(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-10-31
(45)【発行日】2022-11-09
(54)【発明の名称】高強度鋼板
(51)【国際特許分類】
C22C 38/00 20060101AFI20221101BHJP
C22C 38/58 20060101ALI20221101BHJP
C21D 9/46 20060101ALN20221101BHJP
【FI】
C22C38/00 301W
C22C38/58
C21D9/46 T
(21)【出願番号】P 2021530716
(86)(22)【出願日】2020-07-08
(86)【国際出願番号】 JP2020026704
(87)【国際公開番号】W WO2021006296
(87)【国際公開日】2021-01-14
【審査請求日】2021-08-20
(31)【優先権主張番号】P 2019128612
(32)【優先日】2019-07-10
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000006655
【氏名又は名称】日本製鉄株式会社
(74)【代理人】
【識別番号】100106909
【氏名又は名称】棚井 澄雄
(74)【代理人】
【識別番号】100175802
【氏名又は名称】寺本 光生
(74)【代理人】
【識別番号】100134359
【氏名又は名称】勝俣 智夫
(74)【代理人】
【識別番号】100188592
【氏名又は名称】山口 洋
(72)【発明者】
【氏名】虻川 玄紀
(72)【発明者】
【氏名】首藤 洋志
【審査官】相澤 啓祐
(56)【参考文献】
【文献】国際公開第2018/179387(WO,A1)
【文献】特許第6414371(JP,B1)
【文献】特開2011-140672(JP,A)
【文献】国際公開第2014/208089(WO,A1)
【文献】特開2012-087339(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C22C 38/00-38/60
C21D 9/46- 9/48
(57)【特許請求の範囲】
【請求項1】
化学成分として、質量%で、
C:0.030~0.280%、
Si:0.50~2.50%、
Mn:1.00~4.00%、
sol.Al:0.001~2.000%、
P:0.100%以下、
S:0.0200%以下、
N:0.01000%以下、
O:0.0100%以下、
B:0~0.010%、
Ti:0~0.20%、
Nb:0~0.20%、
V:0~1.000%、
Cr:0~1.000%、
Mo:0~1.000%、
Cu:0~1.000%、
Co:0~1.000%、
W:0~1.000%、
Ni:0~1.000%、
Ca:0~0.0100%、
Mg:0~0.0100%、
REM:0~0.0100%、
Zr:0~0.0100%、及び
残部:Fe及び不純物
からなり、
金属組織が、面積率で、
フェライト:20%~70%、
残留オーステナイト:5%~40%、
フレッシュマルテンサイト:0%~30%、
焼き戻しマルテンサイト及びベイナイトの合計:20%~75%、及び
パーライト及びセメンタイトの合計:0%~10%
からなり、
表面から1/8厚~3/8厚の範囲において、全残留オーステナイトの個数に対する、アスペクト比2.0以上の残留オーステナイトの個数割合が50%以上であり、
圧延方向に平行且つ前記表面に垂直な断面の板厚1/4位置において、板幅方向に沿って50mmおきに10か所で測定されたフェライトの面積率の標準偏差が10%未満であり、
引張強度が780MPa以上であ
り、
自動車用鋼板である
ことを特徴とする高強度鋼板。
【請求項2】
前記板幅方向に50mm間隔で10か所の位置において、表面粗さRaの標準偏差が0.5μm以下であることを特徴とする請求項1に記載の高強度鋼板。
【請求項3】
前記化学成分として、質量%で、
B:0.001%~0.010%、
Ti:0.01~0.20%、
Nb:0.01~0.20%、
V:0.005%~1.000%、
Cr:0.005%~1.000%、
Mo:0.005%~1.000%、
Cu:0.005%~1.000%、
Co:0.005%~1.000%、
W:0.005%~1.000%、
Ni:0.005%~1.000%、
Ca:0.0003%~0.0100%、
Mg:0.0003%~0.0100%、
REM:0.0003%~0.0100%、及び
Zr:0.0003%~0.0100%
からなる群から構成される少なくとも1種を含有する
ことを特徴とする請求項1又は2に記載の高強度鋼板。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、優れた引張強度、伸び、伸びフランジ性及び曲げ性を有し、かつ、材質安定性に優れた高強度鋼板に関する。
本願は、2019年7月10日に、日本に出願された特願2019-128612号に基づき優先権を主張し、その内容をここに援用する。
【背景技術】
【0002】
近年、地球温暖化対策に伴う温室効果ガス排出量規制の観点から、自動車のさらなる燃費向上が求められている。そして、車体を軽量化するとともに衝突安全性を確保するために、自動車用部品における高強度鋼板の適用がますます拡大しつつある。
【0003】
自動車用部品に供される鋼板においては、強度だけでなく、プレス加工性や溶接性等、部品成形時に要求される各種施工性が要求される。具体的には、プレス加工性の観点から、鋼板には優れた伸び(引張試験における全伸び;EL)、伸びフランジ性(穴広げ率;λ)が要求されることが多い。
【0004】
一方で、高強度鋼板では、コイル内で安定した材質を得るための技術も重要である。これは、これまで低強度鋼板では、フェライト組織を主体として必要に応じて微量の固溶強化元素で強度を担保する程度の比較的単純な組織構成であったのに対し、高強度鋼においては、ベイナイトやマルテンサイトといった低温変態組織やTiCなどの析出物を強度担保のために活用しており、複雑な組織構成となってきている。これらの変態、析出などの現象は温度履歴の影響を大きく受けるが、製造工程においては温度ばらつきが不可避的に生じることがある。例えば、熱延鋼板の製造工程では、幅方向の冷却水のかかり方のむらや、巻き取り後のコイル内の位置による冷却速度のむらなど、幅方向、長手方向で温度履歴にばらつきが生じる可能性がある。そのため、高強度鋼板の製造においては、これらの温度履歴をできるだけ低減する製法を用いるか、または、温度履歴の影響をできるだけ小さくする材料設計を行うなど、材質を安定化させる技術が必要になる。
【0005】
高強度鋼板の延性を向上させる技術として、鋼組織にオーステナイト相を残存させてTRIP(変態誘起塑性)効果を利用するTRIP鋼がある(例えば、特許文献1参照。)。TRIP鋼は、DP鋼よりも高い延性を有する。
また、非特許文献1には、鋼板を2回焼鈍する2回焼鈍法を用いることで、鋼板の伸びおよび穴広げ性が向上することが開示されている。
【0006】
一方で、材質安定性に関しては、例えば特許文献2では、引張強さが780MPa以上の熱延鋼板について、TiとVの添加量をある範囲に制御することにより、熱延巻き取り時に微細な炭化物を均一に析出させ、結果的に熱延鋼板の材質を安定化させる技術が報告されている。
【先行技術文献】
【特許文献】
【0007】
【文献】日本国特開2006-274418号公報
【文献】日本国特開2013-100574号公報
【非特許文献】
【0008】
【文献】K.Sugimoto et al.:ISIJ International,Effects of Second Phase Morphology on Retained Austenite Morphology and Tensile Properties in a TRIP-aided Dual-phase Steel Sheet(1993),775.
【発明の概要】
【発明が解決しようとする課題】
【0009】
本発明者らは、伸びと穴広げ性とを両立した鋼板を得るため探索を行った。非特許文献1に記載された方法では2回の焼鈍を行うため、1回の焼鈍を行う製法と比較し、燃料コストなどが増加することが課題であった。そこで、本発明者らは、2回の焼鈍を行わなくとも、同様の板状組織(すなわち、オーステナイトのアスペクト比が大きい組織)の作り込みを行うべく、熱延鋼板を焼鈍することでTRIP鋼板を作り込む製法を試みた。具体的には、熱延鋼板を450℃以下の低温で巻き取り、次いで焼鈍を行う製法を本発明者らは検討した。低温での巻取によって、熱延鋼板の組織を、低温変態組織を主体とした組織とすることができる。低温変態組織を主体とした組織を有する熱延鋼板を焼鈍することで、1回の焼鈍で板状の組織を得ることができると本発明者らは考えた。
しかしながら、この方法によって得られた鋼板では、材質不安定化が生じた。具体的には、板幅方向に沿って測定されたフェライト量のばらつきが増大し、その結果、機械特性のばらつきが増大した。
【0010】
本発明は、優れた引張強度、伸び、伸びフランジ性及び曲げ性を有し、かつ、材質安定性に優れた高強度熱延鋼板を提供することを課題とする。なお、材質安定性とは、鋼板中の部位ごとの引張強度及び全伸びのばらつきが少ないことを表す。
【課題を解決するための手段】
【0011】
(1)本発明の一態様に係る高強度鋼板は、化学成分として、質量%で、C:0.030~0.280%、Si:0.50~2.50%、Mn:1.00~4.00%、sol.Al:0.001~2.000%、P:0.100%以下、S:0.0200%以下、N:0.01000%以下、O:0.0100%以下、B:0~0.010%、Ti:0~0.20%、Nb:0~0.20%、V:0~1.000%、Cr:0~1.000%、Mo:0~1.000%、Cu:0~1.000%、Co:0~1.000%、W:0~1.000%、Ni:0~1.000%、Ca:0~0.0100%、Mg:0~0.0100%、REM:0~0.0100%、Zr:0~0.0100%、及び残部:Fe及び不純物からなり、金属組織が、面積率で、フェライト:20%~70%、残留オーステナイト:5%~40%、フレッシュマルテンサイト:0%~30%、焼き戻しマルテンサイト及びベイナイトの合計:20%~75%、及びパーライト及びセメンタイトの合計:0%~10%からなり、表面から1/8厚~3/8厚の範囲において、全残留オーステナイトの個数に対する、アスペクト比2.0以上の残留オーステナイトの個数割合が50%以上であり、圧延方向に平行且つ前記表面に垂直な断面の板厚1/4位置において、板幅方向に沿って50mmおきに10か所で測定されたフェライトの面積率の標準偏差が10%未満であり、引張強度が780MPa以上であり、自動車用鋼板である。
(2)(1)に記載の高強度鋼板は、前記板幅方向に50mm間隔で10か所の位置において、表面粗さRaの標準偏差が0.5μm以下であってもよい。
(3)(1)又は(2)に記載の高強度鋼板は、前記化学成分として、質量%で、B:0.001%~0.010%、Ti:0.01~0.20%、Nb:0.01~0.20%、V:0.005%~1.000%、Cr:0.005%~1.000%、Mo:0.005%~1.000%、Cu:0.005%~1.000%、Co:0.005%~1.000%、W:0.005%~1.000%、Ni:0.005%~1.000%、Ca:0.0003%~0.0100%、Mg:0.0003%~0.0100%、REM:0.0003%~0.0100%、及びZr:0.0003%~0.0100%からなる群から構成される少なくとも1種を含有してもよい。
【発明の効果】
【0012】
上記態様によれば、優れた引張強度、伸び、伸びフランジ性及び曲げ性を有し、かつ、材質安定性に優れた高強度鋼板を得ることができる。
【図面の簡単な説明】
【0013】
【
図1】金属組織を評価するための観察面を示す概念図である。
【
図2】残留オーステナイトを評価するための観察面を示す概念図である。
【
図3】フェライトの面積率の標準偏差を評価するための観察面を示す概念図である。
【発明を実施するための形態】
【0014】
本発明者らは、焼鈍回数が1回の鋼板において、材質安定性が損なわれる原因について鋭意検討を重ねた。そして本発明者らは、焼鈍前の熱延鋼板の表面性状のばらつきが、焼鈍後の鋼板の材質安定性に影響を及ぼすことを見出した。熱延鋼板の表面性状(表面粗さ)のばらつきは、冷延鋼板のそれよりも大きい傾向にある。表面粗さにむらがあると、焼鈍のための昇温の過程で、表面粗さのむらが放射率のむらを生じさせ、それに起因した温度ばらつきが鋼板にもたらされる。その結果、焼鈍後の鋼板においてフェライト量のばらつきが増大することとなる。熱延鋼板の表面性状を制御することが、熱延焼鈍板の材質安定化に寄与することが、本発明者らの知見により初めて明らかになった。
また、本発明者らは、焼鈍前の鋼板(熱延鋼板)の表面性状のばらつきを抑制するために効果的な熱間圧延方法も見出した。熱間圧延時に、表層スケールが熱延ロールによって鋼板に押しつけられる現象が、熱間圧延後の鋼板の表面性状を大きく特徴づけることを、本発明者らは発見した。そして、熱延鋼板の表面性状を制御するためには、熱間圧延中のスケール成長を制御することが重要であり、圧延中に鋼板表面に水膜を特定の条件で吹き付けることでこれを達成できることが見いだされた。
【0015】
以下に、本発明の一実施形態に係る高強度鋼板について詳細に説明する。ただし、本発明は本実施形態に開示の構成のみに制限されることなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。また、下記する数値限定範囲には、下限値及び上限値がその範囲に含まれる。「超」または「未満」と示す数値は、その値が数値範囲に含まれない。各元素の含有量に関する「%」は、「質量%」を意味する。
【0016】
本実施形態に係る高強度鋼板1において、
図1~
図3に示される圧延方向RD、板厚方向TD、及び板幅方向WDは以下の通り定義される。圧延方向RDとは、圧延時に圧延ロールによって鋼板が移動する方向を意味する。板厚方向TDとは、鋼板の圧延面11に垂直な方向である。板幅方向WDとは、圧延方向RD及び板厚方向TDに垂直な方向である。なお、圧延方向RDは、鋼板の結晶粒の延伸方向に基づいて容易に特定することができる。従って、圧延後の素材鋼板から切り出された鋼板においても、圧延方向RDは特定可能である。
【0017】
本実施形態に係る高強度鋼板においては、金属組織におけるフェライト量などが規定される。金属組織は、圧延方向RDに平行且つ圧延面11に垂直な断面12において評価される(
図1参照)。以下、圧延方向RDに平行且つ圧延面11に垂直な断面12を、単に圧延方向RDに平行な断面と記載する場合がある。詳細な金属組織の評価方法は後述される。
また、本実施形態に係る高強度鋼板においては、全残留オーステナイトの個数に対する、アスペクト比2.0以上の残留オーステナイトの個数割合が既定される。残留オーステナイトは、圧延方向RD及び板厚方向TDに平行な断面において評価される(
図2参照)。詳細な残留オーステナイトの評価方法は後述される。
【0018】
さらに、本実施形態に係る高強度鋼板においては、フェライトの面積率の標準偏差が規定される。フェライトの面積率は、圧延方向RDに平行且つ圧延面11に垂直な断面12の板厚1/4位置121において測定される(
図3参照)。圧延方向RDに平行且つ圧延面11に垂直な断面12を、板幅方向WDに沿って50mmおきに10面作成し、これらの面において測定された10のフェライトの面積率の標準偏差が、本実施形態に係るフェライトの面積率の標準偏差とみなされる。
【0019】
なお、板厚1/4位置とは、鋼板1の圧延面11から、鋼板1の厚さの1/4の深さの位置である。
図1及び
図2においては、鋼板1の上側の圧延面11から鋼板1の厚さの1/4の深さの位置のみを、板厚1/4位置として示している。しかし当然のことながら、鋼板1の下側の圧延面11から鋼板1の厚さの1/4の深さの位置も、板厚1/4位置として取り扱うことができる。また、
図3においては、10面の測定面のうち一部のみを図示している。さらに、
図3はフェライトの面積率の測定箇所を概念的に示すものにすぎず、所定の要件を満たす限り、
図3に記載の如く個数密度の測定面を形成する必要はない。フェライトの面積率の標準偏差の詳細な評価方法は後述される。
【0020】
[高強度鋼板]
本実施形態に係る高強度鋼板は、化学成分として、質量%で、
C:0.030~0.280%、
Si:0.50~2.50%、
Mn:1.00~4.00%、
sol.Al:0.001~2.000%、
P:0.100%以下、
S:0.0200%以下、
N:0.01000%以下、
O:0.0100%以下、
B:0~0.010%、
Ti:0~0.20%、
Nb:0~0.20%、
V:0~1.000%、
Cr:0~1.000%、
Mo:0~1.000%、
Cu:0~1.000%、
Co:0~1.000%、
W:0~1.000%、
Ni:0~1.000%、
Ca:0~0.0100%、
Mg:0~0.0100%、
REM:0~0.0100%、
Zr:0~0.0100%以下、及び
残部:Fe及び不純物
を含み、
金属組織が、面積率で、
フェライト:20%~70%、
残留オーステナイト:5%~40%、
フレッシュマルテンサイト:0%~30%、
焼き戻しマルテンサイト及びベイナイトの合計:20%~75%、及び
パーライト及びセメンタイトの合計:0%~10%
からなり、
表面から1/8厚~3/8厚の範囲において、全残留オーステナイトの個数に対する、アスペクト比2.0以上の残留オーステナイトの個数割合が50%以上であり、
圧延方向に平行且つ前記表面に垂直な断面の板厚1/4位置において、板幅方向に沿って50mmおきに10か所で測定されたフェライトの面積率の標準偏差が10%未満であり、
引張強度が780MPa以上である。
【0021】
1.化学成分
以下、本実施形態に係る高強度鋼板の成分組成について詳細に説明する。本実施形態に係る高強度鋼板は、化学成分として、基本元素を含み、必要に応じて選択元素を含み、残部がFe及び不純物からなる。
【0022】
(C:0.030%以上0.280%以下)
Cは鋼板強度を確保する上で重要な元素である。C含有量が0.030%未満では、引張強度780MPa以上を確保することができない。したがって、C含有量は0.030%以上とし、好ましくは0.050%以上、0.100%以上、0.120%以上又は0.140%以上である。
【0023】
一方、C含有量が、0.280%超になると、溶接性が悪くなるので、上限を0.280%とする。好ましくは、C含有量が0.260%以下又は0.250%以下、さらに好ましくは、0.200%以下、0.180%以下、又は0.160%以下である。
【0024】
(Si:0.50%以上2.50%以下)
Siは、鉄系炭化物の析出を抑制し、残留γを安定化させるのに重要な元素である。Si含有量が0.50%未満では、残留γを5%以上得ることが難しく、伸びが劣化するため、Si含有量は0.50%以上とする。Si含有量は好ましくは、0.80%以上、1.00%以上、又は1.20%以上である。
【0025】
一方、Si含有量が2.50%超では、表面性状劣化を引き起こすため、Si含有量は2.50%以下とする。Si含有量は好ましくは2.00%以下、より好ましくは1.80%以下、1.50%以下、または1.30%以下である。
【0026】
(Mn:1.00%以上4.00%以下)
Mnは、鋼板の機械的強度を高める上で有効な元素である。Mn含有量が1.00%未満では、780MPa以上の引張強度を確保することができない。したがって、Mn含有量は、1.00%以上とする。Mn含有量は好ましくは1.50%以上であり、より好ましくは1.80%以上、2.00%以上、又は2.20%以上である。
【0027】
一方、Mnを過剰に添加すると、Mn偏析によって組織が不均一になり、曲げ加工性が低下する。したがって、Mn含有量は4.00%以下とし、好ましくは、3.00%以下、より好ましくは、2.80%以下、2.60%以下、又は2.50%以下とする。
【0028】
(sol.Al:0.001%以上2.000%以下)
Alは、鋼を脱酸して鋼板を健全化する作用を有する元素である。sol.Al含有量が、0.001%未満では、十分に脱酸できないため、sol.Al含有量は、0.001%以上とする。但し、脱酸が十分に必要な場合、0.010%以上の添加がより望ましい。さらに望ましくは、sol.Al含有量は0.020%以上、0.030%以上、又は0.050%以上である。
【0029】
一方、sol.Al含有量が2.000%超では、溶接性の低下が著しくなるとともに、酸化物系介在物が増加して表面性状の劣化が著しくなる。したがって、sol.Al含有量は2.000%以下とし、好ましくは1.500%以下であり、より好ましくは1.000%以下、又は0.700%以下であり、最も好ましくは0.090%以下、0.080%以下、又は0.070%以下とする。なお、sol.Alとは、Al2O3等の酸化物になっておらず、酸に可溶する酸可溶Alを意味する。
【0030】
本実施形態に係る高強度鋼板は、化学成分として、不純物を含有する。なお、「不純物」とは、例えば鋼を工業的に製造する際に、原料としての鉱石やスクラップから、または製造環境等から混入するもの等を指す。不純物とは、例えば、P、S、N等の元素を意味する。これらの不純物は、本実施形態の効果を十分に発揮させるために、以下のように制限することが好ましい。また、不純物の含有量は少ないことが好ましいので、下限値を制限する必要がなく、不純物の下限値が0%でもよい。
【0031】
(P:0.100%以下)
Pは、一般には鋼に含有される不純物であるが、引張強度を高める作用を有するのでPを積極的に含有させてもよい。しかし、P含有量が0.100%超では、溶接性の劣化が著しくなる。したがって、P含有量は0.100%以下に制限する。P含有量は好ましくは0.080%以下、0.070%以下、又は0.050%以下に制限する。上記作用による効果をより確実に得るためには、P含有量を0.001%以上、0.002%以上、又は0.005%以上にしてもよい。
【0032】
(S:0.0200%以下)
Sは、鋼に含有される不純物であり、溶接性の観点からは少ないほど好ましい。S含有量が0.0200%超では、溶接性の低下が著しくなると共に、MnSの析出量が増加し、低温靭性が低下する。したがって、S含有量は0.0200%以下に制限する。S含有量は好ましくは0.0100%以下、さらに好ましくは0.0080%以下、0.0070%以下、又は0.0050%以下に制限する。なお、脱硫コストの観点から、S含有量は、0.0010%以上、0.0015%以上、又は0.0020%以上としてもよい。
【0033】
(N:0.01000%以下)
Nは、鋼に含有される不純物であり、溶接性の観点からは少ないほど好ましい。N含有量が0.01000%超では、溶接性の低下が著しくなる。したがって、N含有量は0.01000%以下に制限し、好ましくは0.00900%以下、0.00700%以下、又は0.00500%以下としてもよい。N含有量の下限値は特に限定されないが、例えばN含有量を0.00005%以上、0.00010%以上、又は0.00020%以上としてもよい。
【0034】
(O:0.0100%以下)
Oは、鋼に含有される不純物であり、溶接性の観点からは少ないほど好ましい。O含有量が0.0100%超では、溶接性の低下が著しくなる。したがって、O含有量は0.0100%以下に制限し、好ましくは0.0090%以下、0.0070%以下、又は0.0050%以下である。O含有量の下限値は特に限定されないが、例えばO含有量を0.0005%以上、0.0008%以上、又は0.0010%以上としてもよい。
【0035】
本実施形態に係る高強度鋼板は、上記で説明した基本元素および不純物に加えて、選択元素を含有してもよい。例えば、上記した残部であるFeの一部に代えて、選択元素として、B、Ti、Nb、V、Cr、Mo、Cu、Co、W、Ni、Ca、Mg、REM、Zrを含有してもよい。これらの選択元素は、その目的に応じて含有させればよい。よって、これらの選択元素の下限値を制限する必要がなく、下限値が0%でもよい。また、これらの選択元素が不純物として含有されても、上記効果は損なわれない。
【0036】
(B:0%以上0.010%以下)
(Ti:0%以上0.20%以下)
(Nb:0%以上0.20%以下)
(V:0%以上1.000%以下)
(Cr:0%以上1.000%以下)
(Mo:0%以上1.000%以下)
(Cu:0%以上1.000%以下)
(Co:0%以上1.000%以下)
(W:0%以上1.000%以下)
(Ni:0%以上1.000%以下)
B、Ti、Nb、V、Cr、Mo、Cu、Co、W、Niは、いずれも強度を安定して確保するために効果のある元素である。したがって、これらの元素を含有させてもよい。しかし、Bを0.010%超、Ti及びNbをそれぞれ0.20%超、V、Cr、Mo、Cu、Co、W、Niをそれぞれ1.000%超含有させても、上記作用による効果は飽和し易く経済的に不利となる場合がある。
【0037】
したがって、Bの含有量を0.010%以下、Ti及びNbの含有量をそれぞれ0.20%以下、V、Cr、Mo、Cu、Co、W及びNiの含有量は、それぞれ1.0%以下、又は1.000%以下とする。Bの含有量を0.008%以下、0.007%以下、又は0.005%以下としてもよい。Ti及びNbそれぞれの含有量の上限値を0.18%、0.15%、又は0.10%としてもよい。V、Cr、Mo、Cu、Co、W、及びNiそれぞれの含有量の上限値を0.500%以下、0.300%以下、又は0.100%以下としてもよい。
【0038】
なお、上記作用による効果をより確実に得るには、
B:0.001%以上、0.002%以上、又は0.004%以上、
Ti:0.01%以上、0.02%以上、又は0.05%以上、
Nb:0.01%以上、0.02%以上、又は0.05%以上、
V:0.005%以上、0.008%以上、又は0.010%以上、
Cr:0.005%以上、0.008%以上、又は0.010%以上、
Mo:0.005%以上、0.008%以上、又は0.010%以上、
Cu:0.005%以上、0.008%以上、又は0.010%以上、
Co:0.005%以上、0.008%以上、又は0.010%以上、
W:0.005%以上、0.008%以上、又は0.010%以上、及び
Ni:0.005%以上、0.008%以上、又は0.010%以上
のうち、少なくとも1種を含有していることが好ましい。
【0039】
(Ca:0%以上0.0100%以下)
(Mg:0%以上0.0100%以下)
(REM:0%以上0.0100%以下)
(Zr:0%以上0.0100%以下)
Ca、Mg、REM、Zrは、いずれも介在物制御、特に介在物の微細分散化に寄与し、靭性を高める作用を有する元素である。したがって、これらの元素の1種または2種以上を含有させてもよい。しかし、いずれの元素についてもそれぞれ0.0100%を超えて含有させると、表面性状の劣化が顕在化する場合がある。したがって、Ca、Mg、REM、Zrの含有量はそれぞれ0.01%以下、又は0.0100%以下とすることが好ましい。Ca、Mg、REM、Zrそれぞれの含有量の上限を、0.0080%、0.0050%、又は0.0030%としてもよい。なお、上記作用による効果をより確実に得るには、これらの元素の少なくとも一つの含有量を0.0003%以上、0.0005%以上、又は0.0010%以上とすることが好ましい。
【0040】
ここで、REMは、Sc、Yおよびランタノイドの合計17元素を指し、その少なくとも1種である。上記REMの含有量はこれらの元素の少なくとも1種の合計含有量を意味する。ランタノイドの場合、工業的にはミッシュメタルの形で添加される。
【0041】
なお、本実施形態に係る高強度鋼板では、化学成分として、質量%で、Ca:0.0003%以上0.0100%以下、Mg:0.0003%以上0.0100%以下、REM:0.0003%以上0.0100%以下、Zr:0.0003%以上0.0100%以下、のうちの少なくとも1種を含有することが好ましい。
【0042】
上記した鋼成分は、鋼の一般的な分析方法によって測定すればよい。例えば、鋼成分は、ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry)を用いて測定すればよい。なお、CおよびSは燃焼-赤外線吸収法を用い、Nは不活性ガス融解-熱伝導度法を用い、Oは不活性ガス融解-非分散型赤外線吸収法を用いて測定すればよい。
【0043】
2.金属組織
本実施形態に係る高強度鋼板では、金属組織が、面積率で、フェライト:20%~70%、残留オーステナイト:5%~40%、フレッシュマルテンサイト:0%~30%、焼き戻しマルテンサイト及びベイナイトの合計:20%~75%、及びパーライト及びセメンタイトの合計:0%~10%からなる。
【0044】
(フェライト:20%~70%)
フェライトは比較的軟質で成形に寄与する組織である。フェライトを有することで、伸び、穴広げ性、曲げ性が向上する。この効果を得るためには、フェライトを20%以上有する必要がある。そのため、金属組織におけるフェライトの面積率を20%以上とする。フェライトの面積率を25%以上、30%以上、又は35%以上としてもよい。
フェライトを70%超有すると、引張強度を780MPa以上とすることが困難になる。そのため、金属組織におけるフェライトの面積率を70%以下とする。フェライトの面積率を65%以下、60%以下、又は50%以下としてもよい。
【0045】
(残留オーステナイト:5%~40%)
残留オーステナイトは伸びに寄与する組織である。この効果を得るためには残留オーステナイトが5%以上必要である。そのため、金属組織における残留オーステナイトの面積率を5%以上とし、8%以上、10%以上、又は15%以上が好ましい。
本実施形態に係る製法では、残留オーステナイトを40%以上残存させることは実質的に不可能である。そのため、金属組織における残留オーステナイトの面積率の上限は40%である。残留オーステナイトの面積率を35%以下、30%以下、又は25%以下としてもよい。
【0046】
(フレッシュマルテンサイト:0%~30%)
フレッシュマルテンサイトは強度に寄与する代わりに成形性を阻害する組織である。そのため、フレッシュマルテンサイトは含まれなくてもよく、その下限を0%とする。
一方、フレッシュマルテンサイトによる強度を向上させる効果を得るためには、フレッシュマルテンサイトを2%以上、5%以上、又は8%以上有することが好ましい。
一方、フレッシュマルテンサイトを30%超有すると伸びや穴広げ性を劣化させるため、金属組織におけるフレッシュマルテンサイトの面積率を30%以下とする。フレッシュマルテンサイトの面積率は20%以下が好ましく、15%以下、又は10%以下が更に好ましい。
【0047】
(焼き戻しマルテンサイトおよびベイナイトの合計:20%~75%)
焼き戻しマルテンサイト及びベイナイトは、強度に寄与する組織である。引張強さ780MPa以上を得るためには、焼き戻しマルテンサイト及びベイナイトが合計で20%以上必要である。そのため、本実施形態に係る高強度鋼板の金属組織では、焼き戻しマルテンサイトとベイナイトとの合計面積率を20%以上とし、好ましくは30%以上、40%以上、又は50%以上である。
一方、焼き戻しマルテンサイトおよびベイナイトの合計の上限を規定する必要はない。上述のように、本実施形態に係る鋼板の金属組織は20%以上のフェライト及び5%以上の残留オーステナイトを含むが、その残部全てが焼き戻しマルテンサイトおよびベイナイトであってもよい。換言すると、焼き戻しマルテンサイトおよびベイナイトの合計面積率は、最大で75%とすることができる。焼き戻しマルテンサイトおよびベイナイトの合計面積率は、70%以下、60%以下、又は55%以下であってもよい。
【0048】
(パーライト及びセメンタイトの合計:0%~10%)
パーライトとセメンタイトは成形性を阻害する組織である。パーライトとセメンタイトとの合計面積率が10%超の場合には、成形性の劣化が大きくなるため好ましくない。そのため、パーライトとセメンタイトとの合計面積率を合計で10%以下とする。パーライトとセメンタイトとの合計面積率を8%以下、5%以下、又は3%以下としてもよい。パーライト及びセメンタイトは、本発明の課題を解決するために必要とされないので、その合計面積率の下限値は0%である。しかしながら、パーライトとセメンタイトとの合計面積率が0.5%以上、1%以上、又は2%以上であってもよい。
【0049】
金属組織の測定方法
以上のような本実施形態に係る高強度鋼板の金属組織を構成するベイナイト、焼き戻しマルテンサイト、フェライト、パーライト、残留オーステナイトおよびマルテンサイトの同定、存在位置の確認及び面積分率の測定は、以下の方法によって行う。
まず、ナイタール試薬及び特開昭59-219473号公報に開示の試薬を用いて、圧延方向に平行な断面(即ち、圧延方向に平行且つ表面に垂直な断面)を腐食する。断面の腐食について、具体的には、100mlのエタノールに1~5gのピクリン酸を溶解した溶液をA液とし、100mlの水に1~25gのチオ硫酸ナトリウムおよび1~5gのクエン酸を溶解した溶液をB液とし、A液とB液とを1:1の割合で混合して混合液とし、この混合液の全量に対して1.5~4%の割合の硝酸を更に添加して混合した液を前処理液とする。また、2%ナイタール液に、2%ナイタール液の全量に対して10%の割合の上記前処理液を添加して混合した液を後処理液とする。圧延方向に平行な断面(即ち、圧延方向に平行且つ表面に垂直な断面)を上記前処理液に3~15秒浸漬し、アルコールで洗浄して乾燥した後、上記後処理液に3~20秒浸漬した後、水洗し、乾燥することで、上記断面を腐食する。
次に、
図1に示されるように、鋼板1の表面(圧延面11)から板厚の1/4深さ且つ板幅方向WDの中央の位置において、走査型電子顕微鏡を用いて倍率1000~100000倍で、40μm×30μmの領域を少なくとも3領域観察することによって、上記金属組織の同定、存在位置の確認、及び、面積分率の測定を行う。なお、測定対象が、製造後に特段の機械加工を受けていない鋼板(換言すると、コイルから切り出されていない鋼板)である場合でも、コイルから切り出された鋼板であっても、板幅方向中央位置とは、板幅方向WDで見た鋼板1両端から実質的に等距離にある位置のことである。
また、上述の測定方法により下部ベイナイトと焼き戻しマルテンサイトとを区別することは困難である。そのため、本実施形態では両者を区別する必要はない。すなわち、「ベイナイトおよび焼き戻しマルテンサイト」の合計の面積分率は、「上部ベイナイト」および「下部ベイナイトまたは焼き戻しマルテンサイト」の面積分率を測定することで得る。上部ベイナイトは、ラスの集合体であり、ラス間に炭化物を含む組織である。下部ベイナイトは、内部に長径5nm以上かつ同一方向に伸長した鉄系炭化物を含む組織である。焼き戻しマルテンサイトは、ラス状の結晶粒の集合であり、内部に長径5nm以上かつ異なる方向に伸長した鉄系炭化物を含む組織である。
【0050】
フェライトは輝度が小さく、かつ下部組織が認められない領域である。輝度が大きく、かつ下部組織がエッチングにより現出されていない領域をフレッシュマルテンサイトまたは残留オーステナイトと判断する。それ故、フレッシュマルテンサイトの面積分率は、FE-SEMで観察される腐食されていない領域の面積分率と、後述のX線で測定した残留オーステナイトの面積分率との差分として求めることができる。
【0051】
パーライトは板状のセメンタイトと板状のフェライトとが交互に並んだ領域を意味する。FE-SEMによる観察において、パーライトと上述の組織(フェライト、ベイニティックフェライト、ベイナイト、焼戻しマルテンサイト)とを明瞭に区別することができる。
【0052】
残留オーステナイトの面積分率の測定方法には、X線回折、EBSP(電子後方散乱回折像、Electron Back Scattering Diffraction Pattern)解析、磁気測定による方法などがあり、測定方法によって測定値が異なる場合がある。本実施形態では、残留オーステナイトの面積分率はX線回折により測定する。本実施形態におけるX線回折による残留オーステナイト面積分率の測定では、まず、鋼板の板厚の1/4深さ位置における、圧延方向に平行な断面(即ち、圧延方向に平行且つ表面に直角な断面)において、Co-Kα線を用いて、α(110)、α(200)、α(211)、γ(111)、γ(200)、γ(220)の計6ピークの積分強度を求め、次いで強度平均法を用いて算出することで残留オーステナイトの面積分率を得る。
【0053】
(1/8厚~3/8厚の範囲において、全残留オーステナイトに占める、アスペクト比2.0以上の残留オーステナイトの個数割合が50%以上)
残留オーステナイトの組織形態を板状に作り込むことは、伸び、穴広げ性、曲げ性の向上に寄与し、本発明における重要な組織作り込みポイントの一つである。残留オーステナイトを板状にすることは、成形時のオーステナイトへのひずみ分配を抑制し、残留オーステナイトを塑性変形に対して適度に安定化させることで、伸び、穴広げ性を向上させる効果がある。この効果を有する残留オーステナイトの形態はアスペクト比で2.0以上である。
この効果を得るには、1/8厚~3/8厚の範囲において、アスペクト比で2.0以上の残留オーステナイトの個数割合が全残留オーステナイトに対して50%以上である必要がある。そのため、当該個数割合を50%以上とし、70%以上が好ましい。当該個数割合が50%未満では、優れた伸びと穴広げ性、曲げ性の両立が困難になるため好ましくない。
【0054】
鋼板内部の鋼組織に含まれる残留オーステナイト粒のアスペクト比および長径は、FE-SEMを用いて結晶粒を観察し、EBSD法(電子線後方散乱回折法)により高分解能結晶方位解析を行い、評価する。
まず、
図2に示されるように、鋼板の圧延方向及び板厚方向に平行な断面を観察面13として試料を採取し、観察面を研磨して鏡面に仕上げる。次いで、観察面13における表面(圧延面)11から1/4厚の位置を中心とした1/8厚~3/8厚の範囲131の一つないし複数の観察視野において、合計で2.0×10
-9m
2以上(複数視野及び同一視野のいずれでも可)の面積についてEBSD法による結晶構造解析を行う。次に、上記の方法により測定した残留オーステナイト粒の結晶方位から、測定エラーを避けるため、長軸長さが0.1μm以上のオーステナイトのみを抜き出して、結晶方位マップを描く。10°以上の結晶方位差を生じる境界を残留オーステナイト粒の結晶粒界とみなす。アスペクト比は、残留オーステナイト粒の長軸長さを短軸長さで除した値とする。長径は、残留オーステナイト粒の長軸長さとする。測定に当たってEBSD法により得られたデータの解析には、TSL社製の「OIM Analysys 6.0」を用いる。また、評点間距離(step)は0.01~0.20μmとする。観察結果から、FCC鉄と判断される領域を残留オーステナイトとする。この結果から、1/8厚~3/8厚の範囲において全残留オーステナイトに占める、アスペクト比2.0以上の残留オーステナイトの個数割合を求める。
【0055】
(圧延方向に平行且つ表面に垂直な断面の板厚1/4位置におけるフェライトの面積率を、板幅方向に50mmおきに10か所で測定したとき、フェライトの面積率の標準偏差が10%未満)
本発明において、フェライトは伸びや穴広げ性を担保するために重要である。一方で、その組織分率によって強度や伸び、穴広げ性が変化する。そのため、フェライトの組織分率が熱延幅方向に均一に分布していることは、材質安定性を得る上で重要である。
図3に示すように、圧延方向に平行な断面(即ち、圧延方向に平行且つ表面に垂直な断面12)の板厚1/4位置121におけるフェライトの面積率を、板幅方向(即ち、圧延方向RDに直角な方向)WDに沿って50mmおきに10か所で測定したとき、フェライトの面積率の標準偏差が10%以上であると、機械特性がばらつく原因となり、材質安定性が得られない。そのため、上述のフェライトの面積率の標準偏差を10%未満とし、好ましくは8%以下、5%未満、又は4%以下である。なお、測定対象となる鋼板の板幅方向に沿った大きさが十分に大きいときは、フェライトの面積率の標準偏差の測定箇所は、板幅方向に沿った1直線上に配置するとよい。一方、測定対象となる鋼板の板幅方向に沿った大きさが450mmに満たないときは、フェライトの面積率の標準偏差の測定箇所は、板幅方向に沿った2本以上の直線上に配置するとよい。フェライト以外の特性(例えば表面粗さ等)の板幅方向の標準偏差の測定の際にも、上述のように測定箇所を配置することができる。
【0056】
3.表面粗さRaの標準偏差
(板幅方向に沿って50mmおきに10か所で測定した表面粗さRaの標準偏差が、好ましくは0.5μm以下)
化学成分、金属組織、及び後述する引張強度が所定の範囲内である限り、本実施形態に係る鋼板は特に限定されない。一方、板幅方向(即ち、圧延方向に直角な方向)に沿って50mmおきに10か所で圧延面11の表面粗さRaを測定したとき、表面粗さRaの標準偏差を0.5μm以下としてもよい。表面粗さRaのばらつきを抑制することにより、曲げ加工性のばらつきを抑制し、材質安定性を一層高めることができる。そのため、当該標準偏差を0.5μm以下とすることが好ましい。ただし、鋼板の表面粗さは追加工によって自在に変更することができる。例えば、後述する好ましい製造方法によって材質安定性に優れた高強度鋼板を製造した後に、この高強度鋼板にヘアライン加工などの表面粗さを変更する加工をしてもよい。この観点からも、表面粗さRaの標準偏差を上述の範囲内とすることは必須ではない。
【0057】
なお、表面粗さRaは接触式粗さ計(Mitutoyo製サーフテストSJ-500)を用いて、各測定位置において、板幅方向に5mmの長さにわたって粗さ曲線を取得し、JIS B0601:2001に記載の方法で算術平均粗さRaを求める。このようにして求めた各測定位置での算術平均粗さRaの値を用いて、表面粗さRaの標準偏差を求める。
【0058】
また、鋼板の表面にめっき、及び塗装などの表面処理皮膜が配されている場合、「鋼板の表面粗さRa」とは、鋼板から表面処理皮膜を除去した後に測定される表面粗さを意味する。即ち、鋼板の表面粗さRaとは、地鉄の表面粗さである。表面処理皮膜を除去する方法は、地鉄の表面粗さに影響を及ぼさない範囲内で、表面処理皮膜の種類に応じて適宜選択することができる。例えば、表面処理皮膜が亜鉛めっきである場合、インヒビターを添加した希塩酸を用いて亜鉛めっき層を溶解させればよい。これにより、亜鉛めっき層のみを鋼板から剥離させることができる。インヒビターとは、地鉄の過溶解防止による粗さの変化を抑制するために使用する添加剤である。例えば、10~100倍に希釈した塩酸に、0.6g/Lの濃度になるよう朝日化学工業株式会社製の塩酸酸洗用腐食抑制剤「イビットNo.700BK」を添加したものを、亜鉛めっき層の剥離手段として用いることができる。
【0059】
4.機械特性
(引張強度TS:780MPa以上)
本実施形態に係る高強度鋼板は、自動車の軽量化に寄与する十分な強度として、780MPa以上の引張強度(TS)を有する。鋼板の引張強度が800MPa以上、900MPa以上、又は1000MPa以上であってもよい。一方、本実施形態の構成で1470MPa超とすることは困難であると推定される。そのため、引張強度の上限は特に定める必要はないが、本実施形態において実質的な引張強度の上限を1470MPaとすることができる。また、鋼板の引張強度を1400MPa以下、1300MPa以下、又は1200MPa以下としてもよい。
【0060】
なお、引張試験はJIS Z2241(2011)に準拠して、以下の手順で行えばよい。高強度鋼板の、板幅方向に50mm間隔の10か所の位置から、JIS5号試験片を採取する。ここで、鋼板の板幅方向と、試験片の長手方向とが一致するようにする。また、各試験片の採取位置が干渉しないように、各試験片を鋼板の圧延方向にずらした位置で採取する。これら試験片に、JIS Z 2241(2011)の規定に準拠して引張試験を実施し、引張強さTS(MPa)を求め、これらの平均値を算出する。この平均値を、高強度鋼板の引張強さとみなす。
【0061】
また、本実施形態に係る高強度鋼板は、成形性の指標として伸び、穴広げ性、それぞれ以下の特性を有してもよい。これらの機械特性は、上述した本実施形態に係る高強度鋼板の諸特性によって得られるものである。
【0062】
(全伸びEL)
本実施形態に係る高強度鋼板は、伸びの指標として引張試験における全伸びで14%以上を有してもよい。一方、本実施形態の構成で全伸びを35%超とすることは困難である。そのため、実質的な全伸びの上限は35%としてもよい。
【0063】
(穴広げ性)
本実施形態に係る高強度鋼板は、穴広げ性の指標として穴広げ率25%以上を有してもよい。一方、本実施形態の構成で穴広げ率を80%超とすることは困難である。そのため、実質的な穴広げ率の上限を80%としてもよい。
穴広げ率は、日本鉄鋼連盟規格JFS T 1001-1996記載の試験方法に準拠した穴広げ試験により評価できる。
【0064】
(曲げ性)
本実施形態に係る高強度鋼板は、曲げ性の指標として限界曲げR(mm)を板厚t(mm)で除した値R/tを用いた場合、2.0以下のR/tを有してもよい。一方、本実施形態の構成で曲げ性の指標R/tを0.1以下とすることは困難である。そのため、実質的な曲げ性の指標R/tの下限値を0.1としてもよい。
限界曲げRは、種々の曲げ半径を適用した曲げ試験を繰り返し実施することによって求められる。曲げ試験では、JIS Z 2248(Vブロック90°曲げ試験)に準拠して曲げ加工を行う。曲げ半径(正確には、曲げの内側半径)は0.5mmピッチで変更する。曲げ試験における曲げ半径が小さいほど、鋼板に裂けきず及びその他の欠点が生じやすくなる。この試験において求められた、鋼板に裂けきず及びその他の欠点を生じさせない最小の曲げを限界曲げRとみなす。そして、この限界曲げRを鋼板の厚さtで割った値を、曲げ性を評価する指標R/tとして用いる。
【0065】
本実施形態に係る高強度鋼板は、材質が安定していることの指標として、板幅方向(即ち、圧延方向に直角な方向)に沿って50mmおきに10か所で測定された引張試験結果において、TSの標準偏差50MPa以下、及びELの標準偏差1%以下であってもよい。TS標準偏差及びEL標準偏差を求める方法は、上述した、引張強さの平均値を求めるための引張試験方法と同一とする。上述の方法による10回の引張試験の結果の標準偏差を求めることにより、TS標準偏差及びEL標準偏差が得られる。
【0066】
また、本実施形態に係る高強度鋼板では、板幅方向に沿って50mmおきに10か所で測定されたR/t(限界曲げR(mm)、板厚t(mm))の標準偏差を0.2以下としてもよい。
【0067】
5.製造方法
次に、本実施形態に係る高強度鋼板の好ましい製造方法の一例について説明する。ただし、本実施形態に係る高強度鋼板の製造方法は特に限定されないことに留意されたい。上述の要件を満たす鋼板は、その製造方法に関わらず、全て本実施形態に係る鋼板であるとみなされる。
【0068】
熱間圧延に先行する製造工程は特に限定するものではない。すなわち、高炉や電炉等による溶製に引き続き、各種の二次製錬を行い、次いで、通常の連続鋳造、インゴット法による鋳造、または薄スラブ鋳造などの方法で鋳造すればよい。連続鋳造の場合には、鋳造スラブを一度低温まで冷却したのち、再度加熱してから熱間圧延してもよいし、鋳造スラブを低温まで冷却せずに、鋳造後にそのまま熱間圧延してもよい。原料にはスクラップを使用しても構わない。
【0069】
鋳造したスラブに、加熱工程を施す。この加熱工程では、スラブを1100℃以上1300℃以下の温度に加熱することが好ましい。スラブ内に析出した粗大な析出物(鉄系炭化物や合金元素の炭窒化物など)は、材質安定性を阻害する可能性があるため、溶解させるためにスラブを1100℃以上に加熱することが好ましい。一方、スケールロスを防ぐ観点から、スラブ加熱温度は1300℃以下が好ましい。
【0070】
次に、加熱されたスラブを粗圧延して、粗圧延板とする粗圧延工程を施す。
粗圧延は、スラブを所望の寸法形状にすればよく、その条件は特に限定しない。なお、粗圧延板の厚さは、仕上げ圧延工程における、圧延開始時から圧延完了時までの熱延鋼板先端から尾端までの温度低下量に影響を及ぼすため、これを考慮して決定することが好ましい。
【0071】
粗圧延板に、仕上げ圧延を施す。この仕上圧延工程では、多段仕上げ圧延を行う。本実施形態では、下記式(1)を満たす条件にて850℃~1200℃の温度域で仕上げ圧延を行う。
K’/Si*≧2.5・・・(1)
ここで、Si≧0.35のときはSi*=140√Siとし、Si<0.35のときはSi*=80とする。なお、Siは鋼板のSi含有量(質量%)を表す。
【0072】
また、上記式(1)におけるK’は下記式(2)で表される。
K’=D×(DT-930)×1.5+Σ((FTn-930)×Sn)・・・(2)
ここで、Dは仕上げ圧延開始前の水圧デスケーリングの時間当たりの吹き付け量(m3/min)、DTは仕上げ圧延開始前の水圧デスケーリングを行う際の鋼板温度(℃)、FTnは仕上げ圧延のn段目における鋼板温度(℃)、Snは仕上げ圧延のn-1段目とn段目の間に水をスプレー上に鋼板に吹き付けるときの時間当たりの吹き付け量(m3/min)である。
【0073】
Si*はスケール起因の凹凸の生じやすさを示す鋼板成分に関するパラメータである。鋼板成分のSi量が多いと、熱間圧延時に表層に生成するスケールは、比較的デスケーリングされやすく鋼板に凹凸を作りにくいウスタイト(FeO)から、鋼板に根を張るように成長して凹凸を作りやすいファイアライト(Fe2SiO4)に変化する。そのため、Si量は大きいほど、すなわちSi*は大きいほど表層の凹凸が形成しやすい。ここで、Si添加による表層の凹凸の形成しやすさはSiを0.35質量%以上添加した時に特に効果が顕著になる。そのため0.35質量%以上の添加時にはSi*はSiの関数となるが、0.35質量%以下では定数となる。
【0074】
K’は凹凸の形成しにくさを示す製造条件のパラメータである。上記式(2)の第1項目は、凹凸の形成を抑制するためには仕上げ圧延開始前に水圧デスケーリングを行う際、水圧デスケーリングの時間当たりの吹き付け量が多いほど、鋼板温度が高いほどデスケーリングの観点で効果的なことを示す。仕上げ圧延開始前に複数のデスケーリングを行う際は、最も仕上げ圧延に近いデスケーリングの値を用いる。
【0075】
上記式(2)の第2項目は、仕上げ前のデスケーリングで剥離しきれなかったスケールや、仕上げ圧延中に再度形成したスケールを、仕上げ圧延中にデスケーリングする上での効果を示す項であり、高い温度において、多量の水をスプレー上に鋼板に吹き付けることでよりデスケーリングしやすくなることを示す。
【0076】
凹凸の形成しにくさを示す製造条件のパラメータK’とスケール傷部の形成しやすさを示す鋼板成分に関するパラメータSi*の比が2.5以上、又は2.50以上であれば、凹凸を十分に抑制でき、焼き戻し時の温度ばらつきを抑制することができる。そのため、K’/Si*を2.5以上とし、好ましくは3.0以上であり、より好ましくは3.5以上である。
【0077】
なお、本発明に関する鋼板の好ましい形態である、板幅方向(即ち、圧延方向に直角な方向)に50mm間隔で10か所の位置で測定した表面粗さRaの標準偏差を0.5μm以下にするためには、K’/Si*が3.0以上(K’/Si*≧3.0)とすることが好ましい。
【0078】
仕上げ圧延に続いて、平均冷却速度50℃/s以上で冷却を行い、巻き取り温度450℃以下で巻き取る。これは、前述した通り、低温変態組織であるベイナイトおよびマルテンサイトを主な組織とすることで、焼鈍後の残留γの形態を制御するためである。ここで、平均冷却速度とは、冷却開始時と巻き取り前の温度の差をその時間で除した値である。平均冷却速度が50℃/s未満ではフェライト変態が生じ、その後の焼鈍工程での組織形態制御を阻害し、全残留オーステナイトの個数に対する、アスペクト比2.0以上の残留オーステナイトの個数割合を50%以上に制御することができない。
【0079】
同様に、巻き取り温度が450℃超ではフェライト変態が生じ、同様にベイナイトおよび焼き戻しマルテンサイトの合計を全体の20%以上とすることが難しくなる。また、巻き取り温度が450℃超では、全残留オーステナイトの個数に対する、アスペクト比2.0以上の残留オーステナイトの個数割合を50%以上に制御することができない。この観点から、巻き取り温度を450℃以下とし、好ましくは400℃以下、更に好ましくは200℃以下とする。また、巻き取り温度を450℃以下とすることは、巻き取り後に鋼板表面で内部酸化物が形成され、表層の粗さが大きくなることを抑制する効果もある。
【0080】
このようにして製造した高強度鋼板に、鋼板表面の酸化物を除去する目的で酸洗を施す。酸洗処理は、例えば、3~10%濃度の塩酸に85℃~98℃の温度で20秒~100秒で行えばよい。
【0081】
また、製造した熱延鋼板に形状矯正を目的に圧下率20%以下の軽圧下を施してもよい。しかしながら、軽圧下の圧下率が20%超となると、焼鈍過程で再結晶が生じ、低温変態組織からの焼鈍時に得られる形態制御の効果が得られなくなることから、軽圧下を施す場合であっても圧下率は20%以下とする。軽圧下は酸洗工程の前に実施しても良いし、後に実施してもよい。酸洗工程後に軽圧下を行うと、表層の粗さをより低減できる効果がある。本発明において好ましい形態である、表面粗さRaを板幅方向(即ち、圧延方向に直角な方向)に50mm間隔で10か所の位置において測定したとき、表面粗さRaの標準偏差0.5μm以下を満たすには、酸洗工程後に軽圧下を行う必要がある。
【0082】
得られた鋼板に対して焼鈍処理を行う。
焼鈍工程では、加熱温度を以下の式で計算されるAc1点~Ac3点-10℃とする。
Ac1=723-10.7×Mn-16.9×Ni+29.1×Si+16.9×Cr
Ac3=879-346×C+65×Si-18×Mn+54×Al・・(9)
加熱時には低温変態組織のラス間などに生成した炭化物からフェライト-オーステナイト変態が生じ、板状のオーステナイトが生成する。オーステナイト変態しなかった領域は高温で焼き戻された低温変態組織(焼き戻しマルテンサイトや焼き戻しベイナイト)と考えることもできるが、転位密度は焼き戻しにより大きく減少しており、下部組織も不明瞭となっていることから、焼鈍後の組織観察においてフェライトとして評価させる領域である。そのため、ここでもフェライトと呼称する。なお、焼鈍後の組織観察において焼き戻しマルテンサイトやベイナイトと評価される領域は、加熱で生成したオーステナイトが後述する150℃~550℃での保持中にベイナイト変態やマルテンサイト変態することで生成した組織を主に指す。
加熱温度をAc1点~Ac3点-10℃とする理由は、フェライトの面積率を20%~70%とするために、適切なフェライト-オーステナイト変態分率とするためである。加熱時間は10秒~1000秒とする。保持時間が1秒未満であると、鋼中のセメンタイトが溶け残り、鋼板の特性が劣化する懸念がある。この効果は1000秒超で飽和し、生産性の低下につながることから、保持時間は1000秒を上限とする。
【0083】
その後、150℃~550℃の間で10秒から1000秒間保持する。
この温度域では、オーステナイトの一部をベイナイト変態やマルテンサイト変態させ、ベイナイト変態に伴い固溶炭素をオーステナイトに吐き出させることや、マルテンサイトの焼き戻しに伴い固溶炭素をオーステナイトに吐き出させることで、オーステナイトを安定化させる効果がある。150℃以下ではオーステナイトの大部分がマルテンサイト変態し、十分な残留オーステナイト量を得ることができない。一方、550℃以上では、パーライト変態が生じ、残留オーステナイトを十分に安定化できない。保持時間が10秒未満では、炭素の拡散が十分に起きず、残留オーステナイトを十分に安定化できない。1000秒超では、残留オーステナイトを安定化させる効果が飽和し、生産性が低下する。
【0084】
なお、この温度域に保持する間に、当該温度域内で加熱したり冷却したりしてもよい。例えば、一度250℃以下の温度域に低下させて残留オーステナイトの一部をマルテンサイト変態させた後、400℃程度の温度域に再加熱すると、マルテンサイトがベイナイト変態の核生成サイトとなり、ベイナイト変態を加速する効果が得られる。
【0085】
また、この温度域において、溶融亜鉛めっきや合金化溶融亜鉛めっきを施してもよい。溶融亜鉛めっき工程における亜鉛めっき浴温度や亜鉛めっき浴組成などのめっき条件としては、一般的な条件を用いることができ、特に制限はない。例えば、めっき浴温は420~500℃、鋼板の侵入板温は420~500℃、浸漬時間は5秒以下でよい。めっき浴は、Alを0.08~0.2%含有するめっき浴が好ましいが、その他、不純物のFe、Si、Mg、Mn、Cr、Ti、Pb等を含有してもよい。また、溶融亜鉛めっきの目付量を、ガスワイピング等の公知の方法で制御することが好ましい。目付量は、通常は、片面あたり5g/m2以上であれば良いが、25~75g/m2が好ましく、より好ましくは20~120g/m2とする。
合金化処理を行う場合は、常法にしたがって行えばよいが、合金化処理温度は460~550℃とすることが好ましい。合金化処理が460℃未満であると、合金化速度が遅くなり生産性を損なうばかりでなく、合金化処理むらが発生するので、合金化処理温度は460℃以上とすることが好ましい。一方、合金化処理温度が550℃を超えると、パーライト変態が生じ、残留オーステナイトを十分に安定化できない。
また合金化処理は、溶融亜鉛めっき層中の鉄濃度が6.0質量%以上となるような条件で行うことが好ましい。
溶融亜鉛めっきや合金化溶融亜鉛めっきを施さなかった場合、上記のように製造した鋼板に、電気亜鉛めっき層を形成してもよい。電気亜鉛めっき層は、従来公知の方法により形成できる。
【0086】
上述の製造方法により、本実施形態に係る高強度鋼板を製造することができる。
【実施例】
【0087】
以下に本発明に係る高強度鋼板を、例を参照しながらより具体的に説明する。ただし、以下の実施例は本発明の高強度鋼板の例であり、本発明の高強度鋼板は以下の態様に限定されるものではない。以下に記載する実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、これらの一条件例に制限されない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限り、種々の条件を採用することができる。
【0088】
表1に示す化学成分の鋼を鋳造し、鋳造後、そのままもしくは一旦室温まで冷却した後に再加熱し、1200℃~1350℃の温度範囲に加熱し、その後、1100℃以上の温度でスラブを粗圧延して粗圧延板を作製した。なお、表1において、発明範囲外の値には下線を付した。
【0089】
【0090】
粗圧延板に対して、表2に記載の条件で全段7段からなる多段仕上げ圧延を施した。
その後、表3に記載の各条件で仕上げ圧延後の冷却及び巻き取りを施した。
その後、全条件に対して酸洗を行ったが、一部の条件については酸洗の前または後工程で軽圧下を実施した。その後、加熱速度30℃/s~150℃/sの速度で表3に記載の加熱温度まで昇温した。加熱後、表3に記載の時間、加熱温度で保持した。その後、条件Aでは、50~100℃/sで250℃まで冷却し、400℃再加熱した後、300秒保持した。条件Bでは50~100℃/sで360℃まで冷却し、50秒保持した。比較例である条件Cでは、100℃/sで100℃まで冷却し、300秒保持した。
その後、一部の条件は合金化溶融亜鉛めっきや溶融亜鉛めっきを施した。めっき工程においては、鋼板は400℃~520℃の温度域にあった。
【0091】
【0092】
【0093】
得られた高強度鋼板に対して、次の方法で金属組織を観察した。
まず、ナイタール試薬及び特開昭59-219473号公報に開示の試薬を用いて、圧延方向に平行且つ表面に垂直な断面を腐食した。断面の腐食について、具体的には、100mlのエタノールに1~5gのピクリン酸を溶解した溶液をA液とし、100mlの水に1~25gのチオ硫酸ナトリウムおよび1~5gのクエン酸を溶解した溶液をB液とし、A液とB液とを1:1の割合で混合して混合液とし、この混合液の全量に対して1.5~4%の割合の硝酸を更に添加して混合した液を前処理液とした。また、2%ナイタール液に、2%ナイタール液の全量に対して10%の割合の上記前処理液を添加して混合した液を後処理液とした。圧延方向に平行且つ表面に垂直な断面を上記前処理液に3~15秒浸漬し、アルコールで洗浄して乾燥した後、上記後処理液に3~20秒浸漬した後、水洗し、乾燥することで、上記断面を腐食した。
【0094】
次に、鋼板表面から板厚の1/4深さ且つ板幅方向中央位置において、走査型電子顕微鏡を用いて倍率1000~100000倍で、40μm×30μmの領域を少なくとも3領域観察することによって、金属組織の同定、存在位置の確認、及び、面積分率の測定を行った。
なお、「ベイナイトおよび焼き戻しマルテンサイト」の合計の面積分率は、「上部ベイナイト」および「下部ベイナイトまたは焼き戻しマルテンサイト」の面積分率を測定することで得た。
【0095】
輝度が小さく、かつ下部組織が認められない領域をフェライトと判断した。輝度が大きく、かつ下部組織がエッチングにより現出されていない領域をフレッシュマルテンサイトまたは残留オーステナイトと判断した。フレッシュマルテンサイトの面積分率は、FE-SEMで観察される腐食されていない領域の面積分率と、X線で測定した残留オーステナイトの面積分率との差分として求めた。
【0096】
パーライトは、FE-SEMによる観察において、パーライトとフェライト、ベイニティックフェライト、ベイナイト、焼戻しマルテンサイトとを明瞭に区別することができるので、この方法により面積率を求めた。
【0097】
残留オーステナイトの面積分率はX線回折により測定した。まず、鋼板の板厚の1/4深さ位置における、圧延方向に平行且つ表面に垂直な断面において、Co-Kα線を用いて、α(110)、α(200)、α(211)、γ(111)、γ(200)、γ(220)の計6ピークの積分強度を求め、強度平均法を用いて算出することで残留オーステナイトの面積分率を得た。
【0098】
鋼板内部の鋼組織に含まれる残留オーステナイト粒のアスペクト比および長径は、FE-SEMを用いて結晶粒を観察し、EBSD法(電子線後方散乱回折法)により高分解能結晶方位解析を行い、評価した。
まず、鋼板の圧延方向及び板厚方向に平行な断面を観察面として試料を採取し、観察面を研磨して鏡面に仕上げた。次いで、観察面における表面から1/4厚の位置を中心とした1/8厚~3/8厚の範囲の一つないし複数の観察視野において、合計で2.0×10-9m2以上(複数視野及び同一視野のいずれでも可)の面積についてEBSD法による結晶構造解析を行った。次に、上記の方法により測定した残留オーステナイト粒の結晶方位から、測定エラーを避けるため、長軸長さが0.1μm以上のオーステナイトのみを抜き出して、結晶方位マップを描いた。10°以上の結晶方位差を生じる境界を残留オーステナイト粒の結晶粒界とみなした。アスペクト比は、残留オーステナイト粒の長軸長さを短軸長さで除した値とした。長径は、残留オーステナイト粒の長軸長さとした。測定に当たってEBSD法により得られたデータの解析には、TSL社製の「OIM Analysys 6.0」を用いた。また、評点間距離(step)は0.01~0.20μmとした。観察結果から、FCC鉄と判断される領域を残留オーステナイトとした。この結果から、1/8厚~3/8厚の範囲において全残留オーステナイトに占める、アスペクト比2.0以上の残留オーステナイトの個数割合を求めた。
【0099】
圧延方向に平行且つ表面に垂直な断面の板厚1/4位置におけるフェライトの面積率を、上述の方法に従って求めた。同様の方法で、板幅方向に50mm間隔で、10か所でフェライトの面積率を求め、面積率の標準偏差を算出した。
【0100】
板幅方向に50mm間隔で10か所の位置で測定される表面粗さRaの標準偏差は、以下の手順で求めた。接触式粗さ計(Mitutoyo製サーフテストSJ-500)を用いて、各測定位置において、板幅方向に5mmの長さにわたって粗さ曲線を取得し、JIS B0601:2001に記載の方法で算術平均粗さRaを求めた。このようにして求めた各測定位置での算術平均粗さRaの値を用いて、表面粗さRaの標準偏差を求めた。
【0101】
引張強度は、高強度鋼板から、板幅方向が長手方向となるように採取したJIS5号試験片を用いて、JIS Z 2241(2011)の規定に準拠して引張試験を実施し、引張強さTS(MPa)、突合せ伸び(全伸び)EL(%)を求めた。採取は、鋼板の、板幅方向に50mm間隔の10か所の位置から行った。10の試験片の引張強さの平均値を鋼板の引張強さTSとみなし、TS≧780MPaを満たした場合、高強度熱延鋼板であるとして合格とした。
また、板幅方向に50mm間隔で10か所の位置におけるTS及びELの標準偏差を求めた。TSの標準偏差が50MPa以下であり、且つELの標準偏差が1%以下である鋼板を、材質安定性に優れた鋼板と判定した。
【0102】
穴広げ率は、日本鉄鋼連盟規格JFS T 1001-1996記載の試験方法に準拠した穴広げ試験により評価した。
【0103】
曲げ試験はJIS Z2248(Vブロック90°曲げ試験)に準拠して曲げ加工を行い、曲げR(mm)は0.5mmピッチで試験を行った。
また、板幅方向に50mm間隔で10か所の位置でR/tを測定し、その標準偏差を求めた。
【0104】
【0105】
【0106】
表4及び表5において、発明範囲外の値には下線を付した。表に示すように、本発明の条件を充足する実施例では引張強度、伸び、穴広げ性(伸びフランジ性)、曲げ性、引張強度のばらつき、及び、伸びのばらつきの全てに優れていた。一方、本発明の条件を少なくとも一つは充足しない比較例では、引張強度、伸び、穴広げ性(伸びフランジ性)、曲げ性、引張強度のばらつき、及び、伸びのばらつきのうち、少なくとも一つの特性が十分ではなかった。
【0107】
具体的には、比較例9及び比較例10ではフェライト面積率の標準偏差が大きくなり、TS標準偏差、及びEL標準偏差が不合格となった。これは、K’/Si*が不足する条件で熱間圧延が行われたからであると推定される。
【0108】
比較例11では、アスペクト比2.0以上の残留オーステナイトの割合が不足し、穴広げ性が損なわれた。これは、仕上圧延後の平均冷却速度が不足したからであると推定される。
【0109】
比較例12では、アスペクト比2.0以上の残留オーステナイトの割合が不足し、穴広げ性が損なわれた。これは、仕上圧延後の巻取温度が高すぎたからであると推定される。
【0110】
比較例13では、フェライト面積率が過剰となり、その他の組織の面積率が不足し、引張強さが不足した。これは、焼鈍工程における加熱温度が、鋼材AのAc1点を下回ったからであると推定される。
【0111】
比較例14では、アスペクト比2.0以上の残留オーステナイトの割合が不足し、穴広げ性が損なわれた。これは、鋼板の焼鈍前に鋼板に行われた軽圧下の圧下率が過剰だったからであると推定される。
【0112】
比較例16では、残留オーステナイト量が不足し、全伸び及び穴広げ性が損なわれた。これは、焼鈍工程における保持パターンが不適切であった、即ち保持温度が低すぎたからであると推定される。
【0113】
比較例31及び比較例32は、Si量が不足していた。そのため、比較例31及び比較例32では残留オーステナイト量が不足し、全伸び及び穴広げ性が損なわれた。
【符号の説明】
【0114】
1 高強度鋼板(鋼板)
11 表面(圧延面)
12 圧延方向に平行且つ表面に垂直な断面
121 圧延方向に平行且つ表面に垂直な断面の板厚1/4位置
13 残留オーステナイトの測定面
131 残留オーステナイトの測定面における、表面(圧延面)から1/8厚~3/8厚の範囲
RD 圧延方向(Rolling Direction)
TD 板厚方向(Thickness Direction)
WD 板幅方向(Width Direction)