転する場合でも、FG信号の回転精度の悪化を低減することができる。
よって、本実施形態のモータ10は、ロータに生じる偏芯の影響を受けることなく、FG信号の回転精度の悪化を低減することができる。したがって、本実施形態のモータ10は、回転精度の高いFG信号を出力できる。
【0058】
(モータの製造方法)
続いて、本実施形態のモータ10の製造方法について説明する。本説明では、モータ10のうちロータ2の製造方法に特徴を有しているため、以下ではロータ2の製造方法を中心に説明する。
【0059】
図7A~
図7Cはロータ2の製造方法を説明する図である。
まず、振れ検出工程を行う。
図7Aは振れ検出工程を説明する図である。
振れ検出工程では、
図7Aに示すように、中心軸Jに沿って延びるシャフト9を有する有蓋円筒状のロータコア8の内周側に中空円筒状のマグネット用材料26を貼り付けたロータ構成部材20を用意する。マグネット用材料26は、磁性体からなる材料であり、着磁することで上記マグネット6を構成する。マグネット用材料26は、ロータコア8の内周側に接着剤7を介して貼り付けられる。
【0060】
上述したように、接着剤7は硬化前後の体積変化によって厚みが場所によって不均一となるため、マグネット用材料26はロータコア8に対して位置ずれが生じる。具体的に、ロータ構成部材20において、ロータコア8の中心軸Jとマグネット用材料26の中心軸(マグネット材料中心軸)26Cとは互いに異なる位置に配置されている。なお、中心軸26Cは、マグネット6におけるマグネット中心軸6Cに一致する。
【0061】
続いて、ロータ構成部材20において、中心軸26Cにおける中心軸J(シャフト9)に対する振れEの方向を求める。振れの方向を求める方法としては、例えば、マグネット用材料26の内周面にローラを当接させた状態で、ロータ構成部材20を回転させることで内周面の全域に渡ってローラを移動させることでマグネット用材料26の中心軸26Cの位置を求め、中心軸Jに対する中心軸26Cの振れを検出する。
このようにして、ロータ構成部材20における振れEを検出する振れ検出工程が完了する。
【0062】
なお、振れ検出工程では、ロータ構成部材20の振れを検出した後、ロータ構成部材20を例えばバキューム固定することでロータ構成部材20の向きを保持した状態で後述のマーキング工程を行うマーキング装置にロータ構成部材20を受け渡す。
【0063】
続いて、マーキング工程を行う。
図7Bはマーキング工程を説明する図である。
マーキング工程では、
図7Bに示すように、上述した振れ検出工程の検出結果に基づいてロータコア8の外周面8aにマーキングする。具体的に、マーキング工程では、外周面8aのうち、中心軸26Cと中心軸Jとを通る直線L3に対して所定の位置関係を有する場所にマーキングする。
【0064】
本実施形態において、外周面8aにおいて直線L3に対して所定の位置関係を有する場所とは、直線L3に重なる場所をいう。すなわち、マーキング工程でマーキングされたマーク(マーキング部)Mは中心軸26Cおよび中心軸Jと直線上に並ぶ。
【0065】
本実施形態では、マーキングの位置精度として、直線L3に対して周方向において±3°以下の範囲にマークMを設けている。例えば、ロータ構成部材20(ロータコア8)の大きさがφ20.7mmである場合、周方向において±3°以下の範囲に収まるマーキングによるマークMの幅H1は1.08mm以下となる。
【0066】
ここで、マーキングを行う手法としては特に限定されず、例えば、マジックペンを用いて外周面8aにマークMをつけてもよい。
本実施形態では、インクジェット装置によるインクジェット法を用いることで複数のインク滴からなるマークMをマーキングした。インクジェット装置は、例えば、ロータ構成部材20をバキューム固定した状態でマーキングを行う。なお、インクジェット装置は、マーキング後にCCDカメラ等の撮像装置でマーキング後にマークMが正確にマーキングされたか否かを判定してもよい。
【0067】
本実施形態のマーキング工程ではインクジェット法を用いるため、ロータコア8の外周面8aにインク滴を吐出することでマークMを所望の幅で精度よくマーキングすることができる。また、インクジェット法によるマーキングは、レーザーマーキングと異なり、ロータコア8の表面に傷を付けずにマークMをつけることができる。
このようにして、ロータ構成部材20におけるマーキング工程が完了する。
【0068】
続いて、着磁工程を行う。
図7Cは着磁工程を説明する図である。
着磁工程では、
図7Cに示すように、マーキング工程によるマークMに基づいてマグネット用材料26を着磁してマグネット6を得る。具体的に、ロータ構成部材20を着磁ヨーク40内に挿入することで、ロータコア8の外側からマグネット用材料26を着磁する。
【0069】
図2に示したようにマグネット6は、回転方向Rの後方から前方にS極6sおよびN極6nが並ぶ第1着磁境界部16a,16bを有している。着磁工程では、マークMに基づいて、直線L3上に第1着磁境界部16a,16bが位置するように、マグネット用材料26と着磁ヨーク40とを位置合わせした状態で着磁を行う。
【0070】
本実施形態によれば、直線L3上に位置するマークMを目印としてマグネット用材料26と着磁ヨーク40とを位置合わせすることで、直線L3上に第1着磁境界部16a,16bが位置したマグネット6を生成することができる。
このようにしてマグネット6の着磁工程が完了する。
【0071】
本実施形態において、マークMは上述のように直線L3に対して周方向において±3°以下の範囲に設けられる。本実施形態の着磁工程では、このマークMに基づいてマグネット用材料26と着磁ヨーク40とを位置合わせして着磁を行うので、マグネット6に生じる着磁位置の誤差を、例えば周方向において±8°以下に抑えることができる。
【0072】
なお、中心軸26Cはマグネット6のマグネット中心軸6Cに一致するため、中心軸26Cと中心軸Jとを通る直線L3は、マグネット中心軸6Cと中心軸Jとを通る上述の直線Lに相当する。よって、本実施形態の着磁工程によれば、第1着磁境界部16a、16bが直線L上に位置した上述のロータ2を製造できる。
【0073】
なお、モータ10の製造時のマーキング工程において、マークMを設ける位置は直線L3に重なる場所に限られない。すなわち、マークMを設ける場所は、マグネット用材料26を着磁してマグネット6を生成する際、マークMに基づいて中心軸26Cと中心軸Jとを通る直線L3の位置を特定可能であればいずれの場所であってもよい。直線L3の位置を特定できれば、直線L3上に第1着磁境界部16a,16bが位置するように、マグネット用材料26と着磁ヨーク40とを位置合わせした状態で着磁を行うことができる。また、マークMが複数の部位から構成されていてもよい。例えば、外周面8aの周方向において離間させて2つの印でマークMを構成してもよい。この場合、2つの印の周方向における中心が直線L3上に位置するようにマークMを構成すればよい。このマークMは、2つの印の中点が直線L3に位置するという、直線L3に対して所定の位置関係を有したものとなる。
【0074】
続いて、上述のように製造したロータ2に対して、ステータ1と、ロータ2と、ベアリング3と、回路基板4と、検出素子5とを組み立てることで
図1に示したモータ10を製造することができる。
【0075】
図8は本実施形態のモータの外観を示す図である。
図8に示すように、本実施形態のモータ10は、ロータコア8の外周面8aに設けられた印(マーキング部)Mを有する。このマークMは上述のマーキング工程によるものである。上述のように中心軸26Cはマグネット中心軸6Cに一致する。そのため、マークMはマグネット中心軸6Cと中心軸Jとを通る上記直線Lに対して所定の位置関係を有するように外周面8aに設けられる。具体的に、マークMは直線L上に位置する外周面8aに設けられている。本実施形態のモータ10は、マークM、第1着磁境界部16a、16b、マグネット中心軸6Cおよび中心軸Jが直線L上に位置している。
【0076】
以上説明したように本実施形態のモータ10によれば、上記マークMに基づいてマグネット6の着磁を行うことで、第1着磁境界部16a、16b、マグネット中心軸6Cおよび中心軸Jが直線L上に並ぶロータ2を備えたものとなる。よって、このロータ2を備えたモータ10によれば、ロータに偏芯が生じた場合でも偏芯の影響を受けることなく、FG信号の回転精度の悪化を低減することができる。
【0077】
続いて、本実施形態のモータ10を搭載した車両用前照灯の概略について説明する。
図9は、車両用前照灯の水平断面図である。
図9に示す車両用前照灯100は、自動車の前端部の左側に搭載される左側前照灯であり、右側に搭載される前照灯と左右対称である以外は同じ構造である。そのため、以下では、左側の車両用前照灯100について詳述し、右側の車両用前照灯については説明を省略する。
【0078】
図9に示すように、車両用前照灯100は、前方に向かって開口した凹部を有するランプボディ112を備えている。ランプボディ112は、その前面開口が透明な前面カバー114前面カバー114によって覆われて灯室116が形成されている。灯室116は、ランプユニット118ランプユニット118が収容される空間として機能する。
【0079】
ランプユニット118は、ブレードスキャン方式のADB技術を採用したユニットであり、いわゆる可変ハイビームを照射するように構成されている。ランプユニット118は、光学ユニット120および投影レンズ122投影レンズ122を備える。光学ユニット120は、回転リフレクタ124と、光源126と、を備える。投影レンズ122は、例えば凸レンズが用いられる。凸レンズの形状は、要求される配光パターンや照度分布などの配光特性に応じて適宜選択すればよいが、非球面レンズや自由曲面レンズが用いられる。また、投影レンズ122の周囲には、エクステンションリフレクタ123が設けられている。
【0080】
回転リフレクタ124は、駆動源であるモータ10により回転軸O1を中心に一方向に回転しながら、光源126から出射した光を反射し、反射した反射光を走査することで配光パターンを形成するように構成されている。また、回転リフレクタ124は、光源126から出射した光を回転しながら反射し、所望の配光パターンを形成するように構成された環状の反射領域124aを備えている。なお、制御回路148は、モータ10から出力されるFG信号を用いて配光パターンの制御を行う。本実施形態のモータ10は、回転精度の高いFG信号を出力するので、制御回路148は、配光パターンの制御を精度良く行うことができる。
【0081】
光源126は、短時間で点消灯を制御できるものが好ましく、例えば、LEDやLD、EL素子等の半導体発光素子が好適である。
【0082】
モータ10は、基板132に搭載されている。基板132は、ヒートシンク134の搭載面134aに搭載され、固定されている。搭載面134aは、基板132が搭載された状態で、回転リフレクタ124の回転軸O1が光軸AXあるいは車両前方方向に対して傾斜するように構成されている。
【0083】
光源126は、基板136に搭載されている。また、光源126の光出射方向であって、回転リフレクタ124との間にはプライマリ光学系としてのレンズ138が設けられている。レンズ138は、光源126から出射した光が回転リフレクタ124の反射領域124aに向かうように、光源126の出射光を集光する。基板136は、ヒートシンク140に搭載されている。ヒートシンク134およびヒートシンク140は、金属製の板状の支持部材142に固定されている。そして、ランプユニット118は、支持部材142を介して、エイミングスクリュー144とナット146を使用した手段によりランプボディ112に対して傾動自在に支持されている。
【0084】
制御回路148は、前述の光源126およびモータ10と各基板を介して接続されており、光源126やモータ10の制御を行う信号の送信や、モータ10から出力されたFG信号の受信を行う。
【0085】
以上に、本発明の一実施形態を説明したが、実施形態における各構成およびそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換およびその他の変更が可能である。また、本発明は実施形態によって限定されることはない。
【符号の説明】
【0086】
2,12…ロータ、4b…出力部、5…検出素子、6…マグネット、6n…N極(第2極)、6s…S極(第1極)、6C…マグネット中心軸、7…接着剤、8…ロータコア、9…シャフト、10…モータ、15…着磁境界部、16a,16b…第1着磁境界部、17a,17b…第2着磁境界部、26C,J…中心軸、L…直線、R…回転方向。