IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 富士フイルムヘルスケア株式会社の特許一覧

特許7168474超音波撮像装置、治療支援システム、及び、画像処理方法
<>
  • 特許-超音波撮像装置、治療支援システム、及び、画像処理方法 図1
  • 特許-超音波撮像装置、治療支援システム、及び、画像処理方法 図2
  • 特許-超音波撮像装置、治療支援システム、及び、画像処理方法 図3
  • 特許-超音波撮像装置、治療支援システム、及び、画像処理方法 図4
  • 特許-超音波撮像装置、治療支援システム、及び、画像処理方法 図5
  • 特許-超音波撮像装置、治療支援システム、及び、画像処理方法 図6
  • 特許-超音波撮像装置、治療支援システム、及び、画像処理方法 図7
  • 特許-超音波撮像装置、治療支援システム、及び、画像処理方法 図8
  • 特許-超音波撮像装置、治療支援システム、及び、画像処理方法 図9
  • 特許-超音波撮像装置、治療支援システム、及び、画像処理方法 図10
  • 特許-超音波撮像装置、治療支援システム、及び、画像処理方法 図11
  • 特許-超音波撮像装置、治療支援システム、及び、画像処理方法 図12
  • 特許-超音波撮像装置、治療支援システム、及び、画像処理方法 図13
  • 特許-超音波撮像装置、治療支援システム、及び、画像処理方法 図14
  • 特許-超音波撮像装置、治療支援システム、及び、画像処理方法 図15
  • 特許-超音波撮像装置、治療支援システム、及び、画像処理方法 図16
  • 特許-超音波撮像装置、治療支援システム、及び、画像処理方法 図17
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-10-31
(45)【発行日】2022-11-09
(54)【発明の名称】超音波撮像装置、治療支援システム、及び、画像処理方法
(51)【国際特許分類】
   A61B 8/13 20060101AFI20221101BHJP
【FI】
A61B8/13
【請求項の数】 15
(21)【出願番号】P 2019016072
(22)【出願日】2019-01-31
(65)【公開番号】P2020121039
(43)【公開日】2020-08-13
【審査請求日】2021-06-15
(73)【特許権者】
【識別番号】320011683
【氏名又は名称】富士フイルムヘルスケア株式会社
(74)【代理人】
【識別番号】110000888
【氏名又は名称】特許業務法人 山王坂特許事務所
(72)【発明者】
【氏名】田中 智彦
(72)【発明者】
【氏名】今井 亮
(72)【発明者】
【氏名】広島 美咲
(72)【発明者】
【氏名】川畑 健一
(72)【発明者】
【氏名】栗原 浩
【審査官】蔵田 真彦
(56)【参考文献】
【文献】特開2000-185041(JP,A)
【文献】特開2015-037519(JP,A)
【文献】特開2017-148407(JP,A)
【文献】特開2009-095379(JP,A)
【文献】特開2015-016300(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 8/00 - 8/15
JSTPlus/JMEDPlus/JST7580(JDreamIII)
(57)【特許請求の範囲】
【請求項1】
被検体に対し超音波探触子を介してビームフォームされた送信超音波信号を送信し、当該超音波信号が照射された領域からの反射超音波信号を受信し、前記領域の超音波画像を撮像する撮像部と、
前記被検体の内部に挿入された超音波発生源からの超音波を、前記超音波探触子を介して受信し、解析する超音波信号解析部と、
前記超音波探触子が受信した超音波信号を用いて超音波画像を形成する超音波画像形成部と、を備え、
前記超音波画像形成部は、前記超音波発生源からの前記超音波を用いて、前記超音波発生源の画像を生成し、
前記超音波信号解析部は、前記超音波探触子を構成する複数の素子がそれぞれ受信する超音波の受信時間の差を利用して、前記領域から外れた位置にある前記超音波発生源の位置を推定するとともに、前記超音波発生源の画像における、前記超音波発生源のスプリットを検出し、検出したスプリットの間隔を用いて前記超音波発生源の位置を算出することを特徴とする超音波撮像装置。
【請求項2】
請求項1に記載の超音波撮像装置であって、
前記超音波探触子は、一次元方向に配列した素子列が中央位置に対し非対称であり、
前記超音波信号解析部は、前記スプリットの間隔に現われる非対称性をもとに、前記領域に対する前記超音波発生源の方向を判定することを特徴とする超音波撮像装置。
【請求項3】
請求項1に記載の超音波撮像装置であって、
前記超音波信号解析部は、前記超音波の各素子への到達時間の時間差を用いて前記領域に対する前記超音波発生源の位置を推定することを特徴とする超音波撮像装置。
【請求項4】
請求項3に記載の超音波撮像装置であって、
前記超音波信号解析部は、前記超音波発生源に超音波を発生させるための光信号を生成する光発生部から、前記光信号の発生時刻に関する情報を受け取り、前記到達時間の時間差を算出することを特徴とする超音波撮像装置。
【請求項5】
請求項3に記載の超音波撮像装置であって、
前記超音波信号解析部は、前記超音波の受信時間の時間差と各素子間の距離とを用いた連立方程式に基づき解析を行うことにより、前記到達時間の時間差及び前記超音波発生源の位置を推定することを特徴とする超音波撮像装置。
【請求項6】
請求項1に記載の超音波撮像装置であって、
前記超音波探触子は、前記素子が一次元方向に配列した1Dアレイ探触子であって、
前記超音波信号解析部は、前記超音波探触子のエレベーション方向のあおり角を異ならせて取得した超音波を用いて、あおり角と前記超音波の信号強度との関係を取得し、前記関係を用いて、前記超音波発生源のエレベーション方向の距離を算出する距離算出部を備えたことを特徴とする超音波撮像装置。
【請求項7】
請求項6に記載の超音波撮像装置であって、
前記超音波探触子は、一次元方向に配列した素子列を複数有する1Dアレイ探触子であることを特徴とする超音波撮像装置。
【請求項8】
請求項1に記載の超音波撮像装置であって、
前記超音波探触子は、前記素子が二次元方向に配列した2Dアレイ探触子であって、
前記超音波信号解析部は、第一の方向に配列する素子群が受信する超音波を用いて、前記超音波発生源の前記第一の方向の距離を算出する第一距離算出部と、前記第一の方向に直交する第二の方向に配列する素子群が受信する超音波を用いて、前記超音波発生源の前記第二の方向の距離を算出する第二距離算出部と、を備えたことを特徴とする超音波撮像装置。
【請求項9】
請求項1に記載の超音波撮像装置であって、
前記撮像部が取得した前記超音波画像を表示装置に表示させる表示画像作成部をさらに備え、
前記表示画像作成部は、前記超音波信号解析部が推定した前記超音波発生源の位置に関する情報を前記超音波画像とともに前記表示装置に表示させることを特徴とする超音波撮像装置。
【請求項10】
請求項9に記載の超音波撮像装置であって、
前記表示装置に表示させる情報は、前記領域に対する前記超音波発生源の方向及び位置の少なくとも一方を識別可能にする情報であることを特徴とする超音波撮像装置。
【請求項11】
請求項1に記載の超音波撮像装置であって、
前記超音波探触子を自動操作するロボットアームと、当該ロボットアームの動きを制御する制御部と、をさらに備え、
前記制御部は、前記超音波信号解析部の解析結果を用いて、前記超音波探触子のあおり動作を制御することを特徴とする超音波撮像装置。
【請求項12】
請求項1に記載の超音波撮像装置であって、
前記撮像部の動作を制御する制御部をさらに備え、
前記制御部は、前記超音波発生源に超音波を発生させるための光信号を生成する光発生部から、前記光信号の発生時刻に関する情報を受け取り、前記光信号の発生から所定の遅延時間経過後に前記撮像部による撮像を実行するよう前記撮像部を制御することを特徴とする超音波撮像装置。
【請求項13】
被検体に対し超音波探触子を介してビームフォームされた超音波信号を送信し、当該超音波信号が照射された領域からの反射超音波信号を受信し、前記領域の超音波画像を撮像する撮像部を備えた超音波撮像装置、及び、
被検体内に挿入される治療具に固定された超音波発生源と、前記超音波発生源に超音波を発生させるための光信号を生成する光発生部と、前記光発生部から前記超音波発生源に前記光信号を導光する導光路と、を備えた治療デバイスを含む治療支援システムであって、
前記超音波撮像装置は、前記被検体の内部に挿入された超音波発生源からの超音波を、前記超音波探触子を介して受信し、解析する超音波信号解析部と、前記超音波探触子が受信した超音波信号を用いて超音波画像を形成する超音波画像形成部と、を備え、
前記超音波画像形成部は、前記超音波発生源からの前記超音波を用いて、前記超音波発生源の画像を生成し、
前記超音波信号解析部は、前記超音波探触子を構成する複数の素子がそれぞれ受信する超音波の受信時間の差を用いて、前記領域から外れた位置にある前記超音波発生源の位置を推定するとともに、前記超音波発生源の画像における、前記超音波発生源のスプリットを検出し、検出したスプリットの間隔を用いて前記超音波発生源の位置を算出することを特徴とする治療支援システム。
【請求項14】
請求項13に記載の治療支援システムであって、
前記超音波探触子を自動操作するロボットと、当該ロボットを制御する制御部とをさらに備え、
前記制御部は、前記超音波信号解析部の結果に応じて、前記ロボットを制御し、前記超音波探触子の位置及び姿勢の少なくとも一方を変化させることを特徴とする治療支援システム。
【請求項15】
超音波探触子を介して被検体に照射された超音波信号の反射波を受信し、超音波信号が照射された領域の超音波画像を作成する超音波画像作成部と、前記被検体内部に挿入された超音波発生源が発生する超音波を前記超音波探触子で受信し、受信した超音波を用いて、前記領域に対する前記超音波発生源の位置を検出する超音波解析部とを有し、前記位置を前記超音波画像とともに表示する超音波撮像装置の、前記超音波解析部が行う画像処理方法であって、
前記超音波から作成した前記超音波発生源の画像に現われるスプリット間の間隔を用いて、前記領域までの前記超音波発生源の距離を算出することを特徴とする画像処理方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光音響等の超音波発生源を搭載したガイドワイヤを体内に挿入する際に、超音波撮像装置を用いて支援する技術に関する。
【背景技術】
【0002】
カテーテル治療は、開胸等の手術と比較し、患者負担が少ない術式であるため、主に血管狭窄などの治療に広く採用されている。カテーテル治療では、治療対象となる領域とカテーテルとの関係を把握することが重要であり、それを支援する撮像方法としてX線透視が利用されている。超音波画像を支援画像として用いる試みもあるが、ガイドワイヤ先端を超音波で描出することは容易ではなく、普及には至っていない。
【0003】
一方、穿刺針については、針の先端から光音響信号を発生させる光音響技術を穿刺針に搭載し、超音波撮像装置の超音波探触子で光音響信号を検出することにより針先端の位置を検出する技術も提案されている(特許文献1、特許文献2)。
【0004】
具体的には、特許文献1には、パルスレーザ発生源からレーザ光を針に照射し、針を伝播した光によって針先端から発生する光音響波を超音波撮像装置の超音波探触子で検出し、光音響画像として描出する技術が開示されている。特許文献2には、超音波探触子の姿勢を変えながら光音響画像を取得し、信号が最も強くなる超音波探触子の位置(姿勢)と、超音波撮像装置による撮像(ノーマルモードの撮像)における超音波探触子の位置とが一致するか否かを判定し、超音波画像(例えばBモード画像)に対する針先端の位置関係を把握可能にする技術が開示されている。
【先行技術文献】
【特許文献】
【0005】
【文献】特表2013-511355号公報
【文献】特開2015-139465号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
特許文献2に記載された技術では、挿入物(穿刺針)の先端が、超音波探触子の真下にあるか否かを判定することができ、それにより、表示超音波画像上に描画されている針先端が、実際には、ずれた位置にあることやずれている方向を知ることができるが、治療対象領域と実際に挿入物先端が存在する位置との関係を視覚的に把握することができない。また、この技術では超音波探触子の姿勢を変えながら複数の光音響画像を取得するピーク検索モードの撮像を必須とし、高い時間分解能で超音波画像(ノーマルモード撮像)を表示させることができない。
【0007】
被検体内にカテーテル等を挿入する場合、画像を見ながらカテーテル挿入作業に集中するために、撮像のための操作(探触子の操作)は極力少なく、且つ治療のターゲットと治療具との位置関係を逐次視認性よく把握することは望まれる。
【0008】
本発明は、超音波探触子を用いて生体からの反射波により画像を得ることができる領域(撮像領域)と、その領域外にある挿入物、特にガイドワイヤ先端との関係を視覚的に容易に把握することができる技術を提供することを課題とする。
【課題を解決するための手段】
【0009】
上記課題を解決するため、本発明は、超音波発生源を搭載したガイドワイヤと、超音波撮像装置とを組み合わせたカテーテル治療支援技術において、超音波探触子を構成する素子アレイに到達する超音波(超音波発生源からの超音波)の到達時間差或いは撮像領域からの距離に依存する超音波発生源の画像を用いてガイドワイヤ先端位置を推定し、この推定結果を用いて撮像位置とガイドワイヤ先端位置との関係を把握する。
【0010】
即ち、本発明の超音波撮像装置は、被検体に対し超音波探触子を介してビームフォームされた超音波信号を送信し、当該超音波信号の照射領域からの反射超音波信号を受信し、前記照射領域で決まる回折波領域の超音波画像を撮像する撮像部と、前記被検体の内部に挿入された超音波発生源からの超音波を、前記超音波探触子を介して受信し、解析する超音波信号解析部と、を備え、前記超音波信号解析部は、前記超音波探触子を構成する複数の素子がそれぞれ受信する超音波(超音波発生源からの超音波)の受信時間或いは到達時刻の差を利用して、前記回折波領域から外れた位置にある前記超音波発生源の位置を推定する。
【0011】
また本発明の治療支援システムは、被検体に対し超音波探触子を介してビームフォームされた超音波信号を送信し、当該超音波信号が照射された領域からの反射超音波信号を受信し、前記領域の超音波画像を撮像する撮像部を備えた超音波撮像装置、及び、被検体内に挿入される治療具に固定された超音波発生源と、前記超音波発生源に超音波信号を発生させるための光信号を生成する光発生部と、前記光発生部から前記光音響発生源に前記光信号を導光する導光路と、を備えた光音響デバイスを含む治療支援システムであって、前記超音波撮像装置は、前記被検体の内部に挿入された超音波発生源からの超音波を、前記超音波探触子を介して受信し、解析する超音波信号解析部をさらに備え、前記超音波信号解析部は、前記超音波探触子を構成する複数の素子がそれぞれ受信する超音波の受信時間(到達時刻)の差を用いて、前記領域から外れた位置にある前記超音波発生源の位置を推定することを特徴とする。
【発明の効果】
【0012】
本発明によれば、素子アレイに到達する超音波の時間差を用いることにより、素子アレイと超音波発生源との幾何学的な位置関係を算出することができ、これにより素子アレイから超音波信号が照射される領域の外に存在する挿入物先端の位置を把握することができる。また、このような位置情報は、超音波の発生後の短時間で得ることができるので、撮像中の画像上に直ちに表示させることができる。
【図面の簡単な説明】
【0013】
図1】本発明の治療支援システムの実施形態の全体概要を示す図。
図2】超音波源搭載ワイヤの一部断面を示す図。
図3図1の治療支援システムの超音波撮像部(超音波撮像装置)の詳細を示す図。
図4】撮像及び超音波信号解析時の動作の流れを示す図。
図5】撮像領域と超音波発生源との関係を説明する図。
図6】素子位置と時間差との関係を示す図。
図7】変形例の治療支援システムの全体概要を示す図。
図8】第二実施形態における解析部の処理の流れを示す図。
図9】(a)はあおり角の操作を説明する図、(b)はあおり角と信号強度との関係を示すグラフ。
図10】第三実施形態における解析部の処理を説明する図で、(a)は回折波領域に対する超音波発生源の位置を示す図、(b)各位置における超音波発生源の画像を示す図。
図11】第三実施形態の変形例で用いる非対称超音波探触子の一例を示す図。
図12】第三実施形態の変形例で取得される超音波発生源の画像の一例を示す図。
図13】第四実施形態の治療支援システムの実施形態の全体概要を示す図。
図14】第四実施形態の制御部及び解析部の処理の流れを示す図。
図15】(a)、(b)は、それぞれ、ガイドワイヤ先端の位置情報として方向を表示する表示例を示す図。
図16】三次元画像におけるガイドワイヤ先端位置の表示例を示す図。
図17】信号強度変化の表示例を示す図。
【発明を実施するための形態】
【0014】
以下、本発明の超音波撮像装置と、それを用いたカテーテル治療支援システム(以下、支援システムと略す。)の実施形態を説明する。
【0015】
まず支援システムの全体概要を、図1を参照して説明する。図1に示すように、本実施形態の支援システム100は、超音波発生デバイス10を搭載した生体挿入具11と、超音波探触子20を備え、生体挿入具が挿入された被検体80の超音波画像を取得する超音波撮像部30及びその表示部60と、を備える。
【0016】
生体挿入具11は、例えば、バルーンカテーテルやマイクロカテーテル等の治療用器具やこれら治療用器具を目的部位に運ぶためのガイドワイヤである。本実施形態では一例として生体挿入具がガイドワイヤである場合を説明する。以下の実施形態では、超音波発生デバイス10が光音響信号(以下、PA信号という)を発生するPA信号発生源である場合を例に説明するが、超音波発生デバイス10は、超音波を発生させる目的としては圧電素子を用いてもよい。超音波発生デバイス10は、図2に示すように、フレキスブルな中空のガイドワイヤ11の中空部内に配置された光ファイバ12と、光ファイバ12の挿入側端面に固定された超音波発生源(PA信号発生源)13と、光ファイバ12の他端(超音波発生源13が固定された端部と反対側の端部)に接続され、レーザ光を発生する光発生部15とを備え、光ファイバ12は光発生部15が発生するレーザ光を先端の超音波発生源13に導く導光部材として機能する。これら超音波発生デバイス10は中空のガイドワイヤ11を含めて光音響源搭載ワイヤという。
【0017】
PA信号発生源13は、レーザ光を受けて断熱膨張することによってPA信号等の超音波を発する材料、例えば、公知の色素(光増感剤)、金属ナノ粒子、炭素ベース化合物体などで構成される。PA信号発生源13を含む光ファイバ12の先端は、樹脂性の封止部材14で覆われている。なお図2では、PA信号発生源13はワイヤ11の先端に位置つけられているが、ワイヤ先端には限られない。
【0018】
超音波撮像部30は、PA信号を処理する機能(超音波信号解析部)が追加されている以外は、一般的な超音波撮像装置と同様の構成を有し、図3に示すように、超音波探触子20に超音波信号を送信する送信部31、超音波探触子20が検出した反射波(RF信号)を受信し、整相、加算等の処理を行う受信部32、及び、受信部32が受信したRF信号の処理を行う信号処理部35を備える。また超音波撮像部30は、超音波撮像部30及びその付属装置や必要に応じて光音響デバイス10を制御する制御部40、ユーザが撮像に必要な条件や指令を入力するための入力部50、超音波撮像部30が取得した超音波画像やGUI(Graphic User Interface)等を表示する表示部60、信号処理部35の処理結果である画像等を記憶するメモリ70を備えている。
【0019】
信号処理部35は、反射波であるRF信号を用いてBモード画像等の超音波画像を作成する超音波画像形成部351と、PA信号発生源13から発せられ超音波探触子20の各トランスデユーサ素子が検出したPA信号を検出し、PA信号発生源13の位置に関する情報を推定する超音波信号解析部(PA信号解析部)353(以下、単に解析部という)と、表示部60に表示する画像を生成する表示画像形成部355とを備える。超音波画像形成部351は、Bモード等の被検体の超音波画像のほかに、PA信号を用いてPA信号発生源13の画像(光音響画像)を作成する機能を備えていてもよい。解析部353は、PA信号発生源13の位置や方向(まとめて位置情報という)を推定する。
【0020】
信号処理部35を構成する各部と制御部40の機能の一部又は全部は、CPU或いはGPUとメモリとを備えた計算機にその機能をプログラムしたソフトウェアをアップロードすることにより実現することが可能である。また各部の機能の一部又は全部を、電子回路や、ASIC、FPGAなどのハードウェアで実現することも可能である。なお制御部40は信号処理部35とは別の計算機を用いてもよい。
【0021】
超音波探触子20は、多数のトランスデユーサ素子が一次元方向に配列した1Dアレイ探触子、1Dアレイ探触子のアレイ配列方向と直交する方向に2ないし3列のアレイ配列を持つ1D3配列探触子や、二次元方向に多数のアレイ配列を持つ2Dアレイ探触子、など種々の超音波探触子20を用いることができる。解析部353は、用いる超音波探触子の種類に応じた解析手法を採用することができる。
【0022】
次に、このような構成の超音波撮像装置の動作の概要を説明する。ここでは、通常の超音波撮像を行いながら、カテーテル等をガイドする光音響デバイス10搭載ガイドワイヤを被検体の体内に挿入し、ガイドワイヤの先端位置をPA信号によってモニタリングする場合を説明する。通常の撮像を撮像モード、PA信号を用いたモニタリングをPA解析モードという。
【0023】
撮像モードの動作は、従来の超音波撮像装置と同様であり、超音波探触子20を通じて送信部31から超音波の送信を行い、送信した超音波が被検体内部の組織から反射する反射波を超音波探触子20で受信する。受信部32は、フレームごとに受信した受信信号に対し整相、加算などの処理を行い、信号処理部35に送る。2D超音波探触子20を用いた場合、二次元方向と深度方向とを合わせた三次元方向の反射波の強度に対応する情報が得られる。信号処理部35の超音波画像形成部351は、受信部32からのフレーム信号を用いて超音波画像、例えば、Bモード画像を作成し、表示画像形成部355に渡す。表示画像形成部355は、Bモード画像を付帯情報とともに表示部60に表示する。
【0024】
一方、PA解析モードでは、図4に示すように、カテーテルを被検体の体内、例えば血管内に挿入しながら、一時、送信部31の動作を停止して(S401)、光発生部15を作動させて、光発生部15からパルス状のレーザ光を照射する(S402)。光発生部15が発した光が、体内に挿入されたガイドワイヤ11の光ファイバ12を介してPA信号発生源13に照射されると、PA信号発生源13を構成する光音響材料からPA信号(超音波)が発生し(S403)、超音波探触子20の各素子で検出される(S404)。
【0025】
図5に示すように、超音波探触子20で受信する超音波信号は、撮像モードにおいては、超音波探触子20から照射される超音波ビームがビームフォーミングされて広がる範囲(斜線で示す範囲)にある被検体組織80Aから反射した反射波であり、この範囲内が撮像領域81である。即ち、探触子アレイの各素子から回折波が球面状に伝播する領域であり、ここでは回折波領域とも呼ぶ。この回折波領域81からの反射波が探触子アレイに到達する時間は概ね深度に依存する。これに対し、PA信号発生源13からのPA信号は、反射波ではなく、直接、探触子アレイの各素子に到達する信号であり、PA信号発生源13における光音響信号の発生時から素子検出時までの時間は、PA信号発生源13と素子との間の距離に比例する。
【0026】
ここでPA信号発生源13の位置が超音波探触子20のラテラル方向(素子の配列方向)について回折波領域より外側にずれているとすると、PA信号が各素子に到達する時間には時間差を生じる。
【0027】
受信部32は、時間差を持って各素子が検出したPA信号を整相等の処理を行うことなく、解析部353に渡す。解析部353は、素子毎に検出したPA信号と素子毎の受信時間(PA信号の到達時間)に関する情報を用いてPA信号発生源13の位置情報を推定する(S405)。
【0028】
表示画像形成部355は、解析部353からPA信号発生源13の位置に関する情報を受け取り、Bモード画像に重ねた表示画像や、付加的情報として示す表示画像を作成し、表示部60に表示させる(S406)。表示部60に位置情報を表示する仕方には種々の態様があり、後述の実施形態において説明する。
【0029】
光発生部15からのレーザ光照射後、所定の待機時間後に送信部31は停止していた超音波送信(撮像モードの計測)を再開し(S407、S408)、取得した超音波画像を表示部60に表示する。撮像モードを再開するための待機時間は、超音波探触子20による光音響信号の検出と解析部353による解析に必要な時間であればよく、制御部40は、光発生部15における光の照射をトリガー信号として、所定の待機時間を持って撮像モードを再開させることができる。
【0030】
このような撮像モードと解析モードの撮像を、例えば、ガイドワイヤの先端が回折波領域に侵入するまで、或いはターゲット位置に到達するまで複数回繰り返す(S409)。このようなモードの切り替えは制御部40の制御のものとで行われるが、適宜、入力部50を介してユーザによる調整を受け入れてもよい。
【0031】
なお解析モードでは、PA信号を用いた解析のみを行うこととしたが、超音波画像形成部351が、撮像モードにおける超音波反射信号と同様にPA信号を処理し、PA信号発生源13の画像(PA画像という)を作成してもよい。この画像は、PA信号発生源13のみが輝度情報を持つ画像であり、PA信号発生源13の位置は、回折波領域の比較的深度の深い位置になる。PA画像は、Bモード画像とともに表示してもよいし、解析部353が位置推定にPA画像の情報を用いてもよい。
【0032】
本実施形態の超音波撮像装置によれば、目的部位を撮像しながら、その間に実行される解析モードにおいてカテーテルをガイドするガイドワイヤ先端位置をモニタリングして、撮像モードで取得した超音波画像上に位置に関する情報を表示させることにより、ユーザは撮像対象である部位にガイドワイヤが近づく様子をその画像上で確認することができる。
【0033】
次に、解析部353においてPA信号発生源13の位置を解析する手法と、解析結果の表示方法の各実施形態を説明する。各実施形態において、超音波撮像装置及びその信号処理の構成は特に断らない限り同様であり、適宜、図3の構成を参照する。
【0034】
<第一実施形態>
本実施形態では、解析部353は、1Dアレイ探触子20Aの各素子が検出した超音波発生源13からの超音波(ビーコン超音波信号)の到達時間の時間差を用いて、超音波発生源13のラテラル方向の距離を推定する。本実施形態でも、超音波発生源13が発する超音波がPA信号である場合を例として説明する。
【0035】
図5に示したように、ガイドワイヤ11を血管(80A)内に挿入して治療部位(ターゲット)に進める場合、血管の走行に沿った面を撮像断面として撮像すると、ガイドワイヤは撮像領域から左右いずれかから撮像領域に進行してくる。従ってラテラル方向の距離を推定することにより、ガイドワイヤがどの程度ターゲットに近づいているかを知ることができる。
【0036】
PA信号発生源13からのPA信号の超音波探触子の各素子への到達時間は、PA信号発生源13と素子との間の距離に比例する。到達時間は、PA信号の発生時刻から素子の受信時刻までの時間であり、PA信号発生時刻がわかれば、受信部32が受信した受信時刻の情報から算出することができる。PA信号発生源13からPA信号が発せられた時刻は、光発生部15からレーザ光を発した時刻と同時とみなすことができるので、レーザ光の発生時に、光発生部15から超音波送信のためのトリガー信号が制御部40に送られている場合には、このトリガー信号を受信した時刻から、レーザ発生時刻即ちPA信号発生時刻を計算することができる。
【0037】
また光発生部15がパルス状レーザ光を照射する際に、パルス発生タイミングを制御部40が受け取り、PA信号発生時刻を得ることも可能である。
【0038】
解析部353は、PA信号発生時刻をもとに、次式(1)、(2)により超音波探触子(各素子)からPA信号発生源13の位置(xc、yc)を算出する。xcは超音波探触子のラテラル方向の距離、ycは超音波探触子の深度方向の距離であり、アレイの中心位置を原点とする。
【数1】
【数2】
【0039】
式中、Nは1Dアレイの素子数、nは1~Nのいずれかの整数で、xnはn番目の素子の座標、tnはn番目の素子への到達時間、δxは演算格子間隔(隣接する素子間の間隔でもよい)、Cは音速である。
【0040】
こうして算出された位置情報は、例えば、メモリ70に格納されるとともに、超音波画像形成部351により形成された超音波画像(Bモード画像)とともに表示部60に表示される。また解析部353は解析モードを繰り返し実行する場合、繰り返しごとにメモリ70に格納された位置情報や表示される位置情報を更新する。これによりユーザは、超音波探触子20を目的とする治療部位が撮像できる位置に固定したままで(即ち、ガイドワイヤ先端位置を検出するための超音波探触子20の移動を不要とし、目的部位を常に撮像しながら)、ガイドワイヤの侵入にともない時々刻々変化する先端位置を表示画像上で確認しながら手技を進めることができる。
【0041】
なおPA信号発生源13が回折波領域(撮像面)に対しラテラル方向のみならずエレベーション方向(アレイの配列方向と直交する方向)にもずれている場合、式(1)、(2)だけでは、正確なラテラル方向の位置を算出するはできない。しかし、超音波探触子のアレイ配列方向が血管の走行方向と概ね一致している限り、ターゲットに向かうガイドワイヤ先端のエレベーション方向へは大幅にずれることはないので、式(1)、(2)で算出された位置情報はガイドワイヤ先端がターゲットに対しどの程度近づいているかを知る情報として、十分にガイド支援に役立つ。
【0042】
また、アレイの素子番号と到達時間との関係は、図6のグラフに示すように、PA信号発生源13が回折波領域からラテラル方向に外れた位置にある場合、右端から左端に向かって或いは左端から右端に向かって曲線状に変化する。この曲率をもとに、PA信号発生源13のラテラル方向へのずれを推定することも可能である。この場合には、解析部353は位置情報の算出を行うのではなく、素子位置と到達時間との関係を示すグラフの傾きをもとに、ターゲットまでの距離について「遠い」、「近い」、「回折波領域に侵入」などの定性的な判定を行い、表示部に表示させてもよい。
【0043】
本実施形態によれば、被検体内に挿入されたガイドワイヤの先端位置が、超音波探触子の回折波領域外にあってラテラル方向に離れている場合において、超音波探触子の各素子に到達するPA信号の時間差を利用することにより、PA信号発生源の位置即ちガイドワイヤの先端の位置を推定することができる。
【0044】
なお、超音波画像形成部351がPA信号発生源13のPA画像を作成する場合、PA信号発生源13が回折波領域81に入る前から、例えば解析モードを開始すると同時に順次作成してもよいが、解析モードにおいて解析部353が推定したPA信号発生源の距離からPA信号発生源13が回折波領域81に入ったと推定された時点で作成してもよい。回折波領域81に存在するPA信号発生源13の画像は、回折波領域81におけるPA信号発生源13の位置の点状の画像であるので、撮像モードで取得した撮像対象組織の超音波画像と重畳することにより、組織におけるPA信号発生源13の位置を確認することができる。
【0045】
<第一実施形態の変形例>
第一実施形態では、解析部353は光発生部15から光発生時刻の情報を受け取り、PA信号の到達時間を算出したが、光音響デバイス10(光発生部15)と超音波撮像装置30とが信号のやり取りを行わないシステムであっても、PA信号の受信時間を用いてPA信号発生源を算出することが可能である。
【0046】
本変形例のシステム構成は、図7に示すように、光発生部15から超音波撮像装置20にトリガー信号を送出する信号線がないことを除き、図3に示すシステム構成と同様である。撮像モードと解析モードとの切り替えは、例えば、撮像モードをフリーズした状態で、マニュアルで光音響デバイス10を動作させて解析モードを実行する。
【0047】
解析モードで、光発生部15からレーザ光を照射し、PA信号発生源13からPA信号を発生させること、このPA信号を超音波探触子(1Dアレイ探触子)の各素子で受信することは、第一実施形態と同様である。解析部353は、受信部(PA信号検出部)32が取得したPA信号と受信時間に関する情報を用いて、次式(3)により、PA信号発生源13の位置(xc)を算出する。
【0048】
【数3】
式(3)は検出素子毎の式(1)の連立方程式を行列で記述したものであり、式(1)と同じ符号のものは同じ意味を持つ。式(3)において、tFはPA信号の発生時刻であり、ここでは未知数である。つまり、この連立方程式ではtFとxc(ラテラル方向の距離)の2つの未知数があり、これら未知数は行列の逆問題を解くことで求めることができる。
【0049】
こうして求めたtFとxcを用いて式(2)と同様の式(4)により、深度方向の距離ycを算出することができる。
【数4】
【0050】
本変形例によれば、トリガー信号によってPA信号の発生時刻を得ることができない場合にも、PA信号発生源13の位置を推定することが可能である。
【0051】
なお、位置検出方法は、上記実施形態及び変形例に限定されず、例えば、超音波探触子の各素子で受信したビーコン超音波信号(PA信号)を基に、通常の超音波撮像領域よりも大きい領域で整相処理を実施し、ビーコン超音波信号が結合した位置を位置特定としてもよい。あるいは、粗い整相処理を行い、信号強度が集中している領域を特定してもよい。
【0052】
<第二実施形態>
第一実施形態及びその変形例では、超音波探触子の各素子に到達するPA信号の時間差を利用してPA信号発生源13の位置(ラテラル方向の距離)を推定したが、本実施形態の解析部353は、PA信号発生源13の三次元的な位置を推定する。推定には、1D超音波探触子20Aの操作によって三次元的な位置を把握可能にする手法(第一の手法)と、三次元的な位置を把握可能な超音波探触子20Bを用いる手法(第二の手法)とがある。いずれの場合にも、ラテラル方向については第一実施形態と同様の手法を採用する。まず、第一の手法について説明する。
【0053】
[第一の手法]
図8は、第一の手法による処理の流れを示す図である。図示するように、本実施形態においても、第一実施形態と同様に、まず各素子のPA信号の到達時間差を用いて、PA信号発生源13の位置(xc、yc)を算出するとともに(S801)、各素子が受信したPA信号の受信強度(積算値)を算出する(S802)。次に、ステップS802で算出したPA信号の強度が、所定の閾値よりも低い場合(S803)、表示画像形成部354にその情報を送る。表示画像形成部355は、超音波探触子20のあおり操作を促すGUIを形成し、表示部60に表示させる(S804)。
【0054】
この間、例えば、光発生部15はパルス状のレーザ光の発生を継続しており、解析部353はステップS802の信号強度の算出が継続する(S805、S806)。そして、表示部60に表示されたGUIに従って、ユーザが超音波探触子20をエレベーション方向(ラテラル方向と直交する方向)にあおり操作を行うと、指向性によって感度が上がり信号強度も上がる。図9にあおり角と信号強度との関係の一例を示す。図9(a)は1Dアレイの超音波探触子20Aをラテラル方向から見た図、図9(b)はあおり角と信号強度との関係を示すグラフである。解析部353は、このような、あおり角の変化に伴う信号強度の変化を検出し、信号強度が最大となるあおり角を求める(S807)。これにより、エレベーション方向のPA信号発生源13の位置を検出することができる。この場合、ステップS801でPA信号発生源13のラテラル方向の位置がわかっているので、この位置と信号強度が最大となるあおり角とを用いることで幾何学的にエレベーション方向の位置を算出することができる(S808)。
【0055】
なお上記説明では、ユーザのあおり操作を促すGUIを表示部60に表示させることとしたが、ユーザによっては、GUI等による促しがなくても習慣的に超音波探触子のあおり操作を行う場合もありえる。そのような場合には、GUIの表示(S803、S804)を省略することも可能であり、単にユーザの操作に伴ってステップS802の信号強度の算出と、ステップS807の信号強度が最大となるあおり角の検出を自動で行い、PA信号発生源13の位置を検出してもよい。
【0056】
[第二の手法]
第一の手法では、超音波探触子20を操作してあおり角を変えることにより、撮像領域(撮像断面)からエレベーション方向に外れた位置にあるPA信号発生源13の位置を推定したが、第二の手法は、2次元方向に素子が配列した2Dアレイ探触子を用いることにより2方向の位置を検出する。
【0057】
2つの配列方向(第一の方向と第二の方向)の位置の検出は、第一実施形態において、PA信号到達時間の素子間の時間差を用いてラテラル方向の位置推定を行ったのと同様であり、各方向の素子の配列において、素子間の時間差を用いて、式(1)、(2)或いは式(3)、(4)により、それぞれ2方向の位置を算出することができる。但し、これら式において、xcは超音波探触子の第一の方向の距離、或いは第二の方向の距離と読み替える。
別途算出したこうして求めた第一及び第二の方向の距離を用いて、PA信号発生源13の三次元位置を算出することができる。
【0058】
なお超音波探触子20には、いわゆる2Dアレイ探触子とは別に、1Dアレイを3列程度配列した1D3列探触子と呼ばれる探触子がある。このような超音波探触子は、ラテラル方向(配列素子数が多い方向)とエレベーション方向(配列素子数が少ない方向)とが区別され、1Dアレイと同様と同様の用いられ方をする。超音波探触子20が1D3列探触子の場合には、1Dアレイと同様に、あおり操作を行った場合の信号強度の変化に基づき、あおり角からエレベーション方向のPA信号発生源13の位置を検出してもよい。その場合、ラテラル方向の位置情報は、3列のアレイそれぞれの素子間時間差を用いて算出し平均化して用いてもよいし、個々の素子と音源位置との距離関係を考慮することでラテラル方向の位置算出精度を高めることができる。
【0059】
一般に血管は組織内で直線状に走行しているだけでなく、曲がったり分岐したりしている。従ってラテラル方向の位置だけでは、正確にその進行状況を把握することができない場合がある。本実施形態によれば、エレベーション方向の位置情報を取得することで、より正確に超音波発生源の位置の把握が可能になる。
【0060】
またガイドワイヤが目的とする血管から逸れて別の血管に入り込んだりする場合、第一実施形態で推定した超音波発生源のラテラル方向の距離からガイドワイヤ先端位置が回折波領域に入っていると判定される可能性があるが、本実施形態によれば、ラテラル方向のみならずエレベーション方向についても位置情報を取得することにより、ガイドワイヤが目的血管から外れていることなどを推定することができる。
【0061】
<第三実施形態>
第一実施形態および第二実施形態では、解析部353は、超音波発生源からの超音波が超音波探触子に到達する時間の素子間の差(到達時間差)を利用して、超音波発生源の位置を推定したが、本実施形態では、到達時間差に応じてビーコン超音波画像(PA画像)に生じる画像の特徴、具体的にはスプリットを用いて距離を推定する。即ち、本実施形態の超音波撮像装置は、超音波画像形成部351が、ビーコン超音波信号を用いて超音波発生源の画像を形成する機能を有し、解析部353は超音波画像形成部351が作成した超音波発生源の画像の情報から超音波発生源13の位置を推定する。
【0062】
ビーコン超音波画像に生じる到達時間差の影響について説明する。ビーコン超音波信号の代表例としてPA信号について説明するが、それ以外の超音波でも同様である。
PA信号は超音波なので、各素子に到達する波の位相が素子毎に異なる。PA画像の作成はこれら位相がずれた信号をコンボリューションすることにより得られる。この際、回折波領域内から発生する信号であれば、整相されて一つの像となるが、回折波領域から外れた位置にあるPA信号発生源の画像は、コンボリューションの影響(コンボリューション効果)により回折波領域から外れるに従い画像がぼけ、一定以上外れると上下にスプリット(分離)して複数の画像に分かれる。スプリットが生じたPA画像を図10に示す。図10の(a)は、回折波領域81との距離が異なるPA信号発生源13の複数の位置(4つの位置)を示す図で、(b)は各位置におけるPA画像を示す図である。図示するように、スプリットは、回折波領域からの距離が離れるほどスプリット数が増加し、スプリットした画像間の間隔は広がる。
【0063】
本実施形態の解析部353は、PA画像のスプリット間の間隔を用いた場合は、次式(5)、(6)により、PA信号発生源の位置を算出する。
【数5】
【数6】
【0064】
式(5)、(6)中の符号は次のとおりである。
Yc:ラテラル方向の音源位置
Zc: エレベーション方向の音源位置
d:(エレベーション方向)短軸口径
【0065】
こうして算出した距離をもとに、ガイドワイヤの回折波領域への接近度合い(離間度合い)を判定し、表示することは第一実施形態と同様である。また本実施形態の解析手法は第一実施形態や第二実施形態の解析と組み合わせることも可能であり、これにより、ガイドワイヤ位置に関するより詳細な情報をユーザに提示することができる。なお解析に用いたPA画像は、それ自体を表示部60に表示させてもよいが、撮像モードで取得した超音波画像に重畳して表示させることも可能である。超音波画像に重畳されたPA信号発生源13の画像は、PA信号発生源13が回折波領域から離れている場合、超音波画像の深度の深いところに表示されるので、ユーザは組織の画像の深部に現れた点画像のスプリットを見ることで、PA信号発生源が近づく様子を確認することができる。
【0066】
本実施形態によれば、PA画像に現れるスプリットを利用することにより、簡単に回折波領域からの接近状況を視認し、またその距離を推定することができる。
【0067】
<第三実施形態の変形例>
第三実施形態は、PA画像に現れるスプリットからPA信号発生源の位置を算出するが、この場合、PA信号発生源が回折波領域に進行する方向の情報は得られない。本変形例では、超音波探触子に非対称なアレイ構造を採用するとともに、非対称性がスプリットに与える効果を検出することにより、方向の情報を取得する。
【0068】
図11に非対称なアレイ構造の例を示す。この超音波探触子20Dは、1Dアレイ探触子であり、素子配列方向の中心から一方の側の素子のうち一部(例えば1素子)を解析モードにおいて非作動にする。1素子を非作動する制御は、光発生部15からレーザ光の照射を知らせるトリガー信号を受ける制御部40が行ってもよいし、制御部40が撮像モードと解析モードの切り替えを制御する場合にはモード切り替え時に行ってもよい。
【0069】
この超音波探触子でも、PA信号発生源13が回折波領域から離れていると、PA画像にはスプリットができ、そのスプリット数は距離が離れるほど増加する。ここで超音波探触子に非対称性がある場合には、スプリットも上下に非対称性が現れる。例えば図12に示すように、配列した素子の1つの非作動素子が存在する場合、超音波探触子の回折波領域から離れた位置にあるPA信号発生源13Aの画像は、複数の画像にスプリットするが、この際スプリットして上下方向に並ぶ複数の画像うち一つが欠損し、非作動素子が左側か右側かによって、画像欠損位置が異なる。従ってスプリットの形状(非対称性)によって回折波領域に対するPA信号発生源の位置、すなわち表示された超音波画像の対象組織に対しどちら側にガイドワイヤ先端があるか、を推定することができる。
【0070】
本変形例によれば、第三実施形態の解析部が推定した位置情報に加えて方向情報を提示することができる。なお上記説明では、非対称アレイ構造にする手段として素子の一つを非作動にする場合を示したが、素子の表面(接触側)に超音波を伝達しない材料からなるシール部材を貼付するなど物理的に非作動にすることも可能である。この場合でも、シールする素子が一つ程度であれば撮像モードへの影響は無視することができる。
【0071】
<第四実施形態>
本実施形態では、超音波探触子20をユーザが操作するのではなく、ロボットアームにより操作することが特徴である。
【0072】
実施形態を実現するための治療支援システム100Aの一例を図13に示す。図13において、図1に示す要素と同じ要素は同じ符号で示し、重複する説明は省略する。図示する治療支援システムは、超音波探触子20を取り付けたロボットアーム25と、ロボットアーム25の駆動装置27とを備える。
【0073】
ロボットアーム25は、図示していないが、例えば、超音波探触子20を着脱自在に支持する支持部、支持部に対し軸方向に回転可能に連結され、複数のアームをリンク結合したアーム部材、アーム部材を上下方向や水平方向に駆動する機構部などを備え、これら機構部を動かすことにより、超音波探触子20を被検体80に接触させたり、接触させた状態で回転や平行移動させたり、あおり角を変えたりすることができる。超音波探触子20と被検体80の表面との間には、図中、丸で囲って示すように、ゲル状のシート部材90が配置されている。
【0074】
駆動装置27はロボットアーム25の各機構部を駆動するモータ等を備え、超音波撮像装置30の制御部40に接続され、制御部40の制御のもとで作動する。
【0075】
この支援システム100Aの動作は、基本的には上述した第二実施形態の変形例1と同様であり、超音波探触子の姿勢を変化させることによって二次元的な情報を取得する。但し、第二実施形態の変形例1ではマニュアル操作であおり角を変えたのに対し、本実施形態では、探触子に取り付けたロボットアームの制御によって、あおり角を異ならせる。
【0076】
本実施形態における解析モードの動作の一例を、図14を参照して説明する。
前提として撮像モードにおいて目的とする撮像部位を撮像領域とする超音波探触子20の位置(初期位置)が決まると、この位置で解析モードを開始する。初期位置の情報は、例えばメモリ70に記憶される(S901)。解析モードでは、第一実施形態と同様に光発生部15からレーザ光を照射し、PA信号発生源からPA信号を発生させて、これを超音波探触子20が受信する(S902)。解析部353は、超音波探触子20の各素子へのPA信号到達時間差を用いてPA信号発生源の距離を推定するとともに、その信号強度を記憶する(メモリに格納)(S903)。
【0077】
制御部40は信号強度が所定の閾値以下か否かを判断し(S904)、閾値以下であれば、駆動装置27に制御信号を送り、例えば、超音波探触子20を支持する支持部251をアーム部252に対し回転させてあおり角を変える制御を行い(S905)、解析モードの計測を実行する(S906)。例えば予め設定した所定のあおり角の範囲であおり角の変更と解析モードの計測を繰り返し(S907)、正負を含む複数のあおり角の信号強度の情報を取得する。解析部353は、あおり角毎の信号強度のうち最も信号強度が高くなるあおり角を求め(S908)、このあおり角から、ガイドワイヤの先端が撮像領域に対しエレベーション方向のどちら側にあるのかを判定する(S909)。また信号強度が最大となるあおり角と、ステップS903で推定したラテラル方向の位置情報とを用いることにより、ガイドワイヤ先端の正確な距離(回折波領域までの距離)を推定してもよい。
【0078】
解析モードから撮像モードに切り替わると、制御部40は超音波探触子20の位置をステップS901においてメモリ70に記憶された初期位置に戻すように駆動機構27を制御し、撮像モードを実行する。
【0079】
本実施形態によれば、第二実施形態と同様に、ガイドワイヤ先端の三次元位置情報を取得することができ、その際、術者の手を煩わせることなく、正確なガイドワイヤ先端位置を提示できる。これにより術者は、ガイドワイヤの挿入とそれに続くカテーテル治療に専念することができ、高い支援効果が得られる。
【0080】
なお本実施形態においても、PA信号発生源の距離の推定は、第一実施形態のように素子へのPA信号到達時間差から直接算出してもよいし、第三実施形態のようにPA画像に生じたスプリットの間隔から算出してもよい。
【0081】
<<表示の実施形態>>
次に、上述した各実施形態により解析部が算出し推定したPA信号発生源の位置や方向を提示する手法(表示画像形成部による処理)の実施形態を説明する。
【0082】
<表示例1>
本表示例では、超音波画像で観察している部位にガイドワイヤが近づいてくる方向とどの程度近づいているのかという、ガイドワイヤを用いて手術の支援で最も重要な情報を提示する。図15に方向情報を示す例を示す。
【0083】
図15(a)に示す例では、被検体組織を含む超音波画像を表示する画面1500上に、どちらからガイドワイヤが近づいているかを示す矢印(ビーコン)1501を表示する。ユーザは、この表示により矢印で示す方向からガイドワイヤが近づいてくることを知ることができる。ガイドワイヤ先端が、表示されている超音波画像の撮像領域に入ったならば、PA信号発生源13の超音波画像(PA)を超音波画像に重畳して表示してもよい(不図示)。
【0084】
図15(b)に示す例は、超音波画像を表示する画面の両側に、ガイドワイヤ接近を知らせる方向表示部1502A、1502Bを設けたものである。例えば、表示された超音波画像の左側からガイドワイヤが近づいている場合には、左側の方向表示部1502Aが点灯し、明るくなる。右側の方向表示部1502Bは暗いままである。これによりユーザは、方向表示部が点灯している側からガイドワイヤが近づいてくることを知ることができる。この際、ガイドワイヤが存在する側の方向表示部の明度をガイドワイヤの距離に応じて変化させてもよい。例えば、ガイドワイヤが回折波領域から遠いところにあるときには、方向表示部は非点灯とし、所定の距離に近づいたときに低い明度で点灯させる。その後回折波領域との距離が縮まるにつれて方向表示部の明度を高める。
【0085】
また図15の方向を提示する表示に加えて、例えば第一~第三実施形態で算出したガイドワイヤの位置情報を超音波画像の表示画面の端部などに併せて表示してもよい。位置情報としては、第一実施形態で算出したPA信号発生源13の位置や、超音波画像上の特定の組織(例えばターゲット)までの距離などの数値でもよいし、「遠(200mm以上)」「近(100mm以内)」などの定性的な表示でもよい。解析部が推定する位置情報は、解析モードを繰り返すことによって変化するので、変化に合わせて表示を更新する。
【0086】
本表示実施形態によれば、ガイドワイヤを用いて手術の支援を行う際に、最も重要な情報であるガイドワイヤの方向と接近とを超音波画像上に提示することができる。これにより術者はガイドワイヤの挿入に注力しながらその進行具合を視覚的に確認することができる。
【0087】
<表示例2>
本表示例では、PA信号発生源の三次元的な情報を取得した場合に、超音波の三次元画像上にPA信号発生源の位置を表示する。
【0088】
2Dアレイ探触子20Bを用いた場合や1Dアレイ探触子をエレベーション方向に掃引操作して撮像した場合には、三次元の超音波画像データが得られる。表示画像形成部355は、三次元画像データを用いて、図16に示すような、レンダリング画像1600を作成し、そのレンダリング画像中の、PA信号発生源の位置に相当する位置に、所定のマーク画像1601を重畳する。マークは、特に限定されないが、PA信号発生源を表す球状のマークでもよいし、PA信号発生源の進行方向を示す矢印のマークでもよい。さらに時間的に変化するPA信号発生源の各位置をつなげた線状のマークを示してもよい。
【0089】
<表示例3>
本実施形態は、超音波画像を表示する画面に、受信したPA信号の信号強度を表示する信号強度表示部を設けたものである。図17に表示例を示す。この表示例では、画面1700の画像と重複しない位置に時々刻々変化するPA信号強度の表示部1701を設けたものであり、信号強度の時間変化がグラフ状に表示される。PA信号の信号強度は、PA信号発生源13が超音波探触子からの距離(回折波領域からの距離)によって変化し、また第二実施形態の変形例1や第四実施形態のように、超音波探触子のあおり角を変化させた場合にも変化する。
【0090】
本実施形態では、表示画像形成部355は、解析部353から受け取った時刻毎の信号強度の変化の情報を用いて、例えば横軸を時間、縦軸を信号強度とするグラフを作成し、表示画面の信号強度表示部1701に表示する。このグラフは解析モードの計測が繰り返されるたびに更新される。あおり角を変化させる場合には、横軸をあおり角とするグラフを作成し、表示してもよい。
【0091】
本実施形態によれば、ガイドワイヤの進行状況を信号強度の変化として見ることができる。なお信号強度を示すグラフの表示とともに、他の表示例による表示を併せて行ってもよい。
【0092】
以上、本発明の超音波撮像装置およびカテーテル治療支援システムの各実施形態を説明したが、各実施形態は技術的に矛盾しない限り、適宜組み合わせることが可能であり、そのような組み合わせも本発明に包含される。
【符号の説明】
【0093】
10:光音響デバイス、11:ワイヤ、12:光ファイバ、13:PA信号発生源、15:光発生部、20:超音波探触子、30:超音波撮像部(超音波撮像装置)、31:送信部、32:受信部、35:信号処理部、40:制御部、50:入力部、60:表示部、70:メモリ、80:被検体、81:撮像領域(回折波領域)、351:超音波画像形成部、353:PA信号解析部、355:表示画像形成部
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17