IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ アンゲロ ダンツィの特許一覧 ▶ カルロ アルベルト ブローヴェロの特許一覧 ▶ マウリッツィオ タッピの特許一覧 ▶ ジャンルーカ ピラチーニの特許一覧

特許7165671バナジウムレドックスフロー電池の多点電解質フローフィールド実施形態
<>
  • 特許-バナジウムレドックスフロー電池の多点電解質フローフィールド実施形態 図1
  • 特許-バナジウムレドックスフロー電池の多点電解質フローフィールド実施形態 図2
  • 特許-バナジウムレドックスフロー電池の多点電解質フローフィールド実施形態 図3
  • 特許-バナジウムレドックスフロー電池の多点電解質フローフィールド実施形態 図4
  • 特許-バナジウムレドックスフロー電池の多点電解質フローフィールド実施形態 図5
  • 特許-バナジウムレドックスフロー電池の多点電解質フローフィールド実施形態 図6
  • 特許-バナジウムレドックスフロー電池の多点電解質フローフィールド実施形態 図7
  • 特許-バナジウムレドックスフロー電池の多点電解質フローフィールド実施形態 図8
  • 特許-バナジウムレドックスフロー電池の多点電解質フローフィールド実施形態 図9
  • 特許-バナジウムレドックスフロー電池の多点電解質フローフィールド実施形態 図10
  • 特許-バナジウムレドックスフロー電池の多点電解質フローフィールド実施形態 図11
  • 特許-バナジウムレドックスフロー電池の多点電解質フローフィールド実施形態 図12
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-10-26
(45)【発行日】2022-11-04
(54)【発明の名称】バナジウムレドックスフロー電池の多点電解質フローフィールド実施形態
(51)【国際特許分類】
   H01M 8/18 20060101AFI20221027BHJP
   H01M 8/0258 20160101ALI20221027BHJP
   H01M 8/026 20160101ALI20221027BHJP
   H01M 8/02 20160101ALI20221027BHJP
【FI】
H01M8/18
H01M8/0258
H01M8/026
H01M8/02
【請求項の数】 6
(21)【出願番号】P 2019553976
(86)(22)【出願日】2018-03-27
(65)【公表番号】
(43)【公表日】2020-05-07
(86)【国際出願番号】 US2018024414
(87)【国際公開番号】W WO2018183222
(87)【国際公開日】2018-10-04
【審査請求日】2021-03-19
(31)【優先権主張番号】62/476,945
(32)【優先日】2017-03-27
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】519346664
【氏名又は名称】アンゲロ ダンツィ
【氏名又は名称原語表記】Angelo D’ANZI
【住所又は居所原語表記】25 Health Sciences Drive, Suite 237, Stony Brook, New York 11790-3350, USA
(73)【特許権者】
【識別番号】519346675
【氏名又は名称】カルロ アルベルト ブローヴェロ
【氏名又は名称原語表記】Carlo Alberto BROVERO
【住所又は居所原語表記】Strada del Vesio 15, 10090 Castiglione Torinese, Italy
(73)【特許権者】
【識別番号】519346686
【氏名又は名称】マウリッツィオ タッピ
【氏名又は名称原語表記】Maurizio TAPPI
【住所又は居所原語表記】Via Isei 8, 47521 Cesena (FC), Italy
(73)【特許権者】
【識別番号】519346697
【氏名又は名称】ジャンルーカ ピラチーニ
【氏名又は名称原語表記】Gianluca PIRACCINI
【住所又は居所原語表記】Via Madonna dell’Olivo 4600, 47521 Cesena (FC), Italy
(74)【代理人】
【識別番号】100169904
【弁理士】
【氏名又は名称】村井 康司
(74)【代理人】
【識別番号】100132698
【弁理士】
【氏名又は名称】川分 康博
(72)【発明者】
【氏名】アンゲロ ダンツィ
(72)【発明者】
【氏名】カルロ アルベルト ブローヴェロ
(72)【発明者】
【氏名】マウリッツィオ タッピ
(72)【発明者】
【氏名】ジャンルーカ ピラチーニ
【審査官】守安 太郎
(56)【参考文献】
【文献】国際公開第2014/167306(WO,A2)
【文献】国際公開第2016/189970(WO,A1)
【文献】特開2015-210849(JP,A)
【文献】特表2015-505147(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 8/18
H01M 8/02
(57)【特許請求の範囲】
【請求項1】
アノード電解質用の第1のタンク、カソード電解質用の第2のタンク、電解質を特定の平面セルに供給するための対応するポンプを備えた各油圧回路を有するタイプのフロー電池であって、前記平面セルが、2つの対向する面を有するバイポーラプレート本体であって、前記対向する面のそれぞれが複数の入口デッドエンドチャネル及び複数の出口デッドエンドチャネルを有する、バイポーラプレート本体、一対の多点フローディストリビュータのそれぞれが、入口チャネル及び出口チャネルと係合するように前記2つの対向する面上に配置された一対の多点フローディストリビュータであって、前記電解質の搬送を行うために前記入口チャネルと前記出口チャネルとの間の連通を可能にする通路を有する多点フローディストリビュータを含み、前記バイポーラプレートが、複数のプロトン交換膜及び複数の電極のそれぞれのプロトン交換膜及び電極によって互いに分離され、前記平面セルが、フロー電池スタックを構成するように互いにアライメント及びスタッキングされる、フロー電池。
【請求項2】
前記入口チャネル及び前記出口チャネルが交互嵌合する、請求項1に記載のフロー電池。
【請求項3】
前記多点フローディストリビュータが、表面を有し、及び前記表面上で均質に離間した複数の孔を有する、請求項1に記載のフロー電池。
【請求項4】
多点フローディストリビュータが、前記孔を前記入口チャネル及び前記出口チャネルにアライメントさせて前記バイポーラプレートフローフィールドの上にそれぞれ配置される、請求項3に記載のフロー電池。
【請求項5】
正電極及び負電極が、前記多点フローディストリビュータの前記表面上に配置される、請求項1に記載のフロー電池。
【請求項6】
前記多点フローディストリビュータが、8mmの間隔で前記表面上に一様に分布した複数の孔を有し、異なる酸化状態でバナジウムイオンを有する前記電解質が、前記孔を通って流れ、及び前記フローディストリビュータ表面上に配置された前記電極を横方向に通過し、前記バナジウムイオンの電気化学反応によって、電気エネルギーが生成されるとともに、(a)外部負荷、及び(b)前記バナジウムイオンに貯蔵される化学エネルギーに変換される、の一方に選択的に出力される、請求項3に記載のフロー電池。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本出願は、2017年3月27日付けで出願された米国仮特許出願第62/476,945号明細書の優先権を主張するものである。この米国仮特許出願の開示全体が、参照により本明細書に全体として援用される。
【0002】
本発明は、バナジウムレドックスフロー電池のバイポーラプレート構造に関し、特に、グラファイト多孔性電極が、グラファイトバイポーラプレートの流入-流出チャネルに埋設された多点フローディストリビュータユニットとインタフェースされるバナジウムレドックスフロー電池のバイポーラプレート構造に関する。
【背景技術】
【0003】
フロー電池とは、1つ又は複数の溶解電気活性物質を含有する電解質が、化学エネルギーを直接電気エネルギーに変換する電気化学セルを通って流れるタイプの充電式電池である。電解質は、外部タンクに貯蔵され、リアクタのセルを通るようにポンプで送り込まれる。
【0004】
レドックスフロー電池は、レイアウトに柔軟性があり(電力コンポーネントとエネルギーコンポーネントとの分離により)、寿命期間が長く、反応時間が速く、充電の平滑化を行う必要がなく、及び有害な放出がないという利点を持つ。
【0005】
フロー電池は、1kWh~数MWhのエネルギー需要を持つ固定用途に使用される:これらは、グリッドの負荷を平滑化するために使用され、グリッドでは、電池が、夜間に低コストでエネルギーを蓄え、及びそれを値段がより高いときにグリッドに戻すために使用されるが、太陽エネルギー及び風力などの再生可能資源による電力を蓄え、それをエネルギー需要のピーク時に提供するためにも使用される。
【0006】
具体的には、バナジウムレドックス電池は、2つの電解質がプロトン交換膜によって分離される1組の電気化学セルから成る。両電解質は、バナジウムに基づく:正半電池の電解質は、V4+イオン及びV5+イオンを含有するが、負半電池の電解質は、V3+イオン及びV2+イオンを含有する。これらの電解質は、幾つかのやり方、例えば、硫酸(H2SO4)中の五酸化バナジウム(V2O5)の電解溶解によって準備され得る。使用される溶液は、強酸性のままである。バナジウムフロー電池では、2つの半電池が、ポンプによってセル中を循環するようにされた非常に大量の電解質を含有する貯蔵タンクにさらにつながれる。このような液体電解質の循環は、ある程度の空間占有を必要とし、及び携帯用途でバナジウムフロー電池を使用する可能性を制限し、実際には、それらを大型の固定設置に限定する。
【0007】
電池の充電中は、正半電池において、バナジウムが酸化されて、V4+からV5+に変換される。獲得された電子は、負半電池移動し、そこで、それらは、バナジウムをV3+からV2+へと還元する。動作中に、この過程が逆に生じ、及び開回路において、25℃で1.41Vの電位差を得る。
【0008】
バナジウムレドックス電池は、他の全ての電池技術において一般的に生じるようにプレート又は電極上ではなく、電解質に電気エネルギーを蓄える唯一の電池である。
【0009】
他の全ての電池とは異なり、バナジウムレドックス電池では、タンクに収容された電解質は、一旦充電されると、自動放電を受けないが、電気化学セル内で静止した電解質の部分は、時間と共に自動放電を受ける。
【0010】
電池に貯蔵された電気エネルギーの量は、タンクに収容される電解質の体積によって決定される。
【0011】
特に効率的な、ある具体的な建設的解決策によれば、バナジウムレドックス電池は、高分子電解質によって互いに分離された2つの電解質が内部に流れる1組の電気化学セルから成る。両電解質は、溶解バナジウムの酸性溶液によって構成される。正電解質は、V5+イオン及びV4+イオンを含有するが、負電解質は、V2+イオン及びV3+イオンを含有する。電池の充電中は、正半電池では、バナジウムが酸化するが、負半電池では、バナジウムが還元される。放電ステップ中は、この過程が逆になる。電気的に直列に複数のセルを接続することにより、セル数×1.41Vに等しい、電池全体の電圧の増加が可能となる。
【0012】
充電段階の間は、エネルギーを貯蔵するために、ポンプがオンにされることにより、電気化学関連セル内で電解質が流れるようにする。電気化学セルに印加された電気エネルギーは、膜によるプロトン交換を促進して、電池を充電する。
【0013】
放電段階の間、ポンプがオンにされることにより、電解質が電気化学セル内で流れ、関連セルにおいて正圧が生じ、その結果、蓄積されたエネルギーが解放される。
【0014】
電池の動作中は、電解質は、下から上へと多孔性電極の厚さを通って直線的に流れ、電荷移動をもたらす。
【0015】
背景技術:
図1は、従来のバナジウムレドックスフロー電池を示す模式図である。図1に示すように、従来のバナジウムレドックスフロー電池は、複数の正電極7、複数の負電極8、正電解質1、負電解質2、正電解質タンク3、及び負電解質タンク4を含む。正電解質1及び負電解質2は、それぞれタンク3及びタンク4に貯蔵される。同時に、正電解質1及び負電解質2は、それぞれ、図1において矢印でも示される各ループを形成する正接続パイプライン及び負接続バイプラインを通って正電極7及び負電極8を通過する。
【0016】
ポンプ5及びポンプ6は、連続して電解質を電極に運ぶための接続パイプライン上に設置されることが多い。また、電力変換ユニット11、例えばDC/AC変換器は、バナジウムレドックスフロー電池で使用されてもよく、及び電力変換ユニット11は、正接続ライン9及び負接続ライン10を介してそれぞれ正電極7及び負電極8に電気的に接続され、電力変換ユニット11はまた、外部入力電源12によって生成された交流電力をバナジウムレドックスフロー電池充電用の直流電力へと変換するために、又はバナジウムレドックスフロー電池によって放電された直流電力を外部負荷13へ出力するための交流電力へと変換するために、外部入力電源12及び外部負荷13にそれぞれ電気的に接続されてもよい。
【0017】
図2は、当該技術の現状による従来のフロー電池スタックの模式的アクソノメトリック図である。これは、2つの両エンドプレート16、複数のガスケット14、複数の正電極15、複数の負電極18、フローフィールド20が埋設された複数のバイポーラプレート19、及び一連のプロトン交換膜17を含む。
【0018】
図3に示すように、電解質22は、それぞれ、バイポーラプレート19に位置する正接続孔及び負接続孔に接続されて、図3において波線で模式的に示される領域を形成する領域22a、22b、及び22c(図3に示す)に対応するフローフィールド領域20(図2に示す)を介して電極15及び18を通って流れる。フロー方向は、入口フロー21における矢印、及び出口フロー23における矢印によって示される。入口フロー及び出口フローは、一対の入口開口及び一対の出口開口が存在するような開口(参照符号なし)を通って生じる。模式的に示した入口フローは、両入口開口(すなわち、入口フロー21と同じ側の対)を通って生じ、及び両出口開口(すなわち、出口フロー23と同じ側にある対を通って生じる。
【0019】
しかし、上記の従来のフロー電池の欠点には、電解質の分極の集中が含まれ、これは、電池における電子移動の効率の低下を引き起こすので、エネルギー効率が低下する。図3に示すように、正電極15及び負電極18の厚さを直線的に通過し、前記直線的フロー中に、電荷移動が生じ、従って、図6において、分極の集中現象を模式的に示すために陰影帯88、90、92、94、96、及び98を用いて示されるように、活性化エリア上で分極の大きな差が生じる、電解質フロー22。
【0020】
図4は、当該技術の現状による従来電極(15、18)の模式的アクソノメトリック図であり、及びインターデジタルフローフィールドの典型例である。これは、図6に示したフロースルー型の改良であり、インターデジタルフローフィールド型は、フロースルー型の約3倍の電力密度を有する。ここでは、入口フロー方向Dは、出口フロー方向Fと共に示されている。これにより、帯78、80、82、84、86、及び88によって模式的に示されるように、次第に増加する分極がもたらされる。これは、分極の漸増を示すためのものである。図6は、同様に入口フロー方向D及び出口フロー方向Fを有する、当該技術の現状による別の従来電極の模式的アクソノメトリック図である。
【0021】
図4及び図6の両方で、電極の透明な部分(流入)は、分極が無視できる程度のエリアであり、一方暗いエリアは、分極が集中した部分(流出)である。つまり、電極の透明な部分は、分極が限界に達した暗い部分により、完全に活用されない。電極の全ての部分が均質な分極(電圧に対応する)を有するときに理想的な状態が生じ、これは、電極表面全体にわたり同じ電圧を電解質に供給することが可能である場合にのみ起こる。
【0022】
本発明は、上記表面に対して電解質の実質的に均質な供給が存在することを確実にし、それによって、電解質の過充電が許可されない流入と流出との間の短い距離により、可能な実質的にほぼ最大の性能で、全ての電極部分を活用する。
【0023】
図4及び図6の意図は、電気化学反応の結果を模式的に示すことであり、特にこれらの図は、電極表面上の電気分極を模式的に示す。分極は、内部抵抗により、及びフロー電池の場合には主に電極上の電解質拡散により、基本的に過電圧であり、場合によっては、遅い電解質フロー或いは停滞が、局所的臨界過電圧、すなわち分極を生じさせる。当該技術の現状では、経路中に電極を通って流れる電解質は、電極の最後の部分が、入力に対してより高い電圧を有する電解質を供給されるように電荷を受け、この過電圧は、バナジウムフロー電池にとって容認可能な最大電圧に非常に近い。これは、電力に対する制限である。
【0024】
図5は、バイポーラプレート19において、内部に埋設された2つのデッドエンドチャネルを有し、及び電解質フロー24を正電極15及び負電極18の厚さにわたり、図示される流線路によって示されるように横方向に流れさせる当該技術の現状による別のインターデジタルフローフィールド設計を示す。ここでは、フローフィールド領域24は、帯24a、24b、及び24cを有して示されている。またこの場合には、電極を通過する前のチャネル内の電解質の直線的フロー中に、電解質が電極に接触しているので、電荷移動が生じ、いずれにせよ、図4に示されるように、活性化エリア上で分極の差が生じる。一連の陰影帯は、現象を表すために示されている。
【0025】
従って、上記の従来のフロー電池設計によって提示された課題を解決して、電流密度を増加させ、及びエネルギー効率を向上させることによって、電解質の動作圧を低下させることができるように効率的な電荷移動を達成するために、電極が均質に供給を受けるバナジウムレドックスフロー電池を提供する必要性がある。
【発明の概要】
【課題を解決するための手段】
【0026】
従って、本発明の目的は、少なくとも2つのエンドプレート、少なくとも1つのプロトン交換膜、間にプロトン交換膜を挟んだ少なくとも2つの多孔性電極、複数のガスケット、両側にデッドエンドフローフィールドチャネルを有する少なくとも1つのバイポーラプレート、複数の孔を有する少なくとも2つの多点フローディストリビュータを含む革新的バイポーラプレート設計を有するバナジウムレドックスフロー電池スタックを提供することである。前記多点ディストリビュータは、複数の孔が入口フローチャネル及び出口フローチャネルとアライメントされるように、フローフィールドに対応してバイポーラプレートの上に配置され、正電極及び負電極は、多点フローディストリビュータの上に配置され、多点フローディストリビュータに埋設された孔が、異なる酸化状態でバナジウムイオンを有する電解質が電極を通って流れることを可能にするように機能し、電解質におけるバナジウムイオンの電気化学反応によって、電気エネルギーが生成されるとともに、外部負荷に出力される、又は外部電気エネルギーが、バナジウムイオンに貯蔵される化学エネルギーに変換される。本発明の新規のバイポーラプレート設計は、バナジウムレドックスフロー電池で使用され得る。
【0027】
電解質の分極の集中を含む上記の従来のフロー電池の問題は、本発明の新規のバイポーラプレート設計を使用することによって改善される。それと同時に、本発明では、電極が均質な反応エリアを有するので、電気化学エネルギー変換の効率が向上し、電解質の動作圧が低下する。
【0028】
これは、図4のインターデジタルフローフィールド型と比べて約2倍の電力密度の改善であり、図6のフロースルー型と比べて約6倍の電力密度の改善である。
【0029】
本発明のさらなる目的は、低コストで、実際に提供することが比較的簡単であり、及び応用が安全であるフロー電池を提供することである。
【0030】
本発明のさらなる特徴及び利点は、添付の図面において非限定例として図示される、本発明のフロー電池の好ましいが排他的ではない実施形態の説明からより明白となるだろう。
【図面の簡単な説明】
【0031】
図1】従来のバナジウムレドックスフロー電池を示す模式図である。
図2】当該技術の現状によるフロー電池スタックの模式的アクソノメトリック図である。
図3】当該技術の現状によるフロースルー型の従来のバイポーラプレート設計の模式的アクソノメトリック図である。
図4】当該技術の現状によるインターデジタル型の従来の電極の模式的アクソノメトリック図である。
図5】当該技術の現状によるインターデジタル型の別のバイポーラプレート設計の模式的アクソノメトリック図である。
図6】当該技術の現状によるフロースルー型の別の従来の電極の模式的アクソノメトリック図である。
図7】本発明によるバイポーラプレート設計の模式的アクソノメトリック図である。
図8】本発明によるバイポーラプレート設計の模式的アクソノメトリック図である。
図9】本発明に従って機能する電極の模式的アクソノメトリック図である。
図10】本発明によるフロー電池スタックの模式的アクソノメトリック図である。
図11】バイポーラプレートの両側及びコンポーネントのアセンブリを示す、バイポーラプレートのチャネルに対して横方向に沿った模式的断面図である。
図12】デッドエンド入口チャネル及び平行出口チャネル、並びにデッドエンドチャネルに入るフローを示す、バイポーラプレートの入口部分の拡大図である。
【発明を実施するための形態】
【0032】
図1図6は、上記で説明済みである。
【0033】
図7は、図3及び図5に関して上記で説明したタイプのバイポーラプレート19を有するバイポーラプレートアセンブリの模式的アクソノメトリック図である。本発明のバイポーラプレート19は、図7に示すように、複数の平行デッドエンド入口チャネル25(以下、入口フローフィールドとも呼ばれる)と、入口チャネル25と交互嵌合する複数のデッドエンド出口チャネル26(以下、出口フローフィールドとも呼ばれる)とを有する点で異なる。この構成の拡大図は、これを明白に示す図12に提供される。
【0034】
具体的には、図7は、図11に明白に示されるように、2つの互いに反対の面にそれぞれ、入口デッドエンドフローフィールド25、出口フローフィールド26、複数の孔28を有する多点フローディストリビュータ27を有するバイポーラプレート19を含む、バナジウムレドックスフロー電池の革新的バイポーラプレートアセンブリを示す。孔28は、比較的近い孔間の間隔で(例えば、8mm離れて)存在し、孔28は、多点フローディストリビュータ27の表面上で実質的に均一に分布する。バイポーラプレート19の一方の側のみが示され、反対の側は、同一であり(図11を参照)、従って、図7には示されない。
【0035】
多点フローディストリビュータ27は、孔28がチャネル25及び26とそれぞれ連通するようにアライメントされるように、バイポーラプレートフローフィールド25及び26の上に配置される。正電極15は、バイポーラプレート19の一方の側において多点フローディストリビュータ27の上に配置され、負電極18は、バイポーラプレート19の反対側において、それぞれの多点フローディストリビュータ27の反対側の面上に配置される。これを示す図12を参照のこと。
【0036】
図8は、入口流体路、横方向流体フロー、及び出口流体路を示すバイポーラプレートアセンブリの模式的アクソノメトリック図である。これらは、分かりやすくするために、異なる陰影で示され、入口フローは、点刻され、出口フローは、黒無地である。横方向フローは、半円ループとして示され、これは、実際の流体フローがどのように見えるかをほぼ表す。横方向流体フローの詳細図に関しては、図11を参照のこと。
【0037】
図9は、上記の図7及び図8に示された構成で機能する電極15、18の模式的アクソノメトリック図である。入口フロー方向は、Dとラベル付けされた矢印によって示され、出口フロー方向は、Fとラベル付けされた矢印によって示される。図8に関して上述した横方向流体フローにより、分極の帯は、全体的な流体フローの方向に対して横方向に走り、暗帯112と交互配置された明帯110にある。陰影は、電極15、18の表面にわたり、はるかにより均一に分布する。これは、上記で説明した図4及び図6の帯と比較して、帯110及び112により、分極の集中がより少ない状態で、電極15、18の表面全体が使用されていることを示す。
【0038】
図10は、本発明によるフロー電池スタックの模式的アクソノメトリック図である。フロー電池スタックは、上プレート及び下プレート16(これらは、好ましくは、構造的にバイポーラプレート19と同じであるが、一方の側のみが使用されている)を有し、これらはそれぞれ、一連のカソード電極15、一連のプロトン交換膜17、2つの互いに反対の面上に多点フローディストリビュータ27を備えた一連のバイポーラプレート19(図11に示すように)、一連のアノード電極18、一連のガスケット14によってそれぞれ構成された未定義の数(すなわち、任意の選択された数)の平面セルを含み、上記の全てが、特定の平面セルに電解質を供給するための対応するポンプ(図10では不図示)を備え、電解質の独立した搬送のために2つの互いに反対の面上に多点フローディストリビュータ27を備え、及びプロトン交換膜17及び電極15、18によってセルが互いに分離される、フロー電池スタックを構成する。
【0039】
好ましい実施形態における電池スタックの平面セルは、積層パックを構成するように互いにアライメント及びスタッキングが行われる。エンドプレート19は、積層パックの少なくとも1つの前面に配置される。エンドプレート19は、入口側に一対のアクセスチャネル(これらは、入口側の大きな一対の開口(参照符号なし))、及び出口側に一対の排出開口(参照符号なし)を備え、2つのポンプによって(図1に示すように)電解質タンクから届いた電解質へのアクセスを提供し、及び出て行く電解質のための排出出口を提供し、これらは図1の各タンクに接続される。
【0040】
本発明の図8に記載されるように、多点フローディストリビュータ27上で、電解質フローは、それぞれ入口デッドエンドフローフィールド25に対応して接続された供給孔28によって出てきて、電解質は横方向に流れ、非常に短い経路をたどり、それぞれ出口フローフィールド26に接続された孔28内に流れ込む。
【0041】
図8に示すように、多点フローディストリビュータ27は、表面上に均質に分布した複数の孔28を有する。これらの孔は、互いに近い距離(例えば、8mm)で配置され、電解質フロー29は、これら複数の孔28を通って流れる。これらのフローは、ディストリビュータ表面上に広がり、矢印によって示されるように複数の電解質フロー29が生じる。上述の通り、複数のフロー29は、表面上で一様に分布し、これらのフローは、フローディストリビュータ表面に配置された電極15~18全体にわたり横方向に通過し、入口孔と出口孔との間の短い経路により、電解質への電荷移動は、電極表面全体にわたり均質な状態で局所的に生じる。
【0042】
これは、図4のインターデジタルフローフィールド型と比べて約2倍の電力密度の改善であり、図6のフロースルー型と比べて約6倍の電力密度の改善である。
【0043】
本発明の図9に示すように、電解質への電荷移動が色の変化によって示される、動作中の電極15~18が示されている。電荷移動は、電極表面全体で均質に分布するが、電流密度は増加し、エネルギー効率は改善し、及び動作圧は低下している。
【0044】
本発明の重要な特徴は、高効率バイポーラプレート設計が、バイポーラプレート及び多点フローディストリビュータを一緒に組み立てることによって得られることであり、グラファイトバイポーラプレート19では、電解質の均質分布及び分極の集中の問題を低減することができるように電解質をディストリビュータ孔へと流れるようにするためのフローフィールドチャネルが作られる。一方、電極の反応度は、電解質フローに対する電荷移動がより効率的となり、エネルギー変換が改善し、及び動作圧が低下するように、互いに近い距離にある複数の孔の組み合わせによって増大する。本発明によって提供される設計は、フロー電池だけでなく、例えば、燃料電池、電解槽、及びフロー分布が重要な他の全ての電気化学デバイスなどの各種の電気化学デバイスに適用することができる。
【0045】
図11は、バイポーラプレートの両側及びコンポーネントのアセンブリを示す、バイポーラプレートのチャネルに対して横方向に沿った模式的断面図である。これらは、上記で説明済みである。
【0046】
図12は、デッドエンド入口チャネル25及び平行出口チャネル26、並びにデッドエンドチャネル25、26に出入りするフロー(矢印の使用により)を示す、バイポーラプレートの入口部分の拡大図である。これは、上記に説明済みである。
【0047】
多点フローディストリビュータ27の孔28は、好ましい実施形態では、均一なものとして示されているが、本発明はこれに限定されない。これらの孔は、サイズ、形状、及び場所が異なってもよく、特に流体フロー、フロー経路に沿った圧力、温度、及び分極などの変数を制御するためにそのように異なってもよい。
【0048】
本発明は、その好ましい実施形態に関連して説明を行ったが、添付の特許請求の範囲によって定義されることが意図された本発明の範囲から逸脱することなく様々な修正及び変更を行い得ることが当業者には明白である。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12