(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-10-31
(45)【発行日】2022-11-09
(54)【発明の名称】測定装置及び測定装置を用いた投光システム
(51)【国際特許分類】
G01B 11/00 20060101AFI20221101BHJP
G01C 3/06 20060101ALI20221101BHJP
【FI】
G01B11/00 H
G01C3/06 120P
(21)【出願番号】P 2020556589
(86)(22)【出願日】2019-07-09
(86)【国際出願番号】 JP2019027092
(87)【国際公開番号】W WO2020100344
(87)【国際公開日】2020-05-22
【審査請求日】2021-02-09
(31)【優先権主張番号】P 2018213693
(32)【優先日】2018-11-14
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000006231
【氏名又は名称】株式会社村田製作所
(74)【代理人】
【識別番号】100079108
【氏名又は名称】稲葉 良幸
(74)【代理人】
【識別番号】100109346
【氏名又は名称】大貫 敏史
(74)【代理人】
【識別番号】100117189
【氏名又は名称】江口 昭彦
(74)【代理人】
【識別番号】100134120
【氏名又は名称】内藤 和彦
(74)【代理人】
【識別番号】100126480
【氏名又は名称】佐藤 睦
(72)【発明者】
【氏名】村田 佳史
【審査官】信田 昌男
(56)【参考文献】
【文献】特開平09-257440(JP,A)
【文献】特開2010-008408(JP,A)
【文献】特開2013-181961(JP,A)
【文献】特開2016-102667(JP,A)
【文献】再公表特許第2009/139189(JP,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G01B 11/00
G01C 3/06
(57)【特許請求の範囲】
【請求項1】
所定のパターンを有する照射光を、互いに異なる第1光路及び第2光路を経由して対象物に照射する照明光学系と、
前記第1光路を経由して前記対象物に投影された第1光源像及び前記第2光路を経由して前記対象物に投影された第2光源像を観察する観察系と、を備え、
前記照明光学系は、前記第1光路を経由した光及び前記第2光路を経由した光が、前記照射光の進行方向に沿って見た前記対象物の平面視における所定の位置であって、前記照射光の進行方向における互いに異なる位置に集光するように構成され、
前記観察系により観察された前記第1光源像及び前記第2光源像に基づいて前記対象物を測定
し、
前記照明光学系は、前記照射光の光路上に設けられたパターン板及び光学部材を有し、
前記パターン板は、光を透過させる透過部及び光を遮断又は減光させる減光部の配置により前記所定のパターンを構成し、
前記パターン板は、前記照射光の進行方向における長さが互いに異なる第1領域及び第2領域を含み、
前記透過部は、前記第1領域及び前記第2領域にそれぞれ形成された複数のスリットを含む、
測定装置。
【請求項2】
所定のパターンを有する照射光を、互いに異なる第1光路及び第2光路を経由して対象物に照射する照明光学系と、
前記第1光路を経由して前記対象物に投影された第1光源像及び前記第2光路を経由して前記対象物に投影された第2光源像を観察する観察系と、を備え、
前記照明光学系は、前記第1光路及び前記第2光路が、前記照明光学系の光軸を法線とする面方向において前記光軸からの距離が等しい位置であって、前記照射光の進行方向における互いに異なる位置に集光するように構成され、
前記観察系により観察された前記第1光源像及び前記第2光源像に基づいて前記対象物を測定
し、
前記照明光学系は、前記照射光の光路上に設けられたパターン板及び光学部材を有し、
前記パターン板は、光を透過させる透過部及び光を遮断又は減光させる減光部の配置により前記所定のパターンを構成し、
前記パターン板は、前記照射光の進行方向における長さが互いに異なる第1領域及び第2領域を含み、
前記透過部は、前記第1領域及び前記第2領域にそれぞれ形成された複数のスリットを含む、
測定装置。
【請求項3】
所定のパターンを有する照射光を、互いに異なる第1光路及び第2光路を経由して対象物に照射する照明光学系と、
前記第1光路を経由して前記対象物に投影された第1光源像及び前記第2光路を経由して前記対象物に投影された第2光源像を観察する観察系と、を備え、
前記照明光学系は、前記第1光路を経由した光及び前記第2光路を経由した光が、前記照射光の進行方向に沿って見た前記対象物の平面視における所定の位置であって、前記照射光の進行方向における互いに異なる位置に集光するように構成され、
前記観察系により観察された前記第1光源像及び前記第2光源像に基づいて前記対象物を測定し、
前記照明光学系は、前記照射光の光路上に設けられたパターン板及び光学部材を有し、
前記パターン板は、光を透過させる透過部及び光を遮断又は減光させる減光部の配置により前記所定のパターンを構成し、
前記透過部は、前記パターン板に形成された複数のスリットと、当該複数のスリットにそれぞれ設けられた互いに異なる偏光方向の光を透過させる複数の偏光子と、を含み、
前記光学部材は、前記複数の偏光子をそれぞれ透過した光の偏光方向に応じて異なる屈折力を有し、屈折作用により前記照射光を前記第1光路及び前記第2光路に分ける
、
測定装置。
【請求項4】
所定のパターンを有する照射光を、互いに異なる第1光路及び第2光路を経由して対象物に照射する照明光学系と、
前記第1光路を経由して前記対象物に投影された第1光源像及び前記第2光路を経由して前記対象物に投影された第2光源像を観察する観察系と、を備え、
前記照明光学系は、前記第1光路及び前記第2光路が、前記照明光学系の光軸を法線とする面方向において前記光軸からの距離が等しい位置であって、前記照射光の進行方向における互いに異なる位置に集光するように構成され、
前記観察系により観察された前記第1光源像及び前記第2光源像に基づいて前記対象物を測定し、
前記照明光学系は、前記照射光の光路上に設けられたパターン板及び光学部材を有し、
前記パターン板は、光を透過させる透過部及び光を遮断又は減光させる減光部の配置により前記所定のパターンを構成し、
前記透過部は、前記パターン板に形成された複数のスリットと、当該複数のスリットにそれぞれ設けられた互いに異なる偏光方向の光を透過させる複数の偏光子と、を含み、
前記光学部材は、前記複数の偏光子をそれぞれ透過した光の偏光方向に応じて異なる屈折力を有し、屈折作用により前記照射光を前記第1光路及び前記第2光路に分ける、
測定装置。
【請求項5】
所定のパターンを有する照射光を、互いに異なる第1光路及び第2光路を経由して対象物に照射する照明光学系と、
前記第1光路を経由して前記対象物に投影された第1光源像及び前記第2光路を経由して前記対象物に投影された第2光源像を観察する観察系と、を備え、
前記照明光学系は、前記第1光路を経由した光及び前記第2光路を経由した光が、前記照射光の進行方向に沿って見た前記対象物の平面視における所定の位置であって、前記照射光の進行方向における互いに異なる位置に集光するように構成され、
前記観察系により観察された前記第1光源像及び前記第2光源像に基づいて前記対象物を測定し、
前記照明光学系は、前記照射光の光路上に設けられたパターン板及び光学部材を有し、
前記パターン板は、光を透過させる透過部及び光を遮断又は減光させる減光部の配置により前記所定のパターンを構成し、
前記照射光は、前記光学部材の軸外領域を透過し、
前記光学部材は、偏光方向に応じて異なる屈折力を有し、屈折作用により前記照射光を前記第1光路及び前記第2光路に分ける
、
測定装置。
【請求項6】
所定のパターンを有する照射光を、互いに異なる第1光路及び第2光路を経由して対象物に照射する照明光学系と、
前記第1光路を経由して前記対象物に投影された第1光源像及び前記第2光路を経由して前記対象物に投影された第2光源像を観察する観察系と、を備え、
前記照明光学系は、前記第1光路及び前記第2光路が、前記照明光学系の光軸を法線とする面方向において前記光軸からの距離が等しい位置であって、前記照射光の進行方向における互いに異なる位置に集光するように構成され、
前記観察系により観察された前記第1光源像及び前記第2光源像に基づいて前記対象物を測定し、
前記照明光学系は、前記照射光の光路上に設けられたパターン板及び光学部材を有し、
前記パターン板は、光を透過させる透過部及び光を遮断又は減光させる減光部の配置により前記所定のパターンを構成し、
前記照射光は、前記光学部材の軸外領域を透過し、
前記光学部材は、偏光方向に応じて異なる屈折力を有し、屈折作用により前記照射光を前記第1光路及び前記第2光路に分ける、
測定装置。
【請求項7】
前記光学部材は、水晶により構成されたレンズを含む、
請求項
3から6のいずれか1項に記載の測定装置。
【請求項8】
所定のパターンを有する照射光を、互いに異なる第1光路及び第2光路を経由して対象物に照射する照明光学系と、
前記第1光路を経由して前記対象物に投影された第1光源像及び前記第2光路を経由して前記対象物に投影された第2光源像を観察する観察系と、を備え、
前記照明光学系は、前記第1光路を経由した光及び前記第2光路を経由した光が、前記照射光の進行方向に沿って見た前記対象物の平面視における所定の位置であって、前記照射光の進行方向における互いに異なる位置に集光するように構成され、
前記観察系により観察された前記第1光源像及び前記第2光源像に基づいて前記対象物を測定し、
前記照明光学系は、前記照射光の光路上に設けられたパターン板及び光学部材を有し、
前記パターン板は、光を透過させる透過部及び光を遮断又は減光させる減光部の配置により前記所定のパターンを構成し、
前記透過部は、前記パターン板に形成された複数のスリットと、当該複数のスリットにそれぞれ設けられた互いに異なる波長の光を透過させる複数の波長フィルタと、を含み、
前記光学部材は、前記複数の波長フィルタをそれぞれ透過した光の波長に応じて前記第1光源像及び第2光源像を形成する、高分散レンズを含む
、
測定装置。
【請求項9】
所定のパターンを有する照射光を、互いに異なる第1光路及び第2光路を経由して対象物に照射する照明光学系と、
前記第1光路を経由して前記対象物に投影された第1光源像及び前記第2光路を経由して前記対象物に投影された第2光源像を観察する観察系と、を備え、
前記照明光学系は、前記第1光路及び前記第2光路が、前記照明光学系の光軸を法線とする面方向において前記光軸からの距離が等しい位置であって、前記照射光の進行方向における互いに異なる位置に集光するように構成され、
前記観察系により観察された前記第1光源像及び前記第2光源像に基づいて前記対象物を測定し、
前記照明光学系は、前記照射光の光路上に設けられたパターン板及び光学部材を有し、
前記パターン板は、光を透過させる透過部及び光を遮断又は減光させる減光部の配置により前記所定のパターンを構成し、
前記透過部は、前記パターン板に形成された複数のスリットと、当該複数のスリットにそれぞれ設けられた互いに異なる波長の光を透過させる複数の波長フィルタと、を含み、
前記光学部材は、前記複数の波長フィルタをそれぞれ透過した光の波長に応じて前記第1光源像及び第2光源像を形成する、高分散レンズを含む、
測定装置。
【請求項10】
前記透過部又は前記減光部は、前記照射光の進行方向に沿って見た前記パターン板の平面視において同心円状に配置された複数の円環状を成す、
請求項
5又は6に記載の測定装置。
【請求項11】
請求項1から
10のいずれか一項に記載の測定装置と、
前記対象物に前記照明光学系の少なくとも一部を経由して光を投光する投光系と、
前記投光系におけるワーキングディスタンスを調整する調整系と、
前記測定装置により測定された前記ワーキングディスタンスを所定の条件に保つように前記調整系を制御する制御系と、を備える、
投光システム。
【請求項12】
前記投光系が投光する光の波長は、前記照明光学系が照射する照射光の波長と異なる、
請求項
11に記載の投光システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、測定装置及び測定装置を用いた投光システムに関する。
【背景技術】
【0002】
従来、光学の分野において、物体に照射された光の反射光を検出することにより、物体までの距離を算出する方法が知られている。例えば、下記特許文献1には、対象物に照射された光の反射光のうちスリット板を通過した光を受光し、その受光量の変化に基づいて対象物の変位量を検出する光学式の変位センサが開示されている。
【0003】
また、下記特許文献2には、2つの遮光パターンを用いて試料にパターン像を投影し、投影された2つの像に基づいて試料までの距離を算出する光学顕微鏡が開示されている。この光学顕微鏡では、光軸からの距離が互いに異なるように2つの遮光パターンを配置することにより、試料に投影された2つの像のピントがレンズを介して互いに異なる深さに合うこととなる。これにより、センサにおいて検出される2つの像にコントラストの相違が生じるため、このコントラストの相違に基づいて試料までの距離を算出することができる。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2012-229983号公報
【文献】特開2008-281719号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
上記特許文献1に開示された変位センサによると、対象物との距離が変化したか否かを検出することはできるが、当該距離そのものを検出することはできない。他方、上記特許文献2に開示された光学顕微鏡によると、対象物までの距離を測定することができるが、2つの遮光パターンによる像がレンズの光軸からの距離が異なる位置を透過するため、レンズの収差やディストーションにより、像に互いに異なる歪みやぼけが生じ、距離の測定精度が劣るおそれがある。
【0006】
本開示はこのような事情に鑑みてなされたものであり、本開示の目的は、光学系に起因する像の歪みの影響を抑制しつつ対象物を測定可能な測定装置及び測定装置を用いた投光システムを提供することである。
【課題を解決するための手段】
【0007】
本開示の一側面に係る測定装置は、所定のパターンを有する照射光を、互いに異なる第1光路及び第2光路を経由して対象物に照射する照明光学系と、第1光路を経由して対象物に投影された第1光源像及び第2光路を経由して対象物に投影された第2光源像を観察する観察系と、を備え、照明光学系は、第1光路を経由した光及び第2光路を経由した光が、照射光の進行方向に沿って見た対象物の平面視における所定の位置であって、照射光の進行方向における互いに異なる位置に集光するように構成され、観察系により観察された第1光源像及び第2光源像に基づいて対象物を測定する。
【0008】
本開示の一側面に係る測定装置は、所定のパターンを有する照射光を、互いに異なる第1光路及び第2光路を経由して対象物に照射する照明光学系と、第1光路を経由して対象物に投影された第1光源像及び第2光路を経由して対象物に投影された第2光源像を観察する観察系と、を備え、照明光学系は、第1光路及び第2光路が、照明光学系の光軸を法線とする面方向において光軸からの距離が等しい位置であって、照射光の進行方向における互いに異なる位置に集光するように構成され、観察系により観察された第1光源像及び第2光源像に基づいて対象物を測定する。
【発明の効果】
【0009】
本開示によれば、第1光路と第2光路に収差が現れるとしても、現れる収差の影響は同様であることから、光学系に起因する像の歪みの影響を抑制しつつ対象物を測定可能な測定装置及び測定装置を用いた投光システムを提供することができる。
【図面の簡単な説明】
【0010】
【
図1】
図1は、本開示の第1実施形態に係る測定装置の全体構成を示す図である。
【
図2】
図2は、本開示の第1実施形態に係る測定装置における照明光学系の斜視構造を示す斜視図である。
【
図3】
図3は、本開示の第1実施形態に係る測定装置におけるパターン板の拡大平面図である。
【
図4A】
図4Aは、対象物が地点Aにある場合に撮像部により撮像される画像のイメージを示す図である。
【
図4B】
図4Bは、対象物が地点Bにある場合に撮像部により撮像される画像のイメージを示す図である。
【
図5】
図5は、第1変形例に係るパターン板の平面構造を示す平面図である。
【
図6】
図6は、第1変形例に係るパターン板の側面構造を示す側面図である。
【
図7】
図7は、第2変形例に係るパターン板の平面構造を示す平面図である。
【
図8】
図8は、第2変形例に係るパターン板を用いた測定装置におけるパターン光の集光を説明するための図である。
【
図9A】
図9Aは、本開示の第2実施形態に係る測定装置におけるパターン板の平面構造を示す平面図である。
【
図9B】
図9Bは、第3変形例に係るパターン板の平面構造を示す平面図である。
【
図10】
図10は、本開示の第3実施形態に係る測定装置の全体構成を示す図である。
【
図11】
図11は、本開示の第3実施形態に係る測定装置におけるパターン板の平面構造を示す平面図である。
【
図12A】
図12Aは、対象物が地点Aにある場合に撮像部により撮像される画像のイメージを示す図である。
【
図12B】
図12Bは、対象物が地点Bにある場合に撮像部により撮像される画像のイメージを示す図である。
【
図13】
図13は、本開示の第3実施形態に係る測定装置を用いて対象物の傾きを測定する場合に、撮像部により撮像される画像のイメージを示す図である。
【
図14】
図14は、本開示の第3実施形態に係る測定装置を用いて対象物の形状を測定する場合に、撮像部により撮像される画像のイメージを示す図である。
【
図15】
図15は、本開示の第1実施形態に係る測定装置が適用されたレーザービーム投光システムの全体構成を示す図である。
【
図16A】
図16Aは、レーザービーム投光システムの動作を説明するための図である。
【
図16B】
図16Bは、レーザービーム投光システムの動作を説明するための図である。
【
図16C】
図16Cは、レーザービーム投光システムの動作を説明するための図である。
【発明を実施するための形態】
【0011】
以下に本発明の実施の形態を説明する。なお、以下の図面の記載において同一又は類似の構成要素は同一又は類似の符号で表している。図面は例示であり、各部の寸法や形状は模式的なものであり、本願発明の技術的範囲を当該実施の形態に限定して解するべきではない。
【0012】
図1から
図3を参照して、本開示の第1実施形態に係る測定装置について説明する。
図1は、本開示の第1実施形態に係る測定装置の全体構成を示す図である。
図2は、本開示の第1実施形態に係る測定装置における照明光学系の斜視構造を示す斜視図である。
図3は、本開示の第1実施形態に係る測定装置におけるパターン板の拡大平面図である。
【0013】
図1に示されるように、測定装置1Aは、対象物Wに所定のパターンのパターン光を投影する照明光学系10Aと、対象物Wに投影された光源像を観察可能な観察系20と、を備える。
【0014】
照明光学系10Aは、対象物Wの近傍に光源像が結ばれるように照射光を照射する、いわゆるクリティカル照明を構成する。具体的に、照明光学系10Aは、例えば、光源11と、パターン板12Aと、レンズユニット13と、ミラー14と、コンデンサレンズ15と、を有する。
【0015】
光源11は、照射光を照射する。
【0016】
パターン板12Aは、光源11から照射された照射光の光路上に設けられる。パターン板12Aは、対象物Wに投影するパターン光のパターンを構成する。パターン板12Aは、光を透過させる透過部と、光を遮断又は減光させる減光部を含む。透過部及び減光部の配置によりパターン光のパターンが決定される。本実施形態においてパターン板12Aは、
図2に示されるように円形平板状を成し、その中央付近にクロス状のスリット120が形成されている。スリット120は、照射光を透過させる透過部を構成し、スリット120が形成された領域以外の領域は、照射光を遮断又は減光させる減光部を構成する。なお、スリット120を透過した光を拡散させるため、パターン板12Aは、粗面に加工されたガラス面上に薄く加工されたマスク部材を密着させたものや、同ガラス面上にクロムなどのマスクを蒸着したものであってもよく、又は蛍光体を同形状に分布させたものであってもよい。あるいは、パターン板の前又は後ろに拡散板が設けられてもよい。
【0017】
図3は、クロス状のスリット120が形成された領域を拡大して示した平面図である。
図3に示されるように、クロス状のスリット120は、紙面の縦方向に並んで配置された2つの矩形状のスリット121a,121bと、横方向に並んで配置された2つの矩形状のスリット121c,121dと、を含む。
【0018】
2つのスリット121a,121bには、偏光子122a,122bがそれぞれ設けられ、2つのスリット121c,121dには、偏光子122c,122dがそれぞれ設けられている。偏光子122a,122bと偏光子122c,122dは、互いに異なる偏光方向の光を透過させる偏光子である。これにより、パターン板12Aにより生成されるパターン光は、スリット121a,121bを透過した光と、スリット121c,121dを透過した光の2種類の偏光方向の光を含むこととなる。なお、2種類の偏光方向は、例えば互いに直交する方向であってもよい。
【0019】
レンズユニット13は、レンズ130を含む。レンズ130は、照射光を所定の方向に導く光学部材の一具体例である。本実施形態において、レンズ130は、円形平板状を成す。レンズ130の材質は特に限定されないが、レンズ130は、例えば人工水晶を含む水晶により構成される。水晶は、例えばガラス等の他の材料に比べて広い波長の範囲において高い透過率を有し、かつ波長が比較的短くエネルギーが強力な光(例えば、深紫外光)を透過させる場合であっても光学的特徴が損なわれにくく、劣化の進行が遅い。また、水晶は潮解性を有しないため耐水性に優れる。
【0020】
水晶は、一方向の光学軸を有する一軸性結晶である。従って、水晶を透過する光の進行方向が水晶の光学軸と平行でない場合、水晶を透過する光は振動面が互いに異なる常光線と異常光線とに分離されて進行し、いわゆる複屈折が生じる。これは水晶の結晶構造上、光線の位相速度が進行方向に応じて異なることにより、振動面により屈折率が異なるためである。本実施形態において、レンズ130は、パターン板12Aから照射されるパターン光の進行方向とレンズ130の光学軸が平行とならないように配置される。これにより、上述のとおり2種類の偏光方向の光を含むパターン光は、レンズ130において互いに異なる屈折角で屈折し、第1光路L1と第2光路L2に分かれて進む。
【0021】
なお、本実施形態ではレンズユニット13が1つのレンズ130を含む構成が示されているが、レンズユニット13が有するレンズの枚数、形状及び材質等は一例であり、これに限定されない。また、レンズ130の材料は水晶に限られず、例えば他の一軸性結晶であってもよく、あるいは二軸性結晶であってもよい。さらに、光学部材はレンズに限られず、例えばプリズムであってもよい。
【0022】
レンズ130を透過したパターン光は、ミラー14において反射され、コンデンサレンズ15により集光されて対象物Wに投影される。対象物Wの近傍に結ばれる光源像の詳細については後述する。
【0023】
観察系20は、例えば、ハーフミラー21と、撮像部22と、を有する。
【0024】
ハーフミラー21は、パターン光の一部を透過させるとともに、対象物Wにおいて反射された光の一部を撮像部22に向けて反射させる。なお、ハーフミラー21は、観察系20に含まれるとともに、照明光学系10Aにも含まれる。
【0025】
撮像部22は、ハーフミラー21において反射された光を受光することにより、対象物Wに投影されたパターン光の光源像を撮像する。なお、撮像部22は、光源像を観察するための一具体例であり、像を観察するための構造はこれに限定されない。
【0026】
撮像部22において撮像される光源像の詳細について、
図4A及び
図4Bを参照して説明する。
図4Aは、対象物Wが地点Aにある場合に撮像部22により撮像される画像のイメージを示す図である。
図4Bは、対象物Wが地点Bにある場合に撮像部22により撮像される画像のイメージを示す図である。
【0027】
パターン板12Aのスリット121a,121bを透過した光は、第1光路L1を経由して第1光源像220a,220bを結び、スリット121c,121dを透過した光は、第2光路L2を経由して第2光源像220c,220dを結ぶ。なお、説明の便宜上、
図3においては4つのスリット121a~121dが互いに離れて図示されているが、これらの4つのスリットは対象物Wの大きさに対して十分に近いものとする。すなわち、各スリット121a~121dに対応する第1光源像220a,220b及び第2光源像220c,220dは、それぞれ、パターン光の進行方向に沿って見た対象物Wの平面視において、実質的に対象物Wの所定の位置(ほぼ同じ位置)に投影されるものとする。
【0028】
上述のとおり、第1光路L1を経由した光と第2光路L2を経由した光は、レンズ130において互いに異なる屈折角で屈折する。従って、第1光路L1を経由した光と第2光路L2を経由した光は、パターン光の進行方向(本実施形態においては、コンデンサレンズ15の光軸方向。以下、「深さ方向」とも呼ぶ。)において互いに異なる位置に集光する(
図1参照)。これにより、例えば対象物Wがコンデンサレンズ15から相対的に近い地点Aにある場合、
図4Aに示されるように、第1光路L1を経由した第1光源像220a,220bはピントが合うため鮮明に写り、第2光路L2を経由した第2光源像220c,220dはピントが合わず不鮮明に写る。他方、対象物Wがコンデンサレンズ15から相対的に遠い地点Bにある場合、
図4Bに示されるように、第1光路L1を経由した第1光源像220a,220bはピントが合わず不鮮明に写り、第2光路L2を経由した第2光源像220c,220dはピントが合うため鮮明に写る。従って、第1光源像と第2光源像の差異は、対象物Wまでの距離情報を含むことになる。言い換えると、撮像部22により観察される光源像の特性(例えば、鮮明度、コントラスト等)に基づいて、測定装置1Aの一部(例えば、コンデンサレンズ15)から対象物Wまでの距離を測定することができる。また、本構成を採用することにより、以下の(1)~(4)に示す効果を奏する。
【0029】
(1)本実施形態においては、パターン光が第1光路L1及び第2光路L2に分かれて対象物Wに照射されることにより、対象物上の所定の位置に投影された複数の光源像の鮮明度を比較することができる。従って、例えば上記特許文献2に開示されるように、対象物上の互いに離れた位置に投影された2つの光源像の鮮明度を比較する構成(以下、当該構成を「比較例」とも呼ぶ。)に比べて、対象物の表面に凹凸があったり、照明光学系に対して対象物の表面が傾いていたりする場合であっても、対象物までの距離を精度高く測定することができる。また、互いに離れた2つの光源像を投影することが困難であるほど微小な大きさの対象物であっても、距離を測定することができる。特に、水晶は他の一軸性結晶に比べて複屈折の度合いが小さいため、第1光源像と第2光源像のずれを小さくすることができる。従って、水晶によりレンズ130を構成することにより、例えば精密な計測を行うことができる。
【0030】
(2)比較例においては、2つの光源像を形成する光がレンズの光軸からの距離が異なる位置を透過するため、例えばコマ収差又は非点収差などのレンズの収差やディストーションにより像に歪みが生じ、測定精度が劣るおそれがある。あるいは、当該歪みを補正するため、照明光学系を微調整したり測定装置ごとに像の歪み方を記憶させたりする必要があり、設計や計算が複雑化し得る。この点、本実施形態によると、第1光路L1及び第2光路L2がレンズのほぼ同じ位置を透過するため、レンズの収差やディストーションなどといった光学系に起因する光源像の歪みの影響を抑制することができ、比較例に比べて測定精度を向上させることができる。あるいは、歪みを補正する必要がなくなるため、比較例に比べて設計や解析が単純化し、測定を高速化することができる。特に、レンズ130の光軸に近い領域(近軸領域)は、他の領域に比べて収差の影響を受けにくいため、第1光路L1及び第2光路L2が当該近軸領域を透過することにより、これらの効果を得やすくなる。
【0031】
(3)比較例においては、2つの光源像が対象物の平面視において異なる位置に投影されるため、2つの光源像を観察するために複数のセンサ又は大型のセンサを要する。この点、本実施形態によると、第1光路L1及び第2光路L2を経由した光源像が、対象物Wの平面視においてほぼ同じ位置に投影されるため、1つのセンサがあれば足り、部品点数の減少又は装置の規模の縮小を図ることができる。
【0032】
(4)比較例においては、2つの光源像がレンズの異なる位置を透過するため、偏心光学系や自由曲面で構成された光学系に適用すると像に非対称なぼけが生じ、対象物までの距離を適切に測定することができない。この点、本実施形態によると、第1光路L1及び第2光路L2がレンズのほぼ同じ位置を透過するため、偏心光学系や自由曲面で構成された光学系にも適用することができる。例えば、測定装置1Aは、ヘッドアップディスプレイに適用可能であり、自動車において運転者からフロントガラスまでの距離を測定し、居眠り防止等のアプリケーションに活用することができる。あるいは、測定装置1Aは、モーションキャプチャ、プロジェクションマッピング、検眼器等の様々なシステムに用いることができる。
【0033】
なお、上述の実施形態では、パターン光の光路が2つに分けられる例が示されているが、光路の数はこれに限られず、3つ以上であってもよい。
【0034】
また、上述の実施形態では、測定装置1Aの一部から対象物Wまでの距離を測定する例について説明したが、測定装置1Aが測定するものは当該距離に限られず、他の様々な情報を取得可能である。例えば、測定範囲内に対象物が有るか無いかを検知する物体検知に用いられてもよい。
【0035】
また、上述の実施形態では、パターン板12Aにスリット120(透過部)が形成され、スリット120を透過した光によりパターン光が生成される例が示されているが、パターン板における透過部と減光部の配置は逆であってもよい。すなわち、パターン板は、光を透過させる大部分の透過部と、光を減光又は遮断させるパターン状の減光部を有することによりパターン光が生成される構成であってもよい。この場合、透過部は、光を拡散させるように粗面になっていてもよい。
【0036】
パターン光が集光する深さ方向の位置をずらし、鮮明度が異なる光源像を得る方法は上述の実施形態に限らず、他の構成によっても実現可能である。以下に、鮮明度が異なる光源像を得る他の構成について説明する。
【0037】
図5は、パターン板12Aの第1変形例に係るパターン板12Bの平面構造を示す平面図であり、
図6は、パターン板12Aの第1変形例に係るパターン板12Bの側面構造を示す側面図である。なお、以下の変形例及び実施形態においては、上述の実施形態と共通の事柄についての記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については実施形態毎には逐次言及しない。
【0038】
図5及び
図6は、
図3と同様に、パターン板12Bのうちクロス状のスリットが形成された領域を拡大して示した図である。パターン板12Bは、パターン光の進行方向における長さ(すなわち、パターン板12Bの厚み)が異なる領域を有する。当該厚みが相対的に厚い第1領域R1に2つのスリット123a,123bが形成され、相対的に薄い第2領域R2に2つのスリット123c,123dが形成されている。すなわち、スリット123a,123bを透過する光の出射位置と、スリット123c,123dを透過する光の出射位置が、パターン光の進行方向において互いに異なる。従って、このような構成であってもパターン光を第1光路と第2光路に分け、深さ方向において異なる位置に集光する複数の光源像を形成することができる。
【0039】
なお、パターン板12Bにおいては、パターン板12Bの厚みによりパターン光の光路を分けることができるため、上述のレンズ130に相当するレンズの材料は複屈折性を有していなくてもよく、例えばガラス等により構成されるレンズであってもよい。すなわち、本変形例では、偏光子や複屈折性のレンズを用いることなく、上述の実施形態と同様の効果を得ることができる。
【0040】
図7は、パターン板12Aの第2変形例に係るパターン板12Cの平面構造を示す平面図であり、
図8は、パターン板12Aの第2変形例に係るパターン板12Cを用いた測定装置1Aにおけるパターン光の集光を説明するための図である。
【0041】
図7は、
図3と同様に、パターン板12Cのうちクロス状のスリットが形成された領域を拡大して示した図である。パターン板12Cには、
図3に示されるパターン板12Aと同様の4つのスリット121a~121dが形成されており、これらの4つのスリット121a~121dに、それぞれ、互いに異なる波長の光を透過させる波長フィルタ124a~124dが設けられている。照射光がパターン板12Cを透過する際、照射光は互いに異なる4つの波長の光に分けられる。
【0042】
本変形例において、上述のレンズ130に相当するレンズは、例えばフリントガラスにより構成される高分散レンズであってよい。フリントガラスは、光の波長に対する屈折率の変位量を示すアッベ数が低く、すなわち色分散が大きいため、
図8に示されるように光の集光位置が深さ方向において所定の範囲の広がりを持つ。本変形例では、パターン光が4つの波長の光を含むため、4つの光源像の深さ方向の集光位置がそれぞれ異なることとなる。従って、撮像部22において撮像される4つの光源像のうち、対象物Wに最もピントが合っている光源像の波長の光の受光量は、その他の光源像の波長の光の受光量より多くなる。言い換えると、撮像部22において受光される光源像の波長及びその受光量に基づいて、対象物までの距離を測定することができる。
【0043】
なお、本変形例では、パターン板12Cに形成されるスリットの数が4つであり、波長フィルタの波長が4種類である例が示されているが、当該スリットの数及び波長フィルタの波長数は4つに限られず、2つ又は3つ、あるいは5つ以上であってもよい。また、これらの波長フィルタは、必ずしも単一の波長帯の光を透過させるフィルタである必要はなく、補色の透過フィルタなどのように、複数の波長帯の光を透過させるフィルタであってもよい。
【0044】
次に、本開示の第2実施形態に係る測定装置について、
図9A及び
図9Bを参照して説明する。
【0045】
図9Aは、本開示の第2実施形態に係る測定装置におけるパターン板12Dの平面構造を示す平面図である。
図9Bは、パターン板の第3変形例に係るパターン板12Eの平面構造を示す平面図である。第2実施形態に係る測定装置は、上述の第1実施形態に係る測定装置に比べて、パターン板に形成されるスリットの位置及び形状が異なる。
【0046】
図9Aに示されるパターン板12Dは、照明光学系10Aの光軸を法線とする面方向において光軸からの距離が等しい位置に形成された4つの矩形状のスリット125a~125dを有する。
図9Bに示されるパターン板12Eは、照明光学系10Aの光軸を法線とする面方向において光軸からの距離が等しい位置に形成された4つの弧状のスリット126a~126dを有する。これらのスリット125a~125d,126a~126dには、例えば上述のパターン板12Aと同様に偏光子が設けられていてもよく、又はパターン板12Cと同様に波長フィルタが設けられていてもよい。あるいは、パターン板12D,12Eは、パターン板12Bと同様に厚みが異なる領域を有していてもよい。このような構成を適用することにより、上述の測定装置1Aと同様に、各パターンを透過した光が深さ方向において互いに異なる位置に集光することとなる。従って、上述の測定装置1Aと同様に、対象物Wに投影された複数の光源像の鮮明度に基づいて、対象物Wまでの距離を測定することができる。
【0047】
ここで、パターン板12D,12Eに形成された複数のスリットは、上述のパターン板12A~12Cに形成された複数のスリットに比べて、スリット間の距離が互いに離れている。従って、例えばパターン板12Dにおいて、スリット125aを透過して第1光路を経由して対象物Wに投影される第1光源像と、スリット125bを透過して第2光路を経由して対象物Wに投影される第2光源像とが、対象物Wの平面視において離れた位置に投影され得る。しかしながら、この場合であっても、パターン板12D,12Eでは、光軸からの距離が互いに等しい位置に各スリットが形成されるため、各スリットに対応する光源像は、レンズの収差やディストーションにより歪むとしても、互いに対称に歪むと考えられる。加えて、第1光路及び第2光路がレンズの近軸領域を透過する場合、その影響はごく小さい。従って、このようなスリットの配置であっても、比較例に比べて測定精度を向上させることができる。
【0048】
このように、パターン板に形成されるスリットの形状、個数及び配置は特に限定されない。また、上述の各スリットは組み合わせて形成されてもよい。
【0049】
図10は、本開示の第3実施形態に係る測定装置の全体構成を示す図であり、
図11は、本開示の第3実施形態に係る測定装置におけるパターン板の平面構造を示す平面図である。
【0050】
本実施形態に係る測定装置1Bは、照明光学系10Bがパターン板12Aの代わりにパターン板12Fを備え、かつ照射光の光路が近軸領域以外の領域、いわゆる軸外領域を透過するという点で、上述の測定装置1Aと異なる。すなわち、本実施形態においては、各光路において対称な収差を前提としてない。従って、光源11からの光が集光しさえすればよく、光軸を持たない光学系、例えば自由曲面系などにも適用し得る。なお、以下では光軸を持つ光学系の軸外領域を用いた構成について説明を行うが、これに限定されることはない。観察系20の構成は上述の測定装置1Aと同様とすることができるため、
図10においては図示が省略されている。
【0051】
図11に示されるように、パターン板12Fには、光軸を中心とした円環状のスリット127が形成されている。スリット127は、スリット127に対応する光源像が、対象物Wの平面視において対象物Wの大きさに対して平面的な広がりを持って投影される程度の大きさであるものとする。
【0052】
レンズ130は、例えば上述の第1実施形態と同様に、透過する光の偏光方向に応じて異なる屈折力を有し、その屈折作用により照射光を第1光路及び第2光路に分ける。具体的には、レンズ130は、例えば一軸性結晶により構成されたレンズであってもよい。当該レンズの光学軸は、照明光学系10Bの光軸と平行であってもよく、垂直であってもよい。
【0053】
本実施形態においては、レンズ130の軸外領域を照射光が透過する。ここで、レンズ130における複屈折により、常光線の屈折率と異常光線の屈折率とは互いに異なる。つまり、常光線と異常光線とではレンズの倍率が異なるため、撮像部22(不図示)は、対象物W上においてややずれた二重の第1光源像及び第2光源像を観察することとなる(
図10参照)。これにより、当該第1光源像及び第2光源像の鮮明度及び位置に基づいて、対象物Wまでの距離を測定することができる。なお、「ややずれた」とは、対象物Wの大きさに対して十分に近く、対象物Wの平面視において、第1光源像及び第2光源像が実質的に対象物Wの所定の位置に投影されるものとして扱える程度のずれである。例えば、第1光源像と第2光源像のいずれか一方が明瞭に見える際に、一方の光源像の少なくとも一部と他方の光源像のぼけた領域の少なくとも一部が重なるときに、第1光源像と第2光源像を「ややずれた」二重の像としてもよい。
【0054】
図12Aは、対象物Wが地点Aにある場合に撮像部22により撮像される画像のイメージを示す図である。
図12Bは、対象物Wが地点Bにある場合に撮像部22により撮像される画像のイメージを示す図である。
【0055】
図12Aに示されるように、対象物Wがコンデンサレンズ15から相対的に近い地点Aにある場合、外側の円環状の第1光源像221aは焦点が合うため鮮明に写り、内側の円環状の第2光源像221bはぼやけて写る。他方、
図12Bに示されるように、対象物Wがコンデンサレンズ15から相対的に遠い地点Bにある場合、外側の円環状の第1光源像221aはぼやけて写り、内側の円環状の第2光源像221bは焦点が合うため鮮明に写る。このように、二重にずれた像の鮮明度に基づいて、対象物Wまでの距離を測定することができる。
【0056】
上述の構成により、本実施形態によると、上述の第1実施形態に係る測定装置1Aに比べて、偏光子を用いることなく対象物Wを測定することができる。
【0057】
また、本実施形態では、対象物Wに投影された光源像が対象物Wに対して平面的な広がりを持っているため、当該光源像の位置及び鮮明度に基づいて、対象物の傾きや形状を測定することができる。この点について、
図13及び
図14を参照してさらに説明する。
【0058】
図13は、本開示の第3実施形態に係る測定装置を用いて対象物の傾きを測定する場合に、撮像部22により撮像される画像のイメージを示す図である。
【0059】
図13に示される例では、紙面の右上側では内側の円環状の第2光源像222bの方が不鮮明であり、紙面の左下側では外側の円環状の第1光源像222aの方が不鮮明である。これらの画像から、当該対象物は、紙面の右上側ではコンデンサレンズ15に近く、紙面の左下側ではコンデンサレンズ15から遠くなるように照明光学系10Bに対して傾きを持った平板状であることが分かる。
【0060】
図14は、本開示の第3実施形態に係る測定装置を用いて対象物の形状を測定する場合に、撮像部22により撮像される画像のイメージを示す図である。
【0061】
図14に示される例では、光軸を中心として同心円状に複数(本実施形態では、3つ)の円環状のスリットが形成されたパターン板が用いられている。3つのスリットから、それぞれ二重の第1光源像223a及び第2光源像223b、第1光源像224a及び第2光源像224b、並びに第1光源像225a及び第2光源像225bが投影される。最も外側のスリットに対応する光源像においては、内側の第2光源像223bより外側の第1光源像223aの方がより不鮮明であるのに対し、最も内側のスリットに対応する光源像においては、外側の第1光源像225aより内側の第2光源像225bの方がより不鮮明である。従って、この対象物は、紙面の中央付近が最もコンデンサレンズ15に近く、外側に近付くにつれてコンデンサレンズ15から遠くなった半球状であることが分かる。
【0062】
このように、対象物Wに投影されるパターンが対象物Wに対して平面的な広がりを持つ構成によると、対象物Wまでの距離を二次元の範囲にわたって測定することができる。
【0063】
次に、上述の測定装置が適用されたレーザービーム投光システムについて説明する。
【0064】
図15は、本開示の第1実施形態に係る測定装置が適用されたレーザービーム投光システムの全体構成を示す図である。
図16Aから
図16Cは、レーザービーム投光システムの動作を説明するための図である。
【0065】
図15に示されるように、レーザービーム投光システム2は、例えば、上述の測定装置1Aにおける照明光学系10A及び観察系20に加え、投光系30と、高さ調整系40と、制御系50と、を備える。
【0066】
投光系30は、測定装置1Aの照明光学系10Aの少なくとも一部を経由して、対象物WにレーザービームBを投光し、対象物Wを加工する。本実施形態においては、レーザービームBは、照明光学系10Aに含まれるコンデンサレンズ15を経由して対象物Wに照射される。レーザービームBの波長は、例えば照明光学系10Aから照射されるパターン光の波長とは異なるものであり、観察系20においてレーザービームBとパターン光は互いに区別可能であるものとする。
【0067】
高さ調整系40は、投光系30におけるコンデンサレンズ15から対象物Wまでの距離であるワーキングディスタンスWDを調整する。当該ワーキングディスタンスWDを調整することにより、レーザービームBの深さ方向の集光位置を適切な位置に合わせることができる。
【0068】
測定装置1Aは、上述の原理により、ワーキングディスタンスWDを測定する。
【0069】
制御系50は、測定装置1Aにより測定されたワーキングディスタンスWDに基づいて、当該ワーキングディスタンスWDを所定の条件に保つように高さ調整系40を制御する。所定の条件とは、例えば、ワーキングディスタンスWDとコンデンサレンズ15の焦点距離が一致することを含む。
【0070】
このようなレーザービームの投光系30においては、例えばレーザービームの照射による温度の上昇に伴い、例えばコンデンサレンズ15の屈折率が変化し、ひいてはコンデンサレンズ15の焦点距離が変化し得る。この場合、ワーキングディスタンスWDとコンデンサレンズ15の焦点距離が一致せず、レーザービームの集光位置が対象物Wに合わなくなるおそれがある。なお、温度の上昇は、例えばレンズの硝材やコーティング材が不純物を含むことによる光吸収発熱、環境温度の変化、又は対象物からの輻射の影響等により生じ得る。
【0071】
例えば、
図16Aは、ワーキングディスタンスWDとコンデンサレンズ15の焦点距離fが一致し、レーザービームBの集光位置が対象物Wに合っている状態を示す。このとき、測定装置1Aにおける第1光路L1を経由した第1光源像と、第2光路L2を経由した第2光源像は、例えばいずれも同程度の鮮明度となるように初期設定される。
【0072】
温度の上昇に伴いコンデンサレンズ15の屈折率が変化すると、
図16Bに示されるようにコンデンサレンズ15の焦点距離fが短くなり、焦点距離faとなる(f>fa)。これにより、ワーキングディスタンスWDとコンデンサレンズ15の焦点距離faが一致せず、レーザービームBの集光位置が対象物Wに合わなくなる。このとき、測定装置1Aにおける第1光路L1及び第2光路L2もまた、投光系30と同じコンデンサレンズ15を透過するため、レーザービームBと同様に光路が変化し、第1光路L1a及び第2光路L2aとなる(
図16B参照)。これにより、対象物Wに投影される複数の光源像は、例えば一方が鮮明となり、他方が不鮮明となる。
【0073】
制御系50は、観察系20において観察されたこれらの光源像の鮮明度の変化に基づいて、双方の光源像の鮮明度が再び同程度となるように高さ調整系40を制御して、ワーキングディスタンスWDを調整する。上記の動作により、
図16Cに示されるように、調整されたワーキングディスタンスWDaとコンデンサレンズ15の焦点距離faが再び一致し、レーザービームBaの集光位置が対象物Wに合うようになる。
【0074】
このように、本実施形態に係るレーザービーム投光システム2によると、ワーキングディスタンスWDとコンデンサレンズ15の焦点距離とが一致する状態が保たれるため、加工条件を途中で変えたり、加工の最初と最後で加工部の品質がばらついたりすることなく加工ができ、レーザービームによる加工精度が向上する。また、本実施形態に係るレーザービーム投光システム2では、照明光学系10Aと投光系30においてコンデンサレンズ15が共有されるため、コンデンサレンズ15の焦点距離の変化を測定することができる。従って、例えばワーキングディスタンスをコンデンサレンズの固有の焦点距離に一致させる構成に比べて、より高い精度で対象物Wに集光位置を合わせることができる。
【0075】
なお、上述の実施形態においては、制御系50が高さ調整系40の動作を制御する構成が示されているが、これに代えて、例えば測定装置1Aの観察系20において観察された光源像をディスプレイに表示し、ユーザが当該ディスプレイを視認しながら高さ調整系40を手動で操作してワーキングディスタンスを調整してもよい。
【0076】
また、上述の実施形態においては、投光系30がレーザービームBを投光し、対象物Wを加工する例が示されているが、投光系が投光する光はレーザービームに限られず、他の種類の光であってもよい。
【0077】
以上、本発明の例示的な実施形態について説明した。なお、以上説明した各実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更又は改良され得るとともに、本発明にはその等価物も含まれる。即ち、各実施形態に当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。例えば、各実施形態が備える各要素及びその配置、材料、条件、形状、サイズなどは、例示したものに限定されるわけではなく適宜変更することができる。また、各実施形態が備える各要素は、技術的に可能な限りにおいて組み合わせることができ、これらを組み合わせたものも本発明の特徴を含む限り本発明の範囲に包含される。
【符号の説明】
【0078】
1A,1B…測定装置、2…レーザービーム投光システム、10A,10B…照明光学系、11…光源、12A~12F…パターン板、13…レンズユニット、14…ミラー、15…コンデンサレンズ、20…観察系、21…ハーフミラー、22…撮像部、30…投光系、40…高さ調整系、50…制御系、120,121a~121d,123a~123d,125a~125d,126a~126d,127…スリット、122a~122d…偏光子、124a~124d…波長フィルタ、130…レンズ、220a,220b,221a,222a…第1光源像、220c,220d,221b,222b…第2光源像、L1…第1光路、L2…第2光路、R1…第1領域、R2…第2領域、B…レーザービーム