(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-10-20
(45)【発行日】2022-10-28
(54)【発明の名称】藻類を成長させるためのシステムおよび方法
(51)【国際特許分類】
C12M 1/04 20060101AFI20221021BHJP
C12M 1/00 20060101ALI20221021BHJP
C12M 1/02 20060101ALI20221021BHJP
C12M 1/34 20060101ALI20221021BHJP
【FI】
C12M1/04
C12M1/00 E
C12M1/02 A
C12M1/34 D
(21)【出願番号】P 2019559874
(86)(22)【出願日】2018-01-18
(86)【国際出願番号】 IL2018050067
(87)【国際公開番号】W WO2018134820
(87)【国際公開日】2018-07-26
【審査請求日】2021-01-14
(32)【優先日】2017-01-22
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】519266421
【氏名又は名称】バクサ テクノロジーズ リミテッド
(74)【代理人】
【識別番号】100120891
【氏名又は名称】林 一好
(74)【代理人】
【識別番号】100165157
【氏名又は名称】芝 哲央
(74)【代理人】
【識別番号】100205659
【氏名又は名称】齋藤 拓也
(74)【代理人】
【識別番号】100126000
【氏名又は名称】岩池 満
(74)【代理人】
【識別番号】100185269
【氏名又は名称】小菅 一弘
(72)【発明者】
【氏名】バシャン オデド
(72)【発明者】
【氏名】バシャン オハド
(72)【発明者】
【氏名】ドラメイ ステファン
【審査官】佐久 敬
(56)【参考文献】
【文献】米国特許出願公開第2012/0107792(US,A1)
【文献】特表2014-516550(JP,A)
【文献】特表2010-530757(JP,A)
【文献】米国特許出願公開第2015/0210970(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
C12M
C12N
STPlus/JMEDPlus/JST7580(JDreamIII)
(57)【特許請求の範囲】
【請求項1】
藻類培養容器スパージングシステムであって、
前記容器内部の少なくとも1つのパラメータを計測するための
、少なくとも1つのセンサと、
第1の流体を第1の動作流速で前記容器内に分散供給するための、少なくとも1つの第1のスパージャと、
前記少なくとも1つの計測されたパラメータに基づいて、第2の流体を第2の動作流速で前記容器内に分散供給するための、少なくとも1つの第2のスパージャと、
前記容器の内部を照明するための、少なくとも1つの光源
であって、少なくとも1つの光源の照明光束密度は、1200マイクロモル/メートル
2
/秒である、少なくとも1つの光源と、
前記第1の動作流速および前記第2の動作流速を制御するための、少なくとも1つの制御器と、
を備え、
前記制御器は、
システムによる5グラム/リットルを超える藻類密度で最大藻類成長の90%を超える日量を与えるために、前記少なくとも1つの光源を制御するように構成され、
前記第1の動作流速は、前記培養容器内の前記藻類の乱流混合を可能にするように適合され、前記第2の動作流速は、前記培養容器内の液体中の物質の同化を可能にするように適合さ
れ、
前記第1のスパージャおよび前記第2のスパージャの両方のノズルは、前記藻類培養容器の同一平面内にある、
藻類培養容器スパージングシステム。
【請求項2】
少なくとも2つの光源を備え、少なくとも1つの光源は、別の光源とは異なる強度で照明するように制御される、請求項1に記載のシステム。
【請求項3】
前記少なくとも1つの光源は、発光ダイオードである、請求項
1に記載のシステム。
【請求項4】
前記藻類の少なくとも一部分は、イソクリシスガルバン(Isochrysis galban)である、請求項
1に記載のシステム。
【請求項5】
平方メートル当たり少なくとも4つの光源を含む、請求項
1に記載のシステム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、一般的に藻類の成長に関する。より具体的には、本発明は藻類の成長を高めるためのシステムおよび方法に関する。
【背景技術】
【0002】
近年、バイオリアクタ(例えば、気泡塔を有する)による人工条件下での藻類の培養が、例えば、バイオマスを生産するために、ますます一般的になっている。最適条件および加速する成長のために、藻類(または微細藻類)には、CO2富化気泡および照明(人工照明、または太陽光からの)が供給される。藻類バイオマスの約50%は、光合成によってCO2を固定することによって得られる炭素であり、この場合、二酸化炭素を液相の培養物中に溶解させる必要がある。向光性藻類培養システムにおいて、成長のための主要な入力(またはマクロ栄養素)は、光、CO2、栄養素(例えば、窒素、リンなど)、および、これらの資源を個々の藻類培養細胞に分散供給するための乱流混合を伴う水である。
【0003】
さらに、バイオリアクタ内で高い藻類濃度を達成するために、良好な流体混合が必要である。良好な混合は、相互の遮光の程度を減らして光阻害を最小限にすることによって細胞の露光を処理することができる。効率的な混合は、細胞を、光子入力を得るように照射される表面の近くに移動させ、次に、光子で飽和された細胞に、この光エネルギーを光合成のために吸収する機会を与え、その後で細胞は再び光に晒される。超高細胞濃度は、強力な光源の使用を必要とするので、不適切な混合は、強い光に対する過度な露出を生じ、さらに光阻害による細胞損傷をもたらす可能性がある。
【0004】
ガススパージング(主として、CO2が富化された空気または窒素)が、必要な混合を生成するために、光バイオリアクタ(PBR:photo-bioreactor)内で一般的に使用される。泡の上昇運動は、流れ方向に接する混合を生成する。効率的な混合は、普通、連続的な高流速および大きい泡を必要とする。泡の上昇運動は、流れ方向に接する混合を生成する。効率的な混合は、普通、連続的な高流速および大きい泡を必要とする。しかし、混合のためのスパージング空気流の使用およびその組成物をCO2で富化することは、CO2が大きい泡(混合のために必要な)の中に希薄濃度で導入され、それ故に、約10%の不十分なCO2の生物学的使用をもたらす(CO2の約90%はバイオリアクタから放出される)ので、本来的な非効率性を有する。
【0005】
微細藻類は、フラットパネル型光バイオリアクタなどの多くのタイプのシステム内で、写真的手段によって成長させることができる。藻類成長のための光源はおよそ400~700nm波長の範囲内の任意のタイプの可視光とすることができる。発光ダイオード(LED:Light emitting diode)は、特定の波長、例えば、可視光(例えば、青色および/または赤色)波長範囲内の、光を供給する能力を有する。
【0006】
しかし、幾つかの入力は限定され(例えば、藻類の自己遮光による限定された光)、所与のシステム内で決定された藻類の最大密度を生じる。全ての他の入力が、非限定的な使用可能性で供給される場合、藻類培養の密度が増加するにつれて、細胞は、光路内で遮蔽される細胞に影をつける。最終的に、光は、培養内に、より多くの成長を可能にするのに十分に遠くまで浸透することができず、システムはその最大(光で限定される)濃度に達する。
【発明の概要】
【課題を解決するための手段】
【0007】
本発明の幾つかの態様は、藻類培養容器スパージングシステムに向けられてよい。藻類培養容器スパージングシステムは、容器内部の少なくとも1つのパラメータを計測するための少なくとも1つのセンサと、第1の流体を第1の動作流速で容器内に分散供給するための、少なくとも1つの第1のスパージャと、少なくとも1つの計測されたパラメータに基づいて、第2の流体を第2の動作流速で容器内に分散供給するための、少なくとも1つの第2のスパージャと、容器の内部を照明するための、少なくとも1つの光源と、少なくとも1つの制御器と、を含んでよい。幾つかの実施形態において、制御器は、第1の動作流速および第2の動作流速を制御するように構成されてよい。幾つかの実施形態において、制御器はさらに、少なくとも1つの光源を制御するように構成されてよい。幾つかの実施形態において、第1の動作流速は、培養容器内の藻類の乱流混合を可能にするように適合され、第2の動作流速は、培養容器内の液体中の物質の同化を可能にするように適合されてよい。
【0008】
幾つかの実施形態において、藻類培養容器スパージングシステムは、少なくとも2つの光源を含んでよく、その結果、少なくとも1つの光源は、別の光源とは異なる強度で照明するように制御されてよい。
【0009】
本発明の幾つかの態様は、藻類成長のためのバイオリアクタ照明システムに向けられてよい。幾つかの実施形態において、藻類成長のためのバイオリアクタ照明システムは、バイオリアクタの内部を照明するための、少なくとも1つの光源と、少なくとも1つの光源の照明光束密度を制御するための、少なくとも1つの制御器と、を含んでよい。幾つかの実施形態において、バイオリアクタは、バイオリアクタ内部の最大藻類成長の90%を超える日量を与えるために照明されてよい。幾つかの実施形態において、少なくとも1つの光源の照明光束密度は、1200マイクロモル/メートル2/秒であってよい。幾つかの実施形態において、少なくとも1つの光源は、発光ダイオードであってよい。幾つかの実施形態において、藻類の少なくとも一部分は、イソクリシスガルバン(Isochrysis galban)であってよい。幾つかの実施形態において、バイオリアクタは、平方メートル当たり少なくとも4つの光源を含んでよい。
【0010】
本発明とみなされる主題は、本明細の結論部分において具体的に指摘され、明確に特許請求される。しかし、本発明は、構成および動作の方法の両方、並びにそれらの目的、特徴および利点に関して、以下の詳細な説明を添付の図面とともに読むときに最も良く理解することができるであろう。
【図面の簡単な説明】
【0011】
【
図1】本発明の幾つかの実施形態による、藻類培養容器スパージングシステムのブロック図を模式的に示す。
【
図2A】本発明の幾つかの実施形態による、少なくとも1つの照明ユニットを有する藻類培養容器スパージングシステムのブロック図を模式的に示す。
【
図2B】本発明の幾つかの実施形態による、少なくとも1つの照明ユニット201および単一のスパージャを有する藻類培養容器スパージングシステムのブロック図を模式的に示す。
【
図3】本発明の幾つかの実施形態による、藻類培養容器をスパージングする方法の流れ図を示す。
【発明を実施するための形態】
【0012】
図の簡単さおよび明確のために、図に示される要素は必ずしも一定の尺度で描かれてはいないことを認識されたい。例えば、幾つかの要素の寸法は、明確のために他の要素に比べて誇張されている可能性がある。さらに、適切と考えられる場合、参照数字は、対応するかまたは類似の要素を示すために、図面の間で繰り返されることがある。
【0013】
以下の詳細な説明において、本発明の完全な理解を与えるために多くの特定の細部が示される。しかし、当業者であれば、本発明はこれらの特定の細部を用いずに実施できることを理解するであろう。他の場合には、周知の方法、手順、および構成要素は、本発明を不明瞭にしないように、詳しくは説明されていない。
【0014】
ここで
図1を参照すると、これは本発明の幾つかの実施形態による藻類培養容器スパージングシステム100のブロック図を模式的に示す。
図1中の矢印の方向は、情報流の方向を示すことができることに留意されたい。
【0015】
幾つかの実施形態において、スパージングシステム100は、第1の所定の流体(例えば、空気および/または窒素泡)を、水で満たされた藻類培養容器10(例えば、バイオリアクタ)内に、内部での混合を可能にするように、第1の動作流速で分散供給するための、複数のノズルを有する少なくとも1つの第1のスパージャ101を含むことができる。スパージングシステム100はさらに、第2の所定の流体(CO2および/または溶解リンを含む、物質移動のためのガス泡を含む)を容器10内に第2の動作流速で分散供給するための、複数のノズルを有する少なくとも1つの第2のスパージャ102を含むことができる。
【0016】
幾つかの実施形態において、スパージングシステム100は、第1の動作流速および第2の動作流速を制御するための少なくとも1つの制御器103を含むことができる。幾つかの実施形態によれば、第1のスパージャ101および第2のスパージャ102の少なくとも1つのノズルは、以下でさらに説明されるように、少なくとも1つの制御器103からの要求に基づいて、流体を培養容器10内に分散供給することができる。幾つかの実施形態において、第1の動作流速は、第2の動作流速に基づくことができる。幾つかの実施形態において、第1の動作流速および第2の動作流速の内の少なくとも1つは、予め決定される。
【0017】
幾つかの実施形態において、第1の動作流速は、培養容器10内の藻類の乱流混合を可能にするように適合させることができる。幾つかの実施形態において、第2の動作流速は、培養容器10内の液体中の物質の物質移動および/または同化を可能にするように適合させることができる。
【0018】
幾つかの実施形態において、第2の所定の流体は30%超のCO2濃度を有するガス泡を含むことができる。幾つかの実施形態によれば、第1の所定の流体および第2の所定の流体の内の少なくとも1つのソースはスパージングシステム100の外部に在ることができ、例えば、地熱発電所が、第2の所定の流体の溶解炭素および/または硫黄のソースを与えることができる。
【0019】
幾つかの実施形態において、第1のスパージャ101の少なくとも1つのノズルにおける第1の動作流速(例えば、100ミリメートル/分)は、第2のスパージャ102の少なくとも1つのノズルにおける第2の動作流速(例えば、5ミリメートル/分)と異なることができる。
【0020】
幾つかの実施形態において、第1のスパージャ101の少なくとも1つのノズルは、およそ1ミリメートルより大きい直径を有することができる。幾つかの実施形態において、第2のスパージャ102の少なくとも1つのノズルは、およそ1ミリメートルより小さい直径を有することができる。幾つかの実施形態において、各々のスパージャのノズルが異なる直径を有する第1のスパージャ101および第2のスパージャ102のノズルが同じ流体(例えば、空気)を分散供給することができる。
【0021】
幾つかの実施形態において、スパージングシステム100はさらに、第1のスパージャ101によって分散供給される第1の流体と、第2のスパージャ102によって分散供給される第2の流体とを分離するための物理的障壁104を、培養容器10内部に含むことができる。幾つかの実施形態において、第1のスパージャ101および/または第2のスパージャ102の少なくとも1つのノズルを、物理的障壁104の中に埋め込むことができる。幾つかの実施形態において、物理的障壁104は、容器10の内部に制御された流れを生成するために、培養容器10の所定の位置(例えば、上部または下部)において、障壁の一方の側(第1の流体分布を有する)から他方の側(第2の流体分布を有する)への流れを可能にするように適合させることができる。
【0022】
幾つかの実施形態において、スパージングシステム100はさらに、制御器103に結合され且つ培養容器10内部の少なくとも1つの特徴を検出するように構成された少なくとも1つのセンサ105(例えば、温度センサ)を含むことができる。例えば、少なくとも1つのセンサ105は、培養容器10内部のpHレベル、温度および圧力条件の内の少なくとも1つを検出することができる。幾つかの実施形態において、少なくとも1つのセンサ105はまた、培養容器10の外部のパラメータ、例えば、容器内に挿入された(例えば、第2のスパージャ102によって)量から、放出された量を差し引くことによって、藻類細胞に吸収された物質の量を決定するための、培養容器10からのガス放出の計測用質量流量、を検出することができる。
【0023】
幾つかの実施形態において、スパージングシステム100はさらに、制御器103の動作のためのアルゴリズム、例えば、各々のノズルおよび/または各々のスパージャの動作速度のデータベース、を格納するように構成された、少なくとも1つのデータベース106(またはメモリユニット)を含むことができる。幾つかの実施形態において、スパージングシステム100はさらに、制御器103に結合され且つスパージングシステム100に電力を供給するように構成された、電源107を含むことができ、これにより、電源107は、少なくとも1つの第1のスパージャ101および少なくとも1つの第2のスパージャ102に、異なる速度で動作するように電力供給するように適合される。
【0024】
幾つかの実施形態において、少なくとも1つのセンサ105によって集められたデータは、属性が所定の閾値、例えば、容器10の内部のpHレベルおよび/または温度および/またはCO2濃度の閾値を超える場合を検出するために、制御器(またはプロセッサ)103によって分析することができる。培養容器10内部の条件(例えば、センサ105によって検出された)が少なくとも1つの閾値を超える場合、制御器103は、第1のスパージャ101の少なくとも1つのノズルおよび/または第2のスパージャ102の少なくとも1つのノズルを、異なる流速で動作させることができる。例えば、容器10内部のCO2濃度が40%を超えることを検出すること(または低いpHレベルを検出すること)は、第2のスパージャ102の少なくとも1つのノズルに、第2のスパージャ102の流速をおよそ2ミリメートル/分にまで低下させることができる。幾つかの実施形態において、第2のスパージャ102の少なくとも1つのノズルは、センサ105から、属性が所定の閾値を超えたとの信号を受け取ることによってのみ動作することができ、一定の速度においては動作することができない。
【0025】
幾つかの実施形態において、第1のスパージャ101の少なくとも1つのノズルは、センサ105から、属性が所定の閾値超える、例えば、藻類個体群の密度が増加するに連れて混合流が増加する、との信号を受け取ることによってのみ動作することができる。幾つかの実施形態によれば、第1のスパージャ101の少なくとも1つのノズルおよび/または第2のスパージャ102の少なくとも1つのノズルは、動作が不連続である一定速度において動作することができる。幾つかの実施形態によれば、第1のスパージャ101の少なくとも1つのノズルおよび/または第2のスパージャ102の少なくとも1つのノズルは、動作がやはり不連続である一定でない速度で動作することができる。
【0026】
幾つかの実施形態において、培養容器10は、少なくとも1つの第1のスパージャ101および少なくとも1つの第2のスパージャ102が泡カラム容器の同じ表面上に配置された、泡カラム構成を有することができる。幾つかの実施形態において、培養容器10は、少なくとも1つの第2のスパージャ102からの泡の滞在時間を長くすることができるように、少なくとも1つの第2のスパージャ102が、センサ105の末端に存在することができる下降管の底部位置に配置された、エアーリフト構成を有することができる。
【0027】
幾つかの実施形態において、スパージングシステム100は、容器10内部に、CO2泡として与えられた炭素について計算された、少なくとも20%の有機炭素を可能にする。幾つかの実施形態において、容器10内部の藻類の少なくとも一部分は、クロレラブルガリス(Chlorella Vulgaris)である。幾つかの実施形態において、容器10内部の藻類の少なくとも一部分は、ナンノクロロプシス(Nannochloropsis)である。いくつかの実施形態において、容器10内部の藻類の少なくとも一部分は、イソクリシスガルバン(Isochrysis galban)である。
【0028】
次に
図2Aを参照すると、これは、本発明のいくつかの実施形態による、少なくとも1つの照明ユニット201を有する藻類培養容器スパージングシステム200のブロック図を模式的に示す。
図2A内の矢印の方向は、情報流の方向を示すことができることに留意されたい。
【0029】
幾つかの実施形態において、藻類培養容器スパージングシステム200は、制御器103に結合されて培養容器10を照明するための、少なくとも1つの照明ユニット201を含むことができる。幾つかの実施形態において、少なくとも1つの照明ユニット201および制御器103(または別の制御器)は、藻類成長のためのバイオリアクタ照明システム210の中に含めることができる。幾つかの実施形態において、培養容器10と少なくとも1つの照明ユニット201との間の距離は、培養容器10によって受け取られる照明を制御するように、修正することができる。例えば、少なくとも1つの照明ユニット201を培養容器10に近づけると、内部の藻類の照明が増加する。幾つかの実施形態において、培養容器10と少なくとも1つの照明ユニット201との間の距離は、例えば、照明システム210に含まれる制御器103によって制御することができる。幾つかの実施形態によれば、培養容器10からの照明ユニット201の距離を変えることに加えて、またはその代わりに、照明ユニット201内の光源202の照明強度を制御することができる。
【0030】
幾つかの実施形態において、少なくとも1つの照明ユニット201は、各々の光源202を制御器103によって別々に制御することができるように、少なくとも1つの光源202(例えば、LED)を含むことができる。幾つかの実施形態において、少なくとも1つの光源202は、別の光源202とは異なる強度で照明するように制御することができる。幾つかの実施形態によれば、全ての光源202は、手動で、或いはプリセットタイミングおよび/または培養容器10内の検知された条件に従って、照明強度を変えるように制御することができる。
【0031】
幾つかの実施形態において、物理的障壁104を有する培養容器10は、物理的障壁104内に埋め込まれた少なくとも1つの光源202を含むことができ(
図1に示されるように)、それにより容器10を内部から、即ち、物理的障壁104内に埋め込まれた少なくとも1つの光源202から照明することができる。幾つかの実施形態によれば、培養容器10は、各々が少なくとも1つの光源202を含む複数の物理的障壁104を含むことができ、それにより、隣接する物理的障壁104の間で藻類が成長するモジュラーシステムを生成することができ、この場合、少なくとも1つの制御器103が、物理的障壁104内に埋め込まれた全ての光源202の照明を制御することができる。
【0032】
当業者には明白であり得るように、培養容器10内に供給される光の量は、培養容器10の表面に供給される光束の平均として定義することができる。従って、超高密度の培養(例えば、およそ5グラム/リットルを超える密度)のためのスパージングシステム200において、少なくとも1つの照明ユニット201は、類似の光浸透を達成する低密度培養(例えば、およそ5グラム/リットルより低い密度)の平均光束に実質的に等しい平均光束をもたらすように、少なくとも1つの光源202の光分布を有することができ、同時に、少なくとも1つの照明ユニット201は、各々の光源202に対してより高い強度を有することができる。幾つかの実施形態において、培養容器10内部の光強度は、少なくとも1つのセンサ105を用いて計測することができる。
【0033】
例えば、超高密度培養に関して、光通過が短くなり(例えば、およそ20~30ミリメートルの暗い区域を伴うおよそ1~5ミリメートルの照明区域)照明ユニット201に隣接する藻類細胞を光阻害し(藻類に対する亜致死性効果)および/または光退色(藻類に対する致死性効果)する可能性があるので、照明ユニット201は、初めに、藻類の多少の成長を可能にするような容器10からの距離に保つことができ、次いで、藻類成長をさらに高めるように、近づける(例えば、日に1回)ことができる。幾つかの実施形態において、超高密度培養は、短い光通過のために藻類の照明サイクル(照明区域と暗い区域との間の)を可能にするための混合を必要とする可能性がある。幾つかの実施形態において、超高密度培養は、そのような密度において波長は短い光通過のために成長に殆ど影響を及ぼすことができないので、種々の波長で照明することができる。一般的な方法によれば、藻類は、光に対して異なるように応答するはずであるので、通常の成長のために特定の波長で(例えば、青色光で)照明されるが、本出願人等によって行われた実験は、超高密度培養のためには任意の波長による照明を使用することができることを示したことに留意されたい。
【0034】
幾つかの実施形態によれば、培養容器10内への光浸透は、光強度、光波長、特定の藻類の種族、および/または藻類培養密度の内の少なくとも1つに対応することができる。培養容器10内への光浸透は、培養容器10内部の照明区域と暗い区域との間の割当量を決定することができ、それ故に、照明ユニット201によって与えられる光強度、第1のスパージャ101を通るガス流速、第2のスパージャ102を通るガス流速などに影響を及ぼし得ることに留意されたい。
【0035】
幾つかの実施形態において、培養容器10は、培養容器10内部の最大藻類成長の90%を超える日量を与えるための少なくとも1つの照明ユニット201によって照明することができる。
【0036】
幾つかの実施形態において、少なくとも1つの照明ユニット201は、高強度光源202の低分布の構成を含むことができる。そのような構成は、低強度光源の均一分布による一般的方法の構成と比べて、高い藻類成長を可能にすることができる。幾つかの実施形態において、少なくとも1つの光源202の照明光束密度は、1200マイクロモル/メートル2/秒である。幾つかの実施形態において、少なくとも1つの照明ユニット201は、平方メートル当たり少なくとも4つの光源202を含むことができる。例えば、約6平方メートルの表面積および約4cmの光路を有する照明ユニット201は、各々が1200マイクロモル/メートル2/秒の光束を有する24個のLED光源202を含むことができる。幾つかの実施形態において、容器10内部の藻類の少なくとも一部分は、イソクリシスガルバンである。
【0037】
幾つかの実施形態において、制御器103は、少なくとも1つの光源202の照明波長を、例えば、放射される照明の波長を修正するように適合された専用照明モジュールによって、制御するように構成することができる。幾つかの実施形態において、容器10の内部を27℃の一定温度に維持することができる。
【0038】
幾つかの実施形態において、制御器103は、少なくとも1つの光源202を、650ナノメートルの波長で照明するように、制御するように構成することができる。普通の方法によれば、藻類は最適成長のための特定の波長で(例えば、青色光で)照明されるが、本出願人等によって行われた実験は、他の波長による(例えば、赤色光による)照明を、成長を高めるために使用することができることを示したことに留意されたい。
【0039】
次に
図2Bを参照すると、これは、本発明の幾つかの実施形態による、少なくとも1つの照明ユニット201および単一の第3のスパージャ211を有する藻類培養容器スパージングシステム210のブロック図を模式的に示す。
図2B中の矢印の方向は情報流の方向を示すことができることに留意されたい。
【0040】
幾つかの実施形態において、スパージングシステム210は、所定の流体を培養容器10内に分散供給するように構成された少なくとも1つの第3のスパージャ211(少なくとも1つのノズルを有する)と共に少なくとも1つの照明ユニット201を含むことができる。幾つかの実施形態において、少なくとも1つの第3のスパージャ211は、第1の所定の流体を分散供給するための少なくとも1つのノズル、および第2の所定の流体を分散供給するための少なくとも1つのノズル(例えば、異なる直径を有する)を含むことができる。幾つかの実施形態において、少なくとも1つの第3のスパージャ211は、培養容器10内の藻類の乱流混合を可能にするように適合させることができ、および、容器10内の液体中のCO2の同化を可能にするように適合させることができる。
【0041】
次に
図3を参照すると、これは、本発明の幾つかの実施形態による、藻類培養容器10をスパージングする方法の流れ図を示す。幾つかの実施形態において、本方法は、第1の流体を第1の動作流速で容器10内に分散供給するための少なくとも1つの第1のスパージャ101を制御するステップ301を含むことができる。幾つかの実施形態において、本方法はさらに、第2の流体を第2の動作流速で容器10内に分散供給するための第2のスパージャ102を制御するステップ302を含むことができる。幾つかの実施形態において、少なくとも1つの第1のスパージャ101の第1の動作流速は、少なくとも1つの第2のスパージャ102の第2の動作流速とは異なることができる。幾つかの実施形態において、本方法はさらに、容器10内部の少なくとも1つのパラメータを計測するステップ303、および、少なくとも1つの計測されたパラメータの変化に従って、少なくとも1つの第2のスパージャ102の動作流速を変化させるステップ304を含むことができる。
【0042】
幾つかの実施形態において、第1の動作流速は培養容器内の藻類の乱流混合を可能にするように適合させることができ、第2の動作流速は培養容器内の液体中の物質の同化を可能にするように適合させることができる。
【0043】
明示的に言及されない限り、本明細書で説明される方法の実施形態は、特定の時間の順番または時間的順序に制約されない。さらに、説明された方法要素の幾つかは、方法の一連の動作中に、スキップすることができ、または繰り返すことができる。
【0044】
種々の実施形態が提示されている。これらの実施形態の各々は、もちろん、提示された他の実施形態からの特徴を含むことができ、具体的に説明されなかった実施形態は、本明細書で説明された種々の特徴を含むことができる。