(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-10-27
(45)【発行日】2022-11-07
(54)【発明の名称】正弦曲線-放物線混成運動誤差を生成するように歯車を機械加工する方法、それにより製造された歯車、およびその方法を実施するための機械
(51)【国際特許分類】
B23F 5/02 20060101AFI20221028BHJP
B23P 15/14 20060101ALI20221028BHJP
B23F 17/00 20060101ALI20221028BHJP
【FI】
B23F5/02
B23P15/14
B23F17/00
(21)【出願番号】P 2019553544
(86)(22)【出願日】2018-04-20
(86)【国際出願番号】 US2018028569
(87)【国際公開番号】W WO2018187820
(87)【国際公開日】2018-10-11
【審査請求日】2021-04-14
(73)【特許権者】
【識別番号】500094370
【氏名又は名称】ザ グリーソン ワークス
(74)【代理人】
【識別番号】110001243
【氏名又は名称】弁理士法人谷・阿部特許事務所
(72)【発明者】
【氏名】ハーマン ジェイ.シュタットフェルト
【審査官】中川 康文
(56)【参考文献】
【文献】特表平02-502358(JP,A)
【文献】特開平08-197332(JP,A)
【文献】特表平10-503973(JP,A)
【文献】特表2002-530211(JP,A)
【文献】特表2004-518545(JP,A)
【文献】特表2010-502464(JP,A)
【文献】米国特許出願公開第2012/0209418(US,A1)
【文献】米国特許出願公開第2014/0256223(US,A1)
【文献】国際公開第98/014296(WO,A1)
【文献】国際公開第2015/015806(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
B21D 53/28
B23F 1/00-23/12
B23P 15/14
B24B 53/085
F16H 55/08
G01M 13/02
G05B 19/4093
(57)【特許請求の範囲】
【請求項1】
仕上げ工具を用いて歯車の歯面を機械加工する方法であって、
前記仕上げ工具を回転させ、前記工具と前記歯面を接触させることと、
経路に沿って前記歯面にわたって前記工具を横断するように、前記工具と前記歯車との間に相対運動を提供することと、を含み、
それにより、前記経路が、歯対を形成するために、無負荷または軽負荷下で嵌合歯面と噛み合わされるときに、
軽負荷条件に適応する正弦曲線部分
である上側セクションと、放物線部分
である転移点及び下のセクションとからなる運動グラフ曲線を提供する形態の歯面形状を生成する、方法。
【請求項2】
一方の嵌合歯車部材の歯面表面を機械加工するための第1の工具と、他方の嵌合歯車部材の前記歯面表面を機械加工するための第2の工具と、を用いて、嵌合歯車部材の前記歯面表面を機械加工する方法であって、
前記第1の工具を回転させ、前記第1の工具と前記の一方の嵌合歯車部材の前記歯面を接触させることと、
第1の経路に沿って前記歯面にわたって前記第1の工具を横断するように、前記第1の工具と前記一方の嵌合歯車部材との間に相対運動を提供することと、
前記第2の工具を回転させ、前記第2の工具と前記他方の嵌合歯車部材の前記歯面を接触させることと、
第2の経路に沿って前記歯面にわたって前記第2の工具を横断するように、前記第2の工具と前記他方の嵌合歯車部材との間に相対運動を提供することと、を含み、
それにより、前記第1の経路および前記第2の経路が、嵌合歯対を形成するために、無負荷または軽負荷下で前記嵌合歯車部材が噛み合わされるときに、
軽負荷条件に適応する正弦曲線部分
である上側セクションと、放物線部分
である転移点及び下のセクションとからなる運動グラフ曲線を提供する形態のそれぞれの歯面形状を生成する、方法。
【請求項3】
歯対を形成するために、無負荷または軽負荷下で嵌合歯面と噛み合わされるときに、
軽負荷条件に適応する正弦曲線部分
である上側セクションと、放物線部分
である転移点及び下のセクションとからなる運動グラフ曲線を提供する形態の歯面形状を有する少なくとも1つの歯面表面を備える、複数の歯面表面を有する、歯車。
【請求項4】
自由形態歯車製造機械であって、前記機械が、コンピュータ制御および複数のコンピュータ制御された軸を有し、前記コンピュータ制御が、前記複数のコンピュータ制御された軸を制御するように動作可能であり、それにより、工具と、少なくとも1つの歯面を有する工作物とが、互いに対して移動可能であり、
前記コンピュータ制御が、コマンドを有するコンピュータプログラムを含み、それにより、前記歯車製造機械の前記複数の軸が、経路に沿って前記歯面にわたって工具を横断するように、前記工具と前記工作物の間に相対運動を提供するように指示され、それにより、前記経路が、歯対を形成するために、無負荷または軽負荷下で嵌合歯面と噛み合わされるときに、
軽負荷条件に適応する正弦曲線部分
である上側セクションと、放物線部分
である転移点及び下のセクションとからなる運動グラフ曲線を提供する形態の歯面形状を生成する、自由形態歯車製造機械。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、歯車と、歯車を機械加工する方法と、に関し、結果として得られる歯車が、正弦曲線要素と放物線要素との組み合わせを含む混成歯接触運動伝達誤差により記述される回転特性を示す。
【背景技術】
【0002】
歯車業界において、噛み合う歯表面間の軸受接触領域は、歯の境界内に接触領域を保持し、それにより歯表面が、歯の損傷および/または歯車の欠損に繋がり得るそれらのエッジで接触することを防止するために、制限されなければならないことが、公知である。
【0003】
歯接触領域を制限するために、修正、特に「クラウニング」を導入することにより、理論的な共役歯面表面を修正し、無負荷または負荷下での接触領域を制限し、歯車ハウジング公差、歯車部材および組立体における不正確、ならびにひずみなどの事象に対して鈍感にさせることが必要である。したがって、回転中に接触する嵌合フランクの歯表面全体の代わりに、完全に共役な歯面、ならびにひずみおよび公差がゼロである駆動システムに伴う理論的な場合には、修正された嵌合フランクは、通常、1つの点において、または線に沿って、互いに接触する。したがって、嵌合フランク表面は、この点において、あるいはその線に沿ってのみ、共役である。接触は、接触領域が、実際のひずみ、公差、および負荷の影響にも関わらず、歯の境界中に留まるような寸法の領域に制限される。
【0004】
しかしながら、クラウニングでは非共役部材が互いに噛み合って回転することによりもたらされた運動誤差が生じる。また、運動誤差により、騒音が発生する。
【0005】
かさ歯車およびハイポイド歯車は、通常、歯プロファイル(高さ、または根元から頂部まで)方向および長さ(つま先からかかと、または面幅)方向の歯の表面での環状クラウニングの結果である放物線運動誤差を備える。クラウニングにより、歯車ボックスハウジング、軸受およびシャフト、ならびに歯車自体の負荷によるひずみが許容される。これらのひずみは、角度シャフト方向、および多くの場合の片持ち形式ピニオン支持に関連する、円筒歯車伝達の場合よりも大きな量となる。一般に、クラウニングが増加すると、嵌合歯対にもたらされる運動誤差の量も増加する。鳴き音の増加は、エッジ接触による損傷から歯を保護するが、付随する、もたらされた運動誤差の量の増加により、歯車の平滑な回転が妨げられる。
【0006】
クラウニングをしていないかさ歯車セットは共役となり、そのことは、リング歯車の歯数をピニオンの歯数で割った比率で正確に駆動ピニオンの回転を伝達することを意味する。
図1の上部に示される放物線運動誤差(経時的Δφ)は、クラウニングにより引き起こされ、
図1の中間の図の運動誤差における1次導関数に示されるように角速度Δωの変化につながる。すべての新規の歯対の係合の瞬間(回転中)に、初期速度レベルが再確立される必要がある。
図1の下部の運動誤差の2次導関数は、角加速度グラフΔαを示す。歯係合の点において、上のΔωグラフにおける急激な速度段の結果である頂点を示す。加速度頂点は、歯車ノイズの主な原因である衝撃と考えられる。
【0007】
図2に示されるような二重波形態により、伝達ノイズでの著しい低減が可能となり、これは、同一出願人による米国特許第6,390,893号に開示されており、その開示は参照により本明細書に組み込まれる。この波形態は、かさ歯車製造機械の非線形運動学で可能であった。二重波は、重なった、連続する運動グラフにつながる。
図2の運動グラフは、1つの大きな衝撃ではなく、歯の噛み合いごとに5つの微小衝撃を生成する。
図2の運動グラフを使用すると、歯衝突により生じる歯車ノイズの問題を低減することができるが、解消することはできない。
【発明の概要】
【0008】
本発明は、歯車機械加工工具を用いて、歯車の歯面を機械加工する方法に関する。本方法は、工具を回転させ、工具および歯面を接触させることを含む。経路に沿って歯面にわたって工具を横断するように、工具と歯車との間に相対運動が提供され、それにより、その経路は、無負荷または軽負荷下で嵌合歯面と噛み合わされ、歯対を形成するときに、正弦曲線部分および放物線部分を含む運動グラフ曲線を提供する形態の歯面形状を生成する。
【0009】
本発明はさらに、一方の嵌合歯車部材の歯面表面を機械加工するための第1の工具、および他方の嵌合歯車部材の歯面表面を機械加工するための第2の工具を用いて嵌合歯車部材の歯面表面を機械加工する方法に関する。本方法は、第1の工具を回転させ、第1の工具および嵌合歯車部材の1つの歯面を接触させることを含む。第1の経路に沿って、歯面にわたって第1の工具を横断するように、第1の工具と1つの嵌合歯車部材との間に相対運動が提供される。本方法は、第2の工具を回転させ、第2の工具、および他方の嵌合歯車部材の歯面を接触させることをさらに含む。第2の経路に沿って歯面にわたって第2の工具を横断するように、第2の工具と他方の嵌合歯車部材との間に相対運動が提供される。これにより、第1の経路および第2の経路は、嵌合歯車部材が無負荷または軽負荷下で噛み合わされ、嵌合歯対を形成するときに、正弦曲線部分および放物線部分を含む運動グラフ曲線を提供する形態のそれぞれの歯面形状を生成する。
【0010】
本発明はまた、複数の歯面表面を有する歯車に関し、少なくとも1つの歯面表面は、無負荷または軽負荷下で、嵌合歯面と噛み合わされ、歯対を形成するときに、正弦曲線部分および放物線部分を含む運動グラフ曲線を提供する形態の歯面形状を有する。
【図面の簡単な説明】
【0011】
【
図1】放物線運動グラフおよび運動グラフの最初の2つの導関数を示す図である。
【
図2】連続した歯対間で重なりを提供する二重波のような形状である代替的な運動グラフ関数を示す図である。
【
図3】4つの正弦曲線関数を有する方形波の近似を示す図である。
【
図4】上部に無負荷伝達の場合の放物線伝達グラフを示す図である。
図4の下部には、無負荷歯接触(領域45)の外側の余剰部分を含む放物線伝達グラフ49が描かれる。また、
図4の下部には、負荷伝達48の場合の伝達グラフの図が示される。
【
図5】3組の連続する歯対の正弦曲線運動グラフ、角速度グラフ、および角加速度グラフを示す図である。
【
図6】無負荷伝達の場合の正弦曲線運動グラフ60、および負荷伝達の場合の1つの噛み合う歯対の正弦曲線運動グラフ68を示す図である。69は、図示された例では、負荷を伝達しない連続した歯対の運動グラフの一部である。転移点43および44の下に余剰運動グラフ量(領域67)を有する放物線運動グラフが
図6の底部にある。
【
図7】負荷伝達により量64だけ移動された運動グラフ68を示す図である。転移点65および66は、線74と接続される。
図7の中央のグラフは、本発明の混成運動グラフ70を示す。
図7の下部には、負荷伝達の場合にそれがゆがんだときの混成伝達グラフが示される。
【
図8】本発明の混成運動グラフを実現するために提案された普遍的運動歯セクションを示す図である。
【
図9】正弦曲線修正を有する刃切削エッジを示す図である。
【
図10】歯車のための混成運動グラフ開発の結果を示す図である。
【発明を実施するための形態】
【0012】
本明細書で使用される「発明(invention)」、「本発明(the invention)」、および「本発明(the present invention)」という用語は、本明細書の対象のすべて、および以下の任意の特許請求の範囲を広く指すことが意図される。これらの用語を含む記述は、本明細書に記述された対象を限定する、または以下の特許請求の範囲の意味もしくは範囲を限定すると理解されるべきではない。さらに、本明細書は、本出願の特定部分、段落、記述または図面において、すべての特許請求の範囲によりカバーされる対象を説明または制限しようとするものではない。本明細書で使用される表現および用語は、説明のためのものであり、限定的であると見なされるべきではない。本対象は、明細書全体、すべての図面および以下のあらゆる特許請求項を参照することにより理解されるべきである。本発明は、他の構造も可能であり、様々な方法で実施または実行されることが可能である。
【0013】
本明細書の「含む」、「有する」、および「含む」、ならびにその変形の使用は、それ以降に列挙された項目およびその等価物ならびに追加の項目を包含することを意味する。
【0014】
ここで、本発明の詳細が、単に例としてのみで本発明を例証する添付図面を参照して考察される。図面において、類似の特徴または構成要素は、同様の参照番号によって参照される。
【0015】
上述されるように、
図1は、上部に、入力シャフト(ピニオン)が角度φ
Pinionだけ回転した出力シャフト(リング歯車)のΔφ
Gear変化を示す放物線運動グラフを示す。
図1の中央の図は、一定のピニオン回転数の場合に歯車の角速度変化を表す運動グラフの1次導関数dΔφ
Gear/dφ
Pinionである。
図1の下の図は、一定のピニオン回転数の場合に、駆動歯車の角加速度を表す運動グラフの2次導関数d
2Δφ
Gear/dφ
2
Pinionを示す。鋸歯状速度グラフにおける段により、加速度グラフに頂点が生じる。次の歯対の噛み合いの開始において、高角速度を再確立するために、加速度頂点が物理的に必要とされる。加速度頂点は、歯の噛み合い衝突としても知られる衝撃に等しい。歯の噛み合い衝突は、歯車ノイズの主な原因である。φ
Pinionを超える運動グラフΔφ
Gearの振幅を低減することにより、噛み合い衝突を低減するが、しかし今度は、それにより、噛み合うフランク表面がさらに共役になり、またさらに負荷に影響されたひずみが発生しやすくなる。
【0016】
先で考察された
図2は、連続する歯対間に重なりを提供する二重波状形状である代替的な運動グラフ関数を示す。元の放物線形状運動グラフは、上側の領域で、4次関数で置き換えられている。噛み合う歯表面はより共役であるが、元の放物線形状を有する入口および出口点の下の運動グラフの連続により、また不利益なく高い負荷が伝達され得る。
図2の運動伝達グラフは、1つの大きな入口衝突を5つの微小衝突に変換することにより、振動およびノイズの放出を低減するが、ノイズ生成衝突を完全には排除しない。
【0017】
固体構造を介して振動を伝達することの、固体構造を振動させることによって伝導される大気波動を生成することの、および人間の耳への大気波動の伝達の機械学は、ほとんどの既知の動的事象が正弦曲線であることを教える。これはまた、正弦曲線成分がないように見える信号にも適用される。
図3は、第1(31)、第2(32)、第3(33)、および第4(34)の異なる正弦曲線周波数のフーリエ級数で近似された方形波信号30を示す。方形波30は、第1の段で、方形波と同じ周波数の正弦関数31で近似される。第2の段で、正弦関数31に加えて、方形波の周波数の3倍の正弦波で方形波が近似され、グラフ32が得られる。第3の段で、方形波周波数の5倍の正弦波が追加され、グラフ33が得られる。第4の段で、方形波をさらに近似するために、方形波の7倍の周波数の正弦波が追加される。近似関数と方形波との間の残留近似誤差を低減するために、正弦波の数(次数)が無限数まで増加させることができる。
【0018】
方形波生成装置は実際には方形波を生成しないが、所望の方形波をモデル化するためにフーリエ原理を利用する。電気入力信号が方形波(多数の異なる周波数の正弦波で構成される)である場合には、スピーカから送信されるのもまた多数の方形波である。
【0019】
心理音響学は、受信された信号が正弦曲線ではない場合でも、蝸牛およびその蓋膜が、正弦曲線信号を受信し、認識するために生成されることを教示する。受信した大気波動信号が正弦曲線ではない場合には、異なる正弦曲線信号を認識する別個の領域を備える蓋膜は、フーリエ解析と事実上類似した周波数加算を実行しようとする。
【0020】
空気(または他の媒体)を介した音の伝達に関する知識、および人間の耳によるこの音の認識により、
図3の「1次高調波」31のような単一の正弦波は、主観的に、3つの追加のより高い周波数で近似された方形波よりも著しく静かに聞こえるという結論に至る。実際の実験が、単一の「1次高調和」正弦波が、静かで滑らかに聞こえ、邪魔にならないことを示す。また、その実験は、
図3の下部に、重ねられた周波数が、甲高く、うるさく、不快に聞こえることを証明する。
【0021】
単一の正弦波が、同じ振幅を有する他の波形態よりはるかに静かに人間の耳に感じられるという物理学上の結論は、正弦曲線関数が、その波の最大から最小まで可能な限り滑らかな動きを提供するという事実に基づく。
【0022】
図4は、低トルクからゼロトルクまでを伝達するときに、連続して噛み合う3つの歯対の有効な運動伝達グラフ40、41、および42を示す。
図4の下部には、無負荷歯接触の外側の余剰部分(転移点43および44の下の領域45)を含む放物線伝達グラフ49が描かれる。
図4の下部には、負荷伝達に影響されたひずみ48の場合の伝達グラフの図が示される。負荷下の伝達グラフは、デジタルフランク表面を使用して有限要素法計算を介して生成され得る。すべての典型的な場合において、負荷下の伝達グラフは、調和曲線に類似する。それは、低負荷伝達と比較して、部分的または高負荷下で、伝達が、より少ないノイズを放出する典型的な伝達ノイズ現象として観察され得る。
【0023】
トルクが加えられると、有効なグラフは交点43および44の下側の元の運動グラフ40、41、および42を変形する。エッジの粗い接触を避けるために、放物線形状運動グラフは、交点43および44の下で45の量だけ拡張される。これらの拡張された放物線により、負荷に影響された運動グラフ変形48の場合には、連続する歯対は、セクション46および47において、2組の歯の伝達接触を同時に開発することができる。歯車セットの最大限に許容可能な負荷は、放物線延長45により制限される。負荷下で、運動グラフは、正弦曲線関数に類似した形状を有する周期関数として現れることは興味深い観察である。最も一般的な用途でのかさ歯車およびハイポイド歯車のノイズの重要な条件は、グラフ40、41、および42が表すゼロ負荷から低負荷までの条件である。
【0024】
本発明の方法は、歯車のための、低負荷ノイズ放出を低減する運動伝達グラフの正弦曲線形状を提案する。
図5は、上部に、歯53、54、および55の3つの連続する対の噛み合いを表す余弦曲線形状の運動グラフ50を示す。一定のピニオン回転数の場合に、歯車の角速度変化を表す運動グラフdΔφ
Gear/dφ
Pinionの1次導関数は、
図5の中央にグラフ51として示される。
図5の下部グラフ52は、一定のピニオン回転数の場合に、駆動歯車の角加速度を表す運動グラフd
2Δφ
Gear/dφ
2
Pinionの2次導関数を示す。運動グラフ50としての正弦曲線関数は、異なる歯の噛み合いの間の滑らかな移行につながり、また転移点(グラフ50、51、および52が、線56および57を通過する点)でのいかなる段あるいは頂点も排除する。
【0025】
図1と比較して、
図5の余弦形状の運動グラフ50は、正弦形状の角速度グラフ51と、角加速度グラフ52としての余弦関数と、を提供する。したがって、角加速度52は、依然として、段または頂点を示さない調和グラフである。
【0026】
図6は、無負荷伝達の場合の正弦曲線運動グラフ60と、負荷の影響を受けた歯のひずみにより、量64だけ移動された1つの噛み合う歯対の正弦曲線運動グラフ68と、を示す。歯接触は、噛み合い接触が、連続的に噛み合う歯対の非変形運動グラフ69の転移点65から転移点66まで急激に段となるまで、方向φ
Pinionにおいてグラフ68に追従する。
図6の下部には、転移点43および44を有する放物線運動グラフ49が示されるが、これは、領域72における余剰運動グラフ74および75を示す。負荷の影響を受けたひずみの場合、領域72での余剰運動グラフは、連続する歯の転移点間の段を防ぐ。
【0027】
図6に示される放物線運動グラフ60は、それがゼロから軽負荷までの伝達にのみ理想的であるという欠点がある。加えられた負荷が、例えば量64だけ運動グラフ60を偏向させると、転移点65および66はもはや整列せず、正弦曲線形状がもはや存在しないために、高ノイズの生成を伴う衝突を引き起こす。本発明の解決策は、点62および63の下に運動グラフの放物線状連続を追加するが、それは放物線運動グラフの転移点43および44の下のセクション67を利用する。
【0028】
図7は、負荷伝達により量64だけ移動された運動グラフ68を示す。伝達誤差がグラフ68に従うと、転移点65からグラフ74に沿って、非変形連続歯対69の正弦曲線部分まで移動する。線74は、元の放物線形状の運動グラフの一部であり、それは、最小化された入口衝撃で、変形運動グラフから非変形運動グラフへの滑らかな移行を可能にする。
図7の中央の図は、ゼロまたは軽負荷の段階での正弦曲線運動グラフ形状70と、ゼロまたは軽負荷の下の放物線状延長部74および75との間の本発明の合成を示す。
図7の下側のグラフは、負荷適用によるその変形後の本発明の運動グラフ73を示す。
【0029】
図7の運動グラフ70において、グラフの上側セクション71は、軽負荷条件に適応する正弦曲線関数であり、転移点62および63の下のセクション72では、運動グラフは放物線関数を有する。この組み合わせにより、振動およびノイズ生成を最小限にするだけでなく、より高い負荷を伝達する能力を提供する。本発明の運動グラフは、正弦曲線要素および放物線要素の混成組み合わせであるが、有限要素法計算(または、THE Gleason Worksから入手可能な360ATなどの歯車試験機で行われる実際の単一フランク試験、同一出願人によるUS7,553,115を参照)は、名目負荷下の運動グラフ73が、依然として正弦関数に似た関数であることを示す。
【0030】
図8は、その上部に、ピニオン歯95の3次元図を示す。普遍的運動コンセプト(UMC)は、かかとセクション、中央セクション、およびつま先セクションで歯面を分離することができる。同一出願人による米国特許第5,580,298号を参照されたく、その開示は、参照により本明細書に組み込まれる。歯95は、フランク表面上に、非修正フランク表面を有するかかと静止角セクション80を備える。追従セクション81は、UMCかかとセクションで修正される。中央セクション82は、中央UMCで修正される。セクション83は、UMCつま先セクションで修正される。最終セクション84は、フランク表面に対するいかなるUMC修正も伴わないつま先静止角セクションである。
図8の下側のグラフは、接触経路96に沿って、入口点93から出口点94までの歯対の噛み合いに対応する運動伝達グラフを示す。運動グラフは、かかと静止角セクション80で始まり、UMCかかとセクション、中央UMCセクション、およびUMCかかとセクションが続き、非修正つま先セクションで終わる。
【0031】
本発明は、本発明の混成運動グラフを実現するために、異なるフランクセクションに対して調整された非線形UMCフランク表面修正の利用を含む。中央セクション82において、既存の放物線関数が修正され、上部91から変曲点89および90までの正弦関数の上半分を近似する。このいわゆる「中央UMC」が、追加の量の材料87および88を除去する。
【0032】
点89および62の間の正弦関数の左下半分は、中央UMCの上に重ねられたUMCかかとセクションにより近似され得る。(中央UMCは最初にフランク全体の上に延設され、それから、選択されたセクション、例えば、かかと、つま先がさらに、追加のUMC修正を重ねることにより修正される)。重ねられたかかとUMCは、元の放物線運動グラフ92に戻る修正量を緩和する。点62と点93との間には、元の運動グラフ形状92が残る。
【0033】
ポイント90と63との間の正弦関数の右下半分は、中央UMCに重ねられたUMCつま先セクションにより近似され得る。重ねられたつま先UMCは、元の放物線運動グラフ92に戻る修正量を緩和する。点63と点94との間には、元の放物線運動グラフ92が残る。
【0034】
本発明の方法は、好ましくは、Krenzerらの同一出願人による米国特許第4,981,402号、またはStadfeldらの米国特許第6、712,566号(これらの開示は、参照により本明細書に組み込まれる)により開示されたタイプの自由形態歯車製造機械で実行される。
図8に示されるように、本発明の運動グラフのための適切な歯面表面を開発することにおいて、運動グラフは、好ましくは、歯接触分析ソフトウェア(The Gleason Worksから商業的に入手可能なUNICALソフトウェアなど)および前述の米国特許第5,580,298号に記述されている手順を使用して、特定の歯表面および所望の接触パターンに基づいて開発される。
【0035】
一旦所望の伝達運動グラフが決定されると、機械設定(例えば、研削機械設定または切削機械設定)が取得され、例えば、砥石車などの工具の動きを、加工物の表面に対して、機械の軸の周辺に、および/またはそれに沿った方向に向け、所望の歯表面を形成する。
【0036】
本方法は、工具を回転させ、工具および歯面を接触させることを含む。経路に沿って歯面にわたって工具を横断するように、工具と歯車との間に相対運動が提供され、それにより、経路は、
図7に示されるように、無負荷または軽負荷下で嵌合歯面と噛み合わされ、歯対を形成するときに、正弦曲線部分および放物線部分を含む運動グラフ曲線を提供する形態の歯面形状を生成する。
【0037】
接触経路の支配的な歯長さ方向(バイアスイン)の場合には、
図8を参照して説明されるように、3つのUMCセクションプラス2つの静止角セクションを用いて、正弦曲線運動グラフが最良に実現され得る。しかしながら、接触方向の経路がプロファイル方向において支配的である場合には、転移点間のセクションで正弦曲線である運動グラフを実現するために、
図9に示されるように、直線または曲線切削(または研削)エッジ102の正弦曲線修正103もまた可能である。正弦曲線関数の代わりに、正弦曲線切削(または研削)エッジ形状103はまた3つの半径で近似することができる。
【0038】
図9は、切削刃プロファイル100の2次元図を示す。刃プロファイルの非切削クリアランス側101は直線である。元の切削プロファイル102は、直線または曲線である。
図9に図示される刃の有効なプロファイル103は、正弦曲線関数アークサイン(180°
*l/l
p)に従う。
図9に図示される正弦関数は、係数「a」のために負の値を必要とする。接触方向の経路が、歯プロファイル(すなわち高さ)方向において支配的である場合には、切削エッジの正弦曲線修正がまた、運動伝達グラフの正弦曲線形状を実現する。
【0039】
歯車切削刃の切削エッジ、または砥石車のプロファイルを、正弦曲線形態に修正することは、通常、運動伝達グラフの、結果として得られる本発明の正弦曲線-放物線形状を提供するために、機械指示された工具および工作物の相対運動に対する代替として行われる。しかしながら、エッジ修正が、運動伝達グラフの、結果として得られる発明の正弦曲線-放物線形状を提供するために、機械指示された、工具および工作物の相対運動と組み合わせて利用されることも考えられる。
【0040】
また、機械指示された、工具および工作物の相対運動を歯車セットの一方の部材、好ましくは、ピニオンに適用し、また、歯車セットの他の部材、好ましくはリング歯車に工具エッジ修正を提供することも考えられる。それらの組み合わせは、運動伝達グラフの発明の正弦曲線-放物線形状を提供する。
【0041】
当業者は、嵌合歯車セットのいずれかの部材の歯表面が、理論的共役歯表面などのなんらかの基準状態にある他の部材の歯表面で、所望の運動グラフに到達するために、機械加工されることもあることを認識する。しかしながら、本発明はまた、噛み合わされるときに、嵌合歯表面が一緒に所望の運動グラフを提供するように、それぞれの工具により機械加工される両方の嵌合部材の歯表面を意図する。この場合には、運動グラフは、
図8に示されるのと同じ一般的な方法で表示される。両方の部材がいくらかの運動誤差を含んでいても、運動グラフは、一方の部材の他方に対する誤差の総量を示す。
【0042】
図10は、表1で記述されるかさ歯車セットの混成動作グラフ開発の結果の一つの例を示す。
【0043】
【0044】
運動グラフ(下のグラフ)は、好ましくは、前述の分析および最適化ソフトウェアUNICALの補助により決定される。上部には、3つのUMCセクションと、2つの静止角セクションとで完成された共役からのフランク修正を示す緩和がある(研削機械および研削設定を含む添付の表を参照)。中央の図の接触パターンは、基本的に従来的なものに見える。
図10の下側の図の運動グラフは、上側正弦曲線領域(低負荷伝達のため)と、3つのグラフの間の交点での放物線延長部と、を反映する。3つの繰り返しグラフは、進行中の3つの歯噛み合いを表す。
【0045】
表2は、基本的な機械設定およびUMC設定を示し、表3は、ピニオン部材を研削するための自由形態かさ歯車研削機械の研削設定を示す。表2および表3における設定は、
図10に示される混成正弦曲線-放物線運動グラフの開発の過程で決定された。
【0046】
【0047】
【0048】
本発明は、かさ歯車およびハイポイド歯車を参照して考察されてきたが、本発明はそれらに限定されない。例えば、平歯車および螺旋歯車などの他のタイプの歯車が、開示された方法により処理されてもよい。本発明は、好ましくは、例えば、砥石プロセスによる、研削または砥石がけなどの研磨仕上げによる、または表面掘削などの研削プロセスによる仕上げプロセスを介して実現される。しかしながら、本発明は、例えば、荒削りなどのいわゆる「ソフト」プロセスを介して実現されることもある。
【0049】
正弦関数の観点で運動グラフを記述することの代替として、より高次の関数が利用され得る。例えば、
図8を参照すると、89および90に変曲点を有する4次関数が所望の運動グラフを記述するために利用され得る。
【0050】
好ましい実施形態を参照して本発明を説明してきたが、本発明は、発明がその明細に限定されないことが理解される。本発明は、添付の特許請求の範囲の精神および範囲から逸脱することなく、対象が関係する当業者には明らかであろう補正を含むことが意図される。