IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 東芝メディカルシステムズ株式会社の特許一覧

<>
  • 特許-画像処理装置及び医用画像撮像装置 図1
  • 特許-画像処理装置及び医用画像撮像装置 図2
  • 特許-画像処理装置及び医用画像撮像装置 図3
  • 特許-画像処理装置及び医用画像撮像装置 図4
  • 特許-画像処理装置及び医用画像撮像装置 図5
  • 特許-画像処理装置及び医用画像撮像装置 図6
  • 特許-画像処理装置及び医用画像撮像装置 図7
  • 特許-画像処理装置及び医用画像撮像装置 図8
  • 特許-画像処理装置及び医用画像撮像装置 図9
  • 特許-画像処理装置及び医用画像撮像装置 図10
  • 特許-画像処理装置及び医用画像撮像装置 図11
  • 特許-画像処理装置及び医用画像撮像装置 図12
  • 特許-画像処理装置及び医用画像撮像装置 図13
  • 特許-画像処理装置及び医用画像撮像装置 図14
  • 特許-画像処理装置及び医用画像撮像装置 図15
  • 特許-画像処理装置及び医用画像撮像装置 図16
  • 特許-画像処理装置及び医用画像撮像装置 図17
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-10-28
(45)【発行日】2022-11-08
(54)【発明の名称】画像処理装置及び医用画像撮像装置
(51)【国際特許分類】
   G06T 7/174 20170101AFI20221031BHJP
   A61B 6/03 20060101ALI20221031BHJP
【FI】
G06T7/174
A61B6/03 370B
A61B6/03 360B
A61B6/03 360D
【請求項の数】 8
(21)【出願番号】P 2018195917
(22)【出願日】2018-10-17
(65)【公開番号】P2019075123
(43)【公開日】2019-05-16
【審査請求日】2021-08-24
(31)【優先権主張番号】P 2017201218
(32)【優先日】2017-10-17
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】594164542
【氏名又は名称】キヤノンメディカルシステムズ株式会社
(74)【代理人】
【識別番号】110001771
【氏名又は名称】弁理士法人虎ノ門知的財産事務所
(72)【発明者】
【氏名】原武 美沙枝
(72)【発明者】
【氏名】金子 敏充
(72)【発明者】
【氏名】谷口 敦司
(72)【発明者】
【氏名】木本 達也
(72)【発明者】
【氏名】塚越 伸介
【審査官】山田 辰美
(56)【参考文献】
【文献】国際公開第2012/070588(WO,A1)
【文献】特開2012-213604(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G06T 7/00-7/90
A61B 6/03
IEEE Xplore
(57)【特許請求の範囲】
【請求項1】
複数の時相において被検体の対象部位を含んで撮像された複数の画像を取得する取得部と、
前記画像における第1の領域及び第2の領域の境界を跨いで所定方向に並んだ前記画像の複数の画素における、前記複数の時相の画像間での移動情報に基づいて、前記第1の領域に係る第1のクラス又は当該第1の領域と前記所定方向に隣り合う第2の領域に係る第2のクラスへ前記複数の画素のそれぞれを分類する際の分類情報から、前記第1の領域に対応する前記被検体の第1の部位と前記第2の領域に対応する前記被検体の第2の部位との前記境界における付着の状態を示す指標を算出する第1の算出部と、
を備える、画像処理装置。
【請求項2】
前記第1の算出部は、前記第1のクラス及び前記第2のクラスへ前記複数の画素を分類する際に、当該複数の画素が同一のクラスに属する確率に基づいて、前記指標を算出し、前記付着の状態を評価する、請求項1に記載の画像処理装置。
【請求項3】
前記第1の算出部は、前記移動情報に基づく、前記第1のクラス又は前記第2のクラスへ前記複数の画素のそれぞれを分類する際のコストに係る値により、前記確率を算出し、当該確率に基づいて前記指標を算出する、請求項2に記載の画像処理装置。
【請求項4】
前記複数の画素のそれぞれの動きベクトルを前記移動情報として算出し、算出した複数の動きベクトルに基づいて、当該複数の画素において前記所定方向に隣り合う2つの画素ごとに、当該2つの画素の2つの動きベクトルの差分ベクトルの大きさを算出する第2の算出部を更に備え、
前記第1の算出部は、前記差分ベクトルの大きさに基づいて、前記指標を算出する、請求項1~3のいずれか1つに記載の画像処理装置。
【請求項5】
前記画像から前記第1の領域及び前記第2の領域を抽出するためのセグメンテーション処理を実行するセグメンテーション処理部を更に備え、
前記第2の算出部は、前記移動情報に基づいて、前記第1のクラス又は前記第2のクラスへ前記複数の画素のそれぞれを分類するクラスタリング処理を実行し、
前記第1の算出部は、前記セグメンテーション処理の結果及び前記クラスタリング処理の結果に基づいて、前記指標の信頼度を算出する、
請求項4に記載の画像処理装置。
【請求項6】
前記指標を表示部に表示させる表示制御部を更に備える、請求項1~5のいずれか1つに記載の画像処理装置。
【請求項7】
前記信頼度を表示部に表示させる表示制御部を更に備える、請求項5に記載の画像処理装置。
【請求項8】
複数の時相において被検体の対象部位を含んで撮像された複数の画像を生成する生成部と、
前記画像上における第1の領域及び第2の領域の境界を跨いで所定方向に並んだ前記画像の複数の画素における、前記複数の時相の画像間での移動情報に基づいて、前記第1の領域に係る第1のクラス又は当該第1の領域と前記所定方向に隣り合う第2の領域に係る第2のクラスへ前記複数の画素のそれぞれを分類する際の分類情報から、前記第1の領域に対応する前記被検体の第1の部位と前記第2の領域に対応する前記被検体の第2の部位との前記境界における付着の状態を示す指標を算出する算出部と、
を備える、医用画像撮像装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明の実施形態は、画像処理装置及び医用画像撮像装置に関する。
【背景技術】
【0002】
従来、被検体の呼吸時の動画像から、肺の壁側胸膜と臓側胸膜との癒着の状態を評価する医用画像撮像装置がある。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2016-67832号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
本発明が解決しようとする課題は、精度良く付着の状態を評価することができる画像処理装置及び医用画像撮像装置を提供することである。
【課題を解決するための手段】
【0005】
実施形態の画像処理装置は、取得部と、第1の算出部とを備える。取得部は、複数の時相において被検体の対象部位を含んで撮像された複数の画像を取得する。第1の算出部は、画像における第1の領域及び第2の領域の境界を跨いで所定方向に並んだ画像の複数の画素における、複数の時相の画像間での移動情報に基づいて、第1の領域に係る第1のクラス又は第1の領域と所定方向に隣り合う第2の領域に係る第2のクラスへ複数の画素のそれぞれを分類する際の分類情報から、第1の領域に対応する被検体の第1の部位と第2の領域に対応する被検体の第2の部位との境界における付着の状態を示す指標を算出する。
【図面の簡単な説明】
【0006】
図1図1は、第1の実施形態に係るX線CT装置の構成の一例を示す図である。
図2図2は、第1の実施形態に係る評価処理の一例の流れを示すフローチャートである。
図3図3は、第1の実施形態に係る評価処理の一例を説明するための図である。
図4図4は、第1の実施形態に係る評価処理の一例を説明するための図である。
図5図5は、第1の実施形態に係る評価処理の一例を説明するための図である。
図6図6は、第1の実施形態に係るカットラインの一例を説明するための図である。
図7図7は、第1の実施形態に係るカットラインの一例を説明するための図である。
図8図8は、第1の実施形態に係る評価処理の一例を説明するための図である。
図9図9は、第1の実施形態に係る評価処理の一例を説明するための図である。
図10図10は、第1の実施形態に係る評価処理の一例を説明するための図である。
図11図11は、第1の実施形態に係る評価処理の一例を説明するための図である。
図12図12は、第1の実施形態に係る評価処理の一例を説明するための図である。
図13図13は、第1の実施形態に係る評価処理の一例を説明するための図である。
図14図14は、第1の実施形態に係る表示用の2次元画像データが示す画像の一例を示す図である。
図15図15は、第2の変形例に係るX線CT装置が実行する処理の一例を説明するための図である。
図16図16は、第2の変形例に係るX線CT装置が実行する処理の一例を説明するための図である。
図17図17は、第2の実施形態に係る画像処理装置を含むシステムの構成の一例を示す図である。
【発明を実施するための形態】
【0007】
以下、図面を参照して、実施形態に係る画像処理装置及び医用画像撮像装置を説明する。また、一つの実施形態に記載した内容は、原則として他の実施形態にも同様に適用される。
【0008】
なお、医用画像撮像装置とは、被検体を撮像して医用画像を生成する医用画像診断装置の総称である。例えば、医用画像撮像装置には、X線CT装置が含まれる。以下の実施形態では、開示の技術がX線CT装置に適用される場合を説明するが、他の医用画像撮像装置(例えば、磁気共鳴イメージング(Magnetic Resonance Imaging:MRI)装置、X線アンギオ装置、PET(Positron Emission Tomography)装置、SPECT(Single Photon Emission Computed Tomography)装置等)にも同様に適用可能である。
【0009】
(第1の実施形態)
図1は、第1の実施形態に係るX線CT装置1の構成の一例を示す図である。図1に示すように、第1の実施形態に係るX線CT装置1は、架台装置10と、寝台装置20と、コンソール装置30とを有する。架台装置10、寝台装置20、及びコンソール装置30は、互いに通信可能に接続される。
【0010】
なお、本実施形態では、非チルト状態での回転フレーム13の回転軸又は寝台装置20の天板23の長手方向を「Z軸方向」と定義する。また、Z軸方向に直交し、床面に対し水平である軸方向を「X軸方向」と定義する。また、Z軸方向に直交し、床面に対し垂直である軸方向を「Y軸方向」と定義する。
【0011】
架台装置10は、被検体(患者)PにX線を照射し、被検体Pを透過したX線を検出して、コンソール装置30に出力する装置である。架台装置10は、X線管11と、X線検出器12と、回転フレーム13と、制御装置14と、ウェッジ15と、コリメータ16と、DAS(Data Acquisition System)17と、X線高電圧装置18とを有する。
【0012】
X線管11は、X線高電圧装置18からの高電圧の印加により、陰極(フィラメント)から陽極(ターゲット)に向けて熱電子を照射する真空管である。X線管11は、熱電子を陽極に衝突させることにより、X線を発生させる。
【0013】
ウェッジ15は、X線管11から照射されたX線量を調節するためのフィルタである。具体的には、ウェッジ15は、X線管11から被検体Pへ照射されるX線の分布が、予め定められた分布になるように、X線管11から照射されたX線を透過して減衰するフィルタである。例えば、ウェッジ15は、所定のターゲット角度や所定の厚みとなるようにアルミニウムを加工したフィルタである。なお、ウェッジ15は、ウェッジフィルタ(wedge filter)や、ボウタイフィルタ(bow-tie filter)とも呼ばれる。
【0014】
コリメータ16は、ウェッジ15を透過したX線の照射範囲を絞り込むための鉛板等である。コリメータ16は、複数の鉛板等を組み合わせることで、スリット状に形成される。
【0015】
X線検出器12は、X線管11から照射され、被検体Pを通過したX線を検出し、当該X線量に対応した電気信号をDAS17へ出力する。X線検出器12は、例えば、X線管11の焦点を中心として1つの円弧に沿ってチャネル方向に複数のX線検出素子が配列された複数のX線検出素子列を有する。X線検出器12は、例えば、チャネル方向に複数のX線検出素子が配列されたX線検出素子列がスライス方向(列方向又はrow方向とも称される)に複数配列された構造を有する。
【0016】
また、X線検出器12は、例えば、グリッドと、シンチレータアレイと、光センサアレイとを有する間接変換型の検出器である。シンチレータアレイは、複数のシンチレータを有し、シンチレータは、入射X線量に応じた光子量の光を出力するシンチレータ結晶を有する。グリッドは、シンチレータアレイのX線入射側の面に配置され、散乱X線を吸収する機能を有するX線遮蔽板を有する。光センサアレイは、シンチレータからの光量に応じた電気信号を出力する機能を有し、例えば、光電子増倍管(Photomultiplier Tube:PMT)等の光センサを有する。なお、X線検出器12は、入射したX線を電気信号に変換する半導体素子を有する直接変換型の検出器であっても構わない。
【0017】
X線高電圧装置18は、変圧器(トランス)及び整流器等の電気回路を有し、X線管11に印加する高電圧を発生する機能を有する高電圧発生装置と、X線管11が照射するX線出力に応じた出力電圧の制御を行うX線制御装置とを有する。高電圧発生装置は、変圧器方式であってもよいし、インバータ方式であっても構わない。なお、X線高電圧装置18は、後述する回転フレーム13に設けられてもよいし、架台装置10の固定フレーム(図示しない)側に設けられても構わない。なお、固定フレームは、回転フレーム13を回転可能に支持するフレームである。
【0018】
DAS17は、X線検出器12の各X線検出素子から出力される電気信号に対して増幅処理を行う増幅器と、電気信号をデジタル信号に変換するA/D変換器とを有し、検出データを生成する。DAS17が生成した検出データは、コンソール装置30へと転送される。
【0019】
回転フレーム13は、X線管11とX線検出器12とを対向支持し、後述する制御装置14によってX線管11とX線検出器12とを回転させる円環状のフレームである。なお、回転フレーム13は、X線管11とX線検出器12に加えて、X線高電圧装置18やDAS17を更に備えて支持する。DAS17が生成した検出データは、回転フレーム13に設けられた発光ダイオード(light emitting diode:LED)を有する送信機から光通信によって架台装置10の非回転部分(例えば固定フレーム)に設けられたフォトダイオードを有する受信機に送信され、コンソール装置30へ転送される。なお、回転フレーム13から架台装置10の非回転部分への検出データの送信方法は、前述の光通信に限らず、非接触型のデータ伝送であれば如何なる方式を採用しても構わない。
【0020】
制御装置14は、CPU(Central Processing Unit)等を有する処理回路と、モータ及びアクチュエータ等の駆動機構とを有する。制御装置14は、コンソール装置30又は架台装置10に取り付けられた入力インターフェースからの入力信号を受けて、架台装置10及び寝台装置20の動作制御を行う機能を有する。例えば、制御装置14は、入力信号を受けて回転フレーム13を回転させる制御や、架台装置10をチルトさせる制御、及び寝台装置20及び天板23を動作させる制御を行う。なお、架台装置10をチルトさせる制御は、架台装置10に取り付けられた入力インターフェースによって入力される傾斜角度(チルト角度)情報により、制御装置14がX軸方向に平行な軸を中心に回転フレーム13を回転させることによって実現される。なお、制御装置14は、架台装置10に設けられてもよいし、コンソール装置30に設けられても構わない。
【0021】
寝台装置20は、スキャン対象である被検体Pを載置、移動させる装置であり、基台21と、寝台駆動装置22と、天板23と、支持フレーム24とを備えている。基台21は、支持フレーム24を鉛直方向に移動可能に支持する筐体である。寝台駆動装置22は、被検体Pが載置された天板23を天板23の長軸方向に移動するモータあるいはアクチュエータである。支持フレーム24の上面に設けられた天板23は、被検体Pが載置される板である。なお、寝台駆動装置22は、天板23に加え、支持フレーム24を天板23の長軸方向に移動してもよい。
【0022】
コンソール装置30は、操作者によるX線CT装置1の操作を受け付けるとともに、架台装置10によって収集された検出データを用いてCT画像データを再構成する装置である。コンソール装置30は、図1に示すように、メモリ31と、ディスプレイ32と、入力インターフェース33と、処理回路34とを有する。メモリ31、ディスプレイ32、入力インターフェース33、及び処理回路34は、互いに通信可能に接続される。
【0023】
メモリ31は、例えば、RAM(Random Access Memory)、フラッシュメモリ等の半導体メモリ素子、ハードディスク、光ディスク等により実現される。メモリ31は、例えば、投影データやCT画像データを記憶する。
【0024】
ディスプレイ32は、各種の情報を表示する。例えば、ディスプレイ32は、処理回路34によって生成された医用画像(CT画像)や、操作者からの各種操作を受け付けるためのGUI(Graphical User Interface)等を出力する。例えば、ディスプレイ32は、液晶ディスプレイやCRT(Cathode Ray Tube)ディスプレイである。
【0025】
入力インターフェース33は、操作者からの各種の入力操作を受け付け、受け付けた入力操作を電気信号に変換して処理回路34に出力する。例えば、入力インターフェース33は、投影データを収集する際の収集条件や、CT画像データを再構成する際の再構成条件、CT画像から後処理画像を生成する際の画像処理条件等を操作者から受け付ける。例えば、入力インターフェース33は、マウスやキーボード、トラックボール、スイッチ、ボタン、ジョイスティック等により実現される。
【0026】
処理回路34は、X線CT装置1全体の動作を制御する。例えば、処理回路34は、システム制御機能341、前処理機能342、再構成処理機能343、及び画像処理機能344を実行する。更に、本実施形態では、処理回路34は、セグメンテーション機能345、実行機能346、評価機能347及び色割当機能348をも実行する。処理回路34は、プロセッサにより実現される。セグメンテーション機能345は、セグメンテーション処理部の一例である。実行機能346は、実行部及び第2の算出部の一例である。評価機能347は、評価部、算出部及び第1の算出部の一例である。
【0027】
ここで、例えば、処理回路34の構成要素であるシステム制御機能341、前処理機能342、再構成処理機能343、画像処理機能344、セグメンテーション機能345、実行機能346、評価機能347及び色割当機能348の各機能は、コンピュータによって実行可能なプログラムの形態でメモリ31に記憶されている。処理回路34は、各プログラムをメモリ31から読み出し、読み出した各プログラムを実行することで、各機能を実現する。換言すると、各プログラムを読み出した状態の処理回路34は、図1の処理回路34内に示された各機能を有することとなる。
【0028】
また、単一の処理回路34にて、上述した各機能が実現されるものとして説明したが、複数の独立したプロセッサを組み合わせて処理回路34を構成し、各プロセッサがプログラムを実行することにより機能を実現するものとしても構わない。
【0029】
また、「プロセッサ」という文言は、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、特定用途向け集積回路(Application Specific Integrated Circuit:ASIC)、又は、プログラマブル論理デバイス(例えば、単純プログラマブル論理デバイス(Simple Programmable Logic Device:SPLD)、複合プログラマブル論理デバイス(Complex Programmable Logic Device:CPLD)、又は、フィールドプログラマブルゲートアレイ(Field Programmable Gate Array:FPGA))等の回路を意味する。プロセッサはメモリ31に保存されたプログラムを読み出し実行することで機能を実現する。なお、メモリ31にプログラムを保存する代わりに、プロセッサの回路内にプログラムを直接組み込むよう構成しても構わない。この場合、プロセッサは回路内に組み込まれたプログラムを読み出し実行することで機能を実現する。なお、プロセッサごとに単一の回路として構成される場合に限らず、複数の独立した回路を組み合わせて1つのプロセッサとして構成し、その機能を実現するようにしてもよい。更に、複数の構成要素を1つのプロセッサへ統合してその機能を実現するようにしてもよい。
【0030】
システム制御機能341は、入力インターフェース33を介して操作者から受け付けた入力操作に基づいて、処理回路34の各種機能を制御する。例えば、システム制御機能341は、X線CT装置1において実行されるCTスキャンを制御する。また、システム制御機能341は、前処理機能342、再構成処理機能343、及び画像処理機能344を制御することで、コンソール装置30におけるCT画像データの生成や表示を制御する。かかる表示制御を行うシステム制御機能341は、表示制御部の一例である。
【0031】
前処理機能342は、DAS17から出力された検出データに対して対数変換処理やオフセット補正処理、チャネル間の感度補正処理、ビームハードニング補正等の前処理を施したデータを生成する。なお、前処理前のデータ(検出データ)および前処理後のデータを総称して投影データと称する場合もある。
【0032】
再構成処理機能343は、前処理機能342にて生成された投影データに対して、フィルタ補正逆投影法や逐次近似再構成法等を用いた再構成処理を行ってCT画像データ(再構成画像データ)を生成する。
【0033】
画像処理機能344は、入力インターフェース33を介して操作者から受け付けた入力操作に基づいて、再構成処理機能343によって生成されたCT画像データを公知の方法により、任意断面の断層像データや3次元画像データに変換する。なお、3次元画像データは、複数の画素(ボクセル)により構成される。
【0034】
また、本実施形態では、画像処理機能344は、複数の時相のCT画像データを、複数の時相の3次元画像データに変換する。このような複数の時相の3次元画像データは、いわゆる4次元画像データであり、例えば、被検体Pの対象部位を含む同一の領域を異なる時相で複数回CTスキャンされることにより得られる。
【0035】
なお、4次元画像データは、上述した再構成処理機能343により生成されてもよい。例えば、本実施形態に係る画像処理機能344又は再構成処理機能343は、複数の時相において被検体Pの対象部位を含んで撮像された4次元画像データを生成する。すなわち、4次元画像データは、被検体Pの対象部位が撮像されることにより得られるデータである。画像処理機能344及び再構成処理機能343は、生成部の一例である。
【0036】
セグメンテーション機能345、実行機能346、評価機能347及び色割当機能348の詳細については後述する。
【0037】
ところで、肺癌などの腫瘍の摘出手術において、肺葉又は肺区域単位で肺野実質を切除する場合がある。この場合、肺野実質から胸膜を剥離した上で、肺野実質を切除する必要があるが、通常は、胸膜に手術具を押し当てるだけで、簡単に、肺野実質から胸膜を剥離することができる。しかしながら、肺野実質に胸膜が付着している場合、付着箇所を焼きながら、肺野実質から胸膜を剥がす必要がある。なお、「付着」は、例えば、組織と組織とがくっつくことを表す。「付着」には、一の部位を構成する組織と、他の部位を構成する組織とがくっつくこと、及び、同一の部位を構成する一の組織と他の組織とがくっつくことが含まれる。また、「付着」には、「癒着」及び「浸潤」が包含されるものとする。
【0038】
そこで、例えば、摘出手術の直前に、超音波診断装置により、被検体の肺野及び胸膜が描出された超音波画像をリアルタイムでディスプレイに表示させることで、術者に、肺野に胸膜が付着しているか否かを判別させることが考えられる。しかしながら、この場合には、例えば、肋骨の裏側や被検体の心臓付近などの超音波が届かない範囲では、術者は、付着しているか否かを判別することが困難である。また、縦隔側に付着が存在する場合,心臓外科の応援が必要になる場合がある。しかしながら、縦隔には超音波が届きにくく、付着の程度が分からないため、心臓外科に属する医師に応援を要請するタイミングが遅くなる。
【0039】
このような問題は、肺野に胸膜が付着している場合に限られず、他の対象部位において付着が発生している場合にも同様に起こりうる。例えば、かかる問題は、胸膜を構成する壁側胸膜に臓側胸膜が付着している場合にも、同様に起こりうる。
【0040】
そこで、例えば、画像処理装置を、超音波が届かない範囲でも癒着の状態を判別することが可能なように、以下に説明するように構成することが考えられる。例えば、2つの対象部位のそれぞれに基準点を設定し、2つの基準点の移動ベクトルの差分の大きさが閾値以下である場合に、2つの対象部位が癒着していると判定するように画像処理装置を構成することが考えられる。以下、このような医用画像処理装置を比較例に係る画像処理装置として説明する。
【0041】
しかしながら、被検体の呼吸量は、個人差が大きい。このため、被検体の呼吸量が比較的少ない場合には、癒着していないにもかかわらず、2つの基準点の移動ベクトルの差分の大きさが閾値以下となる場合がある。この場合には、比較例に係る画像処理装置では、癒着していると誤って判定される可能性がある。
【0042】
また、例えば、2つの対象部位が1点で癒着している場合には、2つの基準点の移動ベクトルの差分の大きさが閾値より大きくなる場合がある。例えば、1点で癒着している場合には、一方の対象部位に対して他方の対象部位が振り子のように相対的に移動するため、一方の対象部位の移動の影響をほとんど受けることなく、他方の対象部位が移動する。この場合には、比較例に係る画像処理装置では、癒着しているにも関わらず、癒着していないと誤って判定される可能性がある。
【0043】
そこで、第1の実施形態に係るX線CT装置1は、付着の対象判定である1つ以上の部位(対象部位)の付着の状態を精度良く評価するために、以下に説明する評価処理を実行する。なお、対象部位の付着の状態とは、例えば、対象部位を構成する組織と組織とが、くっついている状態を示す。以下の説明では、付着の状態の一例として癒着の状態を評価する場合を説明するが、同様の方法で、浸潤の状態等のその他の付着の状態を評価してもよい。
【0044】
図2は、第1の実施形態に係る評価処理の一例の流れを示すフローチャートである。評価処理は、例えば、入力インターフェース33により評価処理を実行するための指示が受け付けられた場合に、システム制御機能341、画像処理機能344、セグメンテーション機能345、実行機能346、評価機能347及び色割当機能348により実行される。
【0045】
図2に示すステップS101は、セグメンテーション機能345に対応するステップである。ステップS101は、処理回路34がメモリ31からセグメンテーション機能345に対応するプログラムを呼び出し実行することにより、セグメンテーション機能345が実現されるステップである。ステップS102~S105,S107は、実行機能346に対応するステップである。ステップS102~S105,S107は、処理回路34がメモリ31から実行機能346に対応するプログラムを呼び出し実行することにより、実行機能346が実現されるステップである。
【0046】
ステップS106は、評価機能347に対応するステップである。ステップS106は、処理回路34がメモリ31から評価機能347に対応するプログラムを呼び出し実行することにより、評価機能347が実現されるステップである。ステップS108は、色割当機能348に対応するステップである。ステップS108は、処理回路34がメモリ31から色割当機能348に対応するプログラムを呼び出し実行することにより、色割当機能348が実現されるステップである。
【0047】
ステップS109は、画像処理機能344に対応するステップである。ステップS109は、処理回路34がメモリ31から画像処理機能344に対応するプログラムを呼び出し実行することにより、画像処理機能344が実現されるステップである。ステップS110は、システム制御機能341に対応するステップである。ステップS110は、処理回路34がメモリ31からシステム制御機能341に対応するプログラムを呼び出し実行することにより、システム制御機能341が実現されるステップである。
【0048】
なお、評価処理が実行される前に、癒着の判定対象である対象部位が描出された複数の時相の3次元画像データが予めメモリ31に記憶されている。また、以下の説明では、対象部位が、肺野、及び、肺野外の部位である場合を説明する。肺野外の部位は、胸膜を含む。しかしながら、対象部位は、これに限られず、例えば、対象部位は、壁側胸膜及び臓側胸膜であってもよい。また、複数の時相の3次元画像データとして、T(Tは自然数)フレーム分の3次元画像データがメモリ31に記憶されている。本実施形態では、K(K=1,・・・T)番目の時相の3次元画像データは、K番目のフレームの3次元画像データに対応する。
【0049】
図2に示すように、セグメンテーション機能345は、1つの時相の3次元画像データに対して、公知のセグメンテーション処理を実行して、3次元画像データの全領域から肺野の領域及び肺野外の部位の領域を抽出する(ステップS101)。
【0050】
例えば、ステップS101では、セグメンテーション機能345は、メモリ31に記憶された複数の時相の3次元画像データを取得する。そして、セグメンテーション機能345は、複数の時相の3次元画像データのうち、所定の時相の3次元画像データを選択する。
【0051】
図3は、第1の実施形態に係る評価処理の一例を説明するための図である。例えば、セグメンテーション機能345は、1番目の時相の3次元画像データ40を選択する。以下、所定の時相として1番目の時相の3次元画像データ40が選択された場合を例に挙げて説明する。そして、セグメンテーション機能345は、選択した1番目の時相の3次元画像データ40に対して、セグメンテーション処理を実行して、肺野の領域41及び肺野外の部位の領域42を抽出する。すなわち、セグメンテーション機能345は、3次元画像データ40が示す画像から肺野の領域41及び肺野外の部位の領域42を抽出するためのセグメンテーション処理を実行する。なお、肺野外の部位の領域42は、第1の領域の一例である。また、肺野の領域41は、第2の領域の一例である。また、肺野の領域41は、肺野外の部位の領域42と、境界43の法線方向に隣り合う領域である。また、肺野外の部位は、第1の部位の一例である。また、肺野は、第2の部位の一例である。
【0052】
そして、実行機能346は、肺野の領域41と肺野外の部位の領域42との間の境界43に、1次元の関心領域(Region of Interest;ROI)44を設定する(ステップS102)。具体例を挙げて説明すると、実行機能346は、境界43の法線方向に関心領域44の長手方向が沿うように、かつ、関心領域44内に境界43の一部が含まれるように、関心領域44を設定する。このように、1次元の関心領域44の長手方向と境界43とが互いに垂直になるように、関心領域44が設定される。そして、このようにして設定された関心領域44には、1次元状に並んだ複数の画素45が含まれることとなる。すなわち、3次元画像データ40が示す画像の複数の画素45は、肺野の領域41及び肺野外の部位の領域42の境界43を跨いで、境界43の法線方向に並んでいる。ここで、境界43の法線方向は、所定方向の一例である。なお、本実施形態では、実行機能346は、関心領域44の長手方向の中央部分が境界43に位置するように関心領域44を設定する。しかしながら、実行機能346は、関心領域44の長手方向の中央部分が境界43に位置しないように関心領域44を設定してもよい。
【0053】
図3に示すように、例えば、関心領域44の長手方向の長さが40mmである場合には、40mmの長さに亘って並んだ複数の画素45が関心領域44内に含まれることとなる。以下、関心領域44の長さが、40mmである場合について説明するが、40mmに限られず、他の値であってもよい。
【0054】
そして、実行機能346は、関心領域44の全領域から、境界43を中心とする所定の領域を除去することにより、関心領域44を再定義する(ステップS103)。例えば、ステップS103では、図3に示すように、ステップS102で定義された関心領域44の全領域から、境界43を中心とする関心領域44の長手方向の10mmの範囲の領域を除去し、除去されずに残った領域を、新たな関心領域44とする。
【0055】
図3に示すように、再定義された関心領域44には、14個の画素45が含まれることとなる。以下、関心領域44に含まれる画素45の数が、14個である場合について説明するが、関心領域44に含まれる画素45の数は、これに限られない。再定義された関心領域44に含まれる画素45は、ステップS104以降での各種の処理に用いられる。
【0056】
なお、実行機能346は、ステップS103での関心領域44を再定義する処理を省略してもよい。この場合、ステップS102において設定された関心領域44内の複数の画素45が、ステップS104以降での各種の処理に用いられる。
【0057】
そして、実行機能346は、複数の画素45を複数のクラスタにクラスタリングするためのクラスタリング処理の一部の処理を実行することにより、ステップS104及びS105の各処理を実行する。なお、クラスタは、クラスとも称される。本実施形態では、実行機能346は、クラスタリング処理の一例であるグラフカット(グラフカット処理、グラフカット法)の一部の処理を実行する。
【0058】
図4は、第1の実施形態に係る評価処理の一例を説明するための図である。具体例を挙げて説明すると、図4に示すように、実行機能346は、ノード51~66を備えるグラフ50を生成する(ステップS104)。グラフ50は、例えば、図3に示す14個の画素45のそれぞれを、14個のノード51~64のそれぞれとするグラフである。なお、図4において、14個のノード51~64のうち、8個のノード54~61の図示が省略されている。
【0059】
例えば、ノード51は、図3において左から1番目の画素45に対応する。他のノード52~64についても同様である。すなわち、図4において、左から右にかけて14個並んだ複数のノード51~64のうち、左からj(j=1,2,・・・14)番目のノードは、図3において左からj番目の画素45に対応する。以下の説明では、図3において左からj番目の画素45を「j番目画素」と称し、図4において複数のノード51~64のうち左からj番目のノードを「j番目ノード」と称する場合がある。
【0060】
ノード65は、境界43よりも外側に位置する肺野外の部位の領域42に対応する。また、ノード66は、境界43よりも内側に位置する肺野の領域41に対応する。
【0061】
また、複数のノード51~64のそれぞれと、ノード65とは、ライン(線分)で結ばれている。同様に、複数のノード51~64のそれぞれと、ノード66も、ラインで結ばれている。また、隣接する2つのノードもラインで結ばれている。ここで、隣接する2つのノードとは、例えば、n(n=1,2,・・・13)番目ノード、及び、(n+1)番目ノードを指す。
【0062】
ステップS104では、実行機能346は、各ラインに対して重みを設定する。まず、複数のノード51~64のそれぞれと、ノード65とを結ぶラインに設定される重みP(lj_0)について説明する。重みP(lj_0)は、j番目ノードとノード65とを結ぶラインに設定される。なお、重みP(lj_0)は、後述する第1のクラスタ及び後述する第2のクラスタへ複数の画素45のそれぞれを分類する際のコストに係る値の一例である。例えば、重みP(lj_0)は、下記の式(1)で示される。
【0063】
【数1】
【0064】
ここで、式(1)において、p(l)は、例えば、「0」以上、「1」以下の値である。p(l)について具体例を挙げて説明する。上述したように、ノード65が肺野外の部位の領域42に対応する。このため、図3に示す肺野外の部位の領域42に位置する7個の画素45に対応するノード51~57のそれぞれとノード65とを結ぶラインに対して、比較的高い値が重みP(lj_0)に設定されるように、実行機能346は、次の処理を行う。すなわち、実行機能346は、式(1)において、p(l)に「0.001」を代入する。
【0065】
一方、図3に示す肺野外の部位の領域42に位置しない7個の画素45に対応するノード58~64のそれぞれとノード65とを結ぶラインに対して、比較的低い値が重みP(lj_0)に設定されるように、実行機能346は、次の処理を行う。すなわち、実行機能346は、式(1)において、p(l)に「0.999」を代入する。
【0066】
次に、複数のノード51~64のそれぞれと、ノード66とを結ぶラインに設定される重みP(lj_1)について説明する。重みP(lj_1)は、j番目ノードとノード66とを結ぶラインに設定される。なお、重みP(lj_1)は、後述する第1のクラスタ及び後述する第2のクラスタへ複数の画素45のそれぞれを分類する際のコストに係る値の一例である。例えば、重みP(lj_1)は、下記の式(2)で示される。
【0067】
【数2】
【0068】
ここで、式(2)におけるp(l)について具体例を挙げて説明する。上述したように、ノード66が肺野の領域41に対応する。このため、図3に示す肺野の領域41に位置する7個の画素45に対応するノード58~64のそれぞれとノード66とを結ぶラインに対して、比較的高い値が重みP(lj_1)に設定されるように、実行機能346は、次の処理を行う。すなわち、実行機能346は、式(2)において、p(l)に「0.999」を代入する。
【0069】
一方、図3に示す肺野の領域41に位置しない7個の画素45に対応するノード51~57のそれぞれとノード66とを結ぶラインに対して、比較的低い値が重みP(lj_1)に設定されるように、実行機能346は、次の処理を行う。すなわち、実行機能346は、式(2)において、p(l)に「0.001」を代入する。
【0070】
以上のことから、実行機能346は、j番目ノードについての重みP(lj_0)及び重みP(lj_1)を算出する際に、式(1)及び式(2)において、p(l)に共通の値を代入する。
【0071】
次に、隣接する2つのノードを結ぶラインに対して設定される重みG(n,n+1)について説明する。重みG(n,n+1)は、n番目ノード及び(n+1)番目ノードを結ぶラインに設定される。例えば、重みG(n,n+1)は、下記の式(3)で示される。
【0072】
【数3】
【0073】
ここで、式(3)において、「N」は、再定義された関心領域44に含まれる画素45の個数を指す。具体例を挙げると、本実施形態では、「N」の値は、「14」である。
また、式(3)におけるg(n,n+1)は、下記の式(4)で示される。
【0074】
【数4】
【0075】
ここで、式(4)において、Xn_iは、n番目画素の動きベクトル(移動ベクトル)を示す。具体的には、Xn_iは、i(i=1,2,・・・T-1)番目のフレームの3次元画像データにおけるn番目画素の位置から、(i+1)番目のフレームの3次元画像データにおけるn番目画素の位置に向かうベクトルを指す。
【0076】
(n+1)_iについても同様である。具体的には、X(n+1)_iは、図3において左から(n+1)番目画素の動きベクトルを示す。例えば、X(n+1)_iは、i番目のフレームの3次元画像データにおける(n+1)番目画素の位置から、(i+1)番目のフレームの3次元画像データにおける(n+1)番目画素の位置に向かうベクトルを指す。
【0077】
本実施形態では、実行機能346は、複数の画素45のそれぞれの位置を、1番目のフレームの3次元画像データからT番目のフレームの3次元画像データまで追跡することにより、上述した動きベクトルXn_i及び動きベクトルX(n+1)_iを算出することができる。このようにして、実行機能346は、複数の画素45における、複数の時相の画像間での動きベクトルXn_i及び動きベクトルX(n+1)_iを算出する。なお、動きベクトルXn_i及び動きベクトルX(n+1)_iは、移動情報の一例である。
【0078】
図5は、第1の実施形態に係る評価処理の一例を説明するための図である。図5及び式(4)に示すように、実行機能346は、時間軸上で隣接する全ての3次元画像データ間で、動きベクトルXn_iと動きベクトルX(n+1)_iとの差分ベクトル(Xn_i-X(n+1)_i)の大きさを算出する。そして、実行機能346は、式(4)に示すように、算出した複数の差分ベクトル(Xn_i-X(n+1)_i)の大きさの総和を、時間軸上で隣接する全ての3次元画像データ間の数(T-1)で除することで、g(n,n+1)を算出する。
【0079】
隣接する2つの画素(n番目画素及び(n+1)番目画素)45が同じように動く場合には、g(n,n+1)の値は、比較的小さくなる。このような場合に、隣接する2つの画素45のうち一方の画素45が肺野の領域41に位置する画素であり、他方の画素45が肺野外の部位の領域42に位置する画素であると考えられる。又は、隣接する2つの画素45が、共に、肺野の領域41又は肺野外の部位の領域42に位置する画素であると考えられる。g(n,n+1)の値が比較的小さく、一方の画素45が肺野の領域41に位置し、他方の画素45が肺野外の部位の領域42に位置する場合には、被検体Pの肺野と肺野外の部位とが癒着していると考えられる。
【0080】
一方、隣接する2つの画素45の動きが比較的大きく異なる場合には、g(n,n+1)の値は、比較的大きくなる。このような場合には、隣接する2つの画素45のうち一方の画素45が肺野の領域41に位置する画素であり、他方の画素45が肺野外の部位の領域42に位置する画素であり、肺野と肺野外の部位とが癒着していないと考えられる。
【0081】
なお、式(3)におけるg(r,r+1)についてもg(n,n+1)と同様である。
【0082】
ここで、一般的なグラフカット処理(グラフカット法)では、最終的に複数の画素を複数のクラスタに分類するために、複数のライン(以下、カットラインと称する)のそれぞれによりグラフがカットされ、カットライン毎にエネルギーが算出される。そして、一般的なグラフカット処理では、カットライン毎に算出されたエネルギーのうち、最小のエネルギーとなるカットラインに基づいて、各画素が各クラスタに分類されるクラスタリングが行われる。
【0083】
一方、本実施形態では、実行機能346は、グラフカット処理の一部の処理を行っているものの、最終的に各画素45を各クラスタに分類するクラスタリングを行わない。実行機能346は、下記の式(5)により、グラフ50をカットするカットラインごとに、エネルギーE(L,L,・・・,L)を算出する(ステップS105)。
【0084】
【数5】
【0085】
なお、式(5)における「γ」は、正の値の係数である。
【0086】
また、式(5)におけるLc(c=1,2,・・・,N)には、カットラインが、c番目ノードとノード65とを結ぶラインに交差する場合には、「0」が設定される。一方、Lcには、カットラインが、c番目ノードとノード66とを結ぶラインに交差する場合には、「1」が設定される。
【0087】
また、式(5)における「w」には、カットラインが、c番目ノードと(c+1)番目ノードとを結ぶラインと交差する場合に、「c」が設定される。また、カットラインが、複数のノード51~64のうちの隣接する2つのノードを結ぶいずれのラインに対しても交差しない場合には、「1」から「N-1」までの正の整数以外の所定値(例えば負の整数である「-1」)が設定される。
【0088】
また、式(5)における「E(L,L,・・・,L)」は、下記の式(6)により示される。
【0089】
【数6】
【0090】
「E(L,L,・・・,L)」は、データ項とも称され、各画素45の画素値(CT値)に基づくエネルギーを指す。かかるエネルギーは、カットラインに基づく肺野の領域と肺野外の部位の領域との境界が、実際の被検体Pの肺野の領域と肺野外の部位の領域との境界である可能性が高いほど小さくなる。
【0091】
また、式(5)における「E(w)」は、下記の式(7)により示される。
【0092】
【数7】
【0093】
「Es(w)」は、平滑化項とも称され、上述したデータ項とは独立して、境界の滑らかさを考慮したエネルギーを指す。例えば、データ項のみではCT値しか考慮しないため、ノイズに弱く、境界が滑らかでない可能性がある。しかしながら、平滑化項の存在により、境界が滑らかになる。なお、「E(w)」において、「w」に上述した所定値、例えば、-1が設定された「E(-1)」の値は「0」となる。
【0094】
また、被検体Pの肺野と肺野外の部位とが癒着していると考えられる場合には、上述したように、g(n,n+1)の値は、比較的小さくなる。そして、g(n,n+1)の値が小さくなると、平滑化項の値が大きくなる。一方、被検体Pの肺野と肺野外の部位とが癒着していないと考えられる場合には、g(n,n+1)の値が比較的大きくなり、平滑化項の値が小さくなる。
【0095】
図6及び図7は、第1の実施形態に係るカットラインの一例を説明するための図である。図6に示すように、例えば、実行機能346は、グラフ50をカットライン70によりカットする。カットライン70は、肺野外の部位の領域42に対応するクラスタ(第1のクラスタ)に、1番目画素及び2番目画素が属し、かつ、肺野の領域41に対応するクラスタ(第2のクラスタ)に、3番目画素~14番目画素が属するように、14個の画素45を分類するためのラインである。なお、第1のクラスタは、第1のクラスとも称される。また、第2のクラスタは、第2のクラスとも称される。
【0096】
また、図7に示すように、実行機能346は、グラフ50をカットライン71によりカットする。カットライン71は、第2のクラスタに、1番目画素~14番目画素が属するように、14個の画素45を分類するためのラインである。また、実行機能346は、グラフ50をカットライン72によりカットする。カットライン72は、第1のクラスタに、1番目画素~14番目画素が属するように、14個の画素45を分類するためのラインである。図7に示すように、カットライン71及びカットライン72は、複数のノード51~64のうちの隣接する2つのノードを結ぶいずれのラインに対しても交差しない。
【0097】
本実施形態では、実行機能346は、c番目ノードと(c+1)番目ノードとを結ぶラインに交差する13本のカットライン、及び、上述した2本のカットライン71及びカットライン72の合計15本のカットラインのそれぞれで、グラフ50をカットする。
【0098】
そして、実行機能346は、カットライン毎に、式(5)により、エネルギーE(L,L,・・・,L,w)を算出する。なお、上述したように、本実施形態では、実行機能346は、カットライン毎にエネルギーE(L,L,・・・,L,w)を算出するものの、各画素45を各クラスタに分類するクラスタリングを行わない。
【0099】
ステップS104,S105では、実行機能346は、対象部位における境界43を含む関心領域44内の複数の画素45のそれぞれの動きベクトルに基づいて、複数の画素45を複数のクラスタに分類するクラスタリング処理の一部の処理を実行する。例えば、実行機能346は、クラスタリング処理の一部の処理として、複数の画素45のそれぞれの動きベクトルを算出し、算出した複数の動きベクトルに基づいて、複数の画素45において、隣接する2つの画素45ごとに、当該2つの画素45の2つの動きベクトルの差分ベクトル(Xn_i-X(n+1)_i)の大きさを算出する処理を実行する。ここでいう隣接する2つの画素45は、境界43の法線方向に互いに隣り合う画素である。
【0100】
また、ステップS104,S105では、実行機能346は、動きベクトルXn_i及び動きベクトルX(n+1)_iに基づいて、肺野外の部位の領域42に係る第1のクラスタ又は肺野の領域41に係る第2のクラスタへ複数の画素45のそれぞれを分類する際のエネルギーE(L,L,・・・,L,w)を算出する。エネルギーE(L,L,・・・,L,w)は、分類情報の一例である。また、エネルギーE(L,L,・・・,L,w)は、第1のクラスタ及び第2のクラスタへ複数の画素45のそれぞれを分類する際のコストに係る値の一例でもある。
【0101】
そして、評価機能347は、癒着の状態を示す指標を算出する(ステップS106)。具体例を挙げて説明する。評価機能347は、例えば、下記の式(8)により、癒着の状態を示す指標として、確率pを算出する。
【0102】
【数8】
【0103】
なお、式(8)における右辺の項の分母は、15本のカットラインについての15個のexp(-E(L,L,・・・,L,w))の総和を表す。
【0104】
また、式(8)の右辺の項の分子におけるexp(-E(0,・・・,0,-1))は、上述したカットライン71のエネルギーE(L,L,・・・,L,w)であり、L=L=・・・=L=0であり、w=-1である。
【0105】
また、式(8)の右辺の項の分子におけるexp(-E(1,・・・,1,-1))は、上述したカットライン72のエネルギーE(L,L,・・・,L,w)であり、L=L=・・・=L=1であり、w=-1である。
【0106】
確率pは、「0」以上「1」以下の小さい値である。確率pは、例えば、関心領域44内の複数の画素45をクラスタリングした際に、複数の画素45が1つのクラスタ(第1のクラスタ又は第2のクラスタ)に属する確率である。このように、確率pは、対象部位である肺野に肺野外の部位が癒着している可能性を示す値である。確率pの値が「1」に近づくほど、癒着している可能性が高くなる。なお、確率pは、癒着の程度を示すものではない。
【0107】
上述したように、ステップS106では、式(8)が示すように、評価機能347は、エネルギーE(L,L,・・・,L,w)から、肺野外の部位の領域42に対応する被検体Pの肺野外の部位と、肺野の領域41に対応する被検体Pの肺野との境界43における癒着の状態を示す指標を算出する。
【0108】
また、ステップS106では、評価機能347は、ステップS104で算出された差分ベクトル(Xn_i-X(n+1)_i)の大きさに基づくエネルギーE(L,L,・・・,L,w)に基づいて指標を算出する。すなわち、評価機能347は、算出された差分ベクトル(Xn_i-X(n+1)_i)の大きさに基づいて、指標を算出する。
【0109】
図8~13は、第1の実施形態に係る評価処理の一例を説明するための図である。図8~13には、肺野の領域41と肺野外の部位の領域42との境界43の一部を含むように設定された関心領域44が示されている。図8~13は、関心領域44を再定義するステップS103の処理が省略された場合を示す。すなわち、図8~13は、1つの1次元の関心領域44が設定された場合を示す。
【0110】
図8に示す3次元画像データ40は、呼吸量が比較的多い被検体Pの肺野及び肺野外の部位を含んで撮像されたデータである。図9には、図8に示す関心領域44内の複数の画素45の動きベクトルの向き(方向)及び大きさを示す複数の矢印が示されている。図9では、複数の動きベクトルの向きが略2方向で統一されている。また、図9では、複数の動きベクトルの大きさが比較的大きい。これは、被検体Pの呼吸量が比較的多いからである。
【0111】
一方、図10に示す3次元画像データ40は、呼吸量が比較的少ない被検体Pの肺野及び肺野外の部位を含んで撮像されたデータである。図11には、図10に示す関心領域44内の複数の画素45の動きベクトルの向き及び大きさを示す複数の矢印が示されている。図11では、図9と同様に、複数の動きベクトルの向きが略2方向で統一されている。ただし、図11では、複数の動きベクトルの大きさが比較的小さい。これは、被検体Pの呼吸量が比較的少ないからである。
【0112】
また、図12に示す3次元画像データ40は、1点で癒着された肺野及び肺野外の部位を含んで撮像されたデータである。図13には、図12に示す関心領域44内の複数の画素45の動きベクトルの向き及び大きさを示す複数の矢印が示されている。図13では、複数の動きベクトルの向き及び大きさは、不均一である。これは、被検体Pの肺野及び肺野外の部位が1点で癒着されており、例えば、肺野に対して肺野外の部位が振り子のように相対的に移動しているからである。
【0113】
本実施形態では、評価機能347が、複数の画素45の動きベクトルの類似性に基づいて、癒着している可能性を示す確率pを算出する。例えば、評価機能347は、複数の動きベクトルの向き及び大きさが、均一である場合には、肺野の領域41及び肺野外の部位の領域42が癒着して動いていると考えられるため、「1」に近い確率pを算出する。例えば、評価機能347は、複数の動きベクトルの向きが略同一(略1方向)であり、大きさが略同一である場合には、「1」に近い確率pを算出する。
【0114】
また、評価機能347は、略同じ大きさの複数の動きベクトルの向きが、略2方向である場合には、肺野の領域41及び肺野外の部位の領域42が互いに独立して動いていると考えられるため、「0」に近い確率pを算出する。例えば、図9及び図10に示すように被検体Pの呼吸量が比較的多い場合にも、図11及び図12に示すように被検体Pの呼吸量が比較的少ない場合にも、評価機能347は、「0」に近い確率pを算出する。したがって、第1の実施形態によれば、呼吸量が、比較的多い場合のみならず、比較的少ない場合であっても、精度良く、癒着の状態を評価することができる。
【0115】
また、評価機能347は、複数の動きベクトルの向き及び大きさが、不均一である場合には、「1」に近い確率pを算出する。例えば、図12及び図13に示すように、被検体Pの肺野及び肺野外の部位が1点で癒着されている場合には、複数の動きベクトルの向き及び大きさが不均一であり、1つのクラスタに複数の画素45が属することが適切であると考えられるので、評価機能347は、「1」に近い確率pを算出する。したがって、第1の実施形態によれば、被検体Pの肺野及び肺野外の部位が1点で癒着されている場合であっても、精度良く、癒着の状態を評価することができる。
【0116】
このように、ステップS106では、評価機能347は、クラスタリング処理の一部の処理の結果に基づいて、関心領域44内での対象部位の癒着の状態を評価する。また、評価機能347は、クラスタリング処理の一部の処理の結果に基づいて、複数の画素45をクラスタリングした際に、複数の画素45が1つのクラスタに属する確率pを癒着の状態を示す指標として算出する。なお、評価機能347は、クラスタリング処理の一部の処理の結果に基づいて、複数の画素45をクラスタリングした際に、複数の画素45が複数(例えば2つ)のクラスタに属する確率(1-p)を癒着の状態を示す指標として算出してもよい。すなわち、評価機能347は、2つのクラスタ(上述した第1のクラスタ及び第2のクラスタ)へ複数の画素45を分類する際に、複数の画素45が同一のクラスタに属する確率pに基づいて、指標を算出し、癒着の状態を評価してもよい。
【0117】
また、ステップS106では、評価機能347は、動きベクトルXn_i及び動きベクトルX(n+1)_iに基づく、重みP(lj_0)、重みP(lj_1)及びエネルギーE(L,L,・・・,L,w)により、確率pを算出し、確率pに基づいて指標を算出する。
【0118】
また、ステップS106では、評価機能347は、ステップS104で算出された動きベクトルXn_i及び動きベクトルX(n+1)_iの差分ベクトルの大きさに基づくエネルギーE(L,L,・・・,L,w)により、指標を算出する。
【0119】
そして、評価機能347は、関心領域44内の14個の画素45に、確率pを対応付ける。例えば、評価機能347は、各画素45を識別するための識別情報と確率pとが対応付けられた対応情報を生成し、生成した対応情報をメモリ31に格納する。
【0120】
そして、実行機能346は、境界43の全部分に亘って関心領域44を設定したか否かを判定する(ステップS107)。全部分に亘って関心領域44を設定していないと判定した場合(ステップS107:No)には、実行機能346は、ステップS102に戻り、境界43の全部分のうち関心領域44を未設定の部分に、関心領域44を設定する。そして、ステップS103~S106の各処理が、境界43の全部分に亘って関心領域44を設定していると実行機能346により判定されるまで、繰り返し実行される。
【0121】
一方、全部分に亘って関心領域44を設定したと実行機能346により判定された場合(ステップS107:Yes)には、色割当機能348は、3次元画像データを構成する複数の画素のそれぞれに対して確率pに応じた色を割り当てる(ステップS108)。
【0122】
例えば、色割当機能348は、メモリ31に記憶された対応情報を取得する。そして、色割当機能348は、対応情報が示す識別情報と確率pとの対応関係にしたがって、各画素に色を割り当てる。具体的には、色割当機能348は、識別情報が示す画素に対して、当該画素に対応する確率pに応じた色を割り当てる。例えば、色割当機能348は、確率pが「1」に近づくほど赤色に近い色を画素に割り当て、確率pが「0」に近づくほど青色に近い色を割り当ててもよい。また、色割当機能348は、確率pが対応付けられていない画素については、所定の色を割り当ててもよい。ここで、所定の色とは、例えば、確率pに応じて画素に割り当てられる色以外の色が挙げられる。
【0123】
そして、画像処理機能344は、色が割り当てられた3次元画像データに基づいて、表示用の2次元画像データを生成する(ステップS109)。例えば、画像処理機能344は、3次元画像データに対してサーフェスレンダリングを行い、表示用の2次元画像データとしてサーフェスレンダリング画像データを生成する。
【0124】
そして、システム制御機能341は、ディスプレイ32に表示用の2次元画像データが示す画像を表示させ(ステップS110)、評価処理を終了する。図14は、第1の実施形態に係る表示用の2次元画像データが示す画像の一例を示す図である。例えば、図14に示すように、システム制御機能341は、サーフェスレンダリング画像データが示すサーフェスレンダリング画像80をディスプレイ32に表示させる。このようにして、システム制御機能341は、評価機能347により評価された評価結果をディスプレイ32に表示させる。これにより、サーフェスレンダリング画像80を確認した操作者は、対象部位のどの部分が癒着している可能性が高いかを容易に把握することができる。
【0125】
以上、第1の実施形態に係るX線CT装置1について説明した。X線CT装置1によれば、上述したように、精度良く付着の状態を評価することができる。
【0126】
(第1の実施形態の第1の変形例)
上述した第1の実施形態では、1次元の関心領域44が設定される場合について説明したが、関心領域44は、1次元でなく、例えば、2次元又は3次元であってもよい。そこで、このような変形例を第1の実施形態の第1の変形例として説明する。第1の変形例では、X線CT装置1は、2次元又は3次元の関心領域44内の画素を用いて、第1の実施形態と同様の処理を行う。
【0127】
例えば、第1の変形例では、2次元の関心領域44内には、境界43の法線方向に沿って1次元状に並ぶ複数の画素から構成される画素列が、境界43の法線方向と直交する方向に複数並んでいる。そこで、第1の変形例では、X線CT装置1は、第1の実施形態において1次元状に並んだ複数の画素45に対して行った処理と同様の処理を、複数の画素列のそれぞれに対して行う。
【0128】
また、3次元の関心領域44が設定される場合においても、実行機能346は、2次元の関心領域44が設定される場合の処理と同様の処理を行う。したがって、第1の変形例によれば、第1の実施形態と同様の効果を奏する。
【0129】
(第1の実施形態の第2の変形例)
また、上述した第1の実施形態及び第1の変形例では、実行機能346が、クラスタリング処理の一部の処理を実行する場合について説明したが、クラスタリング処理の全処理を実行してもよい。この場合、実行機能346は、15本のカットラインのそれぞれに対して算出したエネルギーE(L,L,・・・,L,w)の中から、最小のエネルギーE(L,L,・・・,L,w)に対応するカットラインにより、各画素45を各クラスタに分類するクラスタリングを行う。すなわち、実行機能346は、クラスタリング処理の全処理を実行する。
【0130】
このように、実行機能346は、動きベクトルXn_i及び動きベクトルX(n+1)_iに基づくエネルギーE(L,L,・・・,L,w)に基づいて、第1のクラスタ又は第2のクラスタへ複数の画素45のそれぞれを分類するクラスタリング処理を実行する。すなわち、実行機能346は、動きベクトルXn_i及び動きベクトルX(n+1)_iに基づいて、クラスタリング処理を実行する。
【0131】
また、X線CT装置1は、クラスタリング処理の全処理を実行する場合には、クラスタリング処理の結果を用いて、確率pの確からしさを示す信頼度を算出してもよい。そこで、このような変形例を第1の実施形態の第2の変形例として説明する。
【0132】
図15及び図16は、第2の変形例に係るX線CT装置が実行する処理の一例を説明するための図である。図15には、セグメンテーション機能345により3次元画像データ40から抽出された肺野の領域41及び肺野外の部位の領域42が示されている。また、図15には、実行機能346により第1のクラスタに分類された画素45が位置する領域82、及び、第2のクラスタに分類された画素45が位置する領域81が示されている。
【0133】
そして、第2の変形例では、評価機能347は、肺野の領域41と肺野外の部位の領域42との境界43と、領域81と領域82との境界83との一致度を、確率pの確からしさを示す信頼度として算出する。なお、評価機能347は、一致度を算出する方法として、公知の技術を用いる。
【0134】
ここで、境界43と境界83との一致度が高いと、クラスタリング処理の結果とセグメンテーション処理の結果との一致度も高くなる。クラスタリング処理の結果とセグメンテーション処理の結果との一致度が高いほど、クラスタリング処理の結果の確からしさを示す信頼度が高くなる。クラスタリング処理の結果の確からしさを示す信頼度が高くなると、確率pの確からしさを示す信頼度も高くなる。
【0135】
そこで、第2の変形例に係る評価機能347は、境界43と境界83との一致度を、確率pの確からしさを示す信頼度として算出する。
【0136】
また、実行機能346により、関心領域44内の全ての画素45が第2のクラスタに属するように画素45が分類された場合について説明する。この場合には、図16に示すように、第2のクラスタに属する画素45が位置する領域84はあるが、第1のクラスタに属する画素45が位置する領域はない。このため、領域84と第1のクラスタに属する画素45が位置する領域との境界はない。このように、境界がない場合には、評価機能347は、確率pの確からしさを示す信頼度として、所定値、例えば、「0」を算出する。同様に、評価機能347は、実行機能346により関心領域44内の全ての画素45が第1のクラスタに属するように画素45が分類された場合にも、所定値、例えば、「0」を算出する。
【0137】
このようにして、評価機能347は、セグメンテーション処理の結果及びクラスタリング処理の結果に基づいて、癒着の状態の評価結果の信頼度を算出する。
【0138】
そして、第2の変形例に係るシステム制御機能341は、算出した信頼度を、ディスプレイ32に表示させる。
【0139】
以上、第2の変形例に係るX線CT装置1について説明した。第2の変形例によれば、確率pの確からしさを示す信頼度を定量的に表示することができる。このため、第2の変形例によれば、操作者に、確率pの確からしさを、より確実に把握させることができる。
【0140】
(第2の実施形態)
ここで、第1の実施形態、第1の変形例又は第2の変形例に係るX線CT装置1の機能を、X線CT装置1とネットワークを介して接続された画像処理装置に持たせることができる。このような実施形態を第2の実施形態として、図17を用いて説明する。
【0141】
図17は、第2の実施形態に係る画像処理装置を含むシステムの構成の一例を示す図である。図17の例に示すシステムは、X線CT装置600と、画像保管装置700と、画像表示装置800と、画像処理装置900とを有する。X線CT装置600と、画像保管装置700と、画像表示装置800と、画像処理装置900とは、例えば、病院内に設置された院内LAN(Local Area Network)500により、直接的、又は間接的に相互に通信可能な状態となっている。例えば、PACS(Picture Archiving and Communication System)が導入されている場合、各装置600~900は、DICOM(Digital Imaging and Communications in Medicine)規格に則って、画像等を相互に送受信する。
【0142】
X線CT装置600は、第1の実施形態、第1の変形例又は第2の変形例に係るX線CT装置1である。X線CT装置600は、4次元画像データ(Tフレーム分の3次元画像データ)を画像処理装置900に送信する。
【0143】
画像保管装置700は、X線CT装置600および画像処理装置900により生成された表示用の2次元画像データを保管するデータベースである。
【0144】
画像処理装置900は、ワークステーションであり、第1の実施形態、第1の変形例又は第2の変形例に係るX線CT装置1の機能を有する。画像処理装置900は、X線CT装置600から送信されたTフレーム分の3次元画像データを用いて、第1の実施形態、第1の変形例又は第2の変形例に係るX線CT装置1が実行する処理と同様の処理を行う。
【0145】
画像処理装置900は、入力インターフェース901、ディスプレイ902、メモリ903及び処理回路904を有する。
【0146】
入力インターフェース901は、操作者から各種指示及び各種情報の入力操作を受け付ける。具体的には、入力インターフェース901は、処理回路904に接続されており、操作者から受け取った入力操作を電気信号へ変換し処理回路904へと出力する。例えば、入力インターフェース901は、トラックボール、スイッチボタン、マウス、キーボード、操作面へ触れることで入力操作を行うタッチパッド、表示画面とタッチパッドとが一体化されたタッチスクリーン、光学センサを用いた非接触入力インターフェース、及び音声入力インターフェース等によって実現される。なお、本明細書において、入力インターフェース901は、マウス、キーボード等の物理的な操作部品を備えるものだけに限られない。例えば、装置とは別体に設けられた外部の入力機器から入力操作に対応する電気信号を受け取り、この電気信号を処理回路904へ出力する電気信号の処理回路も入力インターフェース901の例に含まれる。
【0147】
ディスプレイ902は、各種情報及び各種画像を表示する。具体的には、ディスプレイ902は、処理回路904に接続されており、処理回路904から送られる各種情報及び各種画像のデータを表示用の電気信号に変換して出力する。例えば、ディスプレイ902は、液晶モニタやCRT(Cathode Ray Tube)モニタ、タッチパネル等によって実現される。
【0148】
メモリ903は、各種データを記憶する。具体的には、メモリ903は、各種の画像を記憶する。例えば、メモリ903は、RAM(Random Access Memory)、フラッシュメモリ等の半導体メモリ素子、ハードディスク、光ディスク等により実現される。
【0149】
処理回路904は、画像処理装置900の全体制御を行う。例えば、処理回路904は、X線CT装置600から送信されたTフレーム分の3次元画像データを受信すると、受信した3次元画像データをメモリ903に格納する。処理回路904は、プロセッサにより実現される。処理回路904は、取得機能904a、セグメンテーション機能904b、実行機能904c、評価機能904d、色割当機能904e、表示制御機能904f及び画像処理機能904gを有する。取得機能904aは、取得部の一例である。セグメンテーション機能904bは、セグメンテーション処理部の一例である。実行機能904cは、実行部及び第2の算出部の一例である。評価機能904dは、評価部、算出部及び第1の算出部の一例である。表示制御機能904fは、表示制御部の一例である。画像処理機能904gは、生成部の一例である。
【0150】
ここで、例えば、処理回路904の構成要素である取得機能904a、セグメンテーション機能904b、実行機能904c、評価機能904d、色割当機能904e、表示制御機能904f及び画像処理機能904gの各機能は、コンピュータによって実行可能なプログラムの形態でメモリ903に記憶されている。処理回路904は、各プログラムをメモリ903から読み出し、読み出した各プログラムを実行することで、各機能を実現する。換言すると、各プログラムを読み出した状態の処理回路904は、図17の処理回路904内に示された各機能を有することとなる。
【0151】
取得機能904aは、メモリ903に記憶されたTフレーム分の3次元画像データを取得する。すなわち、取得機能904aは、複数の時相において被検体Pの対象部位を含んで撮像された複数の3次元画像データを取得する。
【0152】
セグメンテーション機能904bは、上述したステップS101の処理と同様の処理を実行する。実行機能904cは、上述したステップS102~S105,S107の処理と同様の処理を実行する。評価機能904dは、上述したステップS106の処理と同様の処理を実行する。
【0153】
色割当機能904eは、上述したステップS108の処理と同様の処理を実行する。画像処理機能904gは、上述したステップS109の処理と同様の処理を実行する。表示制御機能904fは、上述したステップS110の処理と同様の処理を実行する。
【0154】
以上、第2の実施形態に係る画像処理装置900について説明した。画像処理装置900によれば、第1の実施形態、第1の変形例及び第2の変形例と同様に、精度良く付着の状態を評価することができる。
【0155】
以上説明した少なくともひとつの実施形態又は変形例によれば、精度良く付着の状態を評価することができる。
【0156】
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
【符号の説明】
【0157】
900 画像処理装置
904a 取得機能
904d 評価機能
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17