(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-10-24
(45)【発行日】2022-11-01
(54)【発明の名称】逆浸透膜分離装置
(51)【国際特許分類】
C02F 1/44 20060101AFI20221025BHJP
B01D 61/08 20060101ALI20221025BHJP
B01D 61/12 20060101ALI20221025BHJP
【FI】
C02F1/44 A
B01D61/08
B01D61/12
C02F1/44 J
(21)【出願番号】P 2018111302
(22)【出願日】2018-06-11
【審査請求日】2021-03-16
(73)【特許権者】
【識別番号】000175272
【氏名又は名称】三浦工業株式会社
(74)【代理人】
【識別番号】100126000
【氏名又は名称】岩池 満
(74)【代理人】
【識別番号】100145713
【氏名又は名称】加藤 竜太
(72)【発明者】
【氏名】渡邉 隼人
【審査官】山崎 直也
(56)【参考文献】
【文献】特開2010-131579(JP,A)
【文献】特開2016-032810(JP,A)
【文献】特開2015-098029(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C02F 1/44
B01D 53/22
B01D 61/00-71/82
(57)【特許請求の範囲】
【請求項1】
給水が流通する給水ラインと、
供給水を透過水と濃縮水とに分離する逆浸透膜モジュールと、
前記給水ラインに合流部で接続し、供給水を前記逆浸透膜モジュールに供給する供給水ラインと、
前記逆浸透膜モジュールで分離された透過水を送出する透過水ラインと、
前記逆浸透膜モジュールで分離された濃縮水を送出する濃縮水ラインと、
前記供給水ラインに設けられ、供給水を吸入して前記逆浸透膜モジュールに向けて吐出する加圧ポンプと、
前記逆浸透膜モジュールの膜間差圧が、前記透過水の水質が要求水質を保つために必要な膜間差圧である許容下限差圧を上回るように、前記加圧ポンプを制御するポンプ制御部と、を備え、
前記膜間差圧は、前記逆浸透膜モジュールを挟んだ一次側と二次側との間の膜間差圧であ
り、
前記膜間差圧が前記許容下限差圧に近づくように、前記ポンプ制御部は前記加圧ポンプを制御する逆浸透膜分離装置。
【請求項2】
前記逆浸透膜モジュールの一次側圧力を測定する圧力測定手段を更に備え、
前記一次側圧力に基づいて前記膜間差圧を算出する、請求項1に記載の逆浸透膜分離装置。
【請求項3】
前記膜間差圧と前記許容下限差圧との差分が所定の差分下限値以下となったことに基づいて、前記ポンプ制御部は、前記膜間差圧が大きくなるように、前記加圧ポンプを制御する、請求項1又は2に記載の逆浸透膜分離装置。
【請求項4】
給水、供給水、透過水又は濃縮水の温度を検出する温度検出手段を更に備え、
前記許容下限差圧は、前記温度に基づいて設定される、請求項
1又は
3に記載の逆浸透膜分離装置。
【請求項5】
給水の水質を検出する水質検出手段を更に備え、
前記許容下限差圧は、前記水質に基づいて設定される、請求項
1又は
3に記載の逆浸透膜分離装置。
【請求項6】
前記透過水を貯留する貯留タンクと、
前記貯留タンクの水位を検出する水位検出手段と、を更に備え、
前記ポンプ制御部は、前記水位に応じて前記加圧ポンプを制御する、請求項1~
5のいずれか1項に記載の逆浸透膜分離装置。
【請求項7】
透過水の流量を検出流量値として検出する流量検出手段を更に備え、
前記ポンプ制御部は、前記検出流量値が所定の流量目標値となるように、前記加圧ポンプを制御する、請求項1~
6のいずれか1項に記載の逆浸透膜分離装置。
【請求項8】
前記所定の流量目標値は、給水、供給水、透過水又は濃縮水の温度に応じて段階的に定まる、請求項
7に記載の逆浸透膜分離装置。
【請求項9】
入力された指令信号に対応する駆動周波数を前記加圧ポンプに出力するインバータを更に備え、
前記加圧ポンプは、入力された駆動周波数に応じた回転速度で駆動され、
前記ポンプ制御部は、前記駆動周波数がその下限値に可能な範囲で最も近くなるように、前記駆動周波数を算出し、前記駆動周波数の演算値に対応する指令信号を前記インバータに出力する、請求項1~
8のいずれか1項に記載の逆浸透膜分離装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、逆浸透膜分離装置に関する。
【背景技術】
【0002】
半導体製造工程や電子部品の洗浄、医療器具の洗浄等においては、不純物を含まない高純度の純水が使用される。この種の純水は、一般に、地下水や水道水等の供給水を膜分離装置で処理することにより製造される。膜分離装置は、少なくとも1つの逆浸透膜モジュールを備える。以下の説明においては、逆浸透膜モジュールを「RO膜モジュール」、逆浸透膜を「RO膜」ともいう。
【0003】
膜分離装置を備えた水処理システムでは、ユースポイントでの最大消費水量を賄うことができるように透過水の流量が予め設定されている。
【0004】
例えば、特許文献1は、高い収率、少ないエネルギー、及びより安いコストで、安定的に透過水を得ることが可能な逆浸透膜分離装置であって、透過水量を十分得るために、逆浸透膜モジュールユニットの少なくとも1段において透過水流量又は圧力を調節する手段が設けられた逆浸透膜分離装置を開示している。
【先行技術文献】
【特許文献】
【0005】
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかし、通常、ユースポイントでの需要量を満たせるように透過水の流量制御を行っているが、逆浸透膜の特性上、流量制御による負荷変動や給水の水質、水温の変動によっては、透過水の水質が要求水質を下回ってしまう恐れがあった。この点、特許文献1に係る技術においても、安いコストで透過水を得ることが可能であるとされているが、透過水の水質を保証するものではなかった。
【0007】
従来技術に比較して、水質低下を避けながら、省エネルギー運転を実現できる逆浸透膜分離装置を提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明は、給水が流通する給水ラインと、供給水を透過水と濃縮水とに分離する逆浸透膜モジュールと、前記給水ラインに合流部で接続し、供給水を前記逆浸透膜モジュールに供給する供給水ラインと、前記逆浸透膜モジュールで分離された透過水を送出する透過水ラインと、前記逆浸透膜モジュールで分離された濃縮水を送出する濃縮水ラインと、前記供給水ラインに設けられ、供給水を吸入して前記逆浸透膜モジュールに向けて吐出する加圧ポンプと、前記逆浸透膜モジュールの膜間差圧が、前記透過水の水質が要求水質を保つために必要な膜間差圧である許容下限差圧を上回るように、前記加圧ポンプを制御するポンプ制御部と、を備え、前記膜間差圧は、前記逆浸透膜モジュールを挟んだ一次側と二次側との間の膜間差圧であり、前記膜間差圧が前記許容下限差圧に近づくように、前記ポンプ制御部は前記加圧ポンプを制御する逆浸透膜分離装置に関する。
【0009】
また、前記逆浸透膜モジュールの一次側圧力を測定する圧力測定手段を更に備え、前記一次側圧力に基づいて前記膜間差圧を算出することが好ましい。
【0010】
また、前記膜間差圧と前記許容下限差圧との差分が所定の差分下限値以下となったことに基づいて、前記ポンプ制御部は、前記膜間差圧が大きくなるように、前記加圧ポンプを制御することが好ましい。
【0012】
また、給水、供給水、透過水又は濃縮水の温度を検出する温度検出手段を更に備え、前記許容下限差圧は、前記温度に基づいて設定されることが好ましい。
【0013】
また、給水の水質を検出する水質検出手段を更に備え、前記許容下限差圧は、前記水質に基づいて設定されることが好ましい。
【0014】
また、前記透過水を貯留する貯留タンクと、前記貯留タンクの水位を検出する水位検出手段と、を更に備え、前記ポンプ駆動制御部は、前記水位に応じて前記加圧ポンプを制御することが好ましい。
【0015】
また、透過水の流量を検出流量値として検出する流量検出手段を更に備え、前記ポンプ制御部は、前記検出流量値が所定の流量目標値となるように、前記加圧ポンプを制御することが好ましい。
【0016】
また、前記所定の流量目標値は、給水、供給水、透過水又は濃縮水の温度に応じて段階的に定まることが好ましい。
【0017】
また、入力された指令信号に対応する駆動周波数を前記加圧ポンプに出力するインバータを更に備え、前記加圧ポンプは、入力された駆動周波数に応じた回転速度で駆動され、前記ポンプ制御部は、前記駆動周波数がその下限値に可能な範囲で最も近くなるように、前記駆動周波数を算出し、前記駆動周波数の演算値に対応する指令信号を前記インバータに出力することが好ましい。
【発明の効果】
【0018】
本発明によれば、従来技術に比較して、水質低下を避けながら、省エネルギー運転を実現できる。
【図面の簡単な説明】
【0019】
【
図1】本発明の実施形態に係る逆浸透膜分離装置の全体構成図である。
【
図2】本発明の実施形態で用いられる流量調整ユニットに係る圧力と流量の関係を示す図である。
【
図3】本発明の実施例1における、膜間差圧、透過水水量、加圧ポンプの駆動周波数の、各温度範囲における値の違いを示すグラフである。
【
図4】本発明の実施例2における、膜間差圧、透過水水量、加圧ポンプの駆動周波数の、各温度範囲における値の違いを示すグラフである。
【
図5】本発明の実施例3における、膜間差圧、透過水水量、加圧ポンプの駆動周波数の、各温度範囲における値の違いを示すグラフである。
【
図6】本発明の比較例1における、膜間差圧、透過水水量、加圧ポンプの駆動周波数の、各温度範囲における値の違いを示すグラフである。
【
図7】本発明の実施例4における、膜間差圧、透過水水量、加圧ポンプの駆動周波数の、各温度範囲における値の違いを示すグラフである。
【発明を実施するための形態】
【0020】
〔1 逆浸透膜分離装置の構成〕
本発明の実施形態に係る逆浸透膜分離装置1について、図面を参照しながら説明する。
図1は、本実施形態に係る逆浸透膜分離装置1の全体構成図である。本実施形態に係る逆浸透膜分離装置1は、例えば、淡水から純水を製造する純水製造システムに適用される。
【0021】
図1に示すように、本実施形態に係る逆浸透膜分離装置1は、加圧ポンプ2と、加圧側インバータ3と、逆浸透膜モジュールとしてのRO膜モジュール4と、流量調整ユニット5と、逆止弁6と、排水流量調整手段としての排水流量調整弁7(比例制御弁)と、給水ポンプ12と、給水側インバータ13と、水質検出手段としての水質センサ14と、温度検出手段としての水温センサ15と、圧力測定手段としての圧力センサ16と、流量検出手段としての流量センサ17と、貯留タンク18と、水位検出手段としての水位センサ181と、ポンプ制御部としての制御部30と、を備える。なお、制御部30と被制御対象機器との電気的接続線の図示については、省略している。
【0022】
また、逆浸透膜分離装置1は、給水ラインL1と、供給水ラインL2と、透過水ラインL3と、第1濃縮水ラインL41と、第2濃縮水ラインL42と、循環水ラインL5と、排水ラインL6と、需要水ラインL7とを備える。本明細書における「ライン」とは、流路、経路、管路等の流体の流通が可能なラインの総称である。
【0023】
給水ラインL1は、給水W1を、供給水ラインL2との合流点である合流部J2まで供給するラインである。給水ラインL1の上流側の端部は、給水W1の供給源(不図示)に接続されている。給水ラインL1には、上流側から下流側に向けて順に、給水ポンプ12、水質センサ14、水温センサ15、合流部J2が設けられている。
【0024】
給水ポンプ12は、給水ラインL1を流通する給水W1を吸入し、加圧ポンプ2へ向けて圧送(吐出)する装置である。給水ポンプ12には、給水側インバータ13から周波数が変換された駆動電力が供給される。給水ポンプ12は、供給(入力)された駆動電力の周波数(以下、「駆動周波数」ともいう)に応じた回転速度で駆動される。
【0025】
給水側インバータ13は、給水ポンプ12に、周波数が変換された駆動電力を供給する電気回路(又はその回路を持つ装置)である。給水側インバータ13は、制御部30と電気的に接続されている。給水側インバータ13には、制御部30から指令信号が入力される。給水側インバータ13は、制御部30により入力された指令信号(電流値信号又は電圧値信号)に対応する駆動周波数の駆動電力を給水ポンプ12に出力する。
【0026】
本実施形態においては、制御部30は、給水ポンプ12が給水W1を所定の一定圧力値で吐出するように、給水側インバータ13を制御する。給水ポンプ12により付与される給水W1の前記一定圧力値は、給水ラインL1を流通する給水W1を加圧ポンプ2に供給可能な圧力値に設定される。これにより、給水W1の給水圧力は、一定圧力値となる。本実施形態においては、給水W1の給水圧力を、例えば、0.2~0.5MPaの間の一定圧力値に設定している。
【0027】
水質センサ14は、給水ラインL1に設置される。水質センサ14は、制御部30と電気的に接続されている。水質センサ14は、給水W1の水質(以下、「測定水質値」ともいう)を測定し、測定水質値は制御部30へ検出信号として送信される。なお、給水W1の水質としては、例えば、pH、硬度、アルカリ度、シリカ濃度等のうち1つ以上であってよい。
【0028】
水温センサ15は、給水ラインL1に設置される。水温センサ15は、制御部30と電気的に接続されている。水温センサ15は、給水W1の水温(以下、「測定水温値」ともいう)を測定し、測定水温値は制御部30へ検出信号として送信される。なお、水温センサ15は、後述の供給水ラインL2に設置されて供給水W2の水温を測定してもよく、後述の透過水ラインL3に設置されて透過水W3の水温を測定してもよく、後述の濃縮水ラインL4に設置されて濃縮水W4の水温を測定してもよい。
【0029】
供給水ラインL2は、給水W1を、供給水W2としてRO膜モジュール4に供給するラインである。供給水ラインL2の上流側の端部は、合流部J2に接続されている。供給水ラインL2の下流側の端部は、RO膜モジュール4の一次側入口ポートに接続されている。供給水ラインL2には、上流側から下流側に向けて順に、合流部J2、加圧ポンプ2、圧力センサ16、RO膜モジュール4が設けられている。
【0030】
加圧ポンプ2は、供給水ラインL2に設けられる。加圧ポンプ2は、供給水ラインL2において、給水W1を吸入し、供給水W2として、RO膜モジュール4へ向けて圧送(吐出)する装置である。加圧ポンプ2には、加圧側インバータ3から周波数が変換された駆動電力が供給される。加圧ポンプ2は、供給(入力)された駆動電力の周波数(以下、「駆動周波数」ともいう)に応じた回転速度で駆動される。
【0031】
加圧側インバータ3は、加圧ポンプ2に、周波数が変換された駆動電力を供給する電気回路(又はその回路を持つ装置)である。加圧側インバータ3は、制御部30と電気的に接続されている。加圧側インバータ3には、制御部30から指令信号が入力される。加圧側インバータ3は、制御部30により入力された指令信号(電流値信号又は電圧値信号)に対応する駆動周波数の駆動電力を加圧ポンプ2に出力する。
【0032】
圧力センサ16は、供給水ラインL2に設置される。圧力センサ16は、制御部30と電気的に接続されている。圧力センサ16は、供給水W2の水圧(以下、「測定水圧値」ともいう)、とりわけ後述のRO膜モジュール4の一次側の圧力を測定し、測定水圧値は制御部30へ検出信号として送信される。
【0033】
RO膜モジュール4は、加圧ポンプ2から吐出された供給水W2を、溶存塩類が除去された透過水W3と、溶存塩類が濃縮された濃縮水W4とに膜分離処理する設備である。RO膜モジュール4は、単一又は複数のRO膜エレメント(不図示)を備える。RO膜モジュール4は、これらRO膜エレメントにより供給水W2を膜分離処理し、透過水W3及び濃縮水W4を製造する。
【0034】
透過水ラインL3は、RO膜モジュール4で分離された透過水W3を送出するラインである。透過水ラインL3の上流側の端部は、RO膜モジュール4の二次側ポートに接続されている。透過水ラインL3の下流側の端部は、貯留タンク18に接続されている。透過水ラインL3には、流量センサ17と貯留タンク18とが設けられ、貯留タンク18には水位センサ181が設けられる。
【0035】
流量センサ17は、透過水ラインL3を流通する透過水W3の流量を検出流量値として検出する機器である。流量センサ17は、透過水ラインL3に接続されている。流量センサ17は、制御部30と電気的に接続されている。流量センサ17で検出された透過水W3の検出流量値は、制御部30へ検出信号として送信される。流量センサ17として、例えば、流路ハウジング内に軸流羽根車又は接線羽根車(不図示)を配置したパルス発信式の流量センサを用いることができる。
【0036】
貯留タンク18は、RO膜モジュール4で分離された透過水W3を貯留するタンクである。より詳細には、RO膜モジュール4から送出された透過水W3は、透過水ラインL3を介して貯留タンク18に補給される。貯留タンク18は、需要水ラインL7を介して下流側の需要箇所の装置等(不図示)に接続されている。需要水ラインL7は、貯留タンク18に貯留された透過水W3を、需要箇所の装置等に流通させるラインである。貯留タンク18に貯留された透過水W3は、需要水ラインL7を介して、需要箇所の装置等に供給される。
【0037】
貯留タンク18には、水位センサ181が設けられている。水位センサ181は、貯留タンク18に貯留された透過水W3の水位を検出する機器である。水位センサ181は、制御部30と電気的に接続されている。水位センサ181で測定された貯留タンク18の水位(以下、「検出水位値」ともいう)は、制御部30へ検出信号として出力される。
【0038】
本実施形態において、水位センサ181は、例えば、レベルスイッチである。レベルスイッチは、予め設定された液面位置の検出器であり、例えば、複数の液面位置(例えば、4位置)を検出するように構成されている。
図1では、水位センサ181として、フロート式のレベルスイッチを設けた例を示す。なお、水位センサ181は、レベルスイッチには制限されず、例えば、連続式レベルセンサであってもよい。連続式レベルセンサとしては、例えば、静電容量式センサ、圧力式センサ、超音波式センサ等が用いられる。
【0039】
第1濃縮水ラインL41は、RO膜モジュール4で分離された濃縮水W4を送出するラインである。第1濃縮水ラインL41の上流側の端部は、RO膜モジュール4の一次側出口ポートに接続されている。また、第1濃縮水ラインL41の下流側は、流量調整ユニット5の一次側に接続されている。
【0040】
また、第2濃縮水ラインL42は、流量調整ユニット5で流量が調整された濃縮水W4を送出するラインである。第2濃縮水ラインL42の上流側の端部は、流量調整ユニット5の二次側に接続されている。また、第2濃縮水ラインL42の下流側は、接続部J1において、循環水ラインL5及び排水ラインL6に分岐している。
【0041】
なお、以降では、第1濃縮水ラインL41と第2濃縮水ラインL42とをまとめて、「濃縮水ラインL4」と総称することがある。
【0042】
流量調整ユニット5は、当該流量調整ユニット5における差圧によらず、実質的に定流量の濃縮水を流通させる定流量要素と、当該流量調整ユニット5における差圧に実質的に比例して濃縮水W4の流量が高くなる比例要素とを備える。流量調整ユニット5における差圧は、具体的には、第1濃縮水ラインL41の水圧と第2濃縮水ラインL42の水圧との差圧である。定流量要素は、補助動力や外部操作を必要とせずに一定流量値を保持し、例えば水ガバナの名称で呼ばれるものを用いてもよい。また、比例要素としては、例えばオリフィスの名称で呼ばれるものを用いてもよく、オリフィスから流れる濃縮水W4の流量が、当該流量調整ユニット5における差圧に比例する。
【0043】
図2は、RO膜モジュール4の入口圧力と、流量調整ユニット5を流れる濃縮水の流量との関係の例を示すグラフである。流量調整ユニット5は、定流量要素を備えることから、入口圧力が発生すると、流量調整ユニット5を流れる濃縮水の流量は一気にA点まで上昇する。すなわち近似的には、入口圧力の発生と同時にA点の高さの流量が流量調整ユニット5に流れる。同時に、流量調整ユニット5は比例要素を備えることから、以降、入口圧力が上昇するに従い、流量調整ユニット5を流れる濃縮水の流量は、一次関数的に上昇する。
【0044】
なお、流量調整ユニット5において、定流量要素と比例要素とは一体的に構成されていてもよく、別体として構成されていてもよい。一体的に構成されている場合には、例えば、比例要素の流れ方向が、流量調整ユニット5の長軸方向と一致し、定流量要素の流れ方向が流量調整ユニット5の長軸方向に直交するように構成してもよい。あるいは、比例要素の流れ方向が流量調整ユニット5の長軸方向に直交し、定流量要素の流れ方向が流量調整ユニット5の長軸方向と一致するように構成してもよい。あるいは、定流量要素の流れ方向と比例要素の流れ方向が、共に流量調整ユニット5の長軸方向と一致するように構成してもよい。
【0045】
循環水ラインL5は、濃縮水ラインL4から分岐するラインであって、RO膜モジュール4で分離された濃縮水W4の一部である循環水W41を、合流部J2に返送するラインである。循環水ラインL5の上流側の端部は、接続部J1において、濃縮水ラインL4に接続されている。また、循環水ラインL5の下流側の端部は、合流部J2において、給水ラインL1に接続されている。循環水ラインL5には、逆止弁6が設けられている。
【0046】
排水ラインL6は、接続部J1において濃縮水ラインL4から分岐され、RO膜モジュール4で分離された濃縮水W4の残部である排水W42を装置外(系外)に排出するラインである。排水ラインL6には、排水流量調整手段としての排水流量調整弁7が設けられている。
【0047】
排水流量調整弁7は、排水ラインL6から装置外へ排出する排水W42の排水流量を調整可能な弁である。排水流量調整弁7は、制御部30と電気的に接続されている。排水流量調整弁7の弁開度は、制御部30から送信される駆動信号により制御される。制御部30から電流値信号(例えば、4~20mA)を排水流量調整弁7に送信して、弁開度を制御することにより、排水W42の排水流量を調整することができる。
【0048】
制御部30は、CPU、ROM、RAM、CMOSメモリ等を有し、これらはバスを介して相互に通信可能に構成される、当業者にとって公知のものである。
【0049】
CPUは逆浸透膜分離装置1を全体的に制御するプロセッサである。該CPUは、ROMに格納された各種プログラムを、バスを介して読み出し、該各種プログラムに従って逆浸透膜分離装置1の全体を制御することで、加圧ポンプ2を制御するポンプ制御部としての機能を実現するように構成される。RAMには一時的な計算データや表示データ等の各種データが格納される。CMOSメモリは図示しないバッテリでバックアップされ、逆浸透膜分離装置1の電源がオフされても記憶状態が保持される不揮発性メモリとして構成される。
【0050】
制御部30は、ポンプ制御部としても機能し、加圧ポンプ2を制御する。より詳細には、制御部30は、加圧側インバータ3を介して加圧ポンプ2の周波数を制御することにより、加圧ポンプ2が吐出する供給水の流量を制御する。
【0051】
〔2 逆浸透膜分離装置の動作〕
透過水W3の要求水質を保つためには、要求水質に応じたRO膜モジュール4での脱塩率を確保するため、RO膜モジュール4における膜間差圧、すなわちRO膜モジュール4を挟んで、一次側と二次側との間の膜間差圧が、供給水質を保つための許容下限差圧を上回る必要がある。
そこで、本実施形態においては、RO膜モジュール4の膜間差圧が許容下限差圧を上回るように、ポンプ制御部としての制御部30は、加圧ポンプ2を制御する。
【0052】
この膜間差圧は、圧力センサ16により測定された、RO膜モジュール4の一次側圧力に基づいて算出する。より具体的には、RO膜モジュール4の一次側圧力自体を膜間差圧としてもよい。あるいは、図示しない第2の圧力センサによりRO膜モジュール4の二次側圧力を測定し、RO膜モジュール4の一次側圧力と膜を通過した透過水側の二次側圧力との差分を膜間差圧としてもよい。あるいは、水温センサにより測定される給水や供給水の水温と、加圧ポンプ2の周波数とから加圧ポンプ2の吐出圧力を演算し、この吐出圧力に基づいて膜間差圧を算出してもよい。
【0053】
また、好適な水質を維持するため、ポンプ制御部としての制御部30は、膜間差圧と許容下限差圧との差分が、所定の差分下限値以下となったことに基づいて、膜間差圧が大きくなるように加圧ポンプ2を制御してもよい。すなわち、膜間差圧が許容下限差圧を下回りそうになった場合には、加圧ポンプ2に掛かる負荷を1段階上の負荷に上げてもよい。
【0054】
また、ポンプ制御部としての制御部30は、省エネルギーを目的に、膜間差圧が許容下限差圧に近づくように、すなわち、膜間差圧がボーダーラインとしての許容下限差圧に沿うように、加圧ポンプ2を制御してもよい。
【0055】
許容下限差圧は、水温センサ15によって測定された給水W1、供給水W2、透過水W3、又は濃縮水W4の水温に基づいて微調整される。あるいは、許容下限差圧は、水質センサ14によって測定された給水W1の水質に基づいて微調整されてもよい。
とりわけ、給水W1、供給水W2、透過水W3、又は濃縮水W4の水温の上昇により膜間差圧が低下すると、水質が低下するので、水温変動に応じた許容差圧値を膜間差圧の目標値とする。また、給水W1の水質の悪化により、硬度成分が上昇することで、処理水質が低下する影響を、設定膜間差圧を補正することで小さくできる。
【0056】
また、省エネルギーのため、ポンプ制御部としての制御部30は、加圧ポンプ2の駆動周波数が、その下限値に可能な範囲で最も近くなるように算出し、この駆動周波数の演算値に対応する指令信号を、加圧ポンプ2の加圧側インバータ3に出力してもよい。一例として、加圧ポンプ2の駆動周波数の下限値が30Hzであるときには、30Hzを少し超える駆動周波数となるように、制御部30は、加圧側インバータ3に指令信号を出力してもよい。
【0057】
また、需要水量を確保するため、ポンプ制御部としての制御部30は、水位センサ181によって検出された貯留タンク18の水位に応じて、加圧ポンプ2を制御する。なお、貯留タンク18の水位が上限に近い場合には、ポンプ制御部としての制御部30は、低負荷運転となるように、加圧ポンプ2を制御する。
【0058】
また、負荷変動に応じて透過水を安定供給するため、ポンプ制御部としての制御部30は、流量センサ17によって検出される透過水W3の流量が所定の流量目標値となるように、加圧ポンプ2を制御してもよい。なお、省エネルギーのため、この所定の流量目標値は、水温センサ15によって測定される給水W1、供給水W2、透過水W3、又は濃縮水W4の水温に基づいて、あるいは、この水温によって変化する給水の粘度に応じて、段階的に定まってもよい。
【0059】
以下、逆浸透膜分離装置1の運転の具体的な実施例について、
図3~
図7のグラフを参照しながら説明する。なお、以下の
図3~
図7のグラフは、逆浸透膜分離装置1の運転に伴って水温が上昇していくことを示すものではなく、逆浸透膜分離装置1の運転時における水温に応じて、加圧ポンプ2の駆動周波数をどの程度の周波数にするか、及び、透過水水量や膜間差圧がどの程度の値を取るか、又はどの程度の値を目標とするかを示すグラフである。なお、以下の
図3~
図7のグラフにおいて、T1<T2である。
【0060】
(実施例1)
図3は、実施例1における、膜間差圧、透過水水量、加圧ポンプ2の駆動周波数の、各温度範囲における値の違いを示す。
実施例1は、目標となる膜間差圧が、要求水質を確保できる許容下限差圧となる運転の例であり、膜間差圧が許容下限差圧を下回ると、透過水の水質が要求水質を下回るため、ポンプ制御部としての制御部30は、膜間差圧が許容下限差圧を下回らないように、加圧ポンプ2の駆動周波数を制御する。
なお、許容下限差圧は、水温が上昇するに伴ってわずかに右肩上がりの傾きを有する(これは、以下の「実施例2」、「実施例3」、「比較例1」、「実施例4」でも同様である)。また、透過水流量は、段階的ではなく連続的に制御されると共に、水温が高くなる程、それに伴って成り行きで流量が上昇する。
そのため、加圧ポンプ2の駆動周波数が水温に拘わらずほぼ一定となるよう、制御部30は加圧ポンプ2の駆動周波数を制御する。
【0061】
(実施例2)
図4は、実施例2における、膜間差圧、透過水水量、加圧ポンプ2の駆動周波数の、各温度範囲における値の違いを示す。
実施例2は、貯留タンク18の水位が低下した際、高負荷の定格運転をする場合の運転の例である。
定格運転であるため、透過水の目標流量は水温に拘わらず一定となる。また、水温が高くなる程、水の粘性は落ちるため、水温が高いほど加圧ポンプ2の駆動周波数は低くなる。
また、これに伴い膜間差圧も水温が高いほど低くなるが、許容下限差圧を下回ることはない。
【0062】
(実施例3)
図5は、実施例3における、膜間差圧、透過水水量、加圧ポンプ2の駆動周波数の、各温度範囲における値の違いを示す。
実施例3は、加圧ポンプ2の駆動周波数に下限周波数が存在すると共に、水温がT1未満の低温領域では、低負荷運転として、定格運転の60%程度の定流量制御を行い、水温がT2以上の高温領域では、定格運転となる定流量制御を行う運転であって、予め定められた目標設定圧以上の膜間差圧で常に運転するため、段階的に透過水の流量を切り替える運転の例である。なお、この「60%程度」とはあくまで、低負荷の程度の一例であって、これには限定されない。
【0063】
より詳細には、水温がT1未満の低温領域では、透過水流量が定格運転の60%程度の流量となる一定値となることを目標とするが、水温が高くなる程、水の粘性は低くなるため、加圧ポンプ2の駆動周波数は低くなる。とりわけ、膜間差圧が許容下限差圧を上回る範囲で省エネルギー運転をするためには、水温が高くなる程、加圧ポンプ2の駆動周波数を低くするとよい。ただし、加圧ポンプ2の駆動周波数は、下限周波数を下回ることはない。
水温がT1以上T2未満の中温領域では、加圧ポンプ2の駆動周波数は、下限周波数で固定され、透過水流量は水温が高くなる程、それに伴って成り行きで増加する。
水温がT2以上の高温領域では、透過水流量が一定となる定格運転を行うが、水温がT1未満の領域と同様、水温が高くなる程、水の粘性は低くなるため、加圧ポンプ2の駆動周波数は低くなる。ただし、加圧ポンプ2の駆動周波数は、下限周波数を下回ることはない。
【0064】
実施例3において、加圧ポンプ2の駆動周波数を一定とすると、水温の上昇に伴い、粘性が低下し、同じ設定流量の透過水を得るため必要な膜間差圧が少しずつ低下する。それに伴って、RO膜の特性として電解質の除去率が低下し、水質が低下する。そのため、水質を確保するため、
図5中の星印(★)で示すように、水温=T2において加圧ポンプ2の駆動周波数を上げてRO膜の1次側圧力を一気に高めて、結果として、膜間差圧及び透過水流量を上昇させる。
【0065】
なお、実施例3において、貯留タンク18の水位が低下した際には、低温時にも定格運転をしてもよい。
また、実施例3の変形例として、所定の温度範囲にある際に、定格運転をするのではなく、RO膜の1次圧が許容下限差圧を少しだけ上回るように逆浸透膜分離装置1を運転させてもよい。この場合、加圧ポンプ2の駆動周波数は、水温の上昇と共に、漸増していく。
【0066】
また、実施例3においては、制御部30に対し、膜間差圧の最低値である許容下限差圧を入力しておく必要がある。
【0067】
(比較例1)
図6は、比較例1における、膜間差圧、透過水水量、加圧ポンプ2の駆動周波数の、各温度範囲における値の違いを示す。
比較例1は、とりわけ実施例3に対する比較例であり、水温がT2以上の領域でも、駆動周波数を上げた定格運転に移行せず、駆動周波数は下限周波数を維持する。
その結果、水温がT2以上の領域で、膜間差圧が許容下限差圧を下回ることとなり、要求水質を満たさない透過水が供給されてしまう。
【0068】
(実施例4)
図7は、実施例4における、膜間差圧、透過水水量、加圧ポンプ2の駆動周波数の、各温度範囲における値の違いを示す。
実施例4は、負荷変動が、低、中、高の三段階存在し、ある負荷での運転時に膜間差圧が許容下限差圧となるポイントで、負荷を上げるように負荷を変動する運転の例である。
透過水流量は、低負荷時、中負荷時、高負荷時でそれぞれ一定であり、低負荷時の透過水流量よりも中負荷時の透過水流量が高く、中負荷時の透過水流量よりも高負荷時の透過水流量が高い。すなわち、実施例4においては透過水が定流量となるようフィードバック制御されている。また、加圧ポンプ2の駆動周波数が下限周波数に到達したときに、同時に膜間差圧が許容下限差圧となるよう設定されている。
【0069】
より詳細には、水温がT1未満の低温領域では低負荷運転を実行するが、目標となる透過水流量は一定である一方で、水温が高くなる程水の粘性は低くなる。従って、省エネルギー運転のために、水温がT1未満の領域で水温が高くなる程、加圧ポンプ2の駆動周波数は低くなる。また、これに伴い、水温が高くなる程膜間差圧も低くなるが、許容下限差圧を下回ることはない。
水温=T1において、加圧ポンプ2の駆動周波数が下限周波数となり、膜間差圧が許容下限差圧となると、負荷が低負荷から中負荷に上昇し、目標となる透過水流量も中程度に上昇する。
水温がT1以上T2未満の中温領域では中負荷運転を実行するが、低温領域と同様、透過水流量は一定である一方で、水温が高くなる程水の粘性は低くなる。従って、省エネルギー運転のために、水温がT1以上T2未満の領域で水温が高くなる程、加圧ポンプ2の駆動周波数は低くなる。また、これに伴い、水温が高くなる程膜間差圧も低くなるが、許容下限差圧を下回ることはない。
水温=T2において、加圧ポンプ2の駆動周波数が下限周波数となり、膜間差圧が許容下限差圧となると、負荷が中負荷から高負荷に上昇し、目標となる透過水流量も高程度に上昇する。
水温がT2以上の高温領域では高負荷運転を実行するが、低温領域、中温領域と同様、透過水流量は一定である一方で、水温が高くなる程水の粘性は低くなる。従って、省エネルギー運転のために、水温がT2以上の領域で水温が高くなる程、加圧ポンプ2の駆動周波数は低くなる。また、これに伴い、水温が高くなる程膜間差圧も低くなるが、許容下限差圧を下回ることはない。
【0070】
実施例4において、加圧ポンプ2の駆動周波数を一定とすると、水温の上昇に伴い、粘性が低下し、同じ設定流量の透過水を得るため必要な膜間差圧が少しずつ低下する。それに伴って、RO膜の特性として、電解質の除去率が低下し、水質が低下する。そのため、水質を確保するため、
図7中の星印(★)で示すように、水温=T1、及び水温=T2において加圧ポンプ2の駆動周波数を一気に高めて、RO膜の1次側圧力を上げ、結果として、膜間差圧及び透過水流量を上昇させる。
【0071】
なお、実施例4においては、水温がT1未満での低負荷運転、水温がT1以上T2未満での中負荷運転、水温がT2以上での高負荷運転の三段階で運転を切り替えているが、水温に応じてより細かく運転を切り替えてもよい。例えば、膜間差圧が許容下限差圧になるたびに、一定間隔で透過水流量の目標値を増加させながら定流量フィードバック制御を繰り返す際、この増加幅を少なくすることにより、より細かく運転を切り替えてもよい。
【0072】
〔3 本実施形態の効果〕
上述した逆浸透膜分離装置1によれば、例えば以下の効果が得られる。
逆浸透膜分離装置1においては、RO膜モジュール4の膜間差圧が、透過水W3の水質が要求水質を保つために必要な膜間差圧である許容下限差圧を上回るように、ポンプ制御部としての制御部30が、加圧ポンプ2を制御する。
膜間差圧が、透過水W3の水質が要求水質を保つために必要な膜間差圧である許容下限差圧を上回ることにより、透過水W3の水質が確保されると共に、加圧ポンプ2が消費する電力を少なくすることが可能となる。
【0073】
また、逆浸透膜分離装置1においては、圧力センサ16で測定したRO膜モジュール4の一次側圧力に基づいて、膜間差圧を算出する。
これにより、加圧ポンプ2を制御する上で測定の必要がある膜間差圧を、簡便に測定することが出来る。
【0074】
また、逆浸透膜分離装置1においては、膜間差圧と許容下限差圧との差分が、所定の差分下限値以下となったことに基づいて、ポンプ制御部としての制御部30は、膜間差圧が大きくなるように、加圧ポンプ2を制御する。
膜間差圧と許容下限差圧との差分が、事前に設定された差分下限値以下となった場合のみ加圧ポンプを制御することにより、省エネルギーの観点で好ましい。更に、比較的大きな温度幅で、負荷を低負荷、中負荷、高負荷と段階的に上げていくことで、許容水質以下となることを避けることにより、許容水質を下回らず、好適な水質を保持することが出来るため、処理水水質と省エネルギー性の両立が可能となる。
【0075】
また、逆浸透膜分離装置1において、膜間差圧が許容下限差圧に近づくように、ポンプ制御部としての制御部30は、加圧ポンプ2を制御する。
これにより、より一層の省エネルギーが可能となる。
【0076】
また、逆浸透膜分離装置1において、許容下限差圧は、給水W1、供給水W2、透過水W3、濃縮水W4の温度に基づいて設定されてもよく、給水W1の水質に基づいて設定されてもよい。
水温や水質によって許容下限差圧を微調整することにより、より好適な運転が可能となる。
【0077】
また、逆浸透膜分離装置1は、貯留タンク18を備え、ポンプ制御部としての制御部30は、貯留タンク18の水位に応じて加圧ポンプ2を制御する。
貯留タンク18内の水位を保つことにより、需要水量が確保できる。
【0078】
また、逆浸透膜分離装置1は、透過水W3の流量を検出する流量センサ17を備え、ポンプ制御部としての制御部30は、透過水W3の流量が所定の流量目標値となるように、加圧ポンプ2を制御する。
定流量フィードバック制御により透過水の流量を制御することにより、負荷変動に応じた透過水の安定供給が可能となる。
【0079】
また、逆浸透膜分離装置1において、上記の所定の流量目標値は、給水W1、供給水W2、透過水W3又は濃縮水W4の温度に応じて段階的に定まる。
水温によって変化する給水の粘度に応じて、より小刻みに負荷変動させることで、より省エネルギーとなる。
【0080】
また、逆浸透膜分離装置1において、ポンプ制御部としての制御部30は、加圧ポンプ2の駆動周波数がその下限値に可能な範囲で最も近くなるように駆動周波数を算出し、駆動周波数の演算値に対応する指令信号を加圧側インバータ3に出力する。
駆動周波数を極力下げることにより、より低周波数での運転による省エネルギーが実現される。
【0081】
〔4 変形例〕
逆浸透膜分離装置1においては、給水ポンプ12及び給水ポンプ12に駆動周波数の駆動電力を出力する給水側インバータ13が設置されるが、これらの代わりに、水源から供給される給水W1の圧力を制御する給水圧力調整弁が設置されてもよい。
【符号の説明】
【0082】
1 逆浸透膜分離装置
2 加圧ポンプ
3 加圧側インバータ(インバータ)
4 RO膜モジュール(逆浸透膜モジュール)
5 流量調整ユニット
6 逆止弁
7 排水流量調整弁
12 給水ポンプ
14 水質センサ(水質検出手段)
15 水温センサ(温度検出手段)
16 圧力センサ(圧力測定手段)
17 流量センサ(流量検出手段)
18 貯留タンク
30 制御部
181 水位センサ(水位検出手段)
L1 給水ライン
L2 供給水ライン
L3 透過水ライン
L4 濃縮水ライン
L5 循環水ライン
L6 排水ライン
L7 需要水ライン
L41 第1濃縮水ライン
L42 第2濃縮水ライン
W1 給水
W2 供給水
W3 透過水
W4 濃縮水
W41 循環水
W42 排水