(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-10-20
(45)【発行日】2022-10-28
(54)【発明の名称】走行モータシフトバルブ、走行モータおよび工学機械
(51)【国際特許分類】
F03C 1/40 20060101AFI20221021BHJP
F16K 11/00 20060101ALI20221021BHJP
F16H 61/423 20100101ALI20221021BHJP
【FI】
F03C1/40
F16K11/00 Z
F16H61/423
(21)【出願番号】P 2020517249
(86)(22)【出願日】2018-03-15
(86)【国際出願番号】 CN2018079068
(87)【国際公開番号】W WO2018188449
(87)【国際公開日】2018-10-18
【審査請求日】2019-11-29
(31)【優先権主張番号】201711246964.4
(32)【優先日】2017-12-01
(33)【優先権主張国・地域又は機関】CN
(73)【特許権者】
【識別番号】519428111
【氏名又は名称】徐工集▲団▼工程机機有限公司
(74)【代理人】
【識別番号】110001461
【氏名又は名称】弁理士法人きさ特許商標事務所
(72)【発明者】
【氏名】ヂァォ, ビン
(72)【発明者】
【氏名】ウー,チュアンユ
(72)【発明者】
【氏名】リー ヤン
(72)【発明者】
【氏名】プルスト,デイビッド
【審査官】谿花 正由輝
(56)【参考文献】
【文献】特開2002-339905(JP,A)
【文献】特開2015-004369(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F03C 1/40
F16K 11/00
F16H 61/423
(57)【特許請求の範囲】
【請求項1】
走行モータシフトバルブ(100)であって、バルブコア(1)、第1の作動油ポート(Y)、第2の作動油ポート(L)、第3の作動油ポート(Z)、外部制御油ポート(X)および帰還油ポート(C)を備え、前記バルブコア(1)は、第1の作動位置および第2の作動位置を有し、前記第1の作動位置において、前記第1の作動油ポート(Y)は、遮断されて、前記第2の作動油ポート(L)は、前記第3の作動油ポート(Z)と連通しており、前記第2の作動位置において、前記第1の作動油ポート(Y)は、前記第3の作動油ポート(Z)と連通しており、前記第2の作動油ポート(L)は、遮断され、前記第1の作動油ポート(Y)は、油源との連通用であり、前記第2の作動油ポート(L)は、油槽との連通用であり、前記第3の作動油ポート(Z)は、走行モータのスウォッシュプレート制御機構(500)との連通用であり、前記外部制御油ポート(X)は、前記バルブコア(1)の第1の軸端に作用するように油を導いて、前記第1の作動位置から前記第2の作動位置へ移動する傾向を前記バルブコア(1)が発生することを可能にするためであり、前記帰還油ポート(C)は、前記走行モータのモータ(400)の作動圧力を前記バルブコア(1)の第2の軸端へ帰還させて、前記第2の作動位置から前記第1の作動位置へ移動する傾向を前記バルブコア(1)が発生することを可能にするためであり、前記走行モータシフトバルブ(100)は、
前記帰還油ポート(C)の油圧が第1のプリセット値P
C1より小さいときに、前記バルブコア(1)は、前記第1の作動位置から前記第2の作動位置へ移動するように構成されて、前記帰還油ポート(C)の前記油圧が第2のプリセット値P
C2より大きいときには、前記バルブコア(1)は、前記第2の作動位置から前記第1の作動位置へ移動するように構成され、前記第1のプリセット値P
C1は、前記第2のプリセット値P
C2と等しくなく、
前記帰還油ポート(C)の前記油圧は、前記バルブコア(1)が前記第1の作動位置から前記第2の作動位置へ移動した後に第1の作動値P
C3であり、前記帰還油ポート(C)の前記油圧は、前記バルブコア(1)が前記第2の作動位置から前記第1の作動位置へ切り替えた後には第2の作動値P
C4であり、前記第1の作動値P
C3と前記第2のプリセット値P
C2との間の関係は、P
C3<K
1P
C2,K
1≦1であり、前記第2の作動値P
C4と前記第1のプリセット値P
C1との間の前記関係は、P
C4>K
2P
C1,K
2≧1であるように構成され
、
前記走行モータシフトバルブ(100)は、第1のチャンバ(1a)、第2のチャンバ(1b)および第3のチャンバ(1c)をさらに備え、
前記第2のチャンバ(1b)および前記第3のチャンバ(1c)は、前記バルブコア(1)内に配置されて、それぞれ、前記バルブコア(1)の前記第1の軸端および前記第2の軸端に置かれ、
前記第1のチャンバ(1a)は、前記外部制御油ポート(X)と連通しており、前記第3のチャンバ(1c)は、前記帰還油ポート(C)と連通しており、前記第2のチャンバ(1b)は、前記第3の作動油ポート(Z)と連通しており、前記バルブコア(1)が前記第1の作動位置から前記第2の作動位置へ移動する過程中に交互に前記第2の作動油ポート(L)および前記第1の作動油ポート(Y)と連通するよう切り替えるように構成されて、前記第2のチャンバ(1b)の有効圧力作用面積は、前記第3のチャンバ(1c)の有効圧力作用面積より小さい、
走行モータシフトバルブ(100)。
【請求項2】
ばね(4)をさらに備え、前記ばね(4)は、前記バルブコア(1)の前記第2の軸端に配列されて、前記第2の作動位置から前記第1の作動位置へ移動する傾向を前記バルブコア(1)が発生することを可能にする作用力を前記バルブコア(1)に加え、前記第1のプリセット値P
C1は、P
C1=(P
x×A
1-F
1)/A
3であり、前記第2のプリセット値P
C2は、P
C2=(P
x×A
1-F
2)/(A
3-A
2)であり、前記第1の作動値P
C3は、
【数1】
であり、前記第2の作動値P
C4は、
【数2】
であり、ここでP
xは、前記外部制御油ポート(X)の油圧であり、A
1、A
2およびA
3は、それぞれ、前記第1のチャンバ(1a)、前記第2のチャンバ(1b)および前記第3のチャンバ(1c)の有効圧力作用面積であり、F
1およびF
2は、それぞれ、前記第1の作動位置および前記第2の作動位置において前記バルブコア(1)に加えられる前記ばね(4)の作用力であり、V
1およびV
2は、それぞれ、前記第1の作動位置および前記第2の作動位置における前記モータ(400)の出力容量である、請求項
1に記載の走行モータシフトバルブ(100)。
【請求項3】
第1のプランジャチャンバ(1f)および第2のプランジャチャンバ(1g)が、それぞれ、前記バルブコア(1)の前記第1の軸端および前記第2の軸端上に設けられ、第1のプランジャ(21)は、前記第1のプランジャチャンバ(1f)内に配置されて、第2のプランジャ(22)は、前記第2のプランジャチャンバ(1g)内に配置され、前記第2のチャンバ(1b)は、前記第1のプランジャ(21)と前記第1のプランジャチャンバ(1f)の内壁との間に置かれて、前記第3のチャンバ(1c)は、前記第2のプランジャ(22)と前記第2のプランジャチャンバ(1g)の内壁との間に置かれた、請求項
1に記載の走行モータシフトバルブ(100)。
【請求項4】
第1の経路(1d)が前記バルブコア(1)上に配列されて、前記第2のチャンバ(1b)は、前記第1の経路(1d)を介して前記第1の作動油ポート(Y)および前記第2の作動油ポート(L)の一方と連通しており、および/または第2の経路(1e)が前記バルブコア(1)上に配列されて、前記第3のチャンバ(1c)は、前記第2の経路(1e)を介して前記帰還油ポート(C)と連通している、請求項
1に記載の走行モータシフトバルブ(100)。
【請求項5】
前記バルブコア(1)の前記第2の軸端に配置された第1のプラグ部分(31)をさらに備え、前記走行モータシフトバルブ(100)のばね(4)は、前記第1のプラグ部分(31)と前記バルブコア(1)の前記第2の軸端との間に当接して、前記第2の作動位置から前記第1の作動位置へ移動する前記傾向を前記バルブコア(1)が発生することを可能にする作用力を前記バルブコア(1)に加えるように構成された、請求項1に記載の走行モータシフトバルブ(100)。
【請求項6】
ばね収容チャンバ(31c)が前記バルブコア(1)に隣接する前記第1のプラグ部分(31)の表面上に設けられて、前記ばね(4)は、前記ばね収容チャンバ(31c)内に配置された、請求項
5に記載の走行モータシフトバルブ(100)。
【請求項7】
第1の貫通孔(31a)が前記第1のプラグ部分(31)上に配置されて、前記第1の貫通孔(31a)は、前記ばね収容チャンバ(31c)と連通している、請求項
6に記載の走行モータシフトバルブ(100)。
【請求項8】
締結溝(31b)が前記バルブコア(1)から離隔した前記第1のプラグ部分(31)の表面上に配置された、請求項
5に記載の走行モータシフトバルブ(100)。
【請求項9】
せぎり部が前記バルブコア(1)の前記第1の軸端に配置された、請求項1に記載の走行モータシフトバルブ(100)。
【請求項10】
凹部(15)が前記せぎり部の外周面上に配置された、請求項
9に記載の走行モータシフトバルブ(100)。
【請求項11】
モータ(400)および前記モータ(400)のスウォッシュと駆動接続されたスウォッシュプレート制御機構(500)を備える走行モータであって、請求項1に記載の走行モータシフトバルブ(100)をさらに備え、前記走行モータシフトバルブ(100)は、前記モータ(400)のシェル(5)の内部に配置された、走行モータ。
【請求項12】
第2の貫通孔(51)が前記シェル(5)上に配置され、前記走行モータシフトバルブ(100)の前記バルブコア(1)は、前記第2の貫通孔(51)内に配列されて、前記走行モータシフトバルブ(100)の前記第1の作動油ポート(Y)、前記第2の作動油ポート(L)、前記第3の作動油ポート(Z)、前記外部制御
油ポート(X)および前記帰還油ポート(C)は、すべてが前記シェル(5)の前記内壁上に配置された、請求項
11に記載の走行モータ。
【請求項13】
請求項
11に記載の走行モータを備える、工業機械。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願
本開示は、2017年12月1日出願の中国特許出願第201711246964.4号に基づき、その優先権を主張する。この中国出願の開示は、全体として本明細書に組み込まれる。
【0002】
本開示は、工学機械類の技術分野に関し、特に、走行モータシフトバルブ、走行モータ、および工学機械に関する。
【背景技術】
【0003】
走行モータは、工学機械を走行するように駆動するために掘削機のような工業機械類において広く用いられる。走行モータは、通常、モータおよびスウォッシュプレート制御機構を含み、スウォッシュプレート制御機構は、モータのスウォッシュプレート角度を制御することによってモータの出力シャフトの回転速度を調節し、従って、走行モータは、高速および低速の2速シフト機能を有する。低速モードでは、走行モータの出力回転速度はより低いがその出力容量がより大きく、同じ入力動力の下でより大きなトルクを出力できるのに対して、高速モードでは、走行モータの出力回転速度はより高いがその出力容量がより小さく、同じ入力動力の下でより小さいトルクを出力できる。
【0004】
掘削機および他の工学機械類が、斜面、泥沼またはトーイングなどのような、重負荷条件下で走行しているときに、走行モータは、しばしば、より大きい駆動トルクを提供することが要求され、すなわち、走行モータは、低速モードで作動することが要求され、従って、走行モータは、走行しないまたは走行しにくい現象を防止するためにより大きいトルクを提供し、走行抵抗がより小さくなるときには、走行モータは、走行効率を改善するために、低速モードから高速モードへ切り替えることを要求される。それゆえに、走行モータは、高速モードと低速モードとの間で切り替えできることが要求される。
【0005】
重負荷条件下で高速モードから低速モードへ自動的に切り替えるように走行モータを制御するために、走行モータには、通常、走行モータシフトバルブが装備される。スウォッシュプレート制御機構に高圧油を供給するかどうかを制御することによって、走行モータシフトバルブは、走行モータが高速モードから低速モードへ切り替えるかどうかを制御し、それによって、走行モータの自動シフト機能を実現する。
【発明の概要】
【課題を解決するための手段】
【0006】
しかしながら、本発明者が認識したのは、先行技術における走行モータシフトバルブが、一般に、シフトを制御するために高圧油をスウォッシュプレート制御機構へ供給するかどうかを、高速状態におけるモータの実際の圧力がある一定のプリセット値を超えるかどうかを検出することによって判定するということである。工学機械の原動力(エンジン)によって提供される最大動力は、一定値なので、走行モータの出力トルクは、作動圧力および出力容量に比例し、従って、同じ作動条件下で、モータが高速から低速へ切り替えた後に、モータ入力ポートの圧力は、シフト前の圧力より低く、すなわち、プリセット値より低くなり、このときに、シフトバルブは、高速モードへ自動的に戻り、それにより結果として、走行モータは、重負荷条件下で高速と低速との間で繰り返して切り替え、これが工学機械を重負荷条件下で振動させることになり、さらに、シフトバルブそれ自体、走行モータおよび全体としての工学機械の寿命および安全性に影響を及ぼすだけでなく、製品の快適さも低下させる。
【0007】
従って、本開示によって解決されるべき技術的問題は、重負荷条件下の工学機械の振動を低減するために、走行モータが高速と低速との間で繰り返して切り替えるのを防止することである。
【0008】
上述の技術的問題を解決するために、本開示の第1の態様は、走行モータシフトバルブを提供し、本走行モータシフトバルブは、バルブコア、第1の作動油ポート、第2の作動油ポート、第3の作動油ポート、外部制御ポートおよび帰還油ポートを備え、バルブコアは、第1の作動位置および第2の作動位置を有し、第1の作動位置において、第1の作動油ポートは、遮断されて、第2の作動油ポートは、第3の作動油ポートと連通しており、第2の作動位置においては、第1の作動油ポートは、第3の作動油ポートと連通しており、第2の作動油ポートは、遮断され、第1の作動油ポートは、油源との連通用であり、第2の作動油ポートは、油槽との連通用であり、第3の作動油ポートは、走行モータのスウォッシュプレート制御機構との連通用であり、外部制御油ポートは、バルブコアの第1の軸端に作用するための油を導いて、第1の作動位置から第2の作動位置へ移動する傾向をバルブコアが発生することを可能にするためであり、帰還油ポートは、走行モータのモータの作動圧力をバルブコアの第2の軸端へ帰還させて、第2の作動位置から第1の作動位置へ移動する傾向をバルブコアが発生することを可能にするためであり、走行モータシフトバルブは、
帰還油ポートの油圧が第1のプリセット値PC1より小さいときに、バルブコアは、第1の作動位置から第2の作動位置へ移動するように構成され、帰還油ポートの油圧が第2のプリセット値PC2より大きいときには、バルブコアは、第2の作動位置から第1の作動位置へ移動するように構成され、第1のプリセット値PC1は、第2のプリセット値PC2と等しくなく、
帰還油ポートの油圧は、バルブコアが、第1の作動位置から第2の作動位置へ移動した後には第1の作動値PC3であり、帰還油ポートの油圧は、バルブコアが、第2の作動位置から第1の作動位置へ切り替えた後には第2の作動値PC4であり、第1の作動値PC3と第2のプリセット値PC2との間の関係は、PC3<K1PC2,K1≦1であり、第2の作動値PC4と第1のプリセット値PC1との間の関係は、PC4>K2PC1,K2≧1である
ように構成される。
【0009】
いくつかの実施形態において、走行モータシフトバルブは、第1のチャンバ、第2のチャンバおよび第3のチャンバをさらに備え、第1のチャンバは、外部制御油ポートと連通しており、第3のチャンバは、帰還油ポートと連通しており、第2のチャンバは、第3の作動油ポートと連通しており、バルブコアが第1の作動位置から第2の作動位置へ移動する過程中に交互に第2の作動油ポートおよび第1の作動油ポートと連通するよう切り替えるように構成されて、第2のチャンバの有効圧力作用面積は、第3のチャンバの有効圧力作用面積より小さい。
【0010】
いくつかの実施形態において、走行モータシフトバルブは、ばねをさらに備え、ばねは、バルブコアの第2軸端に配列されて、第2の作動位置から第1の作動位置へ移動する傾向をバルブコアが発生することを可能にする作用力をバルブコアに加え、第1のプリセット値PC1は、PC1=(Px×A1-F1)/A3であり、第2のプリセット値PC2は、PC2=(Px×A1-F2)/(A3-A2)であり、第1の作動値PC3は、
【0011】
【0012】
であり、第2の作動値PC4は、
【0013】
【0014】
であり、ここでPxは、外部制御油ポートの油圧であり、A1、A2およびA3は、それぞれ、第1のチャンバ、第2のチャンバおよび第3のチャンバの有効圧力作用面積であり、F1およびF2は、それぞれ、第1の作動位置および第2の作動位置においてバルブコアに加えられるばねの作用力であり、V1およびV2は、それぞれ、第1の作動位置および第2の作動位置におけるモータの出力容量である。
【0015】
いくつかの実施形態において、第2のチャンバおよび第3のチャンバが、バルブコア上に配置されて、それぞれ、バルブコアの第1の軸端および第2の軸端に置かれる。
【0016】
いくつかの実施形態において、第1のプランジャチャンバおよび第2のプランジャチャンバは、それぞれ、バルブコアの第1の軸端および第2の軸端上に設けられ、第1のプランジャは、第1のプランジャチャンバ内に配置されて、第2のプランジャは、第2のプランジャチャンバ内に配置され、第2のチャンバは、第1のプランジャと第1のプランジャチャンバの内壁との間に置かれて、第3のチャンバは、第2のプランジャと第2のプランジャチャンバの内壁との間に置かれる。
【0017】
いくつかの実施形態において、第1の経路がバルブコア上に配列されて、第2のチャンバは、第1の経路を介して第1の作動油ポートおよび第2の作動油ポートの一方と連通しており、および/または第2の経路がバルブコア上に配列されて、第3のチャンバは、第2の経路を介して帰還油ポートと連通している。
【0018】
いくつかの実施形態において、走行モータシフトバルブは、バルブコアの第2の軸端に配置された第1のプラグ部分を備え、走行モータシフトバルブのばねが第1のプラグ部分とバルブコアの第2の軸端との間に当接して、第2の作動位置から第1の作動位置へ移動する傾向をバルブコアが発生することを可能にする作用力をバルブコアに加えるように構成される。
【0019】
いくつかの実施形態において、ばね収容チャンバがバルブコアに隣接する第1のプラグ部分の表面上に設けられて、ばねは、ばね収容チャンバ内に配置される。
【0020】
いくつかの実施形態において、第1の貫通孔が第1のプラグ部分上に配置されて、第1の貫通孔は、ばね収容チャンバと連通している。
【0021】
いくつかの実施形態において、締結溝がバルブコアから離隔した第1のプラグ部分の表面上に配置される。
【0022】
いくつかの実施形態において、せぎり部がバルブコアの第1の軸端に配置される。
【0023】
いくつかの実施形態において、凹部がせぎり部の外周面上に配置される。
【0024】
本開示の第2の態様は、走行モータを提供し、本走行モータは、モータおよびモータのスウォッシュと駆動接続されたスウォッシュプレート制御機構を備え、本開示の走行モータシフトバルブをさらに備え、走行モータシフトバルブは、モータのシェルの内部に配置される。
【0025】
いくつかの実施形態において、第2の貫通孔がシェル上に配置され、走行モータシフトバルブのバルブコアは、第2の貫通孔内に配列されて、走行モータシフトバルブの第1の作動油ポート、第2の作動油ポート、第3の作動油ポート、外部制御ポートおよび帰還油ポートは、すべてがシェルの内壁上に配置される。
【0026】
本開示の第3の態様は、さらに、本開示の走行モータを備える、工学機械を提供する。
【0027】
走行モータシフトバルブの改良に基づいて、走行シフトバルブのバルブコアは、2つのそれぞれ異なるプリセット値において低速から高速へおよび高速から低速へ切り替えるように構成されて、シフト後のモータの入力圧力値は、いずれもシフト境界条件を満たさないように構成され、従って、本開示は、走行モータが高速と低速との間で繰り返して切り替えるのを効果的に防止して、重負荷条件下の工学機械の振動を低減する。
【0028】
本開示の他の特徴および利点は、以下の添付図面を参照して本開示の例示的な実施形態の詳細な記載から明らかになるであろう。
【0029】
本開示の実施形態または先行技術における技術的解決法をより明確に示すために、実施形態または先行技術の記載に用いられる図面が以下に簡潔に説明される。明らかに、以下の説明における図面は、本開示のある一定の実施形態のうちのいくつかであるに過ぎない。当業者には、本図面に従って創造的労力なしに他の図面を得ることができる。
【図面の簡単な説明】
【0030】
【
図1】本開示のある実施形態による走行モータシステムの油圧原理図を図示する。
【
図2】第1の作動位置における
図1の走行モータシフトバルブのバルブコアを示す断面図を図示する。
【
図3】第2の作動位置における
図1に図示されるような走行モータシフトバルブのバルブコアを示す断面図を図示する。
【
図4】
図2および
図3のバルブコアの構造を示す概略図を図示する。
【発明を実施するための形態】
【0031】
本開示の実施形態の技術的解決法が、次に、本開示の実施形態の図面と併せて明確かつ十分にさらに詳細に記載される。明らかに、記載される実施形態は、本開示の実施形態の一部のみであり、すべてではない。少なくとも1つの例示的な実施形態の以下の記載は、説明的であるに過ぎず、本開示およびその用途または使用を限定することは決して意図されない。本開示の実施形態に基づいて、当業者により創造的労力なしに得られる他のすべての実施形態は、すべてが本開示の範囲に入る。
【0032】
当業者に知られた技術、方法および装置が詳細には考察されないかもしれないが、適切な場合には、これらの技術、方法および装置は、許可された明細書の一部であると見做されるべきである。
【0033】
本開示の記載において、理解されるべきは、「前、後、上、下、左、右」、「横、直立、垂直、水平」および「頂、底」のような方位語によって示される方位または位置関係は、もっぱら本開示の記載および簡略化された記載の便宜上、図面に示された方位または位置関係に一般に基づくということである。逆がない場合には、これらの方位語は、言及されるデバイスまたは部品が指定された方位を有さなければならないことも指定された方位に構築または操作されなければならないことも指示または示唆することは意図されず、従って、本開示の保護の範囲に対する限定であると理解することはできず、方位語「内側および外側」は、各部品それ自体の輪郭の内側および外側を指す。
【0034】
本開示の記載において、理解されるべきは、部品を規定するための単語「第1」、「第2」などの使用は、対応する部品間の区別を単に容易にするために過ぎないということである。別段の記述がなければ、上記の単語は、特別の意味合いを有さず、従って、本開示の保護の範囲に対する限定であると理解することはできない。
【0035】
図1~4は、本開示のある実施形態を示す。
図1~4を参照すると、本開示によって提供されるような走行モータシフトバルブ100は、バルブコア1、第1の作動油ポートY、第2の作動油ポートL、第3の作動油ポートZ、外部制御ポートXおよび帰還油ポートCを備え、バルブコア1は、第1の作動位置および第2の作動位置を有し、第1の作動位置において、第1の作動油ポートYは、遮断されて、第2の作動油ポートLは、第3の作動油ポートZと連通しており、第2の作動位置において、第1の作動油ポートYは、第3の作動油ポートZと連通しており、第2の作動油ポートLは、遮断され、第1の作動油ポートYは、油源との連通用であり、第2の作動油ポートLは、油槽との連通用であり、第3の作動油ポートZは、走行モータのスウォッシュプレート制御機構500との連通用であり、外部制御油ポートXは、バルブコア1の第1の軸端に作用するように制御油を導いて、第1の作動位置から第2の作動位置へ移動する傾向をバルブコア1が発生することを可能にするためであり、帰還油ポートCは、走行モータのモータ400の実際の作動圧力をバルブコア1の第2の軸端へ帰還させて、第2の作動位置から第1の作動位置へ移動する傾向をバルブコア1が発生することを可能にするためであり、走行モータシフトバルブ100は、
帰還油ポートCの油圧が第1のプリセット値P
C1より小さいときに、バルブコア1が第1の作動位置から第2の作動位置へ移動するように構成され、帰還油ポートCの油圧が第2のプリセット値P
C2より大きいときには、バルブコア1が第2の作動位置から第1の作動位置へ移動するように構成され、第1のプリセット値P
C1は、第2のプリセット値P
C2と等しくなく、
帰還油ポートCの油圧は、バルブコア1が第1の作動位置から第2の作動位置へ移動した後に第1の作動値P
C3であり、帰還油ポートCの油圧は、バルブコア1が第2の作動位置から第1の作動位置へ切り替えた後には第2の作動値P
C4であり、第1の作動値P
C3と第2のプリセット値P
C2との間の関係は、P
C3<K
1P
C2,K
1≦1であり、第2の作動値P
C4と第1のプリセット値P
C1との間の関係は、P
C4>K
2P
C1,K
2≧1である
ように構成される。
【0036】
本開示において、PC1およびPC2は、それぞれ、低速から高速へおよび高速から低速へ切り替えるように走行モータシフトバルブ100が走行モータを制御する際のモータ400の臨界圧力値であり、PC3およびPC4は、それぞれ、低速から高速へおよび高速から低速へ切り替えるように走行モータシフトバルブ100が走行モータを制御する際のモータ400の実際の入力圧力値であり、K1およびK2は、走行モータが、それぞれ、低速から高速への切り替え後に高速において安定であるため、および高速から低速への切り替え後に低速において安定であるための安全係数である。
【0037】
走行モータシフトバルブ100の改良によって、本開示は、走行シフトバルブ100のバルブコア1が2つのそれぞれ異なるプリセット値において低速から高速へおよび高速から低速へ切り替えることを可能にし、シフト後のモータ400の入力圧力値がシフト境界条件を満たさないことを可能にして、その結果、本開示は、走行モータが高速と低速との間で繰り返して切り替えるのを効果的に防止することができて、重負荷条件下の工学機械の振動を低減し、これは、走行モータシフトバルブ100、走行モータおよび工学機械の耐用年数を延長し、走行安全性を改善して、使用における快適さを向上させるのに有益である。
【0038】
本開示において、好ましくは、K1<1、および/またはK2>1であり、このように、低速から高速へおよび/または高速から低速へ切り替えた後の速度において安定化されたときに、走行モータが高速と低速との間で繰り返して切り替えるのをより確実に防止するように走行モータの安全係数がより高くなり、重負荷条件下の工学機械の振動がより効果的に低減され、これは、走行モータシフトバルブ100、走行モータおよび工学機械の耐用年数を延長し、走行安全性を改善して、使用における快適さを向上させるのにより有益である。
【0039】
本開示の走行モータシフトバルブ100のある実装として、走行モータシフトバルブ100は、第1のチャンバ1a、第2のチャンバ1bおよび第3のチャンバ1cをさらに備えてよく、第1のチャンバ1aは、外部制御油ポートXと連通しており、第3のチャンバ1cは、帰還油ポートCと連通しており、第2のチャンバ1bは、第3の作動油ポートZと連通しており、バルブコア1が第1の作動位置から第2の作動位置へ移動する過程中に交互に第2の作動油ポートLおよび第1の作動油ポートYと連通するように切り替え、第2のチャンバ1bの有効圧力作用面積は、第3のチャンバ1cの有効圧力作用面積より小さい。これに基づいて、2つのそれぞれ異なるプリセット値において低速から高速へおよび高速から低速へ切り替えるように走行モータシフトバルブ100のバルブコア1が走行モータを制御することを可能して、シフト後のモータ400の両方の入力圧力値がシフト境界条件を満たさないことを可能にするために、本開示においては、第1のチャンバ1a、第2のチャンバ1b、および第3のチャンバ1cの有効圧力作用面積のみが設定される必要があり、これは、構造が簡単で低コストかつ高信頼性である。
図1~4に示される実施形態と併せてこのことがさらに説明される。
【0040】
【0041】
理解を容易にするために、走行モータシステムの構造および動作原理が
図1を参照して最初に記載される。
【0042】
図1に示されるように、走行モータシステムは、走行モータ、走行モータシフトバルブ100、圧力選択バルブ300およびバランスバルブ200などを備え、走行モータは、モータ400およびスウォッシュプレート制御機構500などを備える。
【0043】
モータ400のスウォッシュプレートと駆動接続されたスウォッシュプレート制御機構500は、揺動するようにスウォッシュプレートを駆動することによってスウォッシュプレートの揺動角を変化させるためである。
図1からわかるように、この実施形態のスウォッシュプレート制御機構500は、具体的には、そのロッドがスウォッシュプレートへ接続された油圧シリンダである。これに基づいて、スウォッシュプレート制御機構500のロッドレスチャンバが注油されたときに、スウォッシュプレート制御機構500は、小さい方の角度位置へ揺動するようにスウォッシュプレートを駆動し、結果として、走行モータが低速モードへ切り替えることを可能にし、スウォッシュプレート制御機構500のロッドレスチャンバ中の油が油槽へ逆流したときには、スウォッシュプレート制御機構500は、大きい方の角度位置へ揺動するようにスウォッシュプレートを駆動して、走行モータが高速モードへ切り替えることを可能にする。
【0044】
モータ400は、バランスバルブ200を通して油ポートAおよびBへ接続される。油ポートAおよび油ポートBの一方が油をモータ400へ供給したときに、モータ400の油ドレインが油ポートAおよび油ポートBの他方を通して流出し、結果として、時計方向または反時計方向に回転するようにモータ400が駆動される。
【0045】
走行モータシフトバルブ100は、交互に油源および油槽の一方と連通するよう切り替えるようにスウォッシュプレート制御機構500のロッドレスチャンバを制御するためであり、従って、油をスウォッシュプレート制御機構500のロッドレスチャンバへ供給するかどうかを制御することによって、高速モードと低速モードとの間の走行モータの切り替えを制御できる。
図1に示されるように、この実施形態では、走行モータシフトバルブ100は、スウォッシュプレート制御機構500のロッドレスチャンバと連通しており、圧力選択バルブ300を通してバランスバルブ200と連通している。具体的には、圧力選択バルブ300は、シャトルバルブであり、走行モータシフトバルブ100の第1の作動油ポートYは、圧力選択バルブ300の出口と連通しており、圧力選択バルブ300の2つの入口は、バランスバルブ200を通して、それぞれ、油ポートAおよび油ポートBへ接続され、走行モータシフトバルブ100の第2の作動油ポートLは、油槽と連通しており、走行モータシフトバルブ100の第3の作動油ポートZは、スウォッシュプレート制御機構500のロッドレスチャンバと連通している。
【0046】
圧力選択バルブ300を配列することによって、第1の作動油ポートYは、常に、油ポートAおよび油ポートBの大きい方のポートと連通できる。油ポートAおよび油ポートBの大きい方の圧力値が油源圧力であり、一方では、モータ400の入力圧力または実際の作動圧力であり、第1の作動油ポートYは、常に、油源と連通しているので、第1の作動油ポートYの圧力値PYは、実際には、モータ400の実際の作動圧力値に等しい。
【0047】
図1に示されるように、交互に油源および油槽の一方と連通するよう切り替えるように、走行モータシフトバルブ100が、スウォッシュプレート制御機構500のロッドレスチャンバを制御することを可能にするために、走行モータシフトバルブ100は、第1の作動位置(
図1中の左位置)および第2の作動位置(
図1中の右位置)を有する。
図1からわかるように、第1の作動位置において、第1の作動油ポートYは、遮断されて、第2の作動油ポートLは、第3の作動油ポートZと連通しており、このように、スウォッシュプレート制御機構500のロッドレスチャンバは、走行モータシフトバルブ100によって油槽へ連通され、従って、スウォッシュプレート制御機構500のロッドレスチャンバの圧力は、開放されて、スウォッシュプレート制御機構500のシリンダロッドは、スウォッシュプレートの反力下で引っ込められ、それによって、
図1における垂直方向から水平方向へ揺動するようにスウォッシュプレートを駆動し、スウォッシュプレートの揺動角を最大値へ増加させ、モータ400の出力シャフト速度を最小値へ減少させて、走行モータが低速モードで作動することをさらに可能にし、第2の作動位置においては、第1の作動油ポートYは、第3の作動油ポートZと連通しており、第2の作動油ポートLは、遮断され、このように、スウォッシュプレート制御機構500のロッドレスチャンバは、走行モータシフトバルブ100によって油源へ連通されて、高圧の油が、走行モータシフトバルブ100を介してスウォッシュプレート制御機構500のロッドレスチャンバに流入し、それによって、スウォッシュプレート制御機構500のシリンダロッドが外側に伸びるように押して、
図1における垂直方向に揺動するようにスウォッシュプレートを駆動し、スウォッシュプレートの揺動角を最小値へ減少させ、モータ400の出力シャフト速度を最大値へ増加させて、走行モータが高速モードで作動することをさらに可能にする。バルブコア1の第1の作動位置および第2の作動位置は、それぞれ、走行モータの低速モード(第1の作動状態とも呼ばれる低速作動状態)および高速モード(第2の作動状態とも呼ばれる高速作動状態)に対応することがわかる。
【0048】
加えて、
図1からわかるように、走行モータシフトバルブ100は、外部制御油ポートXおよび帰還油Cをさらに備える。外部制御油ポートXは、第1の作動位置から第2の作動位置へ切り替えるように走行モータシフトバルブ100を制御するために、油を走行モータシフトバルブ100へ導くためのパイロット制御油ポートとしての役割を果たす。帰還油ポートCは、モータ400の実際の走行負荷に応じて、走行モータシフトバルブ100が第1の作動位置と第2の作動位置との間で切り替えるのを容易にし、それによって、実際の必要性に応じてシフトを完了するように走行モータをより正確に制御するために、走行モータのモータ400の作動圧力をバルブコア1へ帰還するためである。上記のように、第1の作動油ポートYおよび帰還油ポートCの圧力は、実際にはいずれもモータ400の実際の作動圧力なので、第1の作動油ポートYの圧力P
Yは、帰還油ポートCの圧力P
cに等しい。
【0049】
先行技術においては、走行モータシフトバルブが走行モータのシフトを制御するための1つだけの臨界条件があり、すなわち、モータの作動圧力は、あるプリセット値に達し、つまり、帰還油ポートCの圧力Pcがあるプリセット値に等しく、これが意味するのは、先行技術では走行モータシフトバルブが高速から低速へおよび低速から高速への制御を同じプリセット値に従って実現するということである。問題は、以下の点にある、すなわち、走行モータの最大入力動力は、一定値であり、走行モータの出力トルクは、作動圧力および出力容量に比例するので、モータ入力ポートの圧力は、高速から低速への切り替え後にはプリセット値より低いであろう、そしてこのときには、低速から高速への切り替えの臨界条件が満たされ、それゆえに、走行モータシフトバルブは、高速モードへ自動的に戻るように走行モータを制御するであろうが、しかし、高速へ戻った後に、モータ入力ポートの圧力は、プリセット値へ増加することになり、そのときには高速から低速への切り替えの臨界条件が満たされ、従って、走行モータシフトバルブは、再び、低速モードへ自動的に戻るように走行モータを制御するであろう。走行モータを所望の低速モードにおいて維持できず、高速と低速との間で繰り返して切り替えるように、この過程が繰り返され、これは、工学機械を重負荷条件下で振動させて、その結果、シフトバルブそれ自体、走行モータおよび工学機械全体の寿命および安全性に影響を及ぼすだけでなく、製品の快適さも低減する。
【0050】
走行モータが高速と低速との間で繰り返して切り替える問題を解決するために、
図2~4を参照して以下に詳細に記載されるこの実施形態では走行モータシフトバルブ100の構造が改良される。
【0051】
図2~3に示されるように、この実施形態では、走行モータシフトバルブ100が、モータ400のシェル5中に配列されて、バルブコア1、第1のプランジャ21、第2のプランジャ22、第1のプラグ部分31、第2のプラグ部分32、ばね4、第1の作動油ポートY、第2の作動油ポートL、第3の作動油ポートZ、外部制御油ポートX、第1のチャンバ1a、第2のチャンバ1bおよび第3のチャンバ1cを備え、そのうえ、走行モータシフトバルブ100は、バルブボディを備えないが、シェル5をバルブボディとして用い、走行モータシフトバルブ100のバルブコア1は、シェル5の内部に直接に配置され、一方で、走行モータシフトバルブ100の第1の作動油ポートY、第2の作動油ポートL、第3の作動油ポートZ、外部制御油ポートXおよび帰還油ポートは、すべてがシェル5の内壁上に配置される。
【0052】
走行モータシフトバルブ100をシェル5の内部に配列することによって、走行モータシフトバルブ100およびモータ400は、構造がよりコンパクトで、占有スペースが縮小されるように単一の構造として一体化される。シェル5をバルブボディとして用いることによって、走行モータシフトバルブ100のバルブコア1および油ポートを収容するために特別のバルブボディを別々に設ける必要がなく、それによって、構造をさらに簡略化し、コストを削減して、メンテナンスを容易にする。
【0053】
具体的には、
図3からわかるように、シェル5中のバルブコア1の配置を容易にするために、本実施形態では、第2の貫通孔51がシェル5上に配置されて、バルブコア1は、第2の貫通孔51中に配列される。バルブコア1を収容するために第2の貫通孔51を用いるので、処理が容易になるだけでなく、バルブコア1の分解および組み立ても容易になる。第2の貫通孔51は、シェル5のバックキャップ(すなわち、モータのバックキャップ)上に配列されてよい。
【0054】
走行モータシフトバルブ100の第1の作動油ポートY、第2の作動油ポートL、および第3の作動油ポートZのオン/オフ状態を制御すべく、走行モータシフトバルブ100の第1の作動位置(
図2~3中の右位置)と第2の作動位置(
図2~3中の左位置)との間の切り替えを実現するためにバルブコア1が移動される。
図3によって示されるように、本実施形態では、バルブコア1は、第1の軸端(すなわち、図中の右端)および第2の軸端(すなわち、図中の左端)を有し、
図4に示されるように、バルブコア1の第1の軸端および第2の軸端には、それぞれ、第1のプランジャチャンバ1fおよび第2プランジャチャンバ1gが設けられる。第1のプランジャチャンバ1fの有効圧力作用面積は、第2のプランジャチャンバ1gの有効圧力作用面積より小さい。第1の軸端および第2の軸端は、本明細書ではバルブコア1の2つの軸端面には限定されず、それぞれ1つの区分を含んでよいことを理解するのは難しくない。
【0055】
図2および3によって示されるように、この実施形態では、第1のプランジャ21および第2のプランジャ22は、それぞれ、第1のプランジャチャンバ1fおよび第2のプランジャチャンバ1g内に配置される。自由に摺動可能なシールストリップが第1のプランジャ21と第1のプランジャチャンバ1fの内壁との間、ならびに第2のプランジャ22と第2のプランジャチャンバ1gの内壁との間に形成される。バルブコア1が第1の作動位置から第2の作動位置へ移動する過程中に、第1のプランジャ21は、第1のプランジャチャンバ1fに対して伸び、第2のプランジャ22は、第2のプランジャチャンバ1gに対して引っ込み、一方で、バルブコア1が第2の作動位置から第1の作動位置へ移動する過程中には、第1のプランジャ21が第1のプランジャチャンバ1fに対して引っ込み、第2のプランジャ22が第2のプランジャチャンバ1gに対して伸びる。
【0056】
上記の配置に基づいて、
図2および3からわかるように、チャンバ1bおよび第3のチャンバ1cとそれぞれ名付けられた、シールチャンバが、第1のプランジャ21と第1のプランジャチャンバ1fの内壁との間、および第2のプランジャ22と第2のプランジャチャンバ1gの内壁との間に形成される。すなわち、本実施形態では、第2のチャンバ1bおよび第3のチャンバ1cは、バルブコア1上に配置されて、それぞれ、バルブコア1の第1の軸端および第2の軸端に置かれる。第2のチャンバ1bの有効圧力作用面積は、第1のプランジャチャンバ1fの有効圧力作用面積であり、第3のチャンバ1cの有効圧力作用面積は、第2のプランジャチャンバ1gの有効圧力作用面積であり、第1のプランジャチャンバ1fの有効圧力作用面積は、第2のプランジャチャンバ1gの有効圧力作用面積より小さく、従って、第2のチャンバ1bの有効圧力作用面積は、第3のチャンバ1cの有効圧力作用面積より小さい。
【0057】
そのうえ、
図2および3に示されるように、本実施形態では、第2のチャンバ1bおよび第3のチャンバ1cは、以下のような方法で、すなわち、第3のチャンバ1cは、帰還油ポートCと連通しており、第2のチャンバ1bは、第3の作動油ポートZと連通しており、バルブコア1が第1の作動位置から第2の作動位置へ移動する過程中に、逐次、第2の作動油ポートLおよび第1の作動油ポーYと連通する、すなわち、第2のチャンバ1bは、バルブコア1が(
図2に示されるように)第1の作動位置にあるときに第3の作動油ポートZおよび第2の作動油ポートLと連通し、第2のチャンバ1bは、バルブコア1が(
図3に示されるように)第2の作動位置にあるときには第3のポートZおよび第1の作動油ポートYと連通するような方法で、すべての油ポートと連通するように構成される。
【0058】
第2のチャンバ1bが第2の作動油ポートLまたは第1の作動油ポートYと連通するのを容易にするために、
図4に示されるように、本実施形態では、第1の経路1dがバルブコア1上に配置されて、第2のチャンバ1bは、第1の経路1dによって第1の作動油ポートYおよび第2の作動油ポートLの一方と連通される。
図2によって示されるように、第1の作動位置では、第2のチャンバ1bは、第1の経路1dを介して第2の作動油ポートLと連通しており、
図3に示されるように、第2の作動位置では、第2のチャンバ1bは、第1の経路1dを介して第1の作動油ポートYと連通している。同様に、第3のチャンバ1cが帰還油ポートCと連通するのを容易にするために、この実施形態例では、
図4に示されるように、第2の経路1eがバルブコア1上に配置されて、第3のチャンバ1cは、第2の経路1eによって帰還油ポートCと連通される。具体的には、
図4からわかるのは、第2のチャンバ1bおよび第3のチャンバ1cがいずれもバルブコア1の軸方向に沿って伸び、第1の経路1dおよび第2の経路1eがいずれもバルブコア1の半径方向に沿って伸び、従って、バルブコア1上の2つのチャンバおよび2つのチャンネルの配置は、より合理的かつコンパクトであり、処理がより便利であるということである。
【0059】
そのうえ、
図4に示されるように、この実施形態では、バルブコア1の第1の軸端にせぎり部が配置される。このように、バルブコア1が分解される必要があるときには、バルブコア1へ力を加えるために第2の貫通孔51中に達することが作業者または取り外し工具にとって便利であり、その結果、バルブコア1が第2の貫通孔51からより容易に取り出され、それによって、バルブコア1の分解を容易にする。さらにまた、凹部15がせぎり部の外周面上にさらに配置されることが
図4からわかる。凹部15は、せぎり部へ力を加えるためのより多くの便利さを提供するので、バルブコア1を分解する困難さは、凹部15によってさらに低減される。
【0060】
加えて、
図2および3に示されるように、本実施形態では、第1のプラグ部分31および第2のプラグ部分32が、それぞれ、バルブコア1の第2の軸端および第1の軸端に配置され、第1のプラグ部分31および第2のプラグ部分32は、いずれもシェル5と接続されて、バルブコア1の第2の軸端側をシールし、バルブコア1の第1の軸端側をシールするために、それぞれ、バルブコア1の第2の軸端側およびバルブコア1の第1の軸端側に別々に位置する。
【0061】
図2および
図3からわかるように、第1のプラグ部分31は、バルブコア1の第2の軸端をシールするために、第2の貫通孔51にねじ込まれてバルブコア1の第2の軸端上に置かれる。具体的には、第1のプラグ部分31の外周面に全体的にねじ山が設けられて、第2の貫通孔51の対応する部分の内壁にもねじ山が設けられ、従って、ねじ山の協働によって第1のプラグ部分31を第2の貫通孔51にねじ込むことができる。
【0062】
そのうえ、
図2および3に示されるように、バルブコア1から離隔した第1のプラグ部分31の表面上に締結溝31bがさらに設けられる。締結溝31bは、第1のプラグ部分31の分解および組み立てを容易にするように配置され、これは、第1のプラグ部分31がシェル5にねじ込まれるときにより顕著である。締結溝31bに基づくので、第1のプラグ部分31が分解され、または組み立てられるときに、締結溝31bに工具を挿入できて、第1のプラグ部分31の分解および組み立てを達成するために、次に、第1のプラグ部分31がシェル5の第2の貫通孔51の内側に向かって、または第2の貫通孔51の外側に向かってねじ締めされ、これは、より便利であり、分解および組み立ての効率がより高い。
【0063】
加えて、本実施形態における第1のプラグ部分31は、ばね4を支持するようにも構成される。ばね4は、第2の作動位置から第1の作動位置へ移動する傾向をバルブコア1が発生するように強いるために、第1のプラグ部分31とバルブコア1の第2の軸端との間に当接する。特に、ばね4の配置を容易にするために、
図2および3に示されるように、この実施形態では、バルブコア1に隣接する第1のプラグ部分31の表面上にばね収容チャンバ31cが配列され、ばね4は、ばね収容チャンバ31c中に配置されて、ばね収容チャンバ31cの底壁とバルブコア1の第2の軸端との間に当接し、このように、ばね4は、バルブコア1が第2の作動位置から第1の作動位置へ戻ることを可能にする作用力をバルブコア1へ加えるように構成される。そのうえ、
図2~4の組み合わせにおいて、バルブコア1の第2の軸端上にはばね座16が設けられ、ばね4は、バルブコア1と接続するために、ばね座16上にスリーブを付けられ、ばね座16とバルブコア1との間の隣接部上にはシャフト肩部が設けられて、ばね4は、シャフト肩部に対して当接し、従って、バルブコア1が第1の作動位置と第2の作動位置との間で移動する過程中にバルブコア1へ加えられる弾性力を変化させるためにばね4を圧縮または伸長させることができる。一方では、ばね座16、第1のプラグ部分31および第2の貫通孔51の内壁の間にばねチャンバが形成されることを理解するのは容易である。
【0064】
そのうえ、
図2および3に示されるように、この実施形態では第1の貫通孔31aが第1のプラグ部分31上に配置されて、第1の貫通孔31aは、ばね収容チャンバ31cと連通している。これに基づいて、分解だけでなく、油を戻すことも容易である。具体的には、第1の貫通孔31aは、バルブコア1の軸方向に沿って伸び、従って、ばね収容チャンバ31cは、より小さい長さの第1の貫通孔31aによって外側と連通できる。かかる構造は、より簡単であり、油戻しがより便利である。
【0065】
図2および
図3に示されるように、本実施形態では、バルブコア1の第1の軸端をシールするために、第2のプラグ部分32が第2の貫通孔51にねじ込まれて、バルブコア1の第1の軸端上に位置する。具体的には、第2のプラグ部分32の外周面全体にねじ山が設けられて、第2の貫通孔52の対応する部分の内壁にもねじ山が設けられ、従って、ねじ山の協働の下に第2のプラグ部分32を第2の貫通孔51にねじ込むことができる。
【0066】
本実施形態においてわかるように、第1のプラグ部分31および第2のプラグ部分32は、第2の貫通孔51の軸方向に反対側へねじ締めされる。このねじ接続方法によって、第1のプラグ部分31および第2のプラグ部分32のシール効果はより良好である。
【0067】
加えて、
図2および3に示されるように、この実施形態では、第1のチャンバ1aは、バルブコア1の第1の軸端と第2のプラグ部分32との間に置かれる。特に、第1のチャンバ1aは、バルブコア1の第1の軸端、第2のプラグ部分32、第1のプランジャ21および第2の貫通孔51の内壁の間に位置する。第1のチャンバ1aは、外部制御油ポートXによって導入された制御油が第1のチャンバ1aに入り、バルブコア1の第1の軸端に作用するように、外部制御油ポートXと連通しており、これは、第1の作動位置から第2の作動位置へ移動する傾向をバルブコア1が発生することを可能にし、結果として、バルブコア1が外部制御油ポートの制御の下で第1の作動位置から第2の作動位置へ切り替えることを容易にする。シール効果をさらに改善するために、
図2に示されるように、第2のプラグ部分32とシェル5との間にはシールリング6が配列されて、シールリング6は、第1のチャンバ1aのためにより油密なシールを達成することができる。
【0068】
要約すれば、本実施形態において、第1のチャンバ1aは、バルブコア1の第1の軸端と第2のプラグ部分32との間に置かれて、外部制御油ポートXと連通しており、第2のチャンバ1bおよび第3のチャンバ1cは、バルブコア1上に置かれて、それぞれ、バルブコア1の第1の軸端および第2の軸端に置かれ、第3のチャンバ1cは、帰還油ポートCと連通しており、第2のチャンバ1bは、第3の作動油ポートZと連通しており、バルブコアが第1の作動位置から第2の作動位置へ移動する過程中に、逐次、第2の作動油ポートLおよび第1の作動油ポートYと連通する。
【0069】
特に、
図2~4からわかるのは、バルブコア1が、軸方向に沿って4つのシール部、第1の軸端から第2の軸端へ順次に分布した、それぞれ、第1のシール部11、第2のシール部12、第3のシール部13および第4のシール部14を備え、4つのシール部は、第2の貫通孔51の内壁によって摺動的にシートされることである。隣接するシール部の間にはくびれ部がある。このように、第1の作動位置と第2の作動位置との間のバルブコア1の移動中に、第1のチャンバ1a、第2のチャンバ1b、第3のチャンバ1cおよびすべての油ポートの間の連通関係がバルブコア1の4つのシール部によって制御される。
【0070】
図2に示されるように、バルブコア1が第1の作動位置(図中の最も右の位置)にあるときに、第1のチャンバ1aと第2の作動油ポートLとの間の第2の貫通孔51の内壁面上で、第1のシール部11によってシールされ、従って、第1のチャンバ1aは、第2の作動油ポートLから分離され、それによって、第1のチャンバ1aが外部制御油ポートXとのみ連通されることを確実にし、一方で、第2のチャンバ1bと第1の作動油ポートYとの間の第2の貫通孔51の内壁面は、第2のシール部12によってシールされて、第1のシール部11と第2のシール部12との間のせぎり部は、第2のチャンバ1bと第2の作動油ポートLとの間の第2の貫通孔51の内壁面から離れており、それによって、第2のチャンバ1bは、第2の作動油ポートLと連通されて、第1の作動油ポートYから分離され、第1の作動油ポートYと第3のチャンバ1cとの間の第2の貫通孔51の内壁面は、第3のシール部13によってシールされ、第3のシール部13と第4のシール部14との間のせぎり部は、第3のチャンバ1cと帰還油ポートCとの間の第2の貫通孔51の内壁面から離れており、帰還油ポートCとばねチャンバとの間の第2の貫通孔51の内壁面は、第4のシール部14によってシールされ、それによって、第3のチャンバ1cは、第1の作動油ポートYおよびばねチャンバの両方から分離されるが、帰還油ポートCとのみ連通される。
【0071】
図3に示されるように、バルブコア1が第2の作動位置(図中の最も左の位置)にあるときに、第1のチャンバ1aと第2の作動油ポートLとの間の第2の貫通孔51の内壁面は、第1のシール部11によって依然としてシールされ、それによって、第1のチャンバ1aは、第2の作動油ポートLから分離されて、第1のチャンバ1aは、外部制御油ポートXとのみ連通しているが、それと違って、第2のチャンバ1bと第2の作動油ポートLとの間の第2の貫通孔51の内壁面は、第1のシール部11によってシールされて、第1のシール部11と第2のシール部12との間のせぎり部は、第2のチャンバ1bと第1の作動油ポートYとの間の第2の貫通孔51の内壁面から離れており、従って、第2のチャンバ1bは、第1の作動油ポートYと連通しているが、第2の作動油ポートLから分離されるように変化し、第3のシール部13および第4のシール部14は、左の方へ移動するが、第3のシール部13と第4のシール部14との間のせぎり部は、第3のチャンバ1cと帰還油ポートCとの間の第2の貫通孔51の内壁面から依然として離れたままであり、一方で、第1の作動油ポートYと第3のチャンバ1cとの間の第2の貫通孔51の内壁面は、第3のシール部13によって依存としてシールされて、帰還油ポートCとばねチャンバとの間の第2の貫通孔51の内壁面は、第4のシール部14によって依然としてシールされ、それによって、第3のチャンバ1cは、第1の作動油ポートYおよびばねチャンバの両方から依然として分離されるが、帰還油ポートCとのみ連通している。
【0072】
この実施形態においてわかるのは、バルブコア1が第1の作動位置にあるときに、第1のチャンバ1aは、外部制御油ポートXと連通しており、第2のチャンバ1bは、第2の作動油ポートLおよび第3の作動油ポートZと連通しているが、第1の作動油ポートYから分離されて、第3のチャンバ1cは、帰還油ポートCと連通しており、バルブコア1が第2の作動位置にあるときには、第1のチャンバ1aは、外部制御油ポートXと連通しており、第2のチャンバ1bは、第1の作動油ポートYおよび第3の作動油ポートZと連通しているが、第2の作動油ポートLから分離されて、第3のチャンバ1cは、帰還油ポートCと連通していることである。
【0073】
本実施形態において走行モータシフトバルブ100によってシフトを制御するための原理および境界条件が
図2および3を参照して以下に記載される。
【0074】
最初に、記載の便宜上、第1の作動油ポートY、第2の作動油ポートL、第3の作動油ポートZ、外部制御油ポートXおよび帰還油ポートCの圧力は、それぞれ、PY、PL、PZ、PX、およびPCとして定義され、チャンバ1a、第2のチャンバ1bおよび第3のチャンバ1cの有効圧力作用面積は、それぞれ、A1、A2およびA3として定義され、第1の作動位置および第2の作動位置においてばね4によってバルブコア1へ加えられる力は、それぞれ、F1およびF2として定義され、第1の作動位置および第2の作動位置におけるモータ400の出力容量は、それぞれ、V1およびV2として定義される。第2の作動油ポートLは、油槽と連通しているので、PL=0と考えることができる。加えて、上述のように、第1の作動油ポートYおよび帰還油ポートCの圧力は、実際には、モータ400の実際の作動圧力であり、それゆえに、PY=PCである。
【0075】
上記に基づいて、
図2に示され、先に述べられたように、バルブコア1が第1の作動位置にあるときに、第1のチャンバ1aは、外部制御油ポートXと連通しており、第2のチャンバ1bは、第2の作動油ポートLおよび第3の作動油ポートZと連通しており、第3のチャンバ1cは、帰還油ポートCと連通しており、ばね4の弾性力は、F
1であり、それゆえに、第2の貫通孔51内のバルブコア1の摺動の際の油圧動力および摩擦の影響を無視する条件の下で、このときのバルブコア1の力の平衡式は、以下のように得られる:
Px×A
1+P
L×A
2=P
C×A
3+F
1 (1)
【0076】
PL=0なので、外部制御油ポートXの制御圧力Pxの作用の下で、バルブコア1を第1の作動位置から第2の作動位置へ押すため、言い換えれば、走行モータを低速モードから高低速モードへ切り替えるために、帰還油ポートCの圧力PC(モータ400の実際の作動圧力)は、次式を満たすべきであると推定できる:
PC<(Px×A1-F1)/A3 (2)
【0077】
さらに知られているのは、外部制御油ポートXの制御圧力Pxの作用の下で、走行モータを低速モードから高速モードへ切り替えるための境界条件(境界条件1と呼ばれる)が次式を満たすべきであるということである:
PC1=(Px×A1-F1)/A3 (3)
【0078】
PC1は、第1のプリセット値と呼ばれる。従って、帰還油ポートCの圧力が第1のプリセット値PC1より小さいときに、バルブコア1は、第1の作動位置から第2の作動位置へ移動される。
【0079】
図3に示され、先に述べられたように、バルブコア1が第2の作動位置にあるときに、第1のチャンバ1aは、外部制御油ポートXと連通しており、第2のチャンバ1bは、第1の作動油ポートYおよび第3の作動油ポートZと連通しており、第3のチャンバ1cは、帰還油ポートCと連通しており、ばね4の弾性力は、F
2であり、それゆえに、第2の貫通孔51内のバルブコア1の摺動の際の油圧動力および摩擦の影響を無視する条件の下で、このときのバルブコア1の力の平衡式は、以下のように得られる:
Px×A
1+P
Y×A
2=P
C×A
3+F
2 (4)
【0080】
PY=PCなので、バルブコアが第2の作動位置から第1の作動位置へ移動するのを可能にするため、すなわち、走行モータが高速モードから低速モードへ切り替えるのを可能にするために、帰還油ポートCの圧力PC(モータ400の実際の作動圧力)は、次式を満たすべきであると推定できる:
PC>(Px×A1-F2)/(A3-A2) (5)
【0081】
さらに知られているのは、走行モータを高速モードから低速モードへ切り替えるための境界条件(境界条件2と呼ばれる)は、次式を満たすべきであるということである:
PC2=(Px×A1-F2)/(A3-A2) (6)
【0082】
PC2は、第2のプリセット値と呼ばれる。従って、帰還油ポートCの圧力が第1のプリセット値PC2より大きいときに、バルブコア1は、第2の作動位置から第1の作動位置へ移動される。
【0083】
同じプリセット値に基づくシフトによって繰り返される切り替えを回避するために、本実施形態では第1のプリセット値および第2のプリセット値が等しくないようにセットされ、それによって、式(3)および式(6)に基づいて、3つのチャンバの面積A1、A2およびA3の間の対応関係が得られる。
【0084】
そのうえ、本実施形態では、高速モードおよび低速モードにおける走行モータの出力容量の考慮に基づいて、3つのチャンバの面積A1、A2およびA3は、低速モードから高速モードへの切り替え後のモータ400の作動圧力値が境界条件2を満たさないよう、シフト後のモータ400の作動圧力値を制御するようにさらに構成され、それによって、モータ400は、予測される通り、高速モードにおいて安定に維持され、高速モードから低速モードへの切り替え後のモータ400の作動圧力値は、境界条件1を満たさず、結果として、モータ400は、予測される通り、低速モードにおいて安定に維持され、これは、高速と低速との間で繰り返される切り替えの現象をより効果的に防止する。
【0085】
記載の便宜上、バルブコア1が第1の作動位置から第2の作動位置へ移動した(すなわち、走行モータが低速から高速へ切り替えた)後の帰還油ポートCの油圧(すなわち、モータ400の作動圧力)は、第1の作動値PC3として定義されて、バルブコア1が第2の作動位置から第1の作動位置へ移動した(すなわち、走行モータが低速から高速へ切り替えた)後の帰還油ポートCの油圧(すなわち、モータ400の作動圧力)は、第2の作動値PC4として定義される。
【0086】
これに基づいて、低速モードから高速モードへの切り替え後のモータ400の作動圧力値が境界条件2を満たさないことを可能にして、モータが高速モードで安定化されるための制御を容易にするために、本実施形態では、第1の作動値PC3は、以下のような境界条件(境界条件3と呼ばれる)を満たす:
PC3<K1PC2,K1<1 (7)
【0087】
モータ400の最大入力動力は、一定値であり、モータ400の出力トルクT、出力容量Vおよび入力ポート圧力P(すなわち、作動圧力)は、T=K×V×Pを満たし、ここでKは、比例係数であり、それゆえに、モータ400の出力トルクTは、モータ400の出力容量Vおよび入力ポート圧力P(すなわち、実際の作動圧力)に比例し、従って、低速から高速へ切り替えるモータの作動圧力がPC1であれば、切り替え後の作動圧力PC3およびPC1は、PC3×V2=PC1×V1を満たし、さらに、第1の作動値PC3は、以下の通り推定できる:
【0088】
【0089】
さらに、式(7)、式(8)および式(3)に基づいて、3つのチャンバの面積A1、A2およびA3の間の対応関係が決定される。
【0090】
加えて、同様に、高速から低速への切り替え後のモータ400の実際の作動圧力値が境界条件1を満たさないことを可能にするため、かつモータが低速モードで安定化されるための制御を容易にするために、この実施形態では、第2の作動値PC4は、以下のような境界条件(境界条件3と呼ばれる)を満たす:
PC4>K2PC1,K2>1 (9)
【0091】
低速から高速へ切り替えるモータの作動圧力がPC2であれば、切り替え後の作動圧力PC4およびPC2は、PC4×V1=PC2×V2を満たし、さらに、第1の作動値PC4は、以下の通り推定できる:
【0092】
【0093】
さらに、式(10)、式(9)および式(6)に基づいて、3つのチャンバの面積A1、A2およびA3の間の対応関係が決定される。
【0094】
先の記載からわかるのは、第1のチャンバ1a、第2のチャンバ1bおよび第3のチャンバ1cの有効圧力作用面積A1、A2およびA3の間の関係を境界条件1、境界条件2、境界条件3および境界条件4に基づいて決定できるということである。言い換えれば、有効圧力作用面積A1、A2およびA3を設計することによって、走行モータシフトバルブ100は、シフト後に所望の速度において安定に維持されるように、しかしシフトを繰り返して機械全体を振動させることはないように構成される。
【0095】
それゆえに、境界条件1、境界条件2、境界条件3および境界条件4に従って、
図2~4に示されるような走行モータシフトバルブ100の第1のチャンバ1aの有効圧力作用面積A
1、第2のチャンバ1bの有効圧力作用面積A
2および第3のチャンバ1cの有効圧力作用面積A
3を設計し、チェックすることによって、走行モータが高速と低速との間で繰り返して切り替えることが効果的に防止される。設計が完了した後に、走行モータシフトバルブ100の動作過程は、以下の通りであってよい:
【0096】
走行モータの実際の作動圧力がPC1より大きいときに、外部制御油は、バルブコア1を左の方へ押すことができず、走行モータは、低速モードにおいてのみ作動することができ、走行モータの実際の作動圧力がPC1より低いときには、外部制御油は、バルブコア1を左の方へ押して、バルブコアが最も左に到達した後、第2の作動位置へ切り替えられた(走行モータが高速モードへ切り替えられた)ときに、走行モータの圧力は、境界条件3の制限に起因してK1PC2より低くなり、このケースでは境界条件2が満たされないので、走行モータは、高速モードにおいて安定に作動することができ、走行モータの実際の作動圧力がPC2より大きいときには、バルブコア1は、ばねの力とすべての閉じたチャンバとの相互作用によって、かつ境界条件4の制限に起因して右へ移動され、走行モータの圧力は、走行モータが低速モードへ切り替えたときにK2PC1より大きくなり、境界条件1がこのケースでは満たされないので、走行モータは、低速モードにおいて安定に作動することができる。
【0097】
本実施形態においてわかるように、走行モータシフトバルブ100に第1のチャンバ1a、第2のチャンバ1b、および第3のチャンバ1cを設けることによって、かつ、第1のチャンバ1a、第2のチャンバ1b、および第3のチャンバ1cの有効圧力面積A1、A2およびA3をそれぞれ設計することによって、頻繁な切り替えなしに、対応するシフトされた作動モードにおいて走行モータを安定に維持し、それによって、機械全体の振動問題を効果的に解決することができ、これは、走行モータシフトバルブ100、走行モータ、さらには工学機械の寿命を延長し、かつ工学機械の安全性を改善するのに有益である。そのうえ、追加の制御要素および検出要素を必要としないので、構造全体が比較的単純で、制御が便利であり、制御精度および動作信頼性が比較的高く、一方では、コストも比較的低い。
【0098】
他の示されない実施形態においては、第2のチャンバ1bおよび第3のチャンバ1cがバルブコア1上に配列されなくてよく、それらは、例えば、バルブコア1とシェル5との間、またはバルブコア1と指定されたバルブボディとの間に配列されてもよいが、本実施形態における第2のチャンバ1bおよび第3のチャンバ1cがバルブコア1上に配列される方法は、走行モータシフトバルブ100の構造が比較的単純かつコンパクトで、油路の設計が比較的便利であり、バルブコア1の構造が主に設計される限り、高速と低速との間で繰り返される切り替えのリスクが単純かつ便利に低減されるという利点をもたらす。
【0099】
加えて、
図4に示されるバルブコア1の4つのシール部の直径は同じであるが、理解されるべきは、これが、本開示に対する制限を構成しないことであり、例えば、バルブコア1の異なるシール部が異なる直径を有するように構成されてもよく、またはケーシング5上にいくつかの補助孔を配列することもできるなどである。
【0100】
本開示の走行モータシフトバルブ100に基づいて、本開示は、走行モータおよび工学機械も提供する。走行モータは、モータ400およびモータ400のスウォッシュプレートへ接続されたスウォッシュプレート制御機構500を含み、本開示の走行モータシフトバルブ100をさらに含む。走行モータシフトバルブ100は、モータ400のシェル5の内部に配列される。工学機械は、本開示の走行モータを備え、例えば、掘削機のようなクローラー機械であってよい。
【0101】
上記は、本開示の例示的な実施形態であるに過ぎず、本開示を限定することは意図されない。本開示の趣旨および原理内でなされた任意の修正、等価な置き換え、改良などは、本開示の範囲内に含まれることが意図される。