IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ クレオ・メディカル・リミテッドの特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-10-31
(45)【発行日】2022-11-09
(54)【発明の名称】電気外科用器具
(51)【国際特許分類】
   A61B 18/18 20060101AFI20221101BHJP
   A61B 17/3211 20060101ALI20221101BHJP
【FI】
A61B18/18 100
A61B17/3211
【請求項の数】 26
(21)【出願番号】P 2019530471
(86)(22)【出願日】2018-03-29
(65)【公表番号】
(43)【公表日】2020-04-23
(86)【国際出願番号】 EP2018058116
(87)【国際公開番号】W WO2018178254
(87)【国際公開日】2018-10-04
【審査請求日】2021-03-19
(31)【優先権主張番号】1705171.5
(32)【優先日】2017-03-30
(33)【優先権主張国・地域又は機関】GB
(73)【特許権者】
【識別番号】512008495
【氏名又は名称】クレオ・メディカル・リミテッド
【氏名又は名称原語表記】CREO MEDICAL LIMITED
(74)【代理人】
【識別番号】110001195
【氏名又は名称】弁理士法人深見特許事務所
(72)【発明者】
【氏名】ハンコック,クリストファー・ポール
(72)【発明者】
【氏名】エバット,ジュリアン・マーク
(72)【発明者】
【氏名】ターナー,ルイス
(72)【発明者】
【氏名】メドウクロフト,サイモン
【審査官】二階堂 恭弘
(56)【参考文献】
【文献】特開2010-221037(JP,A)
【文献】特開2003-111770(JP,A)
【文献】特開平9-94214(JP,A)
【文献】特開2005-312807(JP,A)
【文献】米国特許出願公開第2003/0073991(US,A1)
【文献】米国特許出願公開第2005/0113827(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 18/18
A61B 17/3211
(57)【特許請求の範囲】
【請求項1】
マイクロ波電磁(EM)エネルギーを伝えるための同軸伝送線路を備える器具シャフトと、
前記器具シャフトから前記マイクロ波EMエネルギーを受け取るように前記器具シャフトの遠位端に構成された遠位端組立品であって、
1対のジョーであって、その対向する内面の間の間隙を開閉するために互いと相対的に移動できる前記1対のジョーと、
生体組織を切り開くためのブレードと
を備えた前記遠位端組立品とを備える電気外科用脈管封止具であって、
前記1対のジョーが、前記対向する内面の間の前記間隙に前記マイクロ波EMエネルギーを放射するように構成されたエネルギー送達構造を備え、
前記エネルギー送達構造が、前記1対のジョーの一方または両方の前記内面に取り付けられた共平面マイクロストリップアンテナを備え、前記共平面マイクロストリップアンテナが、放射されたマイクロ波場を前記1対のジョー間の領域の内側に閉じ込めるように構成され、
前記ブレードが、前記1対のジョー間の前記領域を通って移動できるように、前記遠位端組立品の内部に摺動自在に配され、
前記共平面マイクロストリップアンテナが、
平面誘電体基板であって、前記対向する内面間の前記間隙に露出した上面と、前記平面誘電体基板の前記上面とは反対側の下面とを有する、前記平面誘電体基板と、
前記下面にある接地導体層と、
前記上面にあり、前記接地導体層に電気的に接続されている接地伝導性ストリップと、
前記上面にあるアクティブ伝導性ストリップであって、前記アクティブ伝導性ストリップが前記接地伝導性ストリップから離隔されている、前記アクティブ伝導性ストリップとを備え、
前記アクティブ伝導性ストリップと前記接地伝導性ストリップとが、前記1対のジョー間の前記領域の内側で均一の最近接間隔を有するように配置された、前記電気外科用脈管封止具。
【請求項2】
前記アクティブ伝導性ストリップが、長手方向に延在する細長いフィンガー電極であり、
前記接地伝導性ストリップが、前記フィンガー電極の側面に位置し、かつ前記フィンガー電極の遠位端を囲むU字形要素である、請求項1に記載の電気外科用脈管封止具。
【請求項3】
前記接地伝導性ストリップが、前記誘電体基板に形成されたスルーホールを介して、前記接地導体層に電気的に接続されている、請求項1または請求項2に記載の電気外科用脈管封止具。
【請求項4】
前記1対のジョーが、アクティブジョーであって、その内部に取り付けられた前記エネルギー送達構造を有する前記アクティブジョーと、マイクロ波EMエネルギー供給を受けないパッシブジョーとを備える、請求項1から請求項3のいずれか1項に記載の電気外科用脈管封止具。
【請求項5】
前記パッシブジョーの前記内面が、前記間隙で、弾力のある変形可能な電気絶縁材料層を構成する、請求項4に記載の電気外科用脈管封止具。
【請求項6】
前記1対のジョーの各ジョーが、その内部に取り付けられたそれぞれのエネルギー送達構造を有し、
前記遠位端組立品が、前記それぞれのエネルギー送達構造の間で、前記同軸伝送線路から受け取った前記マイクロ波EMエネルギーを分配するための電力分配器を含む、請求項1から請求項3のいずれか1項に記載の電気外科用脈管封止具。
【請求項7】
前記対向する内面が、前記間隙内に生体組織を保持するための表面模様付き部分またはリッジ状部分を含む、請求項1から請求項6のいずれか1項に記載の電気外科用脈管封止具。
【請求項8】
前記1対のジョーが、前記同軸伝送線路の長手方向軸に対して横方向に伸びるヒンジ軸の周りを互いと相対的に枢動可能である、請求項1から請求項7のいずれか1項に記載の電気外科用脈管封止具。
【請求項9】
前記1対のジョーが、
前記器具シャフトに対して固定された静止ジョーと、
前記静止ジョーと相対的に枢動可能に取り付けられて、前記対向する内面間の前記間隙を開閉する可動ジョーとを備える、請求項1から請求項8のいずれか1項に記載の電気外科用脈管封止具。
【請求項10】
前記エネルギー送達構造が、前記静止ジョーの前記内面に配されている、請求項9に記載の電気外科用脈管封止具。
【請求項11】
前記ブレードが、前記1対のジョーの近位に位置する引き込み位置と、前記ブレードが、前記1対のジョー間の前記領域の内側に位置する繰り出し位置との間で、前記ブレードが、長手方向に摺動自在である、請求項1から請求項10のいずれか1項に記載の電気外科用脈管封止具。
【請求項12】
前記ブレードが、前記1対のジョーに形成された長手方向に延在する凹溝に沿って摺動自在である、請求項1~11のいずれか1項に記載の電気外科用脈管封止具。
【請求項13】
前記ブレードが、前記1対のジョーのうちの一方の内部に取り付けられ、
前記ブレードが、前記ジョーの前記内面の下に位置する引き込み位置と、前記ブレードが、前記1対のジョー間の前記領域の内側に位置する繰り出し位置との間で、前記ブレードが、前記1対のジョーのうちの一方の内面に対して垂直方向に摺動自在である、請求項1~10のいずれか1項に記載の電気外科用脈管封止具。
【請求項14】
前記ブレードが、生体組織の薄切りに適した鋭い縁を持つ剛性要素を備える、請求項1~13のいずれか1項に記載の電気外科用脈管封止具。
【請求項15】
前記ブレードが、バイポーラ高周波切断要素、超音波ソノトロード、および加熱可能ワイヤ要素のいずれか1つを備える、請求項1~13のいずれか1項に記載の電気外科用脈管封止具。
【請求項16】
前記器具シャフトが、高周波(RF)EMエネルギーを伝えるように構成され、前記遠位端組立品が、前記器具シャフトから前記RFEMエネルギーを受け取るように構成され、
前記遠位端組立品が、生体組織を切り開くための前記RFEMエネルギーを送達するように構成された切開器要素を更に備え、
前記切開器要素が、前記1対のジョー間の前記領域の外側に位置している、請求項1~15のいずれか1項に記載の電気外科用脈管封止具。
【請求項17】
マイクロ波電磁(EM)エネルギーおよび高周波(RF)EMエネルギーを伝えるように構成された器具シャフトと、
前記器具シャフトから前記マイクロ波EMエネルギーおよび前記RFEMエネルギーを受け取るように前記器具シャフトの遠位端に構成された遠位端組立品であって、
1対のジョーであって、その対向する内面の間の間隙を開閉するために互いと相対的に移動できる前記1対のジョーと、
生体組織を切り開くための前記RFEMエネルギーを送達するように構成された切開器要素と
を備えた、前記遠位端組立品とを備える電気外科用脈管封止具であって、
前記1対のジョーが、前記対向する内面の間の前記間隙に前記マイクロ波EMエネルギーを放射するように構成されたエネルギー送達構造を備え、
前記エネルギー送達構造が、放射されたマイクロ波場を前記1対のジョー間の領域の内側に閉じ込めるように構成され、
前記切開器要素が、前記1対のジョー間の前記領域の外側に位置している、前記電気外科用脈管封止具。
【請求項18】
前記切開器要素が、アクティブ電極およびリターン電極を有するバイポーラRF構造を備える、請求項17に記載の電気外科用脈管封止具。
【請求項19】
前記切開器要素が、組織に接触するための前縁を与える突出体を備え、
前記アクティブ電極が、前記前縁に設けられている、請求項18に記載の電気外科用脈管封止具。
【請求項20】
前記リターン電極が、前記1対のジョーの前記外面にある、請求項18または請求項19に記載の電気外科用脈管封止具。
【請求項21】
前記切開器要素が、前記1対のジョーの外面に取り付けられている、請求項16~20のいずれか1項に記載の電気外科用脈管封止具。
【請求項22】
前記切開器要素が、長手方向延長部に取り付けられ、前記長手方向延長部が、前記1対のジョーに対して長手方向に移動可能である、請求項16~20のいずれか1項に記載の電気外科用脈管封止具。
【請求項23】
前記切開器要素が、前記遠位端組立品の遠位端に取り付けられている、請求項16~22のいずれか1項に記載の電気外科用脈管封止具。
【請求項24】
前記器具シャフトが、前記マイクロ波EMエネルギーおよび前記RFEMエネルギーの両方を伝えるための共通信号経路を提供する同軸伝送線路を備え、
前記遠位端組立品が、前記切開器要素からの前記マイクロ波EMエネルギーを遮断するための誘導性フィルタと、前記1対のジョーにある前記エネルギー送達構造からの前記RFEMエネルギーを遮断するための容量性フィルタとを備える、請求項17~23のいずれか1項に記載の電気外科用脈管封止具。
【請求項25】
前記遠位端組立品および前記器具シャフトが、外科用スコープデバイスの器具チャネル内に嵌合するように寸法決めされた、請求項1~24のいずれか1項に記載の電気外科用脈管封止具。
【請求項26】
前記外科用スコープデバイスが、腹腔鏡である、請求項1~25のいずれか1項に記載の電気外科用脈管封止具。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、生体組織を掴持するための電気外科用脈管封止具であって、掴持された組織にマイクロ波エネルギーを送達して、組織を凝固させ、または焼灼し、または封止するための電気外科用脈管封止具に関する。特に、本発明の脈管封止具は、電磁放射線(好ましくはマイクロ波エネルギー)を照射して血管(複数可)を封止する前に、圧力を加えて1つまたは複数の血管を閉じるように使用し得るものである。本発明の脈管封止具は、止血または封止の後に、例えば高周波(RF)エネルギー、またはブレードなどの機械的切断要素を使用して、周囲組織の血管を分割する(例えば切り離す、または切断する)ように構成されてもよい。本発明は、腹腔鏡手術または直視下手術の際に使用するために、脈管封止具に適用されることがある。
【背景技術】
【0002】
掴持された生体組織に熱エネルギーを送達することができる鉗子が知られている(文献1)。例えば、鉗子のジョーにあるバイポーラ電極構成から、高周波(RF)エネルギーを送達させることが知られている(文献2、3)。RFエネルギーを使うと、脈管壁内の細胞外基質タンパク質(例えばコラーゲン)の熱変性によって、脈管を封止することができる。熱エネルギーにより、掴持された組織を焼灼して、止血を促進させることもある。
【0003】
このようなデバイスは一般に、最小侵襲性外科用腹腔鏡用具の端部での用途を見出すが、例えば婦人科、泌尿器内視鏡科、消化管手術、ENT処置など、他の臨床的処置領域での使用を等しく見出すことができる。使用の状況に応じて、こうしたデバイスは、異なる物理的構造、大きさ、比率、および複雑さを有することがある。
【0004】
例えば、胃腸用器具は、非常に長い可撓性シャフトの端部に取り付けられた、公称で直径3mmのものであり得る。対照的に、腹腔鏡器具は、業界標準の公称直径5mmまたは10mmである、硬質の、または操向可能なスチールシャフトの端部に使用され得る。
【0005】
止血を達成すると同時に体組織を切開することができる低侵襲デバイスの現在の例としては、Covidienによって作られたリガシュア脈管封止技術、およびOlympusのサンダービート(Thunderbeat)プラットフォームが挙げられる。リガシュア(LigaSure)システムは、圧力が加えられる間に電流が送達されて組織を封止するバイポーラ鉗子構成である。サンダービートプラットフォームでは、超音波源を使用して発生させた熱エネルギーと、バイポーラ電気エネルギーとを同時に送達させる。
【0006】
US6,585,735には、鉗子のジョーが、これらの間に保持された組織を通してバイポーラエネルギーを伝導させるように構成された内視鏡用バイポーラ鉗子が記載されている。
【0007】
EP2233098には、組織を封止するための次のようなマイクロ波鉗子が記載されている。このマイクロ波鉗子では、鉗子のジョーの間に掴持された組織にマイクロ波エネルギーを放射するための、1つまたは複数のマイクロ波アンテナが、ジョーの封止面に含まれる。
【0008】
WO2015/097472には、1対または複数対の非共振不平衡な損失性伝送線路構造が1対のジョーの内面に構成された電気外科用鉗子が記載されている。
【発明の概要】
【課題を解決するための手段】
【0009】
最も一般的には、本発明は、少ない熱的余裕で、十分に画定された封止位置をもたらすことが可能である閉じ込めマイクロ波場を使用して、生体脈管を封止することができる脈管封止具を提供するものである。その上、本脈管封止具は、血管の分割を支援するためのブレード、または組織の精細な切断および切開が行われるようにするための別個の切開器要素など、補助的な機能性を提供し得るものである。このような補助機能を用いることで、処置中に必要とされるデバイス交換を減らすことができる。
【0010】
本明細書に開示されている脈管封止具は、いかなる種類の外科処置においても使用され得るが、非侵襲性または低侵襲性の処置に対して、特別の有用性を見出すことが見込まれている。例えば、このデバイスは、腹腔鏡や内視鏡などの外科用スコープデバイスの器具チャネルを通して、治療部位に導入されるように作られることがある。
【0011】
本発明の第1の態様によれば、マイクロ波電磁(EM)エネルギーを伝えるための同軸伝送線路を備える器具シャフトと、器具シャフトからマイクロ波EMエネルギーを受け取るように器具シャフトの遠位端に構成された遠位端組立品であって、1対のジョーであって、その対向する内面の間の間隙を開閉するために互いと相対的に移動できる1対のジョーと、生体組織を切り開くためのブレードとを備えた遠位端組立品とを備える電気外科用脈管封止具が提供され、1対のジョーが、対向する内面の間の間隙にマイクロ波EMエネルギーを放射するように構成されたエネルギー送達構造を備え、エネルギー送達構造が、放射されたマイクロ波場を実質的に1対のジョー間の領域の内側に閉じ込めるように構成され、ブレードが、1対のジョー間の領域を通って移動できるように、遠位端組立品の内部に摺動自在に配されている。この態様では、1対のジョー内のエネルギー送達構造は、ジョー間に把持された生体脈管に局部的な脈管封止を施すように作用し、ブレードが、その封を切り開いて脈管を分割するよう機能する。
【0012】
したがって、使用時に、第1の態様の脈管封止具は、脈管封止および脈管分割を行うことができる。脈管封止とは一般に、生体脈管の壁を合わせて押しつぶすための圧力の印加と、その後に続く何らかの形の熱エネルギーの印加のことである。本発明では、熱エネルギーは、マイクロ波EMエネルギーを用いて、把持された組織を誘電加熱することによって、印加される。印加された電気機械的エネルギーは、組織細胞を破壊し/変性させ、脈管壁内でコラーゲンを主成分とした混合物を形成し、これは脈管壁を互いに効果的に結合する。手術後に経時的に、封を更に補強するように、細胞の回復および再生が起こる。脈管分割は、途切れのない生体脈管を切り開いて、これを2つの部分に分けるプロセスである。このプロセスは通常、最初に脈管を封止した後に行われる。本発明のこの態様では、脈管分割は、ブレードによって行われ、このブレードについて以下で更に詳細に論じる。
【0013】
本明細書では、「近位」および「遠位」という用語は、それぞれ、エネルギー伝達構造の治療部位からより遠く離れた端部、およびエネルギー伝達構造の治療部位に近い端部を指す。したがって使用時には、近位端は、RFエネルギーおよび/またはマイクロ波エネルギーを供給するための発生器に近くなるが、遠位端は、治療部位すなわち患者に近くなる。
【0014】
「伝導性」という用語は、文脈上別段に指示されていない限り、本明細書では、導電性という意味で使われる。
【0015】
以下で使用される用語「長手方向」とは、同軸伝送線路の軸に平行な器具チャネルに沿った方向のことをいう。「横方向」という用語は、長手方向に対して垂直な方向のことをいう。用語「内」は、器具チャネルの中心(例えば軸)に、半径方向に、より近いことを意味する。用語「外」は、器具チャネルの中心(軸)から、半径方向に、より遠いことを意味する。
【0016】
「電気外科用」という用語は、外科手術時に使用され、高周波(RF)電磁(EM)エネルギーおよび/またはマイクロ波EMエネルギーを利用する器具、装置、または用具に対して使用される。本明細書では、RFEMエネルギーは、10kHz~300MHzの範囲の、好ましくは100kHz~5MHzの範囲の、より好ましくは360kHz~440kHzの範囲の安定した固定周波数を意味することがある。マイクロ波EMエネルギーは、300MHz~100GHzの範囲の安定した固定周波数を有する電磁エネルギーを意味することがある。RFEMエネルギーは、エネルギーが神経刺激を引き起こすのを防ぐのに十分な高い周波数を有するべきである。使用時には、RFEMエネルギーの大きさと、これが印加される継続時間とを選択して、エネルギーが、組織白化、または組織構造に不必要な熱的余裕もしくは熱的損傷を来さないようにし得る。RFEMエネルギーの好ましいスポット周波数には、100kHz、250kHz、400kHz、500kHz、1MHz、5MHzのうちの任意の1つまたは複数が含まれる。マイクロ波EMエネルギーの好ましいスポット周波数には、915MHz、2.45GHz、5.8GHz、14.5GHz、24GHzが含まれる。5.8GHzが好ましい場合がある。
【0017】
エネルギー送達構造は、1対のジョーの一方または両方の内面に配されたマイクロ波放射器要素を備え得る。例えば、1対のジョーは、アクティブジョーであって、その内部に取り付けられたエネルギー送達構造を有するアクティブジョーと、マイクロ波EMエネルギー供給を受けないパッシブジョーとを備えることがある。あるいは、1対のジョーの各ジョーは、その内部に取り付けられたそれぞれのエネルギー送達構造を有することがある。この場合は、遠位端組立品は、それぞれのエネルギー送達構造の間で、同軸伝送線路から受け取ったマイクロ波EMエネルギーを分配するための電力分配器を含み得る。更なる例では、エネルギー送達構造は、1対のジョー間に分配された構成要素を有し、その結果、1対のジョーが相まって、マイクロ波放射器要素を提供することができる。
【0018】
マイクロ波放射器要素は、1対のジョーの一方または両方の内面に取り付けられた共平面マイクロストリップアンテナを備え得る。一実施形態では、共平面マイクロストリップアンテナは、アクティブジョーに取り付けられてもよく、対向するジョーは、パッシブジョーであってもよい。パッシブジョーの内面は、間隙で、例えばシリコーンゴムなど、弾力のある変形可能な電気絶縁材料層を構成してもよい。電気絶縁材料層は、ジョーを越えて熱が伝播するのを抑えるために、熱障壁を提供することができる。場合によっては、この変形可能層は、1対のジョーの長手方向に沿って実質的に一定の締め付け力を提供するのに役立ち得る。
【0019】
共平面マイクロストリップアンテナは、平面誘電体基板であって、対向する内面間の間隙に露出した上面と、平面誘電体基板の上面とは反対側の下面とを有する平面誘電体基板を備えることがある。誘電体基板は、好適なセラミックで作られ得る。この誘電体基板は、アクティブジョーに、例えば、接着されるか、または別の方法で固定され、取り付けられてもよい。下面には、接地導体層が設けられ得る。この接地導体層は、例えば銅、銀、金などの金属被覆層であってもよい。誘電体基板の上面には、接地導体層に電気的に接続されている接地伝導性ストリップと、接地伝導性ストリップから離隔されているアクティブ伝導性ストリップとが設けられ得る。接地導体は、同軸伝送線路の外側導体に電気的に接続されていてもよい。アクティブ伝導性ストリップは、同軸伝送線路の内側導体に接続されていてもよい。アクティブ伝導性ストリップと接地伝導性ストリップとが、1対のジョー間の領域の内側で均一の最近接間隔を有するように配置され得る。アクティブ伝導性ストリップと接地伝導性ストリップとの間の最近接間隔は、放射されるマイクロ波場が最も強くなるときの領域である。それに伴って、この場をジョー間の領域の内側に閉じ込めるように、アクティブ伝導性ストリップおよび接地伝導性ストリップの形状を選択することができる。
【0020】
一例では、アクティブ伝導性ストリップは、長手方向に延在する細長いフィンガー電極であり得る。接地伝導性ストリップは、フィンガー電極の側面に位置する1つまたは複数の細長い部分を備える。これにより、最近接間隔は、1対のジョーの内面に沿って、長手方向に延在する細長い部分を構成する。接地伝導性ストリップは、フィンガー電極の両側の側面に位置してもよい。一例では、接地伝導性ストリップは、フィンガー電極の両側の側面に位置し、かつその遠位端を囲むU字形要素であり得る。この例では、場は、主にU字形要素の内側にある領域の中に閉じ込められ得る。
【0021】
接地伝導性ストリップは、誘電体基板に形成されたスルーホールを介して、接地導体層に電気的に接続され得る。
【0022】
マイクロ波放射器要素は、共平面マイクロストリップ構成に限定される必要がない。他の例では、マイクロ波放射器要素は、進行波アンテナ、またはミアンダ型もしくは櫛歯型のマイクロストリップ構成を備えることがある。
【0023】
1対のジョーの対向する内面には、間隙内に生体組織を保持するための表面模様付き部分またはリッジ状部分が含まれ得る。この特徴により、封止接合部分での変性プロセスによって発生したガスまたは蒸気を排出させることもできる。
【0024】
1対のジョーは、同軸伝送線路の長手方向軸に対して横方向に伸びるヒンジ軸の周りを互いと相対的に枢動可能であってもよい。一例では、1対のジョーは、器具シャフトに対して固定された静止ジョーと、静止ジョーと相対的に枢動可能に取り付けられて、対向する内面間の間隙を開閉する可動ジョーとを備える。エネルギー送達構造が、静止ジョーの内面に配されていてもよい。別の例では、両方のジョーは、例えば対称型鉗子構成で、器具シャフトに対して枢動するように構成される。1対のジョーの相対運動は、器具シャフトの近位端にあるハンドルから制御することができる。制御棒または制御線が、器具シャフトを貫通して、ハンドル上の作動機構を1対のジョーに作動可能に結合することができる。
【0025】
別の例では、1対のジョーは、これらの内面を、整列した向き、例えば平行に維持するように、互いに対して移動する構成となっていてもよい。この構成は、掴持された組織への、ジョーの長手方向に沿って均一な圧力を維持するのに、好ましくあり得る。このような閉鎖機構の一例が、WO2015/097472に開示されている。
【0026】
一例では、ブレードは、1対のジョーの近位に位置する引き込み位置と、ブレードが、1対のジョー間の領域の内側に位置する繰り出し位置との間で、ブレードが、長手方向に摺動自在であり得る。ブレードが、組織を把持する配置にあるとき、すなわち少なくとも部分的に閉じられているとき、ブレードが、ブレード間の領域内へ滑るように動くことが好ましい。ブレードは、1対のジョーに、すなわち1対のジョーの各ジョーに形成された長手方向に延在する凹溝に沿って摺動自在であり、その結果、ブレードは、1対のジョーが閉じられたとき、間隙に保持された組織に接触することができる。溝は、切断ブレード用のガイドレールとしての機能を果たすように構成されてもよく、この溝は、1対のジョーが、それらの遠位端に向かって湾曲する場合には、特に有効となり得る。
【0027】
別の例では、ブレードは、1対のジョーのうちの一方の内部に取り付けられることがあり、ブレードが、ジョーの内面の下に位置する引き込み位置と、ブレードが、1対のジョー間の領域の内側に位置する繰り出し位置との間で、ブレードは、横方向に摺動自在であるか、または別の方法で移動することができる。
【0028】
ブレードは、生体組織の薄切りに適した鋭い縁を持つ、例えば外科用メス型のブレードなどの、剛性要素を備え得る。このタイプのブレードは、「コールド」カットを行うように作られている。このブレードは、他のカット技術に伴う二次的な熱損傷の危険性が低いので、好ましい場合がある。しかしながら、本発明は、コールドカットブレードに限定される必要がない。他の例では、ブレードは、バイポーラ高周波切断要素、超音波ソノトロード、および加熱可能ワイヤ要素のいずれか1つを備えることがある。
【0029】
上記のように、脈管封止具は、その主要なマイクロ波による脈管封止機能に加えて、補助機能を有利に提供することができる。例えば、器具シャフトは、高周波(RF)EMエネルギーを伝えるように構成されることがあり、遠位端組立品は、器具シャフトからRFEMエネルギーを受け取るように構成されることがある。この例においては、遠位端組立品は、生体組織を切り開くためのRFEMエネルギーを送達するように構成された切開器要素を更に備えることができ、この切開器要素が、1対のジョー間の領域の外側に位置している。切開器要素の更なる詳細が、第2の態様に関連して以下に開示されており、この詳細についても、この例に、同じように適用できる。
【0030】
第2の態様では、本発明は、切開器要素を備えているが、ブレードを備えていない、上記の脈管封止具を提供する。したがって、第2の態様によれば、マイクロ波電磁(EM)エネルギーおよび高周波(RF)EMエネルギーを伝えるように構成された器具シャフトと、器具シャフトからマイクロ波EMエネルギーおよびRFEMエネルギーを受け取るように器具シャフトの遠位端に構成された遠位端組立品であって、1対のジョーであって、その対向する内面の間の間隙を開閉するために互いと相対的に移動できる1対のジョーと、生体組織を切り開くためのRFEMエネルギーを送達するように構成された切開器要素とを備えた遠位端組立品とを備える電気外科用脈管封止具であって、1対のジョーが、対向する内面の間の間隙にマイクロ波EMエネルギーを放射するように構成されたエネルギー送達構造を備え、エネルギー送達構造が、放射されたマイクロ波場を実質的に1対のジョー間の領域の内側に閉じ込めるように構成され、切開器要素が、1対のジョー間の領域の外側に位置している電気外科用脈管封止具を提供することができる。上記の第1の態様のいかなる特徴も、第2の態様に同じように適用できる。
【0031】
切開器要素は、アクティブ電極およびリターン電極を有するバイポーラRF構造を備え得る。アクティブ電極(切断要素)は、リターン電極に比べて、1桁小さい場合がある。リターン電極は、ドライ領域で使用されるときに、組織と直接接触するように、切開器要素に隣接するジョーの外面に形成されてもよい。したがって切開器要素を、小規模の切断または細かい切断に使用して、例えば、治療部位へのアクセスを向上させるか、または治療部位を切開することができる。
【0032】
切断領域は、1対のジョーから離れて(すなわち、突き出て)位置することがある。例えば、切開器要素は、組織に接触するための前縁を与える突出体を備えてもよい。アクティブ電極が、その前縁に設けられて、例えば、その領域にRF電流密度を確実に集中させることができる。
【0033】
切開器要素は、1対のジョーの外面に取り付けられることがある。例えば、突出体は、1対のジョーの遠位面または側面にあってもよい。突出体は、好適な誘電体で形成され、アクティブ電極は、その上に製作された伝導性部分であってもよい。リターン電極は、突出体に、または1対のジョーの外面にあってもよい。
【0034】
別の例では、切開器要素は、長手方向延長部に取り付けられ、長手方向延長部が、1対のジョーに対して長手方向に移動可能であってもよい。この構成は、これを1対のジョーの前方の治療部位に移動できるようにすることによって、使用時の切開器要素の視認性を補助し得るものである。
【0035】
好ましい例では、切開器要素は、遠位端組立品の遠位端に取り付けられてもよい。
マイクロ波EMエネルギーおよびRFEMエネルギーは、器具シャフトを通る共通信号経路に沿って伝えられ得る。例えば、同軸伝送線路により、マイクロ波EMエネルギーおよびRFEMエネルギーの両方を伝えるための共通信号経路を提供することができる。この構成では、遠位端組立品は、切開器要素からのマイクロ波EMエネルギーを遮断するための誘導性フィルタと、1対のジョーにあるエネルギー送達構造からのRFEMエネルギーを遮断するための容量性フィルタとを備えることがある。もう1つの構成では、RFEMエネルギーおよびマイクロ波EMエネルギーは、器具シャフト内の別々の経路に沿って伝えられ、誘導性フィルタおよび容量性フィルタが、例えばハンドル内の、器具シャフトの近位端に設けられる。
【0036】
上記のように、遠位端組立品および器具シャフトは、外科用スコープデバイスの器具チャネル内に嵌合するように寸法決めされ得る。外科用スコープデバイスは、腹腔鏡または内視鏡であってもよい。外科用スコープデバイスには一般に、侵襲的処置の間に患者の体内に導入される硬質の導管、または可撓性の(例えば操向可能な)導管である挿入管が備わっている。挿入管は、器具チャネルと(例えば挿入管の遠位端にある治療部位を照らし、および/または治療部位の映像を捕捉するための光を伝達するための)光チャネルとを含むことがある。器具チャネルは、侵襲性外科手術用具を受け入れるのに適した直径を有し得る。器具チャネルの直径は、13mm以下、好ましくは10mm以下、より好ましくは、特に可撓性挿入管については、5mm以下であってもよい。
【0037】
上に述べた脈管封止具は、他の生体組織融合技法での適用可能性を見出すことができる。例えば、エネルギー送達構造は、ステープルに代わるものとして使用され得る。一部の腹部手術では、ステープルガンを用いて、70mm以上の長さを有し得るジョー間で、または直径20~50mmの環状のジョー構成から、同時に発射される50~100個の小さなステープルを送達する。この種の用途では、本明細書で論じられる構造などの複数のアンテナ構造を用いて、必要な長さを有効範囲に含めることができる。このアンテナ構造は、好適な仕方で、同時に、順次に、または漸進的に起動されるように、任意の数のアレイ形態で構成されてもよい。
【0038】
以下では、添付の図面を参照して、本発明の実施形態を詳細に説明する。
【図面の簡単な説明】
【0039】
図1】本発明が使用され得る電気外科用装置の概略図を示す。
図2】本発明の実施形態である電気外科用器具の遠位先端組立品の概略斜視図を示す。
図3図2に示す遠位先端組立品の下面の概略斜視図を示す。
図4】本発明の別の実施形態である電気外科用器具の遠位先端組立品の下面の概略斜視図を示す。
図5】閉じた配置にある、図2に示される遠位先端組立品の下面の斜視図を示す。
図6図6Aおよび図6Bは、本発明の実施形態である電気外科用器具に使用できる第1の例の共平面マイクロストリップアンテナの対向する面を示す。
図7図7Aおよび図7Bは、本発明の実施形態である電気外科用器具に使用できる第2の例の共平面マイクロストリップアンテナの対向する面を示す。
図8図8Aおよび図8Bは、本発明の実施形態である電気外科用器具に使用できる第3の例の共平面マイクロストリップアンテナの対向する面を示す。
図9】同軸給電に接続するのに適したアンテナブランクの第1の例を示す。
図10】同軸給電に結合するのに適した第2の例のアンテナブランクを示す。
図11】本発明の別の実施形態である電気外科用器具に使用できる管状進行波エネルギー送達構造の概略斜視図である。
図12図12Aおよび図12Bは、共平面マイクロストリップアンテナの第1の例によって、マイクロ波エネルギーが、どのように生体組織に送達されるかを示す、シミュレーションした電力損失密度プロットである。
図13図13Aおよび図13Bは、共平面マイクロストリップアンテナの第2の例によって、マイクロ波エネルギーが、どのように生体組織に送達されるかを示す、シミュレーションした電力損失密度プロットである。
図14A図12Aに示す配置についてシミュレーションした反射減衰量プロットである。
図14B図12Bに示す配置についてシミュレーションした反射減衰量プロットである。
図15A図13Aに示す配置についてシミュレーションした反射減衰量プロットである。
図15B図13Bに示す配置についてシミュレーションした反射減衰量プロットである。
図16図16Aは、本発明の別の実施形態である電気外科用器具の遠位先端組立品の立体分解図である。図16Bは、図16Aの遠位先端組立品の、組み立てられたときの斜視図である。
図17図17A図17B、および図17Cは、本発明の実施形態である電気外科用器具に使用できる3つの例の共平面マイクロストリップアンテナを示す。
図18】本発明の実施形態である電気外科用器具を操作するために使用できるハンドルの断面図である。
【発明を実施するための形態】
【0040】
本発明の更なる選択例および好適例の詳細な説明
本発明は、マイクロ波エネルギーを送達して、血管を封止することができる電気外科用脈管封止具デバイスに関する。このデバイスは、直視下手術で使用することができるが、治療部位へのアクセスが制限される処置での特別の用途を見出すことができる。例えば、本発明の電気外科用脈管封止具は、外科用スコープデバイス(すなわち、腹腔鏡、内視鏡など)の器具チャネル内に嵌合するように適合させることができる。図1は、本発明の電気外科用脈管封止具が使用され得る電気外科用装置100の概略図を示す。
【0041】
電気外科用装置100は、腹腔鏡などの外科用スコープデバイス102を備える。外科用スコープデバイス102は、患者の体内に挿入するのに適した、硬質の器具シャフト104、または操向可能な器具シャフト104を有する。器具シャフトは、通常少なくとも2つの機能チャネルを送配する。機能チャネルの1つは、光チャネルであり、これは、遠位の処置域が照らされ、撮像されることを可能にする。別の機能チャネルは、器具チャネルであり、これは、外科用器具が遠位の処置域にアクセスできるようにする。この例では、脈管封止器具106の遠位先端組立品が、器具チャネルの遠位先端から突出していることが分かる。
【0042】
電気外科用装置は、電気外科用発生器108を備え得る。この電気外科用発生器108は、例えば、発生器108から、外科用スコープデバイス102および器具チャネルを通って、遠位先端まで延在する電力ケーブル110を介して、脈管封止具器具106に送達すべき電力を生成するとともに、この電力を制御することができる。このような電気外科用発生器としては、例えばWO2012/076844に開示されているものが知られている。電気外科用発生器108は、器具106に送達される電力を選択し、および/または制御するためのユーザインタフェースを有し得る。発生器108は、選択されたエネルギー送達モードを表示するためのディスプレイ112を有し得る。いくつかの例では、発生器は、封止対象の脈管の大きさに基づいて、エネルギー送達モードが選択されるようにすることができる。
【0043】
外科用スコープデバイス102は、従来の仕方で動作させることができる。例えば、外科用スコープデバイス102は、接眼レンズ114や、または遠位先端の映像を提供して、作用点で遠位先端を確認するための他の光学系(例えば、デジタルビデオ結像)を備え得る。器具106の動作は、作動機構116(例えば、はさみ型ハンドル、スライドつまみ、回転式ダイヤル、水準器、トリガなど)によって制御することができる。作動機構116は、例えば器具チャネル内のシャフト104に沿って延在する、1本または複数本の制御線を介して、器具106と操作可能に結合することができる。
【0044】
一例では、作動機構は、器具に供給され得る最大作動力を制限するように構成された作動力制限器を含み得る。最大作動力を制限することは、器具106内の精巧な構成要素への損傷を防止するのに役立つことがあり、組織に加えられる力が、所望の制限内に留まることを確実にすることができる。作動力制限器は、作動機構の一部として、圧縮バネ機構またはラチェット機構を備え得る。いくつかの例では、例えば、作動機構116に伴う最大作動力を調節するダイヤルまたはスイッチを、デバイス102に設けることによって、最大作動力を変えることが望ましい場合がある。
【0045】
本発明の実施形態は、WO2015/097472に開示されている電気外科用鉗子の発展の結果に相当するものであり、具体的には遠位先端組立品の構造および機能性に関する。
【0046】
図2は、本発明の実施形態である電気外科用器具の遠位先端組立品200の概略斜視図を示す。遠位端組立品200は、腹腔鏡または他の外科用スコープデバイスの器具チャネル内に嵌合するように寸法決めされた器具シャフト202に接続されている。器具シャフト202は、以下に述べる通り、遠位端組立品の物理的操作を制御するように構成された様々な制御線または制御棒と共に、マイクロ波電力を遠位端組立品に搬送するための同軸ケーブルを送配する管状の被覆を備える。
【0047】
この例では、遠位端組立品200は、1対のジョー208、210を備える。ジョー208、210は、器具シャフト202の遠位端に取り付けられたカラー204に、動作可能に結合されている。この例では、1対のジョー208、210は、ジョー208、210の対向する内面間の間隙を開閉できるように、カラー204内の横方向に延在するピン206を中心にして枢動的である可動ジョー208を備える。この例においては、可動ジョーは1つのみであるが、他の実施形態では、両方のジョーが、カラー204に対して枢動するように構成されてもよい。カラー204は、両方のジョーが一緒に動かされるときに、ジョーが、横方向に揃えられた状態を保つことを確実にするように、構成されてもよい。
【0048】
図2に示す例では、1対のジョー208、210は、その上面(すなわち、可動ジョー208上の対応する表面に対向する表面)にエネルギー送達構造212を有した静止ジョー210を備える。使用時には、遠位端組立品208が、1対のジョー208、210間で生体組織(および具体的には血管)を掴持することが意図されている。1対のジョー208、210は、対向する表面の間で生体組織に圧力を加えるとともに、エネルギー送達構造212から組織内にエネルギー(好ましくはマイクロ波電磁エネルギー)を送達するように構成されている。
【0049】
この実施形態では、エネルギー送達構造は、静止ジョー210の上のみに存在する。また一方、他の構成では、両方のジョーの上に、または単一の可動ジョーの上のみに、エネルギー送達構造があってもよい。
【0050】
この例では、エネルギー送達構造212は、静止ジョー210の上面に製作された共平面マイクロストリップアンテナを備える。共平面マイクロストリップアンテナは、例えばセラミックなどの非伝導性誘電材料で作られた基板220を備える。誘電体基板220は、その下面に製作された導電層(図2では図示されない)を有する。誘電体基板220は、その上面(すなわち下面とは反対側の面)に、その上の中央に配された長手方向に延在するフィンガー電極214状の第1の導電性領域を有する。U字形の第2の導電性領域216は、露出した誘電体215の間隙が、フィンガー電極214をU字形領域216から分離した状態で、フィンガー電極214の周囲の誘電体基板220の上面に配される。複数のスルーホール218が、U字形領域216および誘電体基板215を貫いて形成(例えば機械加工)されている。スルーホール218は、誘電体基板220の下側の導電層を、U字形の導電性領域216と電気的に接続するように、導体材料で充填されている。フィンガー電極214は、その近位端に導体パッド217を有する。器具シャフト202によって送配される同軸ケーブルの内側導体は、例えば、器具シャフト202から延在して、導体パッド217に物理的に接触することにより、導体パッド217に電気的に結合されている。フィンガー電極214は、共平面マイクロストリップアンテナ用のアクティブ領域を提供する。誘電体基板220の下面の導電層は、器具シャフト202によって送配される同軸ケーブルの外側導体に、電気的に接続されている。スルーホール218を介して伝導性連絡と連結して、U字形の導電性領域210は、共平面マイクロストリップアンテナ用の接地電極を形成する。
【0051】
図2に示す共平面マイクロストリップアンテナの構成は、1対のジョー208、210によって画定された領域内に放射場を閉じ込めるので、特に有利である。後述するように、対向する1対の表面の外側の領域には、エネルギーは、ほとんど送出されない。さらに、U字形導電性領域216が、フィンガー電極214の遠位端の周りに延在するように構成することによって、この共平面マイクロストリップアンテナの構造は、エネルギーが組立品200より遠位の長手方向に漏れるのを防ぐことができる。
【0052】
上述の導電層は、任意の好適な導体材料で作ることができる。銀および金は、これらの高い伝導性および生体適合性のために好ましい。銅を使用することもできるが、生体組織と接触しそうな領域には、銀または金をメッキすることが好ましい。
【0053】
共平面マイクロストリップアンテナ構造は、例えば薄膜堆積技術を用いて、静止ジョー210とは無関係に製作することができる。この共平面マイクロストリップアンテナの構造は、2つの重要な性能上の特長を保証する。第一に、この構造は、把持された脈管の生体組織に印加される照射エネルギーを、器具のジョーが掴持する範囲内で内側に集束させることを保証する。このことは、局部的なエネルギー送達効果をもたらし、印加エネルギーは、組織の所望の領域に効率的に送達されるようになる。
【0054】
さらに、薄膜導電層の使用は、導電線の熱質量が最小であることを意味する。このことは、誘電体基板220によって提供される効果的な熱障壁と相まって、導電線内のあらゆる余熱が、急速に消散することを意味する。共平面マイクロストリップアンテナの対面に、同様に熱障壁として作用する層を設けることによって、効果を更に高めることができる。図2に示す実施形態では、可動ジョー208は、その内面に形成された、弾性的に変形可能な材料の層222を有する。この層222は、処置中に生じる温度に耐えることができ、生体適合性のあるシリコーンゴムまたは他のコンプライアントポリマー材料から形成することができる。これらの材料は、例えばエラストマー熱可塑性ポリマーから製作されてもよい。この層は両方とも、把持された生体組織への効率的なエネルギー送達を支援するばかりでなく、ジョー内に生体組織を保持することも助長する。
【0055】
代替的または追加的に、共平面マイクロストリップアンテナ自体の表面にコーティングを施すことができる。これは、例えば、組織の粘着を最小限に抑えるために、導電性領域のみに施されるコーティングであってもよい。マイクロ波エネルギーを送達するように構成された実施形態では、ジョーの内面が、必ずしも組織と多くの直接的な導電性接触をする必要はない。したがって、コーティングは、例えばアンテナの全表面にわたって塗布される、薄い高温ポリマー材料であってもよい。特定の材料を、マイクロ波エネルギーに対して、高い損失を示し、透明に見えるように選択することができる。
【0056】
コーティングは、ジョーの形状に適合させてもよい。コーティングは、プリント回路基板上の保護コーティングとして使用されるものと同様の、シリコーン系の不動態化材料を含んでもよい。他の例としては、ポリイミド、PTFE、またはFEPといった種類の材料が挙げられる。
【0057】
図2に示すように、層222は、その中に形作られた複数のリッジを有する。これによって、リッジが、生体組織と接触するための表面模様付き面または歯付き面を提供する。同様のリッジ状グリップまたは表面模様付きグリップを、共平面マイクロストリップアンテナの周辺部に設けてもよい。上記のように、これらの表面模様付き面は、脈管封止操作中のガスの放出を支援し得る。
【0058】
共平面マイクロストリップアンテナは、生体脈管を受け入れて封止するのに適したサイズを有する。例えば、共平面マイクロストリップアンテナは、2mm~5mmの幅(すなわち、同軸ケーブルの軸に対して横方向に延在する寸法)、および15mm~26mmの(デバイスの軸に沿った)長さを有する有効処置範囲を提供するように構成されてもよい。
【0059】
1対のジョーは、作動機構116によって加えられる閉鎖力に関係なく、ジョーが最小距離だけ離れたままであることを確保するスタンドオフ(図示せず)を含み得る。スタンドオフは、向かい合うジョーの内面と係合する、一方または両方のジョーの上の物理的突起であってもよい。
【0060】
ジョーによってそれらの間に保持された組織に加えられる圧力は、ジョーの内面に沿って、長手方向に均一であることが望ましい。図2に示す構造の発展形では、可動ジョー208は、その内面に、ジョー208の遠位端に位置する枢動点の周りで、関節動作させてジョー208内に後退させることができる係合プレートを備え得る。弾性的に変形可能な支持要素が、係合プレートを外側に付勢するように、係合プレートの後ろでジョー208内に取り付けられてもよい。この構成では、ジョー間の領域の組織は、静止ジョーの内面と可動ジョーの係合プレートとの間に掴持される。ジョーが閉じられるときに、ジョーの間に加えられる圧力は、ジョーの枢動動作と係合プレートの関節動作との組合せによって生じる。枢動点の位置と、弾性的に変形可能な支持要素の特性とは、枢動部から離れる方向にジョーに沿って機械的利点の変化を生じさせる、加えられる力の不均一性が、係合プレートの枢動可能な関節動作から生じる、協働する不均一性によって均衡するように、選択することができる。
【0061】
図2に関して説明したエネルギー送達構造212は、共平面マイクロストリップアンテナである。このアンテナの構成は、図2に示される構成か、または以下で図6A図6B図7A図7B図8A、および図8Bのいずれかを参照して説明される構成であり得る。また一方、別のマイクロ波放射器構造を使用することができる。例えば、静止ジョー210の上面には、例えばミアンダ型または櫛歯型のマイクロストリップ線路など、他のマイクロストリップをベースにしたエネルギー送達構成が備わっていてもよい。別の実施形態では、エネルギー送達構造は、以下に図11を参照して説明される進行波アンテナなどであり得る。
【0062】
脈管封止の機能に加えて、本発明の電気外科用器具は、例えば、血管の封止部分を切り開いて分離するための脈管分割機として機能することもできる。そこで、脈管封止具には、1対のジョー208、210に対して摺動自在に取り付けられて、ジョー間に保持される生体組織を切り開くブレード226が設けられ得る。
【0063】
図2では、ブレード226は、鋼または他の硬質材料で作られた鋭利な外科用メス型構造である。明確にするために、図2では、ブレードは、開いたジョーの間の領域内に突出するように示されている。しかしながら、実際には、ジョーが閉じられてマイクロ波エネルギーが印加されるまでは、器具が、ブレードの前方への移動を防止することが望ましい。
【0064】
図2に示す実施形態では、ブレード226は、例えばデバイスの軸に沿った長手方向に移動可能である。ジョー208、210の対向面は、ブレードが移動するときにブレードを受け入れるための、それぞれ凹部または案内溝228、224を含む。静止ジョー210内の案内溝224は、ブレードが、印加された場の中心を通って移動するように、フィンガー電極214内に形成される。
【0065】
他の実施形態では、ブレードは、一方のジョー内に取り付けられ、長手方向に対して横方向に移動するように、すなわち、対向する表面の一方から、把持された組織へと延在するように、構成されてもよい。ブレードの鋭利な縁は、脈管を把持して封止する動作の間、対向面の下に位置し得る。
【0066】
ブレードが、「コールド」カットを提供することが好ましく、理由は、この機能性が、良好な患者の転帰と関係があるためである。これは主に、二次的損傷、すなわち、周囲組織への熱損傷の危険性または発生が、コールドカットが使用される場合には遥かに少ないからである。また一方、切断機能は、例えば、高周波(RF)モノポーラエネルギー送達構造もしくはRFバイポーラエネルギー送達構造、または超音波切断機構といった、他の手段によっても提供され得る。例えば、RF切断ブレードまたは超音波システムのいずれかのために、器具シャフトに沿って補助電力を届けるための構成が、以下で論じられる。
【0067】
遠位端組立品は、脈管封止とは別の機能を果たすように構成されてもよい。例えば、遠位端組立品は、その遠位先端に取り付けられた補助高周波(RF)切断ブレードを有してもよい。図2に示す例では、RF切開器要素230が、静止ジョー210の遠位端に取り付けられている。RF切開器要素230は、突出体上に取り付けられたアクティブ電極と、突出体の近くで静止ジョー210上に製作されるか、または静止ジョー210と一体化され得るリターン電極とを備えるバイポーラ構造である。
【0068】
図3は、遠位端組立品200の下面を示し、ここでRF切開器要素230を、更に詳細に理解することができる。RF切開器要素230は、精細な無血の組織切断および組織切開に使用することができる。図2および図3に示す構成では、RF切開器要素230は、静止ジョー210の遠位端から突き出て位置する前縁を与える。この位置では、側方切開および末端切開の両方を行うことができる。ドライ領域処置のシナリオでは(すなわち、食塩水または他の導電性流体が存在しない場合)、リターン電極が、RF切開器要素230上にあるアクティブ電極に、ごく接近していることが望ましい。電極領域と接触する露出した組織の比率はまた、RF切開器要素230の前縁に、最大電流密度を生じさせる望ましい仕方で電流が流れることを、確実にするために、重要である。
【0069】
RF切開器要素230は、図2および図3では静止ジョーの遠位端に示されているが、これを、遠位端組立品上で、様々な向きまたは場所(例えば、垂直に、水平に、斜めに、片側に、そして両方のジョーに)に取り付けることができる。
【0070】
遠位先端組立品は、ジョーのうちの1つに取り付けられて、デバイスの遠位端で細かい治療作業を行えるようにする他のエネルギー送達要素を備えることができる。例えば、ジョーは、精細なマイクロ波止血を可能にするための小型マイクロ波アンテナや、あるいは切断を行うために超音波エネルギーを送達するための小型超音波ソノトロードを含んでもよい。これらの補助要素は、器具シャフト202に対して長手方向に伸縮することができる個別に摺動可能な部材に、取り付けることができる。この部材は、遠位端組立品200の残りの部分とは無関係に、外科用スコープデバイスの視野内に伸ばすことができるので、補助デバイスを使用して、微細治療の視認性を向上させるのに役立つことができる。一実施形態では、個別に摺動可能な部材は、静止ジョー210であってもよく、静止ジョー210は、これが長手方向に摺動できるようにするために、カラー204から外してもよい。静止ジョーは、その通常のヒンジで連結された位置から離れて、近位方向に引き込み可能であってもよく、またはその通常のヒンジ位置から離れて、遠位方向に伸長可能であってもよい。後者のシナリオでは、RF微細切開端または他の補助機能は、それを最遠位位置に動かし得るように、静的ジョーの上に位置させることができる。前者のシナリオでは、静止ジョーが引っ込められたときに、RF微細切開端または他の補助機能が、良好な視認性を有する最遠位位置を占めるように、これらを対向するジョーに位置させることができる。
【0071】
1対のジョーは、任意の好適な形状を有してもよい。例えば、ジョーは、これらの長手方向に沿って、遠位先端に向かって先細になっていてもよく、または任意の特定の治療シナリオのために、必要に応じて曲がっているか、もしくはかぎ型であってもよい。
【0072】
ジョー208、210の開閉は、外科用スコープデバイスの外部ハンドル、すなわち器具シャフト202の近位端で、ユーザによって操作可能な作動機構によって制御することができる。この作動機構には、ジョー間に捕捉された生体組織に加えられる圧力の量に基づいて、ユーザが、1対のジョーの閉鎖を制御できるように構成されている圧力制御装置が含まれ得る。一例では、ユーザは、ジョーの所望の(例えば最大の)閉鎖圧力を選択することができ、作動機構は、所望の圧力に達すると、ジョーが互いの方へ向かう更なる移動を阻止するように構成され得る。
【0073】
上記のように、いくつかの実施形態では、両方のジョーが、器具シャフト内の同軸ケーブルに電気的に接続されているという意味では、両方のジョーがアクティブであり得る。一例では、1対のジョーは、単一マイクロ波エネルギー送達デバイスの異なる要素を備える。例えば、ジョーの一方が、接地電極を備えてもよく、他方が、アンテナ構造用のアクティブ電極を備えてもよい。別の例では、各ジョーは、例えば上記の共平面マイクロストリップアンテナに相当する、各ジョー自体の個別のマイクロ波エネルギー送達構造を含み得る。
【0074】
両方のジョーが作動している場合は、同軸伝送線路の遠位端(例えば器具シャフトの遠位端、またはカラー204内)に、マイクロ波電力分割器またはマイクロ波電力分配器を設けることによって、両方のジョーは、器具シャフト内の共通の同軸伝送線路から給電することができる。マイクロ波電力分配器は、任意の既知の仕方で実装することができる。例えば、電力分配器は、ウィルキンソン電力分配器として、2段の1/4波長(またはその奇数倍)インピーダンス変換器として、または半波長バラン構成として実装することができ、この場合、同軸線路の遠位端は、第1のジョーに入力される不平衡給電を形成し、第2のジョーは、その給電点から電気波長の半分離れた点より、給電される。あるいは、電力分配器は、可撓性基板材料を使用して製作される半電気波長インピーダンス変成器として実装されてもよく、この電力分配器は、曲がることができて、一方または両方のジョーを動かすことを可能にする。
【0075】
遠位端組立品がまた、RFエネルギーを送出するための補助デバイスを含む構成では、器具は、共通のエネルギー送達経路(これは、器具シャフト内の同軸伝送線路であってもよい)伝いに、補助デバイス用のRFエネルギーと、ジョーから送出するマイクロ波エネルギーとを受け取るように構成されることがある。一例では、RFエネルギーは、400kHzで送出することができ、一方マイクロ波エネルギーは、5.8GHzで送出することができる。マイクロ波エネルギーが、補助デバイスに入らないようにするために、誘導性遮断素子または誘導性フィルタリング素子を、遠位端組立品内に取り付けることができる。誘導性遮断器は、寄生効果の使用によって、RFエネルギーが通過することを可能にするが、マイクロ波エネルギーは遮断する巻線型インダクタであり得る。あるいは、誘導性遮断器は、同軸ケーブルと補助RFデバイスとの間の伝送線路に沿って、半波長間隔で配置した1つまたは複数の1/4波長開放スタブによって提供されてもよい。RFエネルギーが、ジョー内のマイクロ波エネルギー送達構造に入るのを防ぐために、容量性遮断要素またはフィルタ要素を、同軸ケーブルとマイクロ波エネルギー送達構造との間に取り付けることができる。容量性フィルタ要素は、マイクロ波周波数で動作する平行板コンデンサか、またはRFエネルギーの流れを遮断するように、絶縁誘電体が、導電経路を遮断する導波管キャビティもしくは結合マイクロストリップ線路であり得る。
【0076】
同様の遮断器またはフィルタを発生器で使用して、RFエネルギーがマイクロ波源に入るのを防ぎ、マイクロ波エネルギーがRF源に入るのを防ぐことができる。例えば、マイクロ波エネルギーが、RF源に放射されるのを防ぐために、1つまたは複数のチョークを設けてもよい。
【0077】
上記の例では、RFエネルギーおよびマイクロ波エネルギーは、共通の同軸伝送線路によって、器具シャフト伝いに搬送される。他の例では、RFエネルギーとマイクロ波エネルギーとの分離は、これらが器具シャフト内に届けられる前に起こってもよい。この構成では、RFエネルギーおよびマイクロ波エネルギーに対して、それぞれ別々のエネルギー伝達構造が設けられている。例えば、RFエネルギーは、ツイストペア線、または平行に取り付けられた2つの絶縁線組立品によって伝えられ得る一方で、マイクロ波エネルギーは、好適な同軸伝送線路によって搬送される。他の種類の補助デバイス(例えば、超音波ブレードなど)のための電力(例えば、DC電源)も、同じようにして送り届けることができる。
【0078】
上述の脈管封止具を使用して処理されたサンプルの初期の組織学的分析は、特に、他の形態の電気外科用脈管封止具または超音波脈管封止具の組織学的結果と比較した場合、非常に有望な結果を示す。具体的には、上述のマイクロ波エネルギー送達構成は、サンプル内の細胞破壊でさえも顕在化させる局部的で、かつ制御可能なエネルギー送達を提供し、これにより、十分に画定された封止位置と、重要なことには、封止部を越えた熱の伝播が非常に制限されるということとがもたらされる。換言すれば、デバイスの熱的余裕、すなわち、把持された領域の外側で生じる組織の白化の量は小さい。共平面マイクロストリップアンテナに伴う場の形状と電力損失密度とは、以下で更に詳細に論じられる。
【0079】
図5は、ジョー208、210が閉じているときの遠位端組立品の下面図を示す。これは、器具を腹腔鏡の器具チャンネルに導入することができる構成である。
【0080】
図6Aおよび図6Bは、本発明の実施形態で、エネルギー送達構造212として使用することができる共平面マイクロストリップアンテナの第1の例を更に詳細に示す。共平面マイクロストリップアンテナは、次のような誘電体基板220を備え、すなわち、この誘電体基板220は、その下面(図6B参照)に導電性接地層236を有し、その上面に1対の導体線214、216を有する。接地層236および導体線214、216は、例えば、金属被覆、薄膜堆積、パターニング(エッチング)など、任意の好適な技術を用いて、基板上に形成することができる。
【0081】
上記のように、この例における1対の導電線214、216は、次のようなフィンガー電極214を備える。すなわち、このフィンガー電極214は、それ自体の長手方向伝いと、その遠位端の周りとが、U字形の導電性領域216によって囲まれている。U字形の導電性領域216は、導体材料で充填されて電気的接続を提供するスルーホール218、238を介して、接地層236に電気的に接続されている。フィンガー電極214とU字形導電性領域216とは、使用時にマイクロ波場が、その間に集中する間隙215によって、隔てられている。接地導体236は、同軸給電線の外側導体と電気的に連絡しているのに対して、フィンガー電極214は、同軸給電線の内側導体に電気的に接続している。
【0082】
図7Aおよび図7Bは、本例で使用することができる共平面マイクロストリップアンテナ240の第2の例を示す。図6Aおよび図6Bに示される例と同様に、アンテナ240は、誘電体基板242を備え、この誘電体基板242は、その上に、例えば、金属化、または別の技法で施された導電層250を有した下面を有する。誘電体基板242の上面(図7Aに示す)は、アンテナが取り付けられるジョーの長手方向に、互いに平行に延在する1対の細長い導電性要素を備える。導電性要素は、間隙245によって分離されている接地導体フィンガー244およびアクティブ導体246を備える。接地導体フィンガー244は、誘電体基板242を貫いて機械加工され、導体材料で充填されて必要な接続を提供するスルーホール248、252を介して、接地導体層250と電気的に連絡している。図6Aおよび図6Bに示す構成と同様に、接地導体層250は、同軸給電線の外側導体に電気的に接続され得、一方、アクティブ導体フィンガー246は、同軸給電線の内側導体に電気的に接続され得る。
【0083】
図8Aおよび図8Bは、本発明で使用することができる共平面マイクロストリップアンテナ260の第3の例を示す。共平面マイクロストリップアンテナは、その下面に接地導体層270を有した誘電体基板262を備える。誘電体基板262の上面には、3つの導電性要素がある。この実施形態では、導電性要素は、両側に接地導体ストリップ264がある中央アクティブフィンガー電極266を備える。接地導体ストリップ264およびフィンガー電極266は、デバイスの長手方向に延在する細長い要素である。アクティブフィンガー電極266は、使用時にマイクロ波場が、その間に延在する間隙265によって、各接地導体ストリップ264から隔てられている。接地導体ストリップ264は、複数のスルーホール268、272を介して、接地導体層270に電気的に接続されている。これらのスルーホール268、272は、必要な接続を提供するために、導体材料で充填されている。
【0084】
上記の例では、誘電体基板の上面にある電極は、使用持に組織と接触することになり、したがってこれは、銀または金などの生体適合性導体材料で作られている。対照的に、誘電体基板の下側の接地導体層は、組織と接触しないので、銅などの別の材料で作られてもよい。
【0085】
図9は、本発明に用いることができる共平面マイクロストリップアンテナの他の例を示す。この場合、アンテナ構造は、1つまたは複数のブロックの誘電材料を、機械加工することによって、製作することができる。図9に示す構造は、同軸ケーブルに直接取り付けられるように構成されたアンテナブランクである。アンテナブランク280は、中央誘電体ブロック282を備え、中央誘電体ブロック282は、その下面に製作された接地導体層284と、その上面に製作されたU字形導電性領域286とを有する。接地導電層284は、U字形導電性領域286に電気的に接続されている。誘電体ブロック282には、ブランクをジョー構造内に取り付けることを助長し、接地導体層284を絶縁する2つの側面誘電体ブロック290が両側にある。誘電体ブロック282の上面には、同軸給電線(図示せず)の内側導体の露出部分を受け入れるために、溝288が製作されている。この溝は、間隙287によって、U字形導電性領域286から分離されている。アンテナは、アンテナブランク280の近位端面上に、内側導体の露出部分を持つ同軸給電線を取り付けることによって、形成されている。導体の露出した長さは、溝288内にあり、接地導電層284は、同軸給電線の外側導体に、電気的に接続されている。
【0086】
図10は、同軸給電線と連結して使用して、本発明に用いることが可能な共平面マイクロストリップアンテナを形成し得るアンテナブランク300の別の例を示す。アンテナブランク300は、その下面に接地導体層304を有した誘電体基板302を備える。誘電体基板302の上面には、例えば、誘電体基板302の本体を貫いて、接地導体層304に電気的に接続された、細長い接地導体ストリップ306がある。接地導体ストリップ306に沿って平行に、同軸給電の露出した内側導体を受け入れるための溝308が位置している。接地導体ストリップ306と溝308とは、使用時にマイクロ波EM場が、その間を伝播する間隙307によって、隔てられている。図9と同様に、アンテナブランク300を使用して、ある長さの露出した内側導体を有した同軸給電にアンテナブランク300を接続することによって、共平面マイクロストリップアンテナを形成することができる。露出した内側導体は、溝308内に収容され、一方、同軸給電の外側導体は、接地導体層304に電気的に接続される。
【0087】
上記の説明は、本発明のマイクロ波エネルギー送達機構として、共平面マイクロストリップアンテナを、どのように使用できるかについての多くの例を提供する。また一方、他のマイクロ波エネルギー送達構造を使用することができる。図11は、本発明の実施形態による脈管封止具のジョー内に取り付けることができる進行波アンテナ構造310の一例を示す。進行波構造310は、同軸ケーブルの遠位長を保持するためのハウジングを備える。ハウジングは、同軸ケーブルを挿入することができる近位カラー312と、細長い支持基部314と、同軸ケーブルの遠位端のための端部止めとして機能する遠位キャップ316とを備える。アンテナ構造自体は、誘電材料318によって囲まれた内側導体320と、外側導体322とを備える。外側導体322内には、誘電材料を露出させるために、複数の窓324が形成されている。窓は、同軸ケーブル自体の外側導体内に形成されてもよく、またはハウジング内に別個の導電性接地管を設けることができ、外側導体が除去された遠位端部分を有する同軸ケーブルをその中に挿入することができる。図11では、外側導体322は、閉じた遠位端を有する深絞り管を備える。窓は、誘電材料318に取り付けられる前に、管に切り込まれたスロットである。ハウジング312およびキャップ316は、一体に製作され、アンテナを一直線に堅く保持することによってアンテナを支持する補強部材を形成し得る。
【0088】
外側導体322上の窓324の形状および位置は、放射されるエネルギーを増進させるように配置されている。窓のサイズは、エネルギーが、長手方向軸に垂直に指向的な仕方で、かつアンテナの長手方向に沿って均一に送出されるように、デバイスの長手方向に沿って変化させる。
【0089】
図12Aおよび図12Bはそれぞれ、共平面マイクロストリップアンテナの第1の例によって、マイクロ波エネルギーが、どのように生体組織に送達されるかを実証する模擬電力損失密度プロットを示す。図13Aおよび図13Bは、共平面マイクロストリップアンテナの第2の例について、同じ情報を示す。各プロットは、アンテナが製作されているジョーの表面にクランプされた血管をシミュレートし、血管は、名目上、アンテナの方向に対して直角になっている。各構成について、加熱電力を2つの血管幅について計算した。すなわち、8mm(図12Aおよび図13A)および16mm(図12Bおよび図13B)である。これらは平らにされたときの幅であり、これは直径約5mmおよび10mmの血管に対応する。いずれの場合にも、血管の中心はアンテナに沿って同じ距離である。
【0090】
図12Aおよび図12Bでは、共平面マイクロストリップアンテナは、図6Aおよび図6Bを参照して上に述べたものと同様の構成を有し、接地電極は、細長いアクティブ電極の遠位端の周りにU字形を形成する。
【0091】
図13Aおよび図13Bでは、共平面マイクロストリップアンテナは、図7Aおよび図7Bを参照して上に述べたものと同様の構成を有し、接地電極およびアクティブ電極は、ジョー表面の長手方向に沿って、長手方向と平行に位置している。
【0092】
各プロットは、5.8GHzの周波数、および0.5Wの入力電力を有するマイクロ波エネルギーが、同軸アンテナ給電から印加されるときに、組織に吸収される電力をシミュレートする。対数濃淡スケールを使用して、高出力密度領域および低出力密度領域の両方の形状を示す。
【0093】
図12A図12B図13A、および図13Bの全てにおいては、送達される電力が、アンテナの幅に対応する領域402内に、十分に制約されていることが分かる。この領域以外には、ほとんど電力は送達されていない。領域402内には、約95dB(mW/m)の電力密度を有する1対の側部ストリップによって囲まれた、約105dB(mW/m)の電力密度を有する中央ストリップがある。中央ストリップには、高電力密度の、すなわち約115dB(mW/m)の小領域404、406がある。単位dB(mW/m)は、対数目盛に対応し、立方メートルあたり1mWを超える電力密度をデシベル単位で表示する。これらの電力密度およびこれらの換算値を、表1に代替の単位で表す。
【0094】
【表1】
【0095】
最後の列は、立方センチメートル当たりのカロリーで吸収される電力を示している。カロリーは、1グラムの水の温度を1ケルビン上げるために必要な熱として定義される。この処置に有効な精度では、組織の1立方センチメートルの熱容量は1グラムの水の熱容量に近いので、cal/cmで表した熱吸収は、1秒あたりの度単位で表した直接の温度上昇速度に近い。
【0096】
加熱密度の最高値は、1Wの入力電力では、151K/sの温度上昇速度に相当する。しかし、これには0.65W/mmの熱出力密度を必要とするため、ごくわずかな体積にわたってのみで可能である。この熱出力密度は、利用可能な全電力の65%が、1立方ミリメートル以内に集束されることを必要とする。
【0097】
熱容量、熱伝導、および潅流の複合効果は、この温度上昇速度が、電源が投入された瞬間を除いて、実際には起こらないことを意味する。実際には、約1立方ミリメートルの組織体積の場合、加熱(すなわち温度上昇速度)は、1秒後に初期速度の1/2であり、2秒後に1/3である。半径が約0.25mmの体積の場合、加熱は、1秒後に初期速度の1/6.5であり、2秒後に1/12である。
【0098】
図12A図12B図13A、および図13Bに示されるプロットでは、最も高い電力密度の領域は非常に小さい。これらの領域では、初期温度上昇速度は、時間とともに急速に減少する。有意な期間の温度上昇は、幅数ミリメートルの領域にわたる平均電力密度を用いて推定する必要がある。この平均電力密度は、「ホット」端での15.1cal/cm/Wと、「コールド」端での1.51cal/cm/Wとの間にあると推定できる。これは、1Wの入力電力に対して15K/sから1.5K/sの間、25Wの入力電力に対して375K/sから37.5K/sの間の加熱速度に対応する。
【0099】
この速度で温度が継続的に上昇することはない。開始温度は約35℃である。組織を変性させるためには45℃から60℃の間で余分な電力が必要であり、そのために上昇速度がわずかに遅くなる。その結果、65℃になると予想される時期に60℃に達し、組織が100℃に達すると、水蒸気の発生によって、しばらくの間温度上昇が止まり、600℃を超えると予想される時期に100℃を超える。
【0100】
これを以下の表にまとめる。
【0101】
【表2】
【0102】
【表3】
【0103】
最も熱い場所からの熱い水蒸気の発生および拡散は、デバイス全体の入力電力と温度差の一部を一様にするのに役立つ。
【0104】
デバイス全体の電力密度の変動は、多くの要因による。横方向の変動は、マイクロ波電力が電極間のスロットの横で、特にスロットの縁で最も強く、電極の表面にわたっては遥かに低いということからである。図12Aおよび図12Bに示される構成では、中心電極の両側のスロットの横での加熱は同じであるが、図13Aおよび図13Bに示される構成では、加熱は、2つの電極間の間隙においてより強く、アクティブ電極(すなわち、スルーホールのない導電層)の他方の側においてより小さいことが予測される。
【0105】
長手方向の変動は、組織片の長さと相まった加熱の効率と、組織の遠位端での電力の反射という2つの要因によるものである。伝送線路は均質であるため、任意の長さにわたって組織に結合される線路内の電力の割合は一定である。線路に残っている電力は、電力が組織に入ったために、エネルギーが給電点から離れるにつれて低下する。結合された電力は、残っている立ち下がり電力の一定の割合であるため、加熱は給電点から用具へと遠ざかるにつれて減少する。
【0106】
これに加えて、組織の端部には常にある程度の電力が残っている。組織の端部からの反射が存在し、この反射が、端部からの短い距離の加熱を強化する。これにより、遠端から離れたところで加熱がわずかに低下する。端部での加熱に対する比例的な変化は、サンプルの長さには依存しないので、対数表示では、輪郭の形状は、異なったアンテナ構成に対しても、異なった組織長に対しても、同様である。
【0107】
図14A図14B図15A、および図15Bは、それぞれ図12A図12B図13A、および図13Bに示すアンテナ構成のDCから10GHzまでの反射減衰量を示すチャートである。反射減衰量は、dBで表される。ここで、0dBは、すべての信号が反射される(0%効率)ことを意味し、-20dBは、1%が反射される(99%効率)ことを意味する。
【0108】
次の表は、いくつかの反射減衰量値に対する効率と、加熱のdB損失とを示している。
【0109】
【表4】
【0110】
表から分かるように、-6dBの反射減衰量があっても、アンテナは、利用可能な電力の75%をまだ使用しており、加熱電力の減少はわずか-1.3dBである。しかし、-10dB以上の反射減衰量が好ましく、90%を超える効率と、-0.5dBよりも劣らない加熱電力損失とを伴う。
【0111】
図14A図14B図15A、および図15Bは、幅8mmの血管を用いる反射減衰量を示している。シミュレーションをまた行って、幅16mmの血管を用いる反射減衰量を計算した。いずれの場合も、5.8GHzでの反射減衰量は、8mm幅の血管に比べると、16mm幅の血管の方が良好であった。したがって、アンテナは、更に幅広い血管に対して、より効率的になるように設計されている。より狭い血管に対する効率は、-3dBを決して下回ることがなく、その結果、試験された例では、電力の損失は、常に、少なくとも、加熱される組織の体積の減少と一致し、したがって、より狭い血管に対する封止時間は、より広い血管に対する封止時間と同じか、またはより速くなければならない。
【0112】
図16Aは、本発明の別の実施形態である電気外科用発明の遠位先端組立品500の立体分解図である。遠位端組立品500は、腹腔鏡または他の外科用スコープデバイスの器具チャネル内に嵌合するように寸法決めされた器具シャフト502に接続されている。
【0113】
この例では、遠位端組立品500は、1対のジョー508、510を備える。ジョー508、510は、器具シャフト502の遠位端に取り付けられたカラー504に、動作可能に結合されている。この例では、1対のジョー508、510は、ジョー508、510の対向する内面間の間隙を開閉できるように、カラー504内の横方向に延在するピン(図示せず)を中心にして枢動的である可動ジョー508を備える。他方のジョーは、その上面(すなわち、可動ジョー508上の対応する表面に対向する表面)にエネルギー送達構造512を有した静止ジョー510である。カラー504は、両方のジョーが一緒に動かされるときに、ジョーが、横方向に揃えられた状態を保つことを確実にするように、構成されてもよい。
【0114】
使用時には、遠位端組立品500が、1対のジョー508、510間で生体組織(および具体的には血管)を掴持することが意図されている。1対のジョー508、510は、対向する表面の間で生体組織に圧力を加えるとともに、エネルギー送達構造512から組織内にエネルギー(好ましくはマイクロ波電磁エネルギー)を送達するように構成されている。
【0115】
この例では、エネルギー送達構造512は、静止ジョー510の上面に取り付けられた共平面マイクロストリップアンテナを備える。共平面マイクロストリップアンテナは、例えばセラミックなどの非伝導性誘電材料で作られた基板520を備える。誘電体基板520は、その下面に製作された導電層を有する。誘電体基板520は、その上面(すなわち下面とは反対側の面)に、その上の中央に配された長手方向に延在するフィンガー電極514状の第1の導電性領域を有する。U字形の第2の導電性領域516は、露出した誘電体515の間隙が、フィンガー電極514をU字形領域516から分離した状態で、フィンガー電極514の周囲の誘電体基板520の上面に配される。複数のスルーホール518が、U字形領域516および誘電体基板520を貫いて形成(例えば機械加工)されている。スルーホール518は、誘電体基板520の下側の導電層を、U字形の導電性領域516と電気的に接続するように、導体材料で充填されている。フィンガー電極514は、その近位端に導体パッド517を有する。器具シャフト502によって送配される同軸ケーブルの内側導体は、例えば、器具シャフト502から延在して、導体パッド517に物理的に接触することにより、導体パッド517に電気的に結合することができる。したがって、フィンガー電極514は、共平面マイクロストリップアンテナ用のアクティブ領域を提供する。誘電体基板520の下面の導電層は、器具シャフト502によって送配される同軸ケーブルの外側導体に、電気的に接続されている。スルーホール518を介して伝導性連絡と連結して、U字形の導電性領域516は、共平面マイクロストリップアンテナ用の接地電極を形成する。
【0116】
静止ジョー510は、遠位先端組立品用に構造的支持を提供するために、剛性材料で形成された本体を備え得る。例えば、本体は、ステンレス鋼などの金属で形成されてもよい。基板520と静止ジョー510との間に、バリア層522が取り付けられている。バリア層522は、熱的および電気的な絶縁材料(例えば、PEEKなど)で作られている。バリアには2つの機能がある。第1に、バリアは、例えば、静止ジョーへのマイクロ波エネルギーの漏洩を抑制または防止するために、アンテナを静止ジョー510の本体から隔離する。第2に、バリアは、アンテナから静止ジョーの本体への熱伝導を抑制または防止するための熱障壁を提供する。これらの機能を組み合わせることで、アンテナから送信される利用可能なマイクロ波エネルギーを、必要な場所に確実に集束させることを確実にする。これは、制御の改善、熱的余裕の減少、装置効率の改善、および熱エネルギーの漏洩によって引き起こされる付随的な組織損傷の危険性の減少の点で、利点を提供する。
【0117】
この例では、可動ジョー508は、剛性材料(例えば、ステンレス鋼などの金属)で作られた本体を備える。本体内には、後部ヒンジプレート524が取り付けられている。後部ヒンジプレート524は、例えば、可動ジョー508内に取り付けられているピン526の上で、可動ジョーの遠位端に枢動可能に接続されている。後部ヒンジプレート524は、可動ジョー508の本体によって形成された凹部内に枢動するように、構成されている。
【0118】
後部ヒンジプレート524の後面には、弾性的に変形可能なクッション要素528が取り付けられていて、後部ヒンジプレート524が凹部内に枢動するときに、可動ジョー508の内面と係合する。弾性的に変形可能なクッション要素528は、シリコーンゴムなどから形成することができる。クッション要素528は、1対のジョーが脈管または組織束の周りで閉じられるときに、荷重下で圧縮可能なバネとして機能する。このように負荷をかけると、クッション要素528は、ジョーが閉じられるときにジョー間の傾斜角を減少させ、それによってジョーが互いにクランプされるときに、早期にジョーの整列および平行度を改善するのに役立つ。これにより、クランプされた脈管全体にわたる圧力分布の均一性が向上し、安定性が向上する(例えば、滑りやすい脈管または組織束が、ジョーの閉鎖の間にわたり、遠位方向に動くのを防ぐのに役立つ)。
【0119】
可動ジョー508はまた、後部ヒンジプレート524の下側の面、すなわち1対のジョーが閉じられたときにアンテナと接触する表面に形成された、弾性的に変形可能な材料530の層を有する。この層530は、処置中に生じる温度に耐えることができ、生体適合性のあるシリコーンゴムまたは他のコンプライアントポリマー材料から形成することができる。これらの材料は、例えばエラストマー熱可塑性ポリマーから製作されてもよい。この層は両方とも、把持された生体組織への効率的なエネルギー送達を支援するばかりでなく、ジョー内に生体組織を保持することも助長する。
【0120】
遠位先端組立品500は、1対のジョー508、510に対して摺動自在に取り付けられて、ジョー間に保持される生体組織を切り開くブレード532を更に備える。ブレード532は、例えばデバイスの軸に沿った長手方向に移動可能である。ジョー508、510の対向面は、ブレードが移動するときにブレードを受け入れるための、それぞれ凹部または案内溝534を含む。静止ジョー510内の案内溝534は、ブレードが、印加された場の中心を通って移動するように、フィンガー電極514内に形成される。
【0121】
図16Aには示していないが、遠位先端組立品500はまた、上記で論じられたものと同様の仕方で、その遠位先端に取り付けられた補助高周波(RF)切断ブレードを備え得る。
【0122】
図16Bは、図16Aの遠位先端組立品500の、組み立てられたときの斜視図である。
【0123】
図17A図17Bおよび図17Cは、上記の実施形態における静止ジョーの上面に設けることができる共平面マイクロストリップアンテナ構成の3つの更なる例を示す。各例においては、共平面マイクロストリップアンテナは、その上に形成された接地電極を有する下面(図示せず)と、エネルギーをそこから送出することができる上面とを有する基板600を備える。この上面に沿って、細長いアクティブ電極602が、ストリップとして形成されている。アクティブ電極602の近位端には、上に述べたように、同軸給電の内側導体に接続するための導体パッド603が形成されている。細長いリターン電極604が、アクティブ電極602に隣接して形成されている。リターン電極604は、基板600を貫いて形成されたビア606を介して、基板600の下面の接地電極に電気的に接続されている。上記の通り、摺動ブレードの通過を促進するために、細長いスロット608が基板に設けられている。電極602、604は、例えば、金属被覆、薄膜堆積、パターニング(エッチング)など、任意の好適な技術を用いて、基板上に形成することができる。
【0124】
図17Aに示す第1の例では、スロット608は、アクティブ電極602の中央に沿って形成されている。リターン電極604は、アクティブ電極の両側に形成された1対の別個のストリップを備える。アクティブ電極604は、基板の遠位端まで延在する。
【0125】
図17Bに示す第2の例は、アクティブ電極602が基板の遠位端から後退し、リターン電極を形成する1対のストリップが、基板の湾曲した遠位端の周りを通る湾曲部分によって接合されていることを除いて、第1の例と同様である。したがって、リターン電極は、単一のU字形要素を提供する。
【0126】
図17Cに示す第3の例では、アクティブ電極602およびリターン電極は、スロットの両側に位置し、それぞれが単一の細長いフィンガー電極を備える。
【0127】
図18は、本発明の実施形態である電気外科用器具を操作するために使用できるハンドル700の断面図である。ハンドル700は、ハンドグリップ704を有する本体702と、1対のトリガ型アクチュエータ706、708とを備える。ハンドグリップ704の基部には、マイクロ波エネルギー供給を受けるための入力ポート710が設けられている。本体702は、器具シャフト712が取り付けられる出力ポート714を含む。
【0128】
遠位先端組立品における1対のジョーの閉鎖は、グリップアクチュエータ706によってもたらされる。グリップアクチュエータ706をハンドグリップ704に向かって引くと、器具シャフト712に沿って、閉鎖スリーブの前方への軸方向移動が生じ、それによってジョーが閉鎖される。作動モードは、格納と比較して望ましい。格納は、典型的には、器具シャフトの遠位端で、デバイスを標的組織から離すように移動させる。このことは、組織がジョーの面の間から滑り落ちる危険性があることを意味する。グリップアクチュエータ706は、本体702内に形成され、グリップアクチュエータ706から後方に突出する係合要素718を受け入れるラッチレーストラックによって、適所にラッチされてもよい。
【0129】
遠位先端組立品内でのブレードの移動は、複合ヒンジ構成でグリップアクチュエータ706に取り付けられているブレードアクチュエータ708によって生じさせる。この構成は、ジョーが必要な程度に閉じられるまで、ブレードトリガを本体702内に隠したままにするように作ることができる。
【0130】
マイクロ波エネルギーは、入力ポート710から、器具シャフト712を通って伸びる同軸ケーブルによって、遠位先端組立品に伝えられる。本体は、入力ポート710から器具シャフト712への同軸ケーブルの経路指定の一部として、同軸ケーブルが事前に何回か(例えば2回または3回)巻き付けられる回転可能なスプール720を含む。このようなケーブル回転は、本体702内に回転可能に取り付けられているサムホイール722を介して、360°(+/-180°)にわたって、シャフトおよび遠位先端組立品を自由に回転させることを可能にする。この構成は、シャフトを回転させるときの抵抗負荷を低減し、同軸ケーブル内の急激な曲がりまたは応力点を回避することができる。
【0131】
本体702は、デバイスが使用されているときに、マイクロ波エネルギーの送出に対する制御を可能にする、エネルギー作動プッシュボタン724を更に備える。
【0132】
使用時に、デバイスは、必要量のエネルギーの送達をもたらすように選択された特定の期間の間、所定の電力を有する連続的なマイクロ波エネルギーを送出するように構成され得る。例えば、100Jのエネルギーを送達することが望ましい場合に、デバイスは、25Wで4秒間電力を供給するように構成されてもよい。
【0133】
しかしながら、一定の電力で連続的なエネルギーを送達する代わりに、離散的なパルスとしてエネルギーを送達することが、特に大きな脈管サイズでは一層効果的であることが見い出されている。例えば、100Jは、2秒のオフ時間によって分離させた50Wでの1秒パルスの対として送達することができる。パルスの電力レベルは、50Wから60Wの範囲内であってよい。パルス持続時間は、0.5秒から1秒の範囲内であってよい。休止期間は、0.5秒から2秒の範囲であってよい。パルスは同じでもよいし、または最初のパルスが高い電力レベルを有してもよい。持続時間および全体的なエネルギー送達は、封止される脈管サイズまたは組織束(複数の脈管を含む)に応じて選択され得る。エネルギーは、2つより多いパルスを含むパルス列で送達され得、各パルスの電力レベルが、治療期間を通して減少していく。例えば、5秒間の処置期間中に、6つのエネルギーパルスが送達され得る。第1のエネルギーパルスは、60Wで1秒間であり、その後に着実に電力が減少していく、5つの、より短いパルスが続く。
【0134】
上に述べた脈管封止具デバイスおよび装置は、非常に多種多様な処置に用途を見出すことができる。装置は、胃腸管の切開手術および腹腔鏡手術において特に使用される可能性があり、また結腸直腸手術においても有用であり得る。
【0135】
より一般には、このデバイスおよび装置は、婦人科手術、泌尿器科手術、肝胆手術、内分泌手術、形成外科、美容整形、および再建手術、整形外科、胸部手術、ならびに心臓手術に関係した、開放処置、腹腔鏡処置、および低侵襲性処置にて用途を見出すことができる。この装置は、成人用、小児用、および獣医用の処置に使用するのに適している。
【0136】
先行技術文献
(文献1)Presthus, et al.: Vessel sealing using a pulsed bipolar system and open forceps, J Am Assoc Gynecol Laparosc 10(4):528-533, 2003.
(文献2)Carbonell, et al.: A comparison of laparoscopic bipolar vessel sealing devices in the hemostasis of small-, medium-, and large-sized arteries, J Laparoendosc Adv Surg Tech 13(6):377-380, 2003
(文献3)Richter, et al.: Efficacy and quality of vessel sealing, Surg Endosc (2006) 20: 890-894
図1
図2
図3
図4
図5
図6A
図6B
図7A
図7B
図8A
図8B
図9
図10
図11
図12A
図12B
図13A
図13B
図14A
図14B
図15A
図15B
図16A
図16B
図17A
図17B
図17C
図18