(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-10-20
(45)【発行日】2022-10-28
(54)【発明の名称】積層セラミックコンデンサ
(51)【国際特許分類】
H01G 4/30 20060101AFI20221021BHJP
【FI】
H01G4/30 201N
H01G4/30 512
(21)【出願番号】P 2021048370
(22)【出願日】2021-03-23
(62)【分割の表示】P 2019084934の分割
【原出願日】2016-10-17
【審査請求日】2021-03-23
(73)【特許権者】
【識別番号】000204284
【氏名又は名称】太陽誘電株式会社
(74)【代理人】
【識別番号】100087480
【氏名又は名称】片山 修平
(72)【発明者】
【氏名】木暮 利光
(72)【発明者】
【氏名】小林 譲二
(72)【発明者】
【氏名】加藤 靖也
(72)【発明者】
【氏名】佐藤 陽輔
(72)【発明者】
【氏名】福岡 哲彦
(72)【発明者】
【氏名】大野 亮
【審査官】田中 晃洋
(56)【参考文献】
【文献】特開2012-227260(JP,A)
【文献】特開2014-204114(JP,A)
【文献】特開2014-204113(JP,A)
【文献】特開2012-209539(JP,A)
【文献】特開2014-187216(JP,A)
【文献】特開2007-066997(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01G 4/30
(57)【特許請求の範囲】
【請求項1】
第1の方向に積層された複数のセラミック層、並びに前記複数のセラミック層の間に配置された複数の第1内部電極及び複数の第2内部電極を含む容量形成部と、前記容量形成部を前記第1の方向から覆うカバー部と、前記第1の方向に直交する第2の方向を向いた側面と、を有する積層部と、
前記側面を覆い、ポア率が1%以下であるサイドマージン部と、
前記複数の第1内部電極が引き出され前記第1の方向及び前記第2の方向に直交する第3の方向に向いた第1端面と、
前記複数の第2内部電極が引き出され前記第3の方向に向いた第2端面と、
を有するセラミック素体と、
前記セラミック素体の前記第1端面を覆う第1外部電極と、
前記セラミック素体の前記第2端面を覆う第2外部電極と、
を具備し、
前記サイドマージン部は、前記第2の方向の寸法が15μm以下である平坦部と、前記平坦部の前記第1の方向の外側に位置し、前記第2の方向の寸法が前記平坦部よりも小さい曲面部と、を有し、
前記カバー部の前記第1の方向の寸法が前記サイドマージン部の前記平坦部の前記第2の方向の寸法以上であり、
前記サイドマージン部における前記平坦部と前記曲面部との境界部が、前記積層部における前記容量形成部と前記カバー部との境界部よりも前記第1の方向の内側に位置する
積層セラミックコンデンサ。
【請求項2】
請求項1に記載の積層セラミックコンデンサであって、
前記サイドマージン部の前記平坦部は、前記第2の方向の寸法が5μm以上である
積層セラミックコンデンサ。
【請求項3】
請求項1又は2に記載の積層セラミックコンデンサであって、
前記サイドマージン部の前記平坦部は、前記第2の方向の寸法が10μm以下である
積層セラミックコンデンサ。
【請求項4】
請求項1から3のいずれか一項に記載の積層セラミックコンデンサであって、
前記複数の第1内部電極及び前記複数の第2内部電極は、前記サイドマージン部に隣接し、前記第2の方向の寸法が0.4μm以上である酸化領域を有する
積層セラミックコンデンサ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、サイドマージン部が後付けされる積層セラミックコンデンサ及びその製造方法に関する。
【背景技術】
【0002】
近年、電子機器の小型化及び高性能化に伴い、電子機器に用いられる積層セラミックコンデンサに対する小型化及び大容量化等の要望がますます強くなってきている。この要望に応えるためには、積層セラミックコンデンサの内部電極の交差面積を極力大きくすることが有効である。
【0003】
例えば、特許文献1及び2には、内部電極を側面に露出させた積層チップに、内部電極の周囲の絶縁性を確保するためのサイドマージン部を後付けで形成する手法が記載されている。これにより、サイドマージン部を薄くすることが可能となり、内部電極の交差面積を相対的に大きくとることができる。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2012-191159号公報
【文献】特開2014-204116号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、積層チップの側面にサイドマージン部が後付けされる手法では、サイドマージン部の厚みが薄いと、厚みが薄いサイドマージン部を介して外界から積層チップへ水分等が侵入しやすい。このため、積層セラミックコンデンサの耐湿性が低下するおそれがある。
【0006】
以上のような事情に鑑み、本発明の目的は、サイドマージン部の厚みを薄くしても、耐湿性が確保される積層セラミックコンデンサ及びその製造方法を提供することにある。
【課題を解決するための手段】
【0007】
上記目的を達成するため、本発明の一形態に係る積層セラミックコンデンサは、積層部と、サイドマージン部と、を具備する。
上記積層部は、第1の方向に積層された複数のセラミック層と、上記複数のセラミック層の間に配置された複数の内部電極と、を有する。
上記サイドマージン部は、上記積層部を上記第1の方向と直交する第2の方向から覆い、ポア率が1%以下である。
【0008】
この構成によれば、サイドマージン部のポア率が1%以下である。これにより、サイドマージン部の緻密性が高いため、サイドマージン部の厚みを薄くしても、サイドマージン部を介して外界から積層部へ水分等が侵入しにくくなる。
従って、本発明により、サイドマージン部の厚みを薄くしても、耐湿性が確保される積層セラミックコンデンサを製造することが可能となる。
【0009】
上記サイドマージン部は、上記第2の方向の寸法が5μm以上であってもよい。
これにより、積層セラミックコンデンサの耐湿性をより向上させることが可能となる。
【0010】
上記複数の内部電極は、上記サイドマージン部に隣接し、上記第2の方向の寸法が0.4μm以上である酸化領域を有していてもよい。
酸化領域の第2の方向の寸法を0.4μm以上とすることにより、積層セラミックコンデンサにおける内部電極間の短絡不良やIR不良を抑制することができる。
【0011】
上記サイドマージン部は、上記第2の方向の寸法が15μm以下であってもよい。
これにより、積層セラミックコンデンサの耐湿性が確保される。
【0012】
上記サイドマージン部は、上記第2の方向の寸法が10μm以下であってもよい。
これにより、積層部からサイドマージン部が剥離しているか否かを、光学顕微鏡等を使用することによって、積層セラミックコンデンサを破壊することなく検出することができる。
【0013】
上記積層部は、上記第1の方向の寸法が上記サイドマージン部の上記第2の方向の寸法以上であるカバー部を有してもよい。
【0014】
これにより、外界から積層部へ水分等が侵入しにくくなり、積層セラミックコンデンサの耐湿性の低下を抑制することができる。
【0015】
本発明の一形態に係る積層セラミックコンデンサの製造方法は、第1の方向に積層された複数のセラミック層、及び上記複数のセラミック層の間に配置された複数の内部電極を有する容量形成部と、絶縁性セラミックスからなり、上記第1の方向から上記容量形成部を覆うカバー部と、を有する未焼成の積層チップが作製され、
絶縁性セラミックスからなるサイドマージン部で、上記第1の方向と直交する第2の方向から上記積層チップを覆うことにより、未焼成の素体が作製され、
上記未焼成の素体を焼成することにより、焼成後の上記サイドマージン部のポア率が1%以下である素体が作製される。
【0016】
上記製造方法によれば、焼成後のサイドマージン部のポア率が1%以下である。これにより、焼成後のサイドマージン部の緻密性が高いためサイドマージン部の厚みを薄くしても、サイドマージン部を介して外界から容量形成部へ水分等が侵入しにくくなる。従って、上記製造方法により、サイドマージン部の厚みを薄くしても、耐湿性が確保される積層セラミックコンデンサを製造することができる。
【0017】
上記カバー部の上記第1の方向の寸法が、上記サイドマージン部の上記第2の方向の寸法以上であってもよい。
これにより、外界から積層チップへ水分等が侵入しにくくなり、積層セラミックコンデンサの耐湿性の低下を抑制することができる。
【0018】
上記サイドマージン部は、上記第2の方向の寸法が20μm以下であってもよい。
【0019】
これにより、未焼成の素体の焼成時において、サイドマージン部を介して内部電極に酸素が供給されやすくなり、内部電極の端部に酸化領域が良好に形成される。
従って、製造過程で、内部電極の端部が露出した積層チップの側面に異物等が付着したとしても、焼成後の素体の側面おける異物等を介した内部電極同士の導通が抑制される。よって、内部電極間の短絡不良やIR不良等が効果的に抑制される。
【0020】
上記積層チップが絶縁性セラミックスを主成分とするサイドマージンシートを打ち抜くことにより、上記サイドマージン部で上記未焼成の素体を覆ってもよい。
【0021】
上記未焼成の素体に静水圧加圧が施されてもよい。
【0022】
上記未焼成の素体に脱バインダ処理を施し、
脱バインダ処理が施された上記サイドマージン部にセラミックスを堆積させてもよい。
【0023】
脱バインダ処理が施された上記サイドマージン部にセラミックスの粉体を吹き付けてもよい。
【0024】
脱バインダ処理が施された上記サイドマージン部にセラミックスをスパッタリングしてもよい。
【0025】
脱バインダ処理が施された上記サイドマージン部にセラミックスを真空蒸着してもよい。
【発明の効果】
【0026】
サイドマージン部の厚みを薄くしても、耐湿性が確保される積層セラミックコンデンサ及びその製造方法を提供することができる。
【図面の簡単な説明】
【0027】
【
図1】本発明の一実施形態に係る積層セラミックコンデンサの斜視図である。
【
図2】上記積層セラミックコンデンサの
図1のA-A'線に沿った断面図である。
【
図3】上記積層セラミックコンデンサの
図1のB-B'線に沿った断面図である。
【
図4】上記積層セラミックコンデンサの
図3の領域Pを拡大して示す模式図である。
【
図5】上記積層セラミックコンデンサの製造方法を示すフローチャートである。
【
図6】上記積層セラミックコンデンサの製造過程を示す平面図である。
【
図7】上記積層セラミックコンデンサの製造過程を示す斜視図である。
【
図8】上記積層セラミックコンデンサの製造過程を示す平面図である。
【
図9】上記積層セラミックコンデンサの製造過程を示す断面図である。
【
図10】上記積層セラミックコンデンサの製造過程を示す斜視図である。
【
図11】上記積層セラミックコンデンサの製造過程を示す模式図である。
【
図12】上記積層セラミックコンデンサの製造過程を示す模式図である。
【
図13】上記積層セラミックコンデンサの製造過程を示す模式図である。
【
図14】上記積層セラミックコンデンサの製造過程を示す斜視図である。
【
図15】従来の積層セラミックコンデンサの素体の側面図である。
【
図16】上記積層セラミックコンデンサの製造過程を示す拡大断面図である。
【
図17】本発明の実施例に係る積層セラミックコンデンサの評価結果を示すグラフである。
【
図18】上記積層セラミックコンデンサの評価結果を示すグラフである。
【発明を実施するための形態】
【0028】
以下、図面を参照しながら、本発明の実施形態を説明する。
図面には、適宜相互に直交するX軸、Y軸、及びZ軸が示されている。X軸、Y軸、及びZ軸は全図において共通である。
【0029】
[積層セラミックコンデンサ10の全体構成]
図1~3は、本発明の一実施形態に係る積層セラミックコンデンサ10を示す図である。
図1は、積層セラミックコンデンサ10の斜視図である。
図2は、積層セラミックコンデンサ10の
図1のA-A'線に沿った断面図である。
図3は、積層セラミックコンデンサ10の
図1のB-B'線に沿った断面図である。
【0030】
積層セラミックコンデンサ10は、素体11と、第1外部電極14と、第2外部電極15と、を具備する。
素体11は、典型的には、Y軸方向を向いた2つの側面と、Z軸方向を向いた2つの主面と、を有する。素体11の各面を接続する稜部は面取りされている。なお、素体11の形状はこのような形状に限定されない。例えば、素体11の各面は曲面であってもよく、素体11は全体として丸みを帯びた形状であってもよい。
第1及び第2外部電極14,15は、素体11のX軸方向両端面を覆い、X軸方向両端面に接続する4つの面に延出している。これにより、第1及び第2外部電極14,15のいずれにおいても、X-Z平面に平行な断面及びX-Y軸に平行な断面の形状がU字状となっている。
【0031】
素体11は、積層部16と、サイドマージン部17と、を有する。
積層部16は、X-Y平面に沿って延びる平板状の複数のセラミック層がZ軸方向に積層された構成を有する。
【0032】
積層部16は、容量形成部18と、カバー部19と、を有する。
容量形成部18は、複数の第1内部電極12と、複数の第2内部電極13と、を有する。第1及び第2内部電極12,13は、複数のセラミック層の間に、Z軸方向に沿って交互に配置されている。第1内部電極12は、第1外部電極14に接続され、第2外部電極15から絶縁されている。第2内部電極13は、第2外部電極15に接続され、第1外部電極14から絶縁されている。
【0033】
第1及び第2内部電極12,13は、それぞれ導電性材料からなり、積層セラミックコンデンサ10の内部電極として機能する。当該導電性材料としては、例えばニッケル(Ni)、銅(Cu)、パラジウム(Pd)、白金(Pt)、銀(Ag)、金(Au)、又はこれらの合金を含む金属材料を用いることができ、典型的にはニッケル(Ni)を主成分とする金属材料が採用される。
【0034】
容量形成部18は、セラミックスによって形成されている。容量形成部18では、第1内部電極12と第2内部電極13との間の各セラミック層の容量を大きくするため、セラミック層を構成する材料として高誘電率の材料が用いられる。容量形成部18を構成する材料としては、例えば、チタン酸バリウム(BaTiO3)系材料の多結晶体、つまりバリウム(Ba)及びチタン(Ti)を含むペロブスカイト構造の多結晶体を用いることができる。
【0035】
また、容量形成部18を構成する材料は、チタン酸バリウム(BaTiO3)系以外にも、チタン酸ストロンチウム(SrTiO3)系、チタン酸カルシウム(CaTiO3)系、チタン酸マグネシウム(MgTiO3)系、ジルコン酸カルシウム(CaZrO3)系、チタン酸ジルコン酸カルシウム(Ca(Zr,Ti)O3)系、ジルコン酸バリウム(BaZrO3)系又は酸化チタン(TiO2)系材料等の多結晶体であってもよい。
【0036】
カバー部19は、X-Y平面に沿って延びる平板状であり、容量形成部18のZ軸方向上下面をそれぞれ覆っている。カバー部19には、第1及び第2内部電極12,13が設けられていない。
【0037】
サイドマージン部17は、
図3に示すように、容量形成部18及びカバー部19のY軸方向を向いた両側面S1,S2に形成されている。
【0038】
このように、素体11において、容量形成部18の第1及び第2外部電極14,15が設けられたX軸方向両端面以外の面がサイドマージン部17及びカバー部19によって覆われている。サイドマージン部17及びカバー部19は、主に、容量形成部18の周囲を保護し、第1及び第2内部電極12,13の絶縁性を確保する機能を有する。
【0039】
サイドマージン部17及びカバー部19も、セラミックスによって形成されている。サイドマージン部17及びカバー部19を形成するセラミックスは、容量形成部18の主相と同種の組成系を主相とする誘電体の多結晶体であることが好ましい。これにより、素体11における内部応力が抑制される。
【0040】
サイドマージン部17は、ポア率が1%以下である。これにより、サイドマージン部17を構成するセラミックスの緻密性が高くなっているため、サイドマージン部17を介して外界から容量形成部18へ水分が侵入しにくくなる。よって、積層セラミックコンデンサ10の耐湿性が確保される。
【0041】
さらに、サイドマージン部17のポア率が1%以下であることから、サイドマージン部17は物理的な衝撃に対する高い剛性を有する。これにより、積層セラミックコンデンサ10も外界から物理的な衝撃が加えられることに対する剛性が向上している。
【0042】
なお、本実施形態のポア率は、例えば以下の手順により算出される。まず、サイドマージン部17の断面をSEM(Scanning Electron Microscope)によって所定の倍率で撮像する。次いで、サイドマージン部17の断面を撮像した画像に写っているポアを複数個選択してポアの断面積を測定し、その平均値を算出する。そして、撮像されたサイドマージン部17の断面積に対する当該平均値の割合を算出する。
【0043】
本実施形態では、サイドマージン部17のY軸方向の寸法D1を小さくすることが好ましい。寸法D1を小さくすることで、内部電極12,13の交差面積を極力大きくすることでき、積層セラミックコンデンサ10の容量を大きくすることができる。
しかしながら、積層セラミックコンデンサ10の耐湿性を確保する観点から、寸法D1は5μm以上であることが好ましい。
【0044】
また、本実施形態では、サイドマージン部17の寸法D1を10μm以下とすることが好ましい。これにより、積層部16とサイドマージン部17との間に隙間がある場合に、この隙間を、サイドマージン部17の表面を光学顕微鏡等で観察することによって検出することが可能となる。
従って、積層部16とサイドマージン部17との間の隙間を、積層セラミックコンデンサ10の断面を観察せずに検出することができる。
即ち、積層部16からサイドマージン部17が剥離しているか否かを、光学顕微鏡等を使用することによって、積層セラミックコンデンサ10を破壊することなく検出することができる。
【0045】
本実施形態に係るサイドマージン部17、容量形成部18及びカバー部19は、バリウム(Ba)及びチタン(Ti)以外に、例えば、マグネシウム(Mg)、マンガン(Mn)、アルミニウム(Al)、カルシウム(Ca)、バナジウム(V)、クロム(Cr)、ジルコニウム(Zr)、モリブデン(Mo)、タングステン(W)、タンタル(Ta)、ニオブ(Nb)、ケイ素(Si)、ホウ素(B)、イットリウム(Y)、ユーロピウム(Eu)、ガドリニウム(Gd)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、イッテルビウム(Yb)、リチウム(Li)、カリウム(K)又はナトリウム(Na)等の金属元素を一種又は複数種更に含有してもよい。
【0046】
上記の構成により、積層セラミックコンデンサ10では、第1外部電極14と第2外部電極15との間に電圧が印加されると、第1内部電極12と第2内部電極13との間の複数のセラミック層に電圧が加わる。これにより、積層セラミックコンデンサ10では、第1外部電極14と第2外部電極15との間の電圧に応じた電荷が蓄えられる。
【0047】
なお、本実施形態に係る積層セラミックコンデンサ10は、積層部16及びサイドマージン部17を備えていればよく、その他の構成について適宜変更可能である。例えば、第1及び第2内部電極12,13の枚数は、積層セラミックコンデンサ10に求められるサイズや性能に応じて、適宜決定可能である。
また、
図2,3では、第1及び第2内部電極12,13の対向状態を見やすくするために、第1及び第2内部電極12,13の枚数をそれぞれ4枚に留めている。しかし、実際には、積層セラミックコンデンサ10の容量を確保するために、より多くの第1及び第2内部電極12,13が設けられている。
【0048】
図4は、
図3に示した領域Pを拡大して示す模式図であり、第1及び第2内部電極12,13の端部を拡大して示す模式図である。
【0049】
第1及び第2内部電極12,13は
図4に示すように、積層部16の側面S2に露出した端部に、酸化領域Eが形成されている。酸化領域Eは酸化により導電性が低下した領域である。また、酸化領域Eは、同図に示すように、サイドマージン部17に隣接するように内部電極12,13の端部に形成されている。
【0050】
一例として、酸化領域Eは、サイドマージン部17、カバー部19及び容量形成部18に含まれている金属元素と、内部電極12,13を構成する金属元素とを含む複合酸化物(例えば、3元系酸化物)を主成分として構成されている。
【0051】
また、酸化領域Eは、第1及び第2内部電極12,13の端部の全てに形成されていることが好ましいが、一部に形成されていなくてもよい。
【0052】
酸化領域EのY軸方向の寸法D2は、例えば数百~数千nm程度とすることができ、400nm以上とすることが好ましい。本実施形態では、酸化領域Eの寸法D2を400nm以上とすることにより、積層セラミックコンデンサ10における内部電極12,13間の短絡不良やIR(Insulation Resistance)不良を抑制することができる。
【0053】
図4では、説明の便宜上、複数の酸化領域Eの寸法D2を等しく示している。しかし、本実施形態では、酸化領域Eごとに寸法D2がそれぞれ異なっていてもよい。この場合、酸化領域Eの寸法D2は、全ての内部電極12,13の端部に形成されている酸化領域Eの平均値とすることができる。
【0054】
[積層セラミックコンデンサ10の製造方法]
図5は、積層セラミックコンデンサ10の製造方法を示すフローチャートである。
図6~16は積層セラミックコンデンサの製造過程を示す図である。以下、積層セラミックコンデンサの製造方法について、
図5に沿って、
図6~16を適宜参照しながら説明する。
【0055】
(ステップS01:セラミックシート準備工程)
ステップS01では、容量形成部18を形成するための第1セラミックシート101及び第2セラミックシート102と、カバー部19を形成するための第3セラミックシート103と、を準備する。セラミックシート101,102,103は、絶縁性セラミックスを主成分とし、未焼成の誘電体グリーンシートとして構成される。セラミックシート101,102,103は、例えば、ロールコーターやドクターブレードを用いてシート状に成形される。
【0056】
図6は、セラミックシート101,102,103の平面図である。この段階では、セラミックシート101,102,103は各積層セラミックコンデンサ10ごとに切り分けられていない。
図6には、各積層セラミックコンデンサ10ごとに切り分ける際の切断線Lx,Lyが示されている。切断線LxはX軸に平行であり、切断線LyはY軸に平行である。
【0057】
図6に示すように、第1セラミックシート101には第1内部電極12に対応する未焼成の第1内部電極112が形成され、第2セラミックシート102には第2内部電極13に対応する未焼成の第2内部電極113が形成されている。なお、カバー部19に対応する第3セラミックシート103には内部電極が形成されていない。
【0058】
第1及び第2内部電極112,113は、例えば、ニッケル(Ni)を含む導電性ペーストを用いて形成することができる。導電性ペーストによる第1及び第2内部電極112,113の形成には、例えば、スクリーン印刷法やグラビア印刷法を用いることができる。
【0059】
第1及び第2内部電極112,113は、切断線Lyによって仕切られたX軸方向に隣接する2つの領域にわたって配置され、Y軸方向に帯状に延びている。第1内部電極112と第2内部電極113とでは、切断線Lyによって仕切られた領域1列ずつX軸方向にずらされている。つまり、第1内部電極112の中央を通る切断線Lyが第2内部電極113の間の領域を通り、第2内部電極113の中央を通る切断線Lyが第1内部電極112の間の領域を通っている。
【0060】
(ステップS02:積層工程)
ステップS02では、ステップS01で準備したセラミックシート101,102,103を積層することにより積層シート104を作製する。
【0061】
図7は、ステップS02で得られる積層シート104の分解斜視図である。
図7では、説明の便宜上、セラミックシート101,102,103を分解して示している。しかし、実際の積層シート104では、セラミックシート101,102,103が静水圧加圧や一軸加圧などにより圧着されて一体化される。これにより、高密度の積層シート104が得られる。
【0062】
積層シート104では、容量形成部18に対応する第1セラミックシート101及び第2セラミックシート102がZ軸方向に交互に積層されている。
また、積層シート104では、交互に積層された第1及び第2セラミックシート101,102のZ軸方向上下面にカバー部19に対応する第3セラミックシート103が積層される。なお、
図7に示す例では、第3セラミックシート103がそれぞれ3枚ずつ積層されているが、第3セラミックシート103の枚数は適宜変更可能である。
【0063】
(ステップS03:切断工程)
ステップS03では、ステップS02で得られた積層シート104を回転刃や押し切り刃などによって切断することにより未焼成の積層チップ116を作製する。
【0064】
図8は、ステップS03の後の積層シート104の平面図である。積層シート104は、保持部材Cに固定された状態で、切断線Lx,Lyに沿って切断される。これにより、積層シート104が個片化され、積層チップ116が得られる。このとき、保持部材Cは切断されておらず、各積層チップ116は保持部材Cによって接続されている。
【0065】
図9は積層シート104が切断されている状態を示す図である。
図9では、説明の便宜上、内部電極112,113の枚数を合計で4枚とし、セラミックシート101,102,103の枚数を合計で5枚としている。
積層シート104は、押し切り刃等の切断刃Fにより切断される際に、積層シート104を切断中の切断刃Fが内部電極112,113を引き摺り、内部電極112,113の端部が
図9に示すようにZ軸方向に引き延ばされる場合がある。これにより、積層チップ116の側面S3,S4において、引き延ばされた部分を介して内部電極112,113同士が接触することがある。
【0066】
しかしながら、本実施形態に係る内部電極112,113は後述する焼成工程により、
図4に示すように、端部に酸化領域Eが良好に形成される。従って、積層シート104の切断時に内部電極112,113が引き延ばされ、引き延ばされた部分を介して内部電極112,113の端部同士が接触していたとしても内部電極112,113間の短絡不良が抑制される。
【0067】
図10は、ステップS03で得られる積層チップ116の斜視図である。積層チップ116には、未焼成の容量形成部118及びカバー部119が形成されている。積層チップ116では、切断面であるY軸方向を向いた両側面S3,S4に未焼成の第1及び第2内部電極112,113が露出している。
【0068】
(ステップS04:サイドマージン部形成工程)
ステップS04では、積層チップ116の側面S3,S4に未焼成のサイドマージン部117を設けることにより、未焼成の素体111を作製する。
【0069】
ステップS04では、積層チップ116の両側面S3,S4にサイドマージン部117を設けるために、テープなどの保持部材の貼り替えなどにより積層チップ116の向きが適宜変更される。
特に、ステップS04では、ステップS03における積層チップ116の切断面であるY軸方向を向いた両側面S3,S4にサイドマージン部117が設けられる。このため、ステップS04では、予め保持部材Cから積層チップ116を剥がし、積層チップ116の向きを90度回転させておくことが好ましい。
【0070】
図11~
図13は、ステップS04のプロセスを示す模式図であり、積層チップ116にサイドマージンシート117sが打ち抜かれる様子を示す図である。以下、ステップS04のプロセスについて順を追って説明する。
【0071】
先ず、サイドマージン部117を形成するためのサイドマージンシート117sが準備される。サイドマージンシート117sは、ステップS01で準備されるセラミックシート101,102,103と同様に、絶縁性セラミックスを主成分とし、未焼成の誘電体グリーンシートとして構成される。
サイドマージンシート117sは、例えばロールコーターやドクターブレードが用いられることによりシート状に成形される。また、サイドマージンシート117sは、Y軸方向の厚みが薄くなるように調整される。
【0072】
次いで、
図11に示すように、平板状の弾性体400の上にサイドマージンシート117sが配置される。そして、積層チップ116の側面S4とサイドマージンシート117sがY軸方向に対向するように、積層チップ116が配置される。ステップS04では、積層チップ116の向きがテープ等の保持部材の貼り替え工程によって適宜変更されることにより、
図11に示すように、積層チップ116の側面S3がテープTに保持されている。
【0073】
続いて、積層チップ116をサイドマージンシート117sに向かってY軸方向に移動させることにより、積層チップ116の側面S4をサイドマージンシート117sに押し付ける。
【0074】
この際、
図12に示すように、積層チップ116がサイドマージンシート117sと共に弾性体400に食い込む。これに伴い、積層チップ116から弾性体400に加わるY軸方向の押圧力によって、弾性体400がY軸方向に隆起してサイドマージンシート117sを押し上げる。
これにより、弾性体400からサイドマージンシート117sにせん断力が加わり、側面S4とY軸方向に対向するサイドマージンシート117sが切り離される。そして、このサイドマージンシート117sが側面S4に貼り付く。
【0075】
次いで、積層チップ116が弾性体400と離間するように積層チップ116をY軸方向に移動させると、
図13に示すように、側面S4に貼り付いたサイドマージンシート117sのみが弾性体400と離間する。これにより、積層チップ116の側面S4にサイドマージン部117が形成される。
【0076】
ここで、積層チップ116の側面S3,S4がサイドマージンシート117sを打ち抜く際の打ち抜き条件を調整することで、後述の焼成工程後のサイドマージン部17のセラミックスの緻密性を向上させることが可能である。
具体的には、積層チップ116がサイドマージンシート117sを打ち抜く際のスピードや、積層チップ116がサイドマージンシート117sにかける打ち抜き圧力が調整されることで、焼成工程後のサイドマージン部17のセラミックスの緻密性を向上させることが可能である。
【0077】
続いて、テープTに保持されている積層チップ116を別のテープに保持させることにより、積層チップ116の側面S3を露出させ、側面S3とサイドマージンシート117sとをY軸方向に対向させる。そして、側面S4にサイドマージン部117を形成する上記工程と同様の工程を経て、側面S3にもサイドマージン部117を形成する。
これにより、積層チップ116の両側面S3,S4に、サイドマージン部117が形成された未焼成の素体111が得られる。本実施形態では、未焼成の素体111に静水圧加圧等を施すことによっても、焼成後のサイドマージン部17のセラミックスの緻密性が向上する。
【0078】
図14は、ステップS04によって得られる未焼成の素体111の斜視図である。
未焼成の素体111は、側面S3,S4に露出している内部電極112,113の端部がサイドマージン部117に覆われ、内部電極112,113のX軸方向の端部がX軸方向端面S5に露出する構成をとる。
【0079】
図15は、従来の積層セラミックコンデンサの素体の製造過程を示す図であり、この素体の側面図である。
図15を参照して、サイドマージンシート117sの厚みが調整されることによる作用を説明する。
【0080】
従来の積層セラミックコンデンサでは、製造過程で、サイドマージン部を形成するためのサイドマージンシートが厚いと、積層チップ316がサイドマージンシートを打ち抜く際のサイドマージンシートの切断性が悪い場合がある。
これにより、サイドマージンシートの打ち抜きによってサイドマージン部317が形成された積層チップ316の側面S7において、
図15に示すように内部電極312の端部312aが露出することがある。
【0081】
内部電極312の端部312aが絶縁性を有するサイドマージン部317に被覆されずに、側面S7に露出してしまうと、製造過程でサイドマージン部317に被覆されていない側面S7に異物等が付着した場合に、焼成後の積層セラミックコンデンサにおいて、この異物を介して内部電極312の端部312a同士が導通し合い、短絡不良を引き起こすおそれがある。
また、サイドマージン部317が内部電極312の端部312aを被覆していないことから、端部312aが水分等から保護されにくくなるため、焼成後の積層セラミックコンデンサの耐湿性が低下するおそれもある。
【0082】
これに対し、本実施形態に係るサイドマージンシート117sは厚みが薄くなるように調整される。これにより、これまでのサイドマージンシートよりも、サイドマージンシート117sは積層チップ116に打ち抜かれる際の切断性が向上している。
【0083】
よって、積層チップ116がサイドマージンシート117sを打ち抜くことにより形成された未焼成の素体111は、
図14に示すように、内部電極112,113の端部が側面S3,S4に露出していない構成となる。
従って、側面S3,S4に内部電極112,113の端部が露出することに起因する積層セラミックコンデンサ10の短絡不良と耐湿性の低下が抑制される。
【0084】
なお、積層チップ116の両側面S3,S4にサイドマージン部117を形成する方法は、上記のサイドマージンシート117sを打ち抜く方法に限定されるものではない。
例えば、予め切断されているサイドマージンシート117sを積層チップ116の両側面S3,S4に貼り付けることによって、サイドマージン部117を形成してもよい。
あるいは、セラミックスからなるペースト材に積層チップ116の両側面S3,S4を浸漬させて、引き上げるディップ法によって、積層チップ116の両側面S3,S4にサイドマージン部117を形成してもよい。
【0085】
(ステップS05:バレル研磨工程)
ステップS05では、ステップS04で得られた未焼成の素体111にバレル研磨を施すことにより、素体111を面取りする。
【0086】
上述のステップS04では、積層チップ116の両側面S3,S4にシート状のサイドマージン部117が形成されることにより、未焼成の素体111が形成される。このため、素体111には、
図14に示すように、素体111の各面を接続する稜部(2つの面が交わる箇所)や角部(3つの面が交わる箇所)が存在する。
【0087】
素体111に稜部と角部が存在していると、製造過程で素体111同士が衝突することにより、素体111に割れや欠けが生じてしまう。従って、このような割れや欠けを抑制するため、素体111は稜部と角部が面取りされる。
【0088】
素体111の稜部と角部を面取りする加工方法としては、製造効率を向上させる上で、バレル研磨が有効である。バレル研磨は、例えば、複数の未焼成の素体111と研磨媒体と液体とをバレル容器に封入し、バレル容器に回転運動や振動を与えることにより実行可能である。
【0089】
図16は、バレル研磨後の未焼成の素体111の拡大断面図であり、容量形成部118の稜部R付近を拡大して示す図である。
【0090】
一般的に、積層チップと、サイドマージン部とから構成される未焼成の素体は、バレル研磨等により稜部や角部が面取りされると、容量形成部の稜部付近のサイドマージン部の厚みが過剰に薄くなりやすい。
このため、サイドマージン部の過剰に薄くなった箇所を介して、外界から積層チップへ水分等が侵入しやくなり、積層セラミックコンデンサの耐湿性が低下するおそれがある。
【0091】
そこで、本実施形態では、素体111において、カバー部119のZ軸方向の寸法D4が、サイドマージン部117のY軸方向の寸法D3以上となるように、サイドマージンシート117sの厚みが調整される。これにより、バレル研磨後の素体111において、容量形成部118の稜部R付近のサイドマージン部117の寸法D5が過剰に小さくなることが抑制される。
【0092】
ステップS05では、積層セラミックコンデンサ10の耐湿性を確保する観点から、バレル研磨後の素体111において、サイドマージン部117の寸法D3が、稜部R付近のサイドマージン部117の寸法D5と同程度となることが好ましい。具体的には、バレル研磨後の素体111では、サイドマージン部117の寸法D3,D5が10μm以上となるのが好ましい。
【0093】
また、ステップS05では、バレル研磨後の素体111において、カバー部119の寸法D4がサイドマージン部117の寸法D3以上となることが好ましい。これにより、後述の焼成工程後のカバー部19のZ軸方向の寸法がサイドマージン部17のY軸方向の寸法以上となる。
これにより、容量形成部18の稜部R付近のサイドマージン部17を介して、外界から積層チップ16へ水分等が侵入しにくくなり、積層セラミックコンデンサ10の耐湿性の低下を抑制することができる。
【0094】
(ステップS06:焼成工程)
ステップS06では、ステップS05で得られた未焼成の素体111を焼成することにより、
図1~3に示す積層セラミックコンデンサ10の素体11を作製する。
つまり、ステップS06により第1及び第2内部電極112,113が第1及び第2内部電極12,13になり、積層チップ116が積層部16になり、サイドマージン部117がサイドマージン部17になる。
【0095】
焼成後のサイドマージン部17は、上述のステップS04において、積層チップ116がサイドマージンシート117sを打ち抜く際の打ち抜き圧力やスピード等が調整されたり、素体111に静水圧加圧が施されたり、サイドマージンシート117sに含まれるガラス等の含有量が調整されたりすることで、ポア率が1%以下となる。
【0096】
ステップS05における素体111の焼成温度は、積層チップ116及びサイドマージン部117の焼結温度に基づいて決定することができる。例えば、セラミックスとしてチタン酸バリウム(BaTiO3)系材料を用いる場合には、素体111の焼成温度は1000~1300℃程度とすることができる。また、焼成は、例えば、還元雰囲気下、又は低酸素分圧雰囲気下において行うことができ、本実施形態においては低酸素分圧雰囲気下(4.0×10-9ppm)にて行われる。
【0097】
ここで、本実施形態では、素体111におけるサイドマージン部117のY軸方向の厚みを20μm以下とすることにより、焼成時において、サイドマージン部117を介して内部電極112,113に酸素が供給されやすくなり、内部電極112,113の端部に酸化領域Eが良好に形成される。
従って、製造過程で、内部電極112,113の端部が露出した積層チップ116の側面S3,S4に異物等が付着したとしても、焼成後の素体11の側面S1,S2おける異物等を介した内部電極12,13同士の導通が抑制される。よって、内部電極12,13間の短絡不良やIR不良が効果的に抑制される。
【0098】
(ステップS07:外部電極形成工程)
ステップS07では、ステップS06で得られた素体11に第1及び第2外部電極14,15を形成することにより、
図1~3に示す積層セラミックコンデンサ10を作製する。
【0099】
ステップS07では、まず、素体11の一方のX軸方向端面を覆うように未焼成の電極材料を塗布し、素体11の他方のX軸方向端面を覆うように未焼成の電極材料を塗布する。塗布された未焼成の電極材料を、例えば、還元雰囲気下、又は低酸素分圧雰囲気下において焼き付け処理を行って、素体11に下地膜を形成する。そして、素体11に焼き付けられた下地膜の上に、中間膜及び表面膜を電解メッキなどのメッキ処理で形成して、第1及び第2外部電極14,15が完成する。
【0100】
なお、上記のステップS07における処理の一部を、ステップS06の前に行ってもよい。例えば、ステップS06の前に未焼成の素体111のX軸方向両端面S5に未焼成の電極材料を塗布し、ステップS06において、未焼成の素体111を焼結させると同時に、未焼成の電極材料を焼き付けて第1及び第2外部電極14,15の下地膜を形成してもよい。
【0101】
(変形例)
積層セラミックコンデンサ10の製造方法は、上述の製造方法に限定されず、製造工程の変更や追加等が適宜行われてもよい。
例えば、焼成前の素体111に脱バインダ処理を施すことにより、素体111からバインダ成分や溶剤成分を除去してもよい。
【0102】
素体111に脱バインダ処理を施す方法としては、例えば、アルミナ製のサヤに収容した素体111について、還元雰囲気の電気炉内で、350~600℃の温度で1時間~8時間の熱処理を行なう方法等が挙げられる。この場合、電気炉の昇温速度は、例えば、1~10℃/minとすることができる。
【0103】
また、本実施形態では、脱バインダ処理が施されたサイドマージン部117にセラミックスを堆積させてもよい。これにより、脱バインダにより生じたセラミック粒子の空隙にセラミックスが充填され、焼成工程後のサイドマージン部17のセラミックスの緻密性が向上する。
脱バインダ処理が施されたサイドマージン部117に堆積させるセラミックスとしては、典型的には、サイドマージンシート117sの主成分である絶縁性セラミックスと同様の組成系のセラミックスが採用される。
【0104】
脱バインダ処理が施されたサイドマージン部117にセラミックスを堆積させる方法としては、例えば、サイドマージン部117にセラミックスの粉体を吹き付けるスプレードライ法や、サイドマージン部117にセラミックスを構成する粒子を付着させるスパッタ法や真空蒸着法等が採用される。
【実施例】
【0105】
以下、本発明の実施例について説明する。
【0106】
[未焼成の素体の作製]
実施例1~8及び比較例1~6に係る未焼成の素体のサンプルを、上記製造方法にしたがってそれぞれ200個作製した。実施例1~8及び比較例1~6に係るサンプルは、サイドマージン部の厚みと、サイドマージン部を構成するセラミックスの緻密性がそれぞれ異なるが、これ以外は共通する製造条件により作製した。
【0107】
(実施例1)
実施例1に係るサンプルは、サイドマージン部117の厚みが2μmである。
【0108】
(実施例2)
実施例2に係るサンプルは、サイドマージン部117の厚みが5μmである。
【0109】
(実施例3)
実施例3に係るサンプルは、厚みが9μmであるサイドマージンシート117sを用いることにより、サイドマージン部117が形成されたサンプルである。
【0110】
(実施例4)
実施例4に係るサンプルは、サイドマージン部117の厚みが10μmである。
【0111】
(実施例5)
実施例5に係るサンプルは、サイドマージン部117の厚みが15μmである。
【0112】
(実施例6)
実施例6に係るサンプルは、厚みが19μmであるサイドマージンシート117sを用いることにより、サイドマージン部117が形成されたサンプルである。
【0113】
(実施例7)
実施例7に係るサンプルは、サイドマージン部117の厚みが20μmである。
【0114】
(実施例8)
実施例8に係るサンプルは、サイドマージン部117の厚みが25μmである。
【0115】
(比較例1)
比較例1に係るサンプルは、サイドマージン部の厚みが2μmである。
【0116】
(比較例2)
比較例2に係るサンプルは、サイドマージン部の厚みが5μmである。
【0117】
(比較例3)
比較例3に係るサンプルは、サイドマージン部の厚みが10μmである。
【0118】
(比較例4)
比較例4に係るサンプルは、サイドマージン部の厚みが15μmである。
【0119】
(比較例5)
比較例5に係るサンプルは、サイドマージン部の厚みが20μmである。
【0120】
(比較例6)
比較例6に係るサンプルは、サイドマージン部の厚みが25μmである。
【0121】
[未焼成の素体の評価]
(サイドマージン部が剥離しているサンプルの検出)
実施例2,4,5,7,8に係る200個のサンプルにおいて、光学顕微鏡を使用して、積層チップ116からサイドマージン部117が剥離しているサンプルを検出可能か否か評価した。表1はこの結果をまとめた表である。
表1に示す「剥離長」とは、積層チップ116とサイドマージン部117との間の隙間の寸法である。
【0122】
【0123】
表1を参照すると、実施例5,7,8では、剥離長が50μm以上のサンプルは検出可能であるが、50μm未満であると検出できないことがわかる。一方、実施例2,4では、剥離長に関係なく、いずれのサンプルにおいても検出可能であることが確認された。
このことから、未焼成の素体111におけるサイドマージン部の厚みを10μm以下とすることにより、積層チップ116とサイドマージン部117との間に隙間が発生しているサンプルを剥離長に関係なく検出可能であることが実験的に確認された。
【0124】
(素体露出幅の測定)
実施例3,6に係る200個のサンプルから20個選択し、選択された20個のサンプルの素体露出幅をそれぞれ測定した。
図17はこの結果をまとめたグラフである。
なお、
図17に示す「端面側領域の素体露出幅」とは、サイドマージン部117が形成されている積層チップ116の側面S3,S4において、サイドマージン部117と、X軸方向端面S5との間の領域におけるX軸方向の寸法である。
また、「主面側領域の素体露出幅」とは、サイドマージン部117が形成されている積層チップ116の側面S3,S4において、サイドマージン部117と、Z軸方向主面S6との間の領域におけるZ軸方向の寸法である(
図14参照)。
【0125】
図17を参照すると、実施例6より実施例3のほうが、端面側領域及び主面側領域の素体露出幅が平均的に小さいことがわかる。この結果から、サイドマージンシート117sの厚みを薄くすることによって、端面側領域及び主面側領域の素体露出幅を小さくすることが可能であることが実験的に確認された。
【0126】
[積層セラミックコンデンサの作製]
実施例1,2,4,5,7,8及び比較例1~6に係る未焼成の素体を用いて、上記製造方法にしたがい、実施例1,2,4,5,7,8及び比較例1~6に係る積層セラミックコンデンサのサンプルを作製した。
【0127】
[積層セラミックコンデンサの評価]
(耐湿性の評価)
実施例1,2,4,5,7,8及び比較例1~6に係る積層セラミックコンデンサのサンプルについて、耐湿性の評価を行った。
具体的には、実施例1,2,4,5,7,8及び比較例1~6について200個のサンプルを、温度45℃、湿度95%、10Vの定格電圧を印加した状態で保持する吸湿性試験を行った。そして、吸湿性試験後の各サンプルについて電気抵抗値を測定し、電気抵抗値が10MΩ未満のサンプルを故障と判断した。表2は、各サンプルについて、サイドマージン部の厚みと、ポア率と、故障数をまとめた表である。
【0128】
【0129】
表2を参照すると、比較例5,6に係るサンプルでは故障があるサンプルは確認されなかったものの、比較例1~4に係るサンプルでは故障があるサンプルが確認された。比較例1~6に係るサンプルはポア率が1%より大きい。
【0130】
比較例1~4に係るサンプルに故障が確認された要因としては、サイドマージン部の厚みが比較的薄く且つサイドマージン部に含まれるポアの数が多いことにより、このサイドマージン部を介して外界から積層チップへ水分が侵入したことにあると推察される。
【0131】
この結果から、サイドマージン部のポア率が1%より大きい場合に、サイドマージン部の厚みを15μm以下にすると、積層セラミックコンデンサの耐湿性を確保することが困難となることが確認された。
【0132】
一方、実施例1,2,4,5,7,8に係るサンプルにおいては、実施例1に係るサンプルに故障があるサンプルが確認されたものの、実施例2,4,5,7,8に係るサンプルでは、故障しているサンプルは確認されなかった。実施例1,2,4,5,7,8に係るサンプルは、ポア率が1%以下である。
【0133】
この結果から、サイドマージン部17のポア率を1%以下とすることにより、サイドマージン部17の厚みを15μm以下としても、積層セラミックコンデンサ10の耐湿性が確保されることが確認された。そして、サイドマージン部17のポア率が1%以下であり、厚みが5μm以上であれば、積層セラミックコンデンサ10の耐湿性がより有効に確保されることが確認された。
【0134】
(IR不良率の算出)
実施例1,2,4,5,7,8に係るサンプルのIR不良率を算出した。この際、IR不良率が10%以下のサンプルを合格と判定した。
表3及び
図18は、実施例1,2,4,5,7,8に係る未焼成の素体111のサンプルのサイドマージン部117の厚みと、実施例1,2,4,5,7,8に係る積層セラミックコンデンサ10のサンプルの酸化領域Eの寸法D2と、IR不良率をまとめた表及びグラフである。
【0135】
表3及び
図18に示す酸化領域の寸法D2は、実施例1,2,4,5,7,8に係る200個のサンプルに形成されている酸化領域Eの寸法D2の平均値である。
また、表3及び
図18に示すIR不良率とは、実施例1,2,4,5,7,8に係る200個のサンプルのうちIR不良が発生したサンプルの割合を示している。前述のIR不良が発生しているサンプルとは、6Vの定格電圧を印加する条件下において、CR積が1MΩ未満となるサンプルである。
【0136】
【0137】
表3及び
図18を参照すると、実施例8に係るサンプルはIR不良率が10%より大きいが、実施例1,2,4,5,7に係るサンプルはIR不良率が10%以下であった。
実施例8に係るサンプルのIR不良率が10%より大きい要因としては、未焼成の素体111のサイドマージン部117の厚みが20μmより厚いことにより、内部電極112,113の端部の酸化が促進されず、内部電極112,113の端部に酸化領域Eが十分に形成されなかったために、内部電極112,113間の絶縁抵抗が低下したことにあると推察される。
【0138】
この結果から、サイドマージン部117の厚みが20μm以下である場合に、酸化領域Eの寸法D2が0.4μm以上確保されることにより、積層セラミックコンデンサ10におけるIR不良を抑制可能であることが実験的に確認された。
【0139】
[その他の実施形態]
以上、本発明の実施形態について説明したが、本発明は上述の実施形態にのみ限定されるものではなく種々変更を加え得ることは勿論である。
【0140】
例えば、積層セラミックコンデンサ10では、容量形成部18がZ軸方向に複数に分割して設けられていてもよい。この場合、各容量形成部18において第1及び第2内部電極12,13がZ軸方向に沿って交互に配置されていればよく、容量形成部18が切り替わる部分において第1内部電極12又は第2内部電極13が連続して配置されていてもよい。
【符号の説明】
【0141】
10…積層セラミックコンデンサ
11…素体
12…第1内部電極
13…第2内部電極
14…第1外部電極
15…第2外部電極
16…積層部
17…サイドマージン部
18…容量形成部
19…カバー部
111…未焼成の素体
116…未焼成の積層チップ
E…酸化領域