(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-10-28
(45)【発行日】2022-11-08
(54)【発明の名称】電磁波検出装置及び電磁波検出システム
(51)【国際特許分類】
G01R 29/08 20060101AFI20221031BHJP
H01L 31/108 20060101ALI20221031BHJP
H01Q 19/22 20060101ALI20221031BHJP
【FI】
G01R29/08 F
H01L31/10 C
H01Q19/22
G01R29/08 B
(21)【出願番号】P 2018212828
(22)【出願日】2018-11-13
【審査請求日】2021-10-21
(73)【特許権者】
【識別番号】000005016
【氏名又は名称】パイオニア株式会社
(74)【代理人】
【識別番号】100110928
【氏名又は名称】速水 進治
(74)【代理人】
【識別番号】100127236
【氏名又は名称】天城 聡
(72)【発明者】
【氏名】栗田 暢之
(72)【発明者】
【氏名】加茂 喜彦
【審査官】島▲崎▼ 純一
(56)【参考文献】
【文献】特開2018-63167(JP,A)
【文献】特開2015-179929(JP,A)
【文献】特開2014-219224(JP,A)
【文献】特開2016-111542(JP,A)
【文献】特開2009-272685(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01R 29/08
H01L 31/108
H01Q 19/22
(57)【特許請求の範囲】
【請求項1】
基板と、
前記基板に接地され、ショットキー接合部及び前記ショットキー接合部を介して互いに接合している一対の導電部を有する電磁波検出素子と、
前記基板における前記ショットキー接合部から離間した位置に配置され、前記電磁波検出素子側の端に少なくとも前記一対の導電部の並び方向に沿う部分を有し、前記並び方向の幅が前記電磁波検出素子の前記並び方向の幅以上のフローティング導電部と、
を備え、
前記電磁波検出素子の検出波長帯の中心波長を波長λとし且つ前記ショットキー接合部と前記フローティング導電部との離間距離を距離Lとした場合、Lは(λ/4)の奇数倍の90%以上110%以下とされている、
電磁波検出装置。
【請求項2】
基板と、
前記基板に接地され、ショットキー接合部及び前記ショットキー接合部を介して互いに接合している一対の導電部を有する電磁波検出素子と、
前記基板における前記ショットキー接合部から離間した位置に配置され、前記電磁波検出素子側の端に少なくとも前記一対の導電部の並び方向に沿う部分を有し、前記並び方向の幅が前記電磁波検出素子の前記並び方向の幅よりも狭いフローティング導電部と、
を備え、
前記電磁波検出素子の検出波長帯の中心波長を波長λとし且つ前記ショットキー接合部と前記フローティング導電部との離間距離を距離Lとした場合、Lは(λ/2)の整数倍の90%以上110%以下とされている、
電磁波検出装置。
【請求項3】
前記フローティング導電部は、他のショットキー接合部及び前記他のショットキー接合部を介して互いに接合している他の一対の導電部を有する構造体とされている、
請求項1又は2に記載の電磁波検出装置。
【請求項4】
前記他のショットキー接合部の形状は、前記ショットキー接合部の形状と異なる、
請求項3に記載の電磁波検出装置。
【請求項5】
前記波長λは、100GHz以上10THz以下の範囲の波長とされている、
請求項1~4のいずれか1項に記載の電磁波検出装置。
【請求項6】
請求項1~5のいずれか1項に記載の電磁波検出装置と、
前記電磁波検出素子が検出する電磁波を発生させる電磁波発生装置と、
を備える電磁波検出システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電磁波検出装置及び電磁波検出システムに関する。
【背景技術】
【0002】
特許文献1には、テラヘルツ検出素子を備えた無線伝送装置が開示されている。また、この文献のテラヘルツ検出素子の例としては、ショットキーバリアダイオード(Schottky Barrier Diode、以下SBDという。)が記載されている。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
テラヘルツ検出素子等の電磁波検出素子には、電磁波の検出感度(検出出力)が高いことが望ましい。しかしながら、電磁波検出素子がそれ自身で検出できる電磁波はその構造により決まるため、検出出力には限界がある。
しかしながら、本願の発明者は、試験研究により、電磁波検出素子の周辺の構成を工夫することで、電磁波の検出出力を向上させる構成を見出すに至った。
【0005】
本発明が解決しようとする課題としては、電磁波の検出出力を向上させることが一例として挙げられる。
【課題を解決するための手段】
【0006】
請求項1に記載の発明は、
基板と、
前記基板に接地され、ショットキー接合部及び前記ショットキー接合部を介して互いに接合している一対の導電部を有する電磁波検出素子と、
前記基板における前記ショットキー接合部から離間した位置に配置され、前記電磁波検出素子側の端に少なくとも前記一対の導電部の並び方向に沿う部分を有し、前記並び方向の幅が前記電磁波検出素子の前記並び方向の幅以上のフローティング導電部と、
を備え、
前記電磁波検出素子の検出波長帯の中心波長を波長λとし且つ前記ショットキー接合部と前記フローティング導電部との離間距離を距離Lとした場合、Lは(λ/4)の奇数倍の90%以上110%以下とされている、
電磁波検出装置である。
【0007】
請求項2に記載の発明は、
基板と、
前記基板に接地され、ショットキー接合部及び前記ショットキー接合部を介して互いに接合している一対の導電部を有する電磁波検出素子と、
前記基板における前記ショットキー接合部から離間した位置に配置され、前記電磁波検出素子側の端に少なくとも前記一対の導電部の並び方向に沿う部分を有し、前記並び方向の幅が前記電磁波検出素子の前記並び方向の幅よりも狭いフローティング導電部と、
を備え、
前記電磁波検出素子の検出波長帯の中心波長を波長λとし且つ前記ショットキー接合部と前記フローティング導電部との離間距離を距離Lとした場合、Lは(λ/2)の整数倍の90%以上110%以下とされている、
電磁波検出装置である。
【図面の簡単な説明】
【0008】
【
図1】第1実施形態の電磁波検出システムの概略図である。
【
図2】第1実施形態の電磁波検出装置を構成する電磁波検出部の部分拡大図である。
【
図3】
図2の3-3切断線で切断した電磁波検出部の部分断面図である。
【
図4】第1実施形態における、電磁波検出素子と、フローティング導電部との間の再放射を説明する模式図である。
【
図5】誘電性の場合における、電磁波検出素子の電界及び電流位相と、再放射電界位相とを説明するためのモデル図である。
【
図6】誘電性の場合における、電磁波検出素子とフローティング導電部との離間距離と、再放射位相との関係を説明するためのモデル図である。
【
図7】第1実施形態の変形例の電磁波検出素子の部分拡大図である。
【
図8】第2実施形態の電磁波検出素子の部分拡大図である。
【
図9】容量性の場合における、電磁波検出素子の電界及び電流位相と、再放射電界位相とを説明するためのモデル図である。
【
図10】容量性の場合における、電磁波検出素子とフローティング導電部との離間距離と、再放射位相との関係を説明するためのモデル図である。
【
図11】第2実施形態の変形例の電磁波検出素子の部分拡大図である。
【
図12】第1実施形態の他の変形例の電磁波検出素子の部分拡大図である。
【発明を実施するための形態】
【0009】
≪概要≫
以下、本発明の一例である第1実施形態及び第1実施形態の変形例並びに第2実施形態並びに第2実施形態の変形例について図面を参照しながら説明する。なお、参照するすべての図面では同様の機能を有する構成要素に同様の符号を付し、明細書では適宜説明を省略する。
【0010】
≪第1実施形態≫
以下、第1実施形態について図面を参照しながら説明する。まず、本実施形態の電磁波検出システム10(
図1参照)の機能及び構成について説明する。次いで、本実施形態の電磁波検出システム10による電磁波検出動作について説明する。次いで、本実施形態の効果について説明する。
【0011】
<第1実施形態の電磁波検出システムの機能及び構成>
図1は、本実施形態の電磁波検出システム10の概略図である。電磁波検出システム10は、電磁波発生装置20と、電磁波検出装置30とを備えている。電磁波検出システム10は、電磁波発生装置20により発生された電磁波Wを、電磁波検出装置30により検出する機能を有する。
【0012】
ここで、本実施形態の電磁波発生装置20が発生させる電磁波Wは、一例として、テラヘルツ波とされている。テラヘルツ波とは、赤外線よりも短波長でミリ波よりも長波長の電磁波と言われている。テラヘルツ波は、光波及び電波の両方の性質を兼ね備えていた電磁波であり、例えば、布、紙、木、プラスチック、陶磁器等を透過し(又は透過し易く)、金属、水等は透過しない(又は透過し難い)という性質を有する。一般的に、テラヘルツ波の周波数は1THz前後(波長は300μm前後に相当)の電磁波とも言われているが、その範囲について一般的に明確な定義はない。そこで、本明細書では、テラヘルツ波の波長の範囲を100GHz以上10THz以下の範囲と定義する。
【0013】
〔電磁波発生装置〕
電磁波発生装置20は、変調信号を加えた電磁波Wを発生させる機能を有する。電磁波Wの発生波長帯は、前述のテラヘルツ波の波長の範囲内の波長帯とされ、本明細書ではその中心波長を波長λと定義する。
【0014】
〔電磁波検出装置〕
電磁波検出装置30は、電磁波発生装置20が発生させた電磁波Wを検出する機能を有する。電磁波検出装置30は、
図1に示されるように、電磁波検出部32と、スペクトラムアナライザ34と、集光レンズ36とを有している。集光レンズ36は、電磁波発生装置20により発生された電磁波Wを、電磁波検出部32に向けて集光するようになっている。電磁波検出部32は、集光レンズ36を介して集光された電磁波Wを検出して復調するようになっている。スペクトラムアナライザ34は、電磁波検出部32で復調された電磁波Wを用いて、周波数軸の信号として算出するようになっている。
【0015】
次に、電磁波検出部32について、
図2及び
図3を参照しながら説明する。
図2は、本実施形態の電磁波検出部32の部分拡大図である。
図3は、
図2の3-3切断線で切断した電磁波検出部32の部分断面図である。
電磁波検出部32は、
図2に示されるように、基板40と、ショットキーバリアダイオード構造部50(以下、SBD構造部50(電磁波検出素子の一例)という。)と、フローティング導電部60とを有している。
【0016】
〈基板及びSBD構造部〉
SBD構造部50は、ショットキー接合部51と、一対のパッド56A、56Bと、一対の延在部58A、58Bとを有している。SBD構造部50は、基板40に接地されている。
【0017】
(ショットキー接合部)
基板40とSBD構造部50とは、
図3に示されるような、層構造とされている。具体的には、基板40は、半導体ウェハを切り出した基板とされている。基板40上には、不純物を含む半導体層52が形成されている。半導体層52上には、互いに対向するように隙間を空けて金属層54A及び不純物を含む半導体層53が形成されている。金属層54A上には、パッド56Aが形成されている。半導体層53上には金属層55が形成され、更に金属層55上には金属層54Bが形成されている。金属層54B上には、フィンガー電極57が配置されている。そして、本明細書では、基板40上に形成された、半導体層52、金属層54A、半導体層53、金属層54A、金属層55、金属層54B及びフィンガー電極57の組合せで構成される構造を、ショットキー接合部51と定義する。なお、フィンガー電極57は、
図2に示されるように、長尺とされている。本実施形態では、フィンガー電極57の長手方向(及び後述するパッド56A、56Bの並び方向)をX方向とする。
【0018】
(一対のパッド)
また、
図2に示されるように、ショットキー接合部51を挟んで一方側にはパッド56Aが配置され、他方側にはパッド56Bが配置されている。バッド56A、56B(一対の導電部の一例)は、基板40の板厚方向から見て、矩形状とされ、フィンガー電極57の長手方向に沿って配置された状態で、ショットキー接合部51を介して互いに接合している。なお、前述のとおり、パッド56Aの下には、半導体層52上の金属層54Aが接触している(
図3参照)。これに対して、パッド56Bはフィンガー電極57の長手方向の一端(パッド56A側と反対側の端)に繋がっている(
図3参照)。パッド56Bの下には、半導体層52上の金属層54Bが接触している(図示省略)。
本実施形態では、フィンガー電極57の長手方向、すなわち、パッド56A、56Bの並び方向をX方向とする。本実施形態では、X方向は電磁波Wの偏光方向である。また、本実施形態では、パッド56Aにおけるショットキー接合部51側と反対側の端からパッド56Bにおけるショットキー接合部51側と反対側の端までの長さLA、別言するとSBD構造部50の幅LA(
図2参照)は、一例として440μmとされている。
【0019】
(一対の延在部)
パッド56Aにおける、X方向のショットキー接合部51側と反対側の端部には、X方向と直交する方向(Y方向とする。)に沿って延在する延在部58Aが配置されている。延在部58Aは、パッド56Aと同じ層構成とされている。また、パッド56Bにおける、X方向のショットキー接合部51側と反対側の端部には、Y方向に沿って延在する延在部58Bが配置されている。延在部58Bは、パッド56Bと同じ層構成とされている。そして、延在部58Aと延在部58Bは、それぞれ、検出回路(図示省略)に接続されている。
【0020】
〈フローティング導電部〉
本実施形態のフローティング導電部60は、
図2に示されるように、一例として、基板40の板厚方向から見て矩形状とされている。また、フローティング導電部60は、ショットキー接合部51に対して、Y方向における一対の延在部58A、58Bが配置されている側と反対側の位置にX方向に沿った状態で配置されている。すなわち、フローティング導電部60は、基板40におけるショットキー接合部51から離間した位置に配置されている。フローティング導電部60は、基板40に接地されずにフローティング状態とされている。
また、フローティング導電部60は、
図2に示されるように、一例として、Y方向においてSBD構造部50と重なっており、かつ、X方向においてSBD構造部50の両端よりも外側にはみ出している。すなわち、フローティング導電部60のX方向の幅は、SBD構造部50のX方向の幅以上(又はよりも大きい)とされている。
なお、本実施形態では、フローティング導電部60のX方向の長さLB、別言するとフローティング導電部60の幅LB(
図2参照)は、一例として820μmとされている。すなわち、本実施形態では、フローティング導電部60の幅LBは、幅LAよりも長く設定されている。
【0021】
また、前述のとおり、フローティング導電部60は、基板40の板厚方向から見て矩形状とされ、かつ、X方向に沿って配置されている。そのため、フローティング導電部60のY方向の両縁(短手方向の両端)の部分は、X方向に沿う部分とされている。ここで、本実施形態では、フローティング導電部60の短手方向の両端の部分のうちSBD構造部50側の部分を部分62(一対の導電部の並ぶ方向に沿う部分の一例)とする。また、Y方向におけるショットキー接合部51の中心位置から部分62までの距離(ショットキー接合部51とフローティング導電部60との離間距離)を距離Lとする。そして、本実施形態の距離Lは、電磁波Wの波長λとの関係において、以下の(式1)の関係を有する。
【0022】
(式1) {(λ/4)×n}×0.9≦L≦{(λ/4)×n}×1.1
ここで、nは奇数である。
【0023】
すなわち、(式1)によれば、距離Lは(λ/4)の奇数倍の90%以上110%以下とされている。
【0024】
以上が、本実施形態の電磁波検出システム10の機能及び構成についての説明である。
【0025】
<第1実施形態の電磁波検出システムによる電磁波検出動作>
次に、本実施形態の電磁波検出システム10による電磁波検出動作について、
図1及び
図2を参照しながら説明する。
【0026】
まず、電磁波発生装置20は、変調信号を加えた波長λの電磁波Wを発生させる。
次いで、電磁波発生装置20により発生された電磁波Wは、集光レンズ36により集光される。そして、集光レンズ36により集光された電磁波Wは、電磁波検出部32に照射される。
次いで、電磁波検出部32に照射された電磁波Wは、電磁波検出部32により検出される。そして、電磁波検出部32により検出された電磁波Wは、電磁波検出部32により復調される。
次いで、電磁波検出部32で復調された電磁波Wは、スペクトラムアナライザ34により、周波数軸の信号として算出される。
なお、電磁波検出部32による電磁波Wの検出動作については、本実施形態の効果の説明の中で説明する。
【0027】
以上が、本実施形態の電磁波検出システム10の電磁波検出動作についての説明である。
【0028】
<第1実施形態の効果>
次に、本実施形態の効果について、
図4~
図6を参照しながら説明する。本実施形態の効果とは、電磁波検出部32がフローティング導電部60を有していることの効果である。本実施形態の効果については、本実施形態と、以下に説明する比較形態(図示省略)とを比較して説明する。なお、比較形態において、本実施形態と同等の機能、構造等を有する構成要素については本実施形態と同じ名称、符号等を用いて説明する。
ここで、
図4は、本実施形態における、SBD構造部50と、フローティング導電部60との間の再放射を説明する模式図である。
【0029】
比較形態の電磁波検出システム(図示省略)は、電磁波検出部にフローティング導電部60を有していない点以外は、本実施形態と同様の構成とされている。すなわち、比較形態の電磁波検出装置(図示省略)は、電磁波発生装置20により発生されて集光レンズ36により集光された電磁波Wを、SBD構造部50のみで検出する。
比較形態の電磁波検出部の場合、SBD構造部50に電磁波Wが照射されると、一対のパッド56A、56Bがアンテナとして機能し、X方向に沿って電流が流れる。このようにして、比較形態の電磁波検出部は、電磁波Wを検出する。
以下、比較形態の電磁波検出装置における、波長λの電磁波Wの検出出力を基準(100%)として説明する。
【0030】
これに対して、本実施形態の場合、比較形態の場合と同様にSBD構造部50に電磁波Wが照射されると、一対のパッド56A、56Bがアンテナとして機能し、X方向に沿って電流IAが流れる(
図4)。また、フローティング導電部60には、電流IAが再放射する電磁波Wにより誘導電流IBが流れる。そして、電磁波検出部32が電磁波Wを検出している期間中、電流IAに起因する電磁波Wの再放射と、誘導電流IBに起因する電磁波Wの再放射とが同時に起こる。その結果、SBD構造部50には、電流IAに、フローティング導電部60からの再放射に起因する電流分加わった電流が流れる。より具体的には、
図5及び
図6を参照しながら説明する。
【0031】
図5は、後述する誘電性の場合における、SBD構造部50の電界及び電流位相と、再放射電界位相とを説明するためのモデル図である。
図6は、誘電性の場合における、SBD構造部50とフローティング導電部60との離間距離(距離L)と、再放射位相との関係を説明するためのモデル図である。
本実施形態は、フローティング導電部60の幅LBが共振長(λ/2)以上の場合に相当する。このような場合を、インピーダンスが「誘電性」の場合という。
【0032】
図5における各符号は、以下のパラメータを示している。
li: 誘導性リアクタンス
lc: 容量性リアクタンス
E: 電界
Ei: liに対して発生した電界
Ec: lcに対して発生した電界
【0033】
次に、
図5(A)及び(B)のモデル図について説明する。ここでは、SBD構造部50と、フローティング導電部60との組合せを、それぞれ、コンデンサと置き換えて説明する。
前述のとおり、本実施形態の場合、フローティング導電部60の幅LBが共振長(λ/2)以上の場合に相当するため、インピーダンスは「誘導性」となる。そのため、基準となる電界Eに達した場合に、形成される電界Eに対して電流の位相は90(°)分(λ/4分)遅れる(
図5(A)参照)。さらに、
図5(A)の状態からの再放射電界は電流に対して90(°)分遅れる。以上のとおり、電界E(
図5(A)参照)と、電界Ei(
図5(B)参照)とは、それぞれ、進み方向、遅れ方向に進んでいく。
【0034】
次に、
図6のモデル図について説明する。
図6のモデル図は、距離Lに対する再放射位相の変化のモデル図である。
図6(A)に示されるように、距離Lがλ/4(位相でいう90(°)に相当)、3λ/4、5λ/4、・・・、すなわち、nを正の整数としたときのλ/4×(2n-1)の場合、電界Eと電界Eiとは互いに同相となり強め合う。
これに対して、
図6(B)に示されるように、距離Lがλ/2、λ(=2λ/2)、3/λ、2λ(=4λ/2)、・・・、すなわち、nを正の整数としたときのλ/2×nの場合、電界Eと電界Eiとは互いに逆相となり弱め合う。
そして、前述のとおり、本実施形態の距離Lと波長λとは、前述の(式1)の関係を有することから、
図6(A)のような関係となる。
なお、本実施形態は、前述の比較形態の場合の検出出力を基準(100%)とすると、検出出力が166%であった(実験の結果)。
【0035】
以上より、本実施形態の電磁波検出部32(電磁波検出装置30)は、比較形態の電磁波検出部(電磁波検出装置)よりも、検出出力を向上させることができる。また、本実施形態の電磁波検出部32(電磁波検出装置30)は、フローティング導電部60についての距離Lがnを正の整数としたときのλ/2×nの場合に比べて、検出出力を向上させることができる。
なお、前述の(式1)によれば、距離Lは(λ/4)の奇数倍の90%以上110%以下でよいとされている。このように(λ/4)の奇数倍に対して±10%の範囲でもよいとした理由は、電磁波検出部32の製造ばらつき等を考慮したためである。
【0036】
以上が、本実施形態の効果についての説明である。また、以上が、第1実施形態についての説明である。
【0037】
≪第1実施形態の変形例≫
次に、第1実施形態の変形例について
図7を参照しながら説明する。以下、本変形例について、第1実施形態の場合と異なる部分についてのみ説明する。なお、本変形例において、第1実施形態と同等の機能、構造等を有する構成要素については第1実施形態と同じ名称、符号等を用いて説明する。
【0038】
<機能及び構成並びに電磁波検出動作>
本変形例の電磁波検出部32A(、電磁波検出装置30A及び電磁波検出システム10A)は、第1実施形態のフローティング導電部60に換えて、SBD構造部50とほぼ同じ構成のSBD構造部60A(構造体の一例)を有している。具体的には、SBD構造部60Aは、ショットキー接合部51A(他のショットキー接合部の一例)と、一対のパッド56A1、56B1(他の一対の導電部の一例)と、一対の延在部58A、58Bとを有している。ここで、ショットキー接合部51Aの形状、構造は、第1実施形態のショットキー接合部51(
図2参照)と同じである。一対のパッド56A1、56B1は、第1実施形態の一対のパッド56A、56B(
図2参照)よりもX方向の長さが長い点のみ、一対のパッド56A、56Bと異なる。なお、SBD構造部60Aの幅は、第1実施形態のフローティング導電部60と同じ幅(幅LB)である。また、SBD構造部60Aは、基板40に接地されずにフローティング状態とされている。また、本変形例の場合、距離Lは、Y方向におけるショットキー接合部51からショットキー接合部51Aまでの距離とされている。
【0039】
また、本変形例の電磁波検出システム10Aによる電磁波検出動作は、第1実施形態の場合と同様である。
【0040】
<効果>
本変形例の場合、基板40に接地されていない未接地状態のSBD構造部60Aは、第1実施形態のフローティング導電部60と同様に、SBD構造部50とともにコンデンサを構成する。また、本変形例の場合、SBD構造部60Aの幅LBが共振長(λ/2)以上の場合に相当するため、インピーダンスは「誘導性」となる。
以上より、本変形例は、第1実施形態の場合と同等の効果を奏する。
なお、本変形例の場合、例えば、SBD構造部60Aの基板40への接地の切り替えを切り替えスイッチ(図示省略)により可能としたうえで、接地状態では単独の電磁波検出素子として、未接地状態ではフローティング導電部60の換わりとして使用できる。また、例えば、2つのSBD構造部(SBD構造部50及びSBD構造部60A)を単独で測定することにより、どこにカットオフ周波数があるかを見つけ易くなる。さらに、2つのSBD構造部の各検出信号のピークが中心周波数付近である程度幅を持っている場合であって一方が破損等により使用不可となったとき、他方で補うことができる。これらの点は、第1実施形態の場合に奏することのない効果である。
【0041】
以上が、第1実施形態の変形例についての説明である。
【0042】
≪第2実施形態≫
次に、第2実施形態について
図8~
図10を参照しながら説明する。以下、本実施形態について、第1実施形態の場合と異なる部分についてのみ説明する。なお、本実施形態において、第1実施形態と同等の機能、構造等を有する構成要素については第1実施形態と同じ名称、符号等を用いて説明する。
【0043】
<機能及び構成並びに電磁波検出動作>
本実施形態の電磁波検出部32B(、電磁波検出装置30B及び電磁波検出システム10B)は、第1実施形態のフローティング導電部60(
図2参照)に換えて、フローティング導電部60B(
図8参照)を有している。ここで、フローティング導電部60Bは、フローティング導電部60と異なり、X方向においてSBD構造部50の両端よりも内側に配置されている。すなわち、フローティング導電部60Bの幅LCは、SBD構造部50の幅LA未満とされている。
なお、本実施形態では、フローティング導電部60の幅LB(
図2参照)は、一例として380μmとされている。すなわち、本実施形態では、フローティング導電部60Bの幅LCは、幅LAよりも狭く設定されている。
【0044】
また、本実施形態の距離Lは、電磁波Wの波長λとの関係において、以下の(式2)の関係を有する。
【0045】
(式2) {(λ/2)×n}×0.9≦L≦{(λ/2)×n}×1.1
ここで、nは正の整数である。
【0046】
すなわち、(式2)によれば、距離Lは(λ/2)の整数倍の90%以上110%以下とされている。
【0047】
また、本実施形態の電磁波検出システム10Bによる電磁波検出動作は、第1実施形態の場合と同様である。
【0048】
<第2実施形態の効果>
次に、本実施形態の効果について、
図9及び
図10を参照しながら説明する。本実施形態の効果とは、電磁波検出部32がフローティング導電部60Bを有していることの効果である。本実施形態の効果については、本実施形態と、前述の比較形態(図示省略)とを比較して説明する。
【0049】
本実施形態の場合、比較形態の場合と同様にSBD構造部50に電磁波Wが照射されると、一対のパッド56A、56Bがアンテナとして機能し、X方向に沿って電流が流れる。また、フローティング導電部60Bには、SBD構造部50に流れる電流が再放射する電磁波Wにより誘導電流が流れる。そして、電磁波検出部32が電磁波Wを検出している期間中、SBD構造部50に流れる電流に起因する電磁波Wの再放射と、フローティング導電部60Bに流れる誘導電流に起因する電磁波Wの再放射とが同時に起こる。その結果、SBD構造部50には、SBD構造部50に流れる電流に、フローティング導電部60Bからの再放射に起因する電流分加わった電流が流れる。より具体的には、
図9及び
図10を参照しながら説明する。
【0050】
図9は、後述する容量性の場合における、SBD構造部50の電界及び電流位相と、再放射電界位相とを説明するためのモデル図である。
図10は、容量性の場合における、SBD構造部50とフローティング導電部60Bとの離間距離(距離L)と、再放射位相との関係を説明するためのモデル図である。
本実施形態は、フローティング導電部60Bの幅LCが共振長(λ/2)未満の場合に相当する。このような場合を、インピーダンスが「容量性」の場合という。
【0051】
図9における各符号は、第1実施形態の
図5の説明の場合と同様である。
li: 誘導性リアクタンス
lc: 容量性リアクタンス
E: 電界
Ei: liに対して発生した電界
Ec: lcに対して発生した電界
【0052】
次に、
図9(A)及び(B)のモデル図について説明する。ここでは、SBD構造部50と、フローティング導電部60Bとの組合せを、それぞれ、コンデンサと置き換えて説明する。
前述のとおり、本実施形態の場合、フローティング導電部60Bの幅LCが共振長(λ/2)未満の場合に相当するため、インピーダンスは「容量性」となる。そのため、基準となる電界Eに達した場合に、形成される電界Eに対して電流の位相は90(°)分(λ/4分)進む(
図9(A)参照)。さらに、
図9(A)の状態からの再放射電界は電流に対して90(°)分遅れる。以上のとおり、電界E(
図9(A)参照)と、電界Ei(
図9(B)参照)とは、それぞれ、進み方向、遅れ方向に進んでいく。
【0053】
次に、
図10のモデル図について説明する。
図10のモデル図は、距離Lに対する再放射位相の変化のモデル図である。
図10(B)に示されるように、距離Lがλ/2(位相でいう180(°)に相当)、λ(=2λ/2)、3/λ、2λ(=4λ/2)、・・・、すなわち、nを正の整数としたときのλ/2×nの場合、電界Eと電界Eiとは互いに同相となり強め合う。
これに対して、
図10(A)に示されるように、距離Lがλ/4(位相でいう90(°)に相当)、3λ/4、5λ/4、・・・、すなわち、nを正の整数としたときのλ/4×(2n-1)の場合、電界Eと電界Eiとは互いに逆相となり弱め合う。
そして、前述のとおり、本実施形態の距離Lと波長λとは、前述の(式2)の関係を有することから、
図10(B)のような関係となる。
なお、本実施形態は、前述の比較形態の場合の検出出力を基準(100%)とすると、検出出力が227%であった(実験の結果)。
【0054】
以上より、本実施形態の電磁波検出部32B(電磁波検出装置30B)は、比較形態の電磁波検出部(電磁波検出装置)よりも、検出出力を向上させることができる。また、本実施形態の電磁波検出部32B(電磁波検出装置30B)は、フローティング導電部60Bについての距離Lがnを正の整数としたときのλ/4×(2n-1)の場合に比べて、検出出力を向上させることができる。
なお、前述の(式2)によれば、距離Lは(λ/2)の整数倍の90%以上110%以下でよいとされている。このように(λ/2)の整数倍に対して±10%の範囲でもよいとした理由は、電磁波検出部32Bの製造ばらつき等を考慮したためである。
【0055】
以上が、第2実施形態についての説明である。
【0056】
≪第2実施形態の変形例≫
次に、第2実施形態の変形例について
図11を参照しながら説明する。以下、本変形例について、第2実施形態の場合と異なる部分についてのみ説明する。なお、本変形例において、第2実施形態と同等の機能、構造等を有する構成要素については第2実施形態と同じ名称、符号等を用いて説明する。
【0057】
<機能及び構成並びに電磁波検出動作>
本変形例の電磁波検出部32C(、電磁波検出装置30C及び電磁波検出システム10C)は、第2実施形態のフローティング導電部60Bに換えて、SBD構造部50とほぼ同じ構成のSBD構造部60C(構造体の一例)を有している。具体的には、SBD構造部60Cは、ショットキー接合部51C(他のショットキー接合部の一例)と、一対のパッド56A2、56B2(他の一対の導電部の一例)と、一対の延在部58A、58Bとを有している。ここで、ショットキー接合部51Cの形状、構造は、第2実施形態のショットキー接合部51(
図8参照)と同じである。一対のパッド56A2、56B2は、第2実施形態の一対のパッド56A、56B(
図8参照)よりもX方向の長さが短い点のみ、一対のパッド56A、56Bと異なる。なお、SBD構造部60Cの幅は、第2実施形態のフローティング導電部60Bと同じ幅(幅LC)である。また、SBD構造部60Cは、基板40に接地されずにフローティング状態とされている。また、本変形例の場合、距離Lは、Y方向におけるショットキー接合部51からショットキー接合部51Cまでの距離とされている。
【0058】
また、本変形例の電磁波検出システム10Cによる電磁波検出動作は、第2実施形態の場合と同様である。
【0059】
<効果>
本変形例の場合、基板40に接地されていない未接地状態のSBD構造部60Cは、第2実施形態のフローティング導電部60Bと同様に、SBD構造部50とともにコンデンサを構成する。また、本変形例の場合、SBD構造部60Cの幅LCが共振長(λ/2)未満の場合に相当するため、インピーダンスは「容量性」となる。
以上より、本変形例は、第2実施形態の場合と同等の効果を奏する。
なお、本変形例の場合、例えば、SBD構造部60Cの基板40への接地の切り替えを切り替えスイッチ(図示省略)により可能としたうえで、接地状態では単独の電磁波検出素子として、未接地状態ではフローティング導電部60Bの換わりとして使用できる。また、例えば、2つのSBD構造部(SBD構造部50及びSBD構造部60C)を単独で測定することにより、どこにカットオフ周波数があるかを見つけ易くなる。さらに、2つのSBD構造部の各検出信号のピークが中心周波数付近である程度幅を持っている場合であって一方が破損等により使用不可となったとき、他方で補うことができる。これらの点は、第2実施形態の場合に奏することのない効果である。
【0060】
以上が、第2実施形態の変形例についての説明である。
【0061】
以上のとおり、本発明について第1実施形態及びその変形例並びに第2実施形態及びその変形例を一例として説明したが、本発明はこれらの形態に限定されるものではない。本発明の技術的範囲には、例えば、下記のような形態(変形例)も含まれる。
【0062】
例えば、フィンガー電極の長さやショットキー接合部の形状を変更してもよい。具体的には、
図12に示される変形例の電磁波検出部32D(、電磁波検出装置30D及び電磁波検出システム10D)のように、第1実施形態の変形例における電磁波検出部32AのSBD構造部60A(
図7参照)に換えて、SBD構造部60Dにしてもよい。ここで、SBD構造部60Dは、SBD構造部60Aに対して、幅がLAである点、ショットキー電極の径が極端に大きい(一例として5倍程度)点、及び、これに伴いパッド56A2におけるフィンガー電極57との対向面の湾曲径が極端に大きい(一例として5倍程度)点で異なる。すなわち、本変形例のSBD構造部60Dは、SBD構造部50と同じ幅LAで、SBD構造部50及びSBD構造部60Aに対しショットキー接合部51Dの形状が異なっている。なお、ショットキー電極とは、フィンガー電極57におけるパッド56A2側端部を意味する。また、本変形例は、SBD構造部60Dは、その幅がLAであることから、インピーダンスが「誘電性」の場合に相当する。
【0063】
本変形例は、以上のような構成を有することにより、前述の各実施形態及びその変形例にない以下の効果を奏する。
例えば、一般的に、カットオフ周波数fc(後述する(式3)参照)は、目的とする中心周波数よりも高い周波数となるように設計される。本変形例の場合、目的とする中心周波数よりは高い周波数であるがカットオフ周波数より低い周波数帯に現れる不要なピーク(成分)等を除去したい場合に、ショットキー接合部51Dの形状を変えたことでカットオフ周波数を変更することができる。
なお、本変形例の場合、前述の比較形態の場合の検出出力を基準(100%)とすると、検出出力が227%であった(実験の結果)。
以上により、本変形例の場合、不要なピークの周波数帯の感度を意図的に低下させることができるという効果を奏する。
【0064】
(式3) fc=1/(2πRC)
ここで、各パラメータは、以下のとおりである。
R:ショットキー接合部の電気抵抗
C:ショットキー接合部の静電容量
【0065】
ところで、カットオフ周波数は、半導体層の成膜条件、例えばドープ濃度などを変えることに伴い抵抗成分の値を変えることや、基板を削って厚みを薄くして容量成分を減らすことにより変えることができる。しかしながら、半導体層の条件を変えると検出出力が減少する(最適成膜条件から外れる)ことになり、基板を薄くすると加工コストの上昇及び半導体チップの強度の低下となる。
これに対して、本変形例の場合、基本的に製造時に使用するマスクパターンの設計を変更するだけでショットキー接合部51Dの形状を変えることができる。すなわち、本変形例の場合、不要なピークの周波数帯の感度の意図的な低下を容易に(又は低コストで)実現できる。
以上が、本変形例の効果についての説明である。
なお、
図12に示される変形例はインピーダンスが「誘電性」の場合に相当するとして説明した。すなわち、
図12の変形例は、第1実施形態の他の変形例として説明した。しかしながら、前述の説明のとおり、SBD構造部60Dの形状により不要なピークの周波数帯の感度を意図的に低下させるメカニズムから、
図12の変形例をインピーダンスが「容量性」の場合に適用してもよい。
【0066】
また、各形態では、フローティング導電部60等を1つとしたが、SBD構造部50を挟んでY方向の両側に1つずつ配置してもよい。
【符号の説明】
【0067】
10 電磁波検出システム
20 電磁波発生装置
30 電磁波検出装置
32 電磁波検出部
34 スペクトラムアナライザ
36 集光レンズ
40 基板
50 ショットキーバリアダイオード構造部(SBD構造部)
51 ショットキー接合部
52 半導体層
53 半導体層
54A 金属層
54B 金属層
55 金属層
56A パッド
56B パッド
57 フィンガー電極
58A 延在部
58B 延在部
60 フローティング導電部
60A SBD構造部
60B フローティング導電部
60C SBD構造部