(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-10-28
(45)【発行日】2022-11-08
(54)【発明の名称】燃焼器およびこれを備える燃料電池システム
(51)【国際特許分類】
H01M 8/04014 20160101AFI20221031BHJP
H01M 8/04 20160101ALI20221031BHJP
H01M 8/12 20160101ALN20221031BHJP
【FI】
H01M8/04014
H01M8/04 N
H01M8/12 101
(21)【出願番号】P 2021543655
(86)(22)【出願日】2020-07-29
(86)【国際出願番号】 JP2020029105
(87)【国際公開番号】W WO2021044766
(87)【国際公開日】2021-03-11
【審査請求日】2022-03-02
(31)【優先権主張番号】P 2019161388
(32)【優先日】2019-09-04
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000003997
【氏名又は名称】日産自動車株式会社
(73)【特許権者】
【識別番号】597083976
【氏名又は名称】アー・ファウ・エル・リスト・ゲー・エム・ベー・ハー
【氏名又は名称原語表記】AVL LIST GMBH
【住所又は居所原語表記】HANS-LIST-PLATZ 1,A-8020 GRAZ,AUSTRIA
(73)【特許権者】
【識別番号】507308902
【氏名又は名称】ルノー エス.ア.エス.
【氏名又は名称原語表記】RENAULT S.A.S.
【住所又は居所原語表記】122-122 bis, avenue du General Leclerc, 92100 Boulogne-Billancourt, France
(74)【代理人】
【識別番号】110002468
【氏名又は名称】特許業務法人後藤特許事務所
(72)【発明者】
【氏名】臼田 昌弘
(72)【発明者】
【氏名】前嶋 晋
(72)【発明者】
【氏名】姫野 友克
(72)【発明者】
【氏名】ロウラー, ヴィンセント
(72)【発明者】
【氏名】マイアー, ダニエル
(72)【発明者】
【氏名】ポエシュル, ローベルト
(72)【発明者】
【氏名】ライター, ベルンド
【審査官】橋本 敏行
(56)【参考文献】
【文献】特開2002-134140(JP,A)
【文献】米国特許出願公開第2003/0134239(US,A1)
【文献】特開平11-176461(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 8/00-8/2495
F23D 11/00-11/02
11/10-11/22
11/40-11/46
(57)【特許請求の範囲】
【請求項1】
燃料の燃焼反応を促進可能な触媒を担持させた触媒ベッド部と、
前記触媒ベッド部を介する前記燃料の流れに関して当該触媒ベッド部の下流側に配置され、前記燃焼反応により得られる燃焼ガスを高温流体として動作可能に構成された蒸発器と、
前記触媒ベッド部の外側を、前記触媒ベッド部を介する前記燃料の流れとは逆向きに空気を案内するマニホールド部であって、前記蒸発器の側壁が投影される壁部を有するマニホールド部と、
前記マニホールド部の壁部を貫通し、前記蒸発器により蒸発させた前記燃料を前記マニホールド部の内部に導入可能に構成された燃料導入部と、
を備える、燃焼器。
【請求項2】
前記マニホールド部は、前記壁部が前記蒸発器の側壁と接するかまたは前記蒸発器の側壁と共用の前記壁部を有する、
請求項1に記載の燃焼器。
【請求項3】
前記燃料導入部は、前記蒸発器から前記マニホールド部に向けて延びる管部材を有し、
前記管部材は、前記マニホールド部の内部に突出するように設けられた、
請求項1または2に記載の燃焼器。
【請求項4】
前記マニホールド部は、前記空気の流れに対して垂直な断面において、長寸法と短寸法とを有し、
前記管部材は、前記マニホールド部の内部で、前記長寸法の方向に延びる、
請求項3に記載の燃焼器。
【請求項5】
前記マニホールド部の長寸法が、前記蒸発器の側壁に沿う方向に定められた、
請求項4に記載の燃焼器。
【請求項6】
前記管部材は、前記マニホールド部の内部において、前記蒸発器により蒸発させた燃料を流出させる複数の開口部を有する、
請求項3~5のいずれか一項に記載の燃焼器。
【請求項7】
前記複数の開口部は、前記マニホールド部における主流の方向を定める流線に対して斜めに向けられた、
請求項6に記載の燃焼器。
【請求項8】
前記複数の開口部は、前記流線に垂直な線に対し、前記主流の方向に関する前後の少なくとも一方に、30°以下の角度を成す方向に向けられた、
請求項7に記載の燃焼器。
【請求項9】
前記複数の開口部は、前記管部材の中心から延びる線によりその向きが定められる、
請求項6~8のいずれか一項に記載の燃焼器。
【請求項10】
前記複数の開口部は、前記マニホールド部における流れに垂直な方向に、前記中心の両側に設けられた、
請求項9に記載の燃焼器。
【請求項11】
前記マニホールド部は、前記触媒ベッド部に導入される混合ガスの流れに円周方向の旋回成分を付与可能に構成された混合促進部を備え、
前記燃料導入部は、前記複数の開口部のうち、前記旋回の遠心側に向かう燃料を流出させる開口部が、前記旋回の中心側に向かう燃料を流出させる開口部よりも、前記マニホールド部における流れに関して下流側に位置するように構成された、
請求項6~10のいずれか一項に記載の燃焼器。
【請求項12】
請求項1~11のいずれか一項に記載の燃焼器と、
燃料電池と、
を備え、
前記マニホールド部に、前記燃料電池のカソードオフガス通路が接続され、
前記マニホールド部に対し、前記燃料電池を介して前記空気が供給可能に構成された、
燃料電池システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、燃焼器および燃料電池のオフガス通路にこれを備える燃料電池システムに関し、特に燃料が液体の状態で貯蔵される燃料電池システムにおいて、燃焼器における燃料と空気との混合を促進させる技術に関する。
【背景技術】
【0002】
JPH11-176461Aには、燃料が液体の状態で貯蔵される燃料電池システムに関し、燃料と空気との混合を促進させる技術として、次のものが開示されている。燃料の燃焼反応促進用の触媒を担持させた触媒ベッド部を設けるとともに、その下流側に蒸発熱交換器を設け、触媒ベッド部から出た燃焼ガスを高温流体とし、燃料を低温流体として、蒸発熱交換器を動作させる。そして、このようにして蒸発させた燃料を、触媒ベッド部を収めた筐体の外側を、触媒ベッド部におけるガスの流れとは逆向きに引き回された燃料供給配管を介して混合室に供給し、燃料と空気とを混合させた後、混合ガスを触媒ベッド部に導入して、触媒上で燃焼させるものである。
【発明の概要】
【0003】
JPH11-176461Aの技術によると、燃料を蒸発熱交換器により蒸発させた後、気体の状態で空気と混合させることから、燃料の噴射による混合、つまり、液滴の状態にある燃料と空気との混合の場合と比較して、混合を促進させることが可能である。しかし、混合室が触媒ベッド部のすぐ上流側に設けられることから、混合室から触媒ベッド部までの間に、混合に要する距離を確保することが容易でないという問題がある。さらに、燃料を一旦蒸発させた後、触媒ベッド部の筐体の外側を引き回され、全周を外気に晒された状態にある燃料供給配管を介して混合室に供給することから、燃料供給配管を流れる過程で燃料が冷却され、凝縮を生じる場合がある。凝縮が生じると、噴射による混合の場合と同様に、燃料と空気との混合にムラができ易く、触媒上での燃焼に温度差が生じて、燃焼ガスに充分な熱エネルギを持たせられなかったり、燃焼ガスに含まれる排気有害成分を増大させたりすることが懸念される。
【0004】
本発明は、以上の問題を考慮し、燃料と空気との混合をより良好に促進させることのできる燃焼器およびこれを備える燃料電池システムを提供することを目的とする。
【0005】
本発明の一形態では、燃料の燃焼反応を促進可能な触媒を担持させた触媒ベッド部と、触媒ベッド部を介する燃料の流れに関して当該触媒ベッド部の下流側に配置され、燃焼反応により得られる燃焼ガスを高温流体として動作可能に構成された蒸発器と、触媒ベッド部の外側を、触媒ベッド部を介する燃料の流れとは逆向きに空気を案内するマニホールド部であって、蒸発器の側壁が投影される壁部を有するマニホールド部と、マニホールド部の壁部を貫通し、蒸発器により蒸発させた燃料をこのマニホールド部の内部に導入可能に構成された燃料導入部と、を備える燃焼器が提供される。
【0006】
他の形態では、このような燃焼器を燃料電池のオフガス通路に備える燃料電池システムが提供される。
【図面の簡単な説明】
【0007】
【
図1】
図1は、本発明の一実施形態に係る燃料電池システムの基本的な構成を示す概略図である。
【
図2】
図2は、同上実施形態に係る燃料電池システムに備わる燃焼器の構成を示す概略図である。
【
図3A】
図3Aは、同上実施形態に係る燃焼器の、
図2に示すA-A線による断面図であり、マニホールド部の断面が真円形の例である。
【
図3B】
図3Bは、同上実施形態の変形例に係る燃焼器の、
図2に示すA-A線による断面図であり、マニホールド部の断面が正方形の例である。
【
図4A】
図4Aは、同上実施形態の変形例に係る燃焼器の、
図2に示すA-A線による断面図であり、マニホールド部の断面が長円形の例である。
【
図4B】
図4Bは、同上実施形態の変形例に係る燃焼器の、
図2に示すA-A線による断面図であり、マニホールド部の断面が長方形の例である。
【
図5A】
図5Aは、同上実施形態の他の変形例に係る燃焼器の、
図2に示すA-A線による断面図であり、マニホールド部の断面が長円形の例である。
【
図5B】
図5Bは、同上実施形態の他の変形例に係る燃焼器の、
図2に示すA-A線による断面図であり、マニホールド部の断面が長円形の例である。
【
図6】
図6は、同上実施形態の更に別の変形例に係る燃焼器の、
図2に示すA-A線による断面図である。
【
図7A】
図7Aは、燃焼器の燃料導入部に備わる開口部の構成を示す概略図である。
【
図7B】
図7Bは、燃焼器の燃料導入部に備わる開口部の別の構成を示す概略図である。
【
図8A】
図8Aは、本発明の他の実施形態に係る燃料電池システムに備わる燃焼器の構成を、
図2と同様の断面により示す概略図である。
【
図8B】
図8Bは、本発明の他の実施形態に係る燃料電池システムに備わる燃焼器の構成を、空気の流れに平行なマニホールド部の断面により示す概略図である。
【
図9】
図9は、本発明の更に別の実施形態に係る燃料電池システムに備わる燃焼器の構成を示す概略図である。
【発明を実施するための形態】
【0008】
以下、図面を参照して、本発明の実施形態について説明する。
【0009】
(燃料電池システムの全体構成)
図1は、本発明の一実施形態に係る燃料電池システムSの基本的な構成を示している。
【0010】
本実施形態に係る燃料電池システム(以下「燃料電池システム」といい、単に「システム」という場合がある)Sは、電動車両に搭載可能であり、当該車両に備わる走行用の電動モータに供給される電力を発生させる。発生させた電力は、電動モータに直接供給されてもよいし、電動モータに電力を供給可能に配設されたバッテリの充填に充てられてもよい。
【0011】
燃料電池システムSは、本実施形態に関わる主な構成要素として、燃料電池スタック1、燃料改質器2、空気加熱器3および燃焼器4aを備える。
【0012】
燃料電池スタック(以下、単に「スタック」という場合がある)1は、複数の燃料電池または燃料電池単位セルを積層して構成され、発電源である個々の燃料電池は、例えば、固体酸化物形燃料電池(SOFC)である。燃料電池システムSは、アノードガス供給通路11およびカソードガス供給通路12を備え、燃料電池スタック1は、アノードガス供給通路11を介して燃料ガスの供給を受ける一方、カソードガス供給通路12を介して酸化剤ガスの供給を受ける。本実施形態において、燃料ガスは、水素であり、酸化剤ガスは、酸素である。固体酸化物形燃料電池のアノード極およびカソード極での発電に係る反応は、次式(1.1)および(1.2)により表される。
アノード極: 2H2+4O2- → 2H2O+4e- …(1.1)
カソード極: O2+4e- → 2O2- …(1.2)
【0013】
発電反応後のオフガスは、燃料電池スタック1からオフガス排出通路に排出される。
図1は、アノード側およびカソード側のオフガス排出通路のうち、カソード側の排出通路(以下「カソードオフガス排出通路」という)13のみを、燃料電池スタック1から延びる状態で示している。アノードオフガスについても排出通路(図示せず)が設けられ、このアノードオフガス排出通路も、燃料電池スタック1から延びる状態にある。
【0014】
燃料改質器2は、アノードガス供給通路11に介装され、図示しない燃料タンクからこのアノードガス供給通路11を介して燃料電池の原燃料が供給されるとともに、後に述べる燃焼器4で生じさせた燃焼ガスが導入されて、燃焼ガスを高温流体とする熱交換により原燃料を加熱し、原燃料の水蒸気改質を生じさせて、燃料ガスである水素を生じさせる。これにより、燃料電池のアノード極に対し、燃料ガスである水素を供給することが可能である。燃料電池の原燃料として、含酸素燃料(例えば、エタノール)の水溶液を例示することができ、エタノールの水蒸気改質は、次式(2)により表される。
C2H5OH+3H2O → 6H2+2CO2 …(2)
【0015】
空気加熱器3は、カソードガス供給通路12に介装され、図示しないエアコンプレッサまたはブロアによりカソードガス供給通路12に取り込まれた空気が供給されるとともに、燃焼器4で生じさせた燃焼ガスが導入されて、燃焼ガスを高温流体とする熱交換により空気を加熱する。これにより、酸化剤ガスである酸素を、燃料電池スタック1の動作可能温度またはこれに近い温度にまで昇温させた後、カソード極に供給することが可能である。
【0016】
燃焼器4aは、カソードオフガス排出通路13に接続され、燃料電池システムSの温度がその動作可能温度(例えば、600℃)を下回るシステム起動時または低温時において、燃料電池スタック1およびカソードオフガス排出通路13を介して空気を受容するとともに、燃料供給管14を介して燃料を受容する。そして、この燃料を燃焼させて、燃焼ガスを生成し、燃焼ガスが有する熱エネルギにより、燃料電池システムSの暖機を実行する。燃料供給管14は、他の種類の燃料および燃料供給管の構成の選択も可能であるが、先に述べた燃料タンクに接続させてもよく、これにより、燃焼器4aに対し、燃料電池の原燃料(例えば、エタノール)が燃料として供給される。さらに、燃焼器4aは、いわゆる触媒型の燃焼器であり、燃料の燃焼反応促進用の触媒が担持された触媒ベッド部41を有する。
【0017】
燃焼器4aは、燃焼ガス通路15を介して燃料改質器2および空気加熱器3に接続されている。燃焼器4aで生じさせた燃焼ガスは、燃焼ガス通路15を通じて燃料改質器2および空気加熱器3に夫々供給され、燃料改質器2における燃料の水蒸気改質および空気加熱器3における空気の加熱に夫々供せられる。
【0018】
ここで、燃焼器4aにおける燃料の燃焼を良好に生じさせ、満足な熱エネルギを有する燃焼ガスを生成するには、燃焼に際して燃料と空気とを充分に混合させることが重要となる。混合が充分でなく、混合ガスにおける燃料の分布にムラが生じると、燃料の濃い部分では、燃焼温度が過度に上昇して、燃焼器4aの耐熱性に影響を与える一方、燃料の薄い部分では、燃焼温度が充分に上昇せず、燃料の未燃成分が発生して、燃焼ガスに含まれる排気有害成分を増大させる懸念がある。蒸発熱交換器を採用し、燃料を蒸発させた後、気体の状態で空気と混合させることにより、燃料の噴射による混合の場合と比較して、混合を促進させることが可能である。しかし、混合室と触媒ベッド部とが燃焼器の内部で隣り合って配置されるような構成では、混合室から触媒ベッド部までの間に、混合に要する距離を確保することが容易でないという問題がある。この距離を無理に確保しようとすれば、燃焼器を無駄に大型化させることになりかねず、燃焼器4aにかかるコストおよびレイアウト性に影響を及ぼすからである。さらに、燃料を蒸発させた後、混合室に到達させるまでの間に、燃料が冷却され、凝縮を生じるという別の懸念もある。
【0019】
そこで、本実施形態では、
図1に示すように、燃焼器4aにおいて、触媒ベッド部41の下流側に、燃料を蒸発させることのできる蒸発器42を設置する。そして、蒸発させた燃料を、混合室への輸送を目的とした配管を介さずに、蒸発器42に近い合流点Mで空気と混合させることにより、混合に寄与させることのできる距離を確保し、燃料と空気とのより良好な混合の促進を図り、もって、環境に対する負荷を極力抑えながら、満足な熱エネルギを有する燃焼ガスを生成可能とする。
【0020】
(燃焼器の構成)
図2は、本実施形態に係る燃料電池システムSに備わる燃焼器4aの構成を、この燃焼器4aを介するガスの主流を定める流線に平行な断面により示している。本実施形態および後に述べる全ての実施形態に関し、通路を介する流れの「主流」とは、通路の中心線上に形成される流れをいうものとする。
【0021】
本実施形態に係る燃焼器4aは、主な構成として、触媒ベッド部41と、蒸発器42と、マニホールド部43と、を備え、図示しない燃料タンクから延びる燃料供給管14が、蒸発器42に燃料を供給可能に接続されている。本実施形態では、燃焼器4aは、触媒ベッド部41と蒸発器42とに共通の筐体Cをさらに備え、触媒ベッド部41と蒸発器42とは、互いに隣接した状態で筐体Cに収容されている。
【0022】
触媒ベッド部41は、触媒を担持させた担体を有し、この触媒により燃料(例えば、エタノール)の燃焼反応を促進させて、燃料の燃焼ガスを生成可能に構成されている。生成された燃焼ガスは、燃焼器4aの出力として、次に述べる蒸発器42を介して燃焼ガス通路15に排出される。
【0023】
蒸発器42は、触媒ベッド部41を介する燃料の流れに関して触媒ベッド部41の下流側に配置されている。蒸発器42は、触媒ベッド部41での燃焼反応により得られた燃焼ガスを高温流体とし、燃料供給管14を介して供給された燃料を低温流体として動作可能に構成され、燃料を、燃焼ガスとの熱交換により蒸発させる。
【0024】
マニホールド部43は、触媒ベッド部41および蒸発器42を収めた筐体Cの外側で、触媒ベッド部41を介する燃料の流れとは逆向きに空気を案内するように配設されている。先に述べたように、マニホールド部43を流れる空気は、カソードガス供給通路12から燃料電池スタック1を介して供給されるものである。本実施形態では、マニホールド部43は、触媒ベッド部41との接続部に、触媒ベッド部41に対して同軸上に、触媒ベッド部41に導入される混合ガスの流れに円周方向の旋回成分を付与可能に構成された旋回部431を有する。混合ガスは、旋回部431を通過する際に、燃料と空気との混合がさらに促進される。
【0025】
蒸発器42とマニホールド部43との間に燃料導入管44が介装され、蒸発器42により蒸発させた燃料を、マニホールド部43の内部にこの燃料導入管44を介して導入可能に構成されている。燃料導入管44は、本実施形態に係る「燃料導入部」を構成するものである。マニホールド部43は、蒸発器42の側壁、本実施形態では、蒸発器42が収められた筐体Cが投影される壁部を有するものであり、燃料導入管44は、筐体Cを貫通して、マニホールド部43の内部にまで、延在させられている。本実施形態では、マニホールド部43が、燃焼器4aを介するガスの主流を定める流線に対して平行に、筐体Cの壁面に沿って配設され、筐体Cの投影は、蒸発器42における燃焼ガスの流れに対して垂直な方向に定められる。さらに、本実施形態では、後に述べるように、筐体Cとマニホールド部43の壁部とが互いに接して配置されるが、マニホールド部43の流路壁面の一部を、触媒ベッド部41および蒸発器42の側壁、つまり、筐体Cにより形成し、上記「投影される壁部」を、蒸発器42の側壁と共用の壁部とすることも可能である。さらに、「燃料導入部」は、管部材(燃料導入管44)を用意し、これを介在させるばかりでなく、別個の部材によらずに構成することも可能である。例えば、筐体Cとマニホールド部43の壁部とが互いに接する場合に、両者に貫通孔を形成し、蒸発器42の内部とマニホールド部43の内部とを、これらの貫通孔を介して互いに連通させる。
【0026】
(燃料導入部の構成)
図3~6は、本実施形態に係る燃焼器4aの、
図2に示すA-A線による断面図であり、合流点M(Ma~Mg)におけるマニホールド部43の形状および燃料導入管44の配置を、模式的に示している。
図3~6のそれぞれにおいて、燃焼ガスの流路を形成する蒸発器42の導管は、便宜上図示が省略されている。
【0027】
図3Aおよび
図3Bは、本実施形態の一例に係る燃焼器4aを示している。
【0028】
図3の各例において、燃料導入管44a、44bは、直線状の管部材からなる。燃料導入管44a、44bは、筐体Cおよびマニホールド部43a、43bの壁部を貫通し、マニホールド部43a、43bの内部に突出する長さに設定されている。燃料導入管44a、44bは、マニホールド部43a、43bの内部を横断させてもよいが、向かい合う内壁の間で終結させてもよい。マニホールド部43a、43bの断面は、
図3Aの例では真円形であり、
図3Bの例では正方形である。つまり、これらのマニホールド部43a、43bは、断面に長寸法と短寸法とがない場合の例を示している。
【0029】
燃料導入管44a、44bは、マニホールド部43a、43bの内部において、蒸発器42により蒸発させた燃料を流出させる複数の開口部ha、hbを有する。
図3(
図4~6についても同様である)は、マニホールド部43a、43bを介する空気の流れに関して前後に夫々4つずつ、合計8つの開口部を有する例を示すが、これ以外の開口部の数が採用されてもよい。
【0030】
図4Aおよび
図4Bは、本実施形態の第1変形例に係る燃焼器4aを示している。
【0031】
図4の各例において、マニホールド部43c、43dは、空気の流れに対して垂直な断面において、長寸法と短寸法とを有する。マニホールド部43c、43dの断面は、
図4Aの例では長円形であり、
図4Bの例では長方形であり、長寸法の方向が、筐体Cとの接続点における接線に対して垂直に設定されている。燃料導入管44c、44dは、マニホールド部43c、43dの内部で、長寸法の方向に延設されている。燃料導入管44c、44dは、
図3の各例と同様に、直線状の管部材からなり、筐体Cおよびマニホールド部43c、43dの壁部を貫通し、マニホールド部43c、43dの内部に突出する長さに設定されている。燃料導入管44c、44dを、マニホールド部43c、43dの内部を横断させても、向かい合う内壁の間で終結させてもよいことも、
図3の各例と同様である。燃料導入管44c、44dは、マニホールド部43c、43dの内部において、蒸発器42により蒸発させた燃料を流出させる複数の開口部hc、hdを有する。
【0032】
図5Aおよび
図5Bは、本実施形態の第2変形例に係る燃焼器4aを示している。
【0033】
図5の各例において、マニホールド部43e、43fは、空気の流れに対して垂直な断面において、長寸法と短寸法とを有し、その断面は、
図4の各例と同様に、
図5Aの例では長円形であり、
図5Bの例では長方形である。ただし、
図5の各例では、長寸法の方向が、筐体Cとの接続点における接線に対して平行に設定されており、燃料導入管44e、44fは、マニホールド部43e、43fの内部で、長寸法の方向に延設されている。具体的には、燃料導入管44e、44fは、筐体Cおよびマニホールド部43e、43fの壁部を貫通し、マニホールド部43e、43fの内部に突出する長さに設定されるとともに、延伸方向を筐体Cに垂直な方向から平行な方向に転向させる屈曲部(または湾曲部)を有する。燃料導入管44e、44fの先端を、マニホールド部43e、43fの内面に突き当たらせても、その手前で終結させてもよいことは、
図3および4の各例と同様である。燃料導入管44e、44fは、マニホールド部43e、43fの長寸法の方向に延びる部分に、蒸発器42により蒸発させた燃料を流出させる複数の開口部he、hfを有する。
【0034】
図6は、本実施形態の第3変形例に係る燃焼器4aを示している。
【0035】
図6の例において、マニホールド部43gは、空気の流れに対して垂直な断面において、長寸法と短寸法とを有するとともに、その断面が、筐体Cの外周に沿う方向に長く、筐体Cに垂直な方向に潰れた扁平形状を有する。
図6の例では、長寸法の方向が、燃料導入管44gの挿入点における筐体Cの外面上における接線に対して平行に設定されており、燃料導入管44gは、マニホールド部43gの内部で、長寸法の方向に延設されている。具体的には、燃料導入管44gは、
図5の例と同様に、筐体Cおよびマニホールド部43gの壁部を貫通し、マニホールド部43gの内部に突出する長さに設定されるとともに、延伸方向を筐体Cに垂直な方向から平行な方向に転向させる屈曲部を有する。本実施形態では、屈曲部の角度が直角に設定されているが、鋭角に設定することも可能である。これにより、燃料導入管44gを延長させ、より多くの数の開口部hgを設けることが可能となる。燃料導入管44gの先端を、マニホールド部43gの内面に突き当たらせても、その手前で終結させてもよいことは、先に示した例と同様であり、さらに、燃料導入管44gが、長寸法の方向に延びる部分に、燃料の蒸気を流出させる複数の開口部hgを有することについても同様である。
【0036】
(開口部の配置)
図7は、本実施形態に係る燃焼器4aの燃料導入管44に備わる開口部hの配置を、
図3に示す例により代表させて、燃料導入管44の先端側からその延在方向に見た状態で示している。
【0037】
先に述べたように、本実施形態では、複数の開口部hが、燃料導入管44の延在方向に間隔を空けて設けられている。さらに、開口部hは、
図7Aに示すように、マニホールド部43における空気の流れFに平行な断面において、燃料導入管44の中心の両側、具体的には、流れFの方向に中心の前後に設けられており、主流の方向を定める流線に垂直な線に対して斜めに、本実施形態では、この垂直な線に対して30°以下の角度θを成す方向に向けられ、開口部hの向きは、燃料導入管44の中心から放射状に延びる線により定められる。
【0038】
開口部hの配置は、これに限定されるものではなく、燃料導入管44の中心に対して前後に設けることに代えるかまたはこれに加え、
図7Bに示すように、流れFに逆らう方向に見た状態で、中心に対して上下または左右の両側に設けることも可能である。開口部hの方向が主流の方向を定める流線に垂直な線に対して斜めに、具体的には、この垂直な線に対して30°以下の角度θを成す方向に向けられることおよび開口部hの向きが燃料導入管44の中心から放射状に延びる線により定められることは、先に述べたのと同様である。
【0039】
(作用効果の説明)
本実施形態に係る燃料電池システムSは、以上のように構成され、本実施形態により得られる作用および効果について、以下に説明する。
【0040】
第1に、燃焼器4aの本体、つまり、触媒ベッド部41に向けて空気を案内するマニホールド部43に、蒸発器42の側壁が投影される壁部を設け、蒸発器42により蒸発させた燃料を、燃料導入管44によりこの壁部を介してマニホールド部43の内部に導入可能としたことで、触媒ベッド部41に至るまでに燃料と空気との混合に用いられる距離を確保することが可能となるので、触媒ベッド部41への導入前に、燃料と空気との混同を促進させることができる。これにより、触媒ベッド部41で均一に燃焼を生じさせ、排気有害成分の排出を抑制しながら、満足な熱エネルギを有する燃焼ガスを生成することが可能となり、燃料電池システムSの暖機の促進を図ることができる。
【0041】
第2に、蒸発器42の側壁とマニホールド部43の壁部(特にその「投影される壁部」)とを互いに接触させることで、蒸発器42からマニホールド部43への熱の伝達を促し、マニホールド部43の内部における温度の低下を抑制することが可能となるので、マニホールド部43を流れる燃料に凝縮が生じるのを抑制することができる。さらに、マニホールド部43の壁部を蒸発器42の側壁と共用のものとすることで、マニホールド部43の放熱面積を縮小させ、蒸発器42からの熱の伝達をより良好に促すことが可能となる。
【0042】
第3に、燃料導入管44をマニホールド部43の内部に突出させたことで、マニホールド部43の断面に亘って燃料の分布にムラが生じるのを抑制することが可能となる。
【0043】
第4に、燃料導入管44を、マニホールド部43の内部で、マニホールド部43の断面における長寸法の方向に延在させることで、マニホールド部43の断面に亘って燃料をより均質に分布させることが可能となる。
【0044】
第5に、マニホールド部43の長寸法を蒸発器42の側壁に沿う方向に定めることで、マニホールド部43の放熱面積の縮小と、蒸発器42からの熱の伝達と、の更なる促進を図り、燃料の凝縮をより確実に抑制することが可能となる。
【0045】
第6に、燃料導入管44に、燃料を流出させる複数の開口部h、ha~hgを設けることで、マニホールド部43の断面に亘って燃料をより均質に分布させることが可能となる。
【0046】
第7に、複数の開口部hをマニホールド部43における主流の方向を定める流線に対して斜めに向けることで、燃料と空気とのより均質な混合を促すとともに、混合に要する距離を短縮させることが可能となる。
【0047】
第8に、複数の開口部hをマニホールド部43の主流の流線に垂直な線に対して前後に30°以下の角度を成す方向に向けることで、燃料と空気とをより良好に混合させ、混合に要する距離の短縮を図ることが可能となる。
【0048】
第9に、複数の開口部hの向きを燃料導入管44の中心から延びる線により定めることで、燃料導入管44からマニホールド部43の内部へ、燃料を円滑に流入させることが可能となる。
【0049】
第10に、複数の開口部hを燃料導入管44の中心の両側、つまり、中心の上下または左右に設けることで、燃料と空気とをより良好に混合させ、混合に要する距離の短縮を図ることが可能となる。
【0050】
(他の実施形態の説明)
図8は、本発明の他の実施形態に係る燃料電池システムSに備わる燃焼器4bの構成を示しており、
図8Aは、燃焼器4bの構成を
図2と同様の断面により、
図8Bは、マニホールド部43における空気の流れFに平行なマニホールド部43の断面により、夫々示している。
【0051】
本実施形態では、触媒ベッド部41に対する混合ガスの導入部、換言すれば、マニホールド部43の旋回部431と触媒ベッド部41との間に、触媒ベッド部41に導入される混合ガスの旋回流動を強化可能に構成されたミキサープレート45が介装されている。マニホールド部43の旋回部431とこのミキサープレート45とは、本実施形態に係る「混合促進部」を構成する。これに併せ、本実施形態では、燃料導入管44が、マニホールド部43の内部で、マニホールド部43における主流の方向を定める流線に垂直な線に対して傾斜させられており、複数の開口部h(h1~h4)のうち、混合ガスの旋回流動の遠心側に向かう燃料を流出させる開口部h1が、この旋回流動の中心側に向かう燃料を流出させる開口部h4よりも、マニホールド部43における流れに関して下流側に位置するように構成されている。
【0052】
このように、旋回部431に併せてミキサープレート45を設置し、燃料と空気との混合をさらに促進させるとともに、旋回流動に対する遠心側の開口部h1を中心側の開口部h4よりも下流側に位置させることで、旋回部431を介して触媒ベッド部41へ流入する混合ガスの流速をより均一に近付けることが可能となり、触媒ベッド部41における空間速度を均一化し、燃焼温度にばらつきが生じたり、排気有害成分を増大させたりするのを抑制することができる。
【0053】
図9は、本発明の更に別の実施形態に係る燃料電池システムSに備わる燃焼器4cの構成を、
図2と同様の断面により示している。
【0054】
本実施形態では、触媒ベッド部41および蒸発器42の側壁、つまり、これらの要素を収める筐体Cと、マニホールド部43の壁部と、の間に、隙間Gが設けられている。これ以外の構成は、先に示した実施形態のもの(
図2)と同様である。
【0055】
このように、マニホールド部43について、蒸発器42の側壁ないし筐体Cから離間させた配置が許容されることで、マニホールド部43の配置に関する自由度が増大するので、周辺部品との干渉を回避しながら、燃料と空気との混合に適した流れを形成することが可能となる。ここで、隙間Gの幅は、適宜設定することが可能であるが、マニホールド部43を筐体Cまたは蒸発器42に近付けて配置することで、マニホールド部43を流れる過程で生じる燃料の凝縮を抑制する効果を、可及的に維持することができる。
【0056】
以上、本発明の実施形態について説明したが、上記実施形態は、本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を、上記実施形態の具体的構成に限定する趣旨ではない。上記実施形態に対し、特許請求の範囲に記載した事項の範囲内で様々な変更および修正が可能である。
【0057】
本願は、2019年9月4日に日本国特許庁に出願された特願2019-161388に基づく優先権を主張し、この出願のすべての内容は参照により本明細書に組み込まれる。