(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-10-31
(45)【発行日】2022-11-09
(54)【発明の名称】情報処理システム、情報処理装置および情報処理方法
(51)【国際特許分類】
G01C 15/06 20060101AFI20221101BHJP
G01C 15/00 20060101ALI20221101BHJP
【FI】
G01C15/06 T
G01C15/00 102C
(21)【出願番号】P 2021118831
(22)【出願日】2021-07-19
(62)【分割の表示】P 2017045005の分割
【原出願日】2017-03-09
【審査請求日】2021-07-19
【新規性喪失の例外の表示】特許法第30条第2項適用 (公開の事由1)ウェブサイトのアドレス: https://iotlab.jp/jp/newinfo.html(2016年10月3日の欄)、https://iotlab.jp/common/pdf/161003_NEDO_support.pdf 掲載日:2016年10月3日 (公開の事由2)ウェブサイトのアドレス: http://www.nedo.go.jp/koubo/IT3_100004.html、http://www.nedo.go.jp/content/100799197.pdf 掲載日:2016年10月6日 (公開の事由3)ウェブサイトのアドレス: http://www.aerosense.co.jp/pressitems/2016/10/12/nedo-iotiot 掲載日:2016年10月12日
(73)【特許権者】
【識別番号】516304883
【氏名又は名称】エアロセンス株式会社
(74)【代理人】
【識別番号】110002147
【氏名又は名称】弁理士法人酒井国際特許事務所
(72)【発明者】
【氏名】清水 悟
(72)【発明者】
【氏名】佐部 浩太郎
(72)【発明者】
【氏名】真栄城 朝弘
(72)【発明者】
【氏名】鈴木 康輔
(72)【発明者】
【氏名】村越 象
【審査官】續山 浩二
(56)【参考文献】
【文献】特開2012-071645(JP,A)
【文献】国際公開第2017/024358(WO,A1)
【文献】特開2004-012395(JP,A)
【文献】特開2006-200952(JP,A)
【文献】特開2016-153726(JP,A)
【文献】特開2016-085100(JP,A)
【文献】特開2004-045158(JP,A)
【文献】特開2006-200951(JP,A)
【文献】特開2005-062143(JP,A)
【文献】特開2016-194515(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01C 15/06
G01C 15/00
(57)【特許請求の範囲】
【請求項1】
GNSS衛星から信号を受信するGNSS受信部を備えた複数の対空標識と、
前記複数の対空標識により受信された複数の前記信号に基づいて少なくとも1つの対空標識の地上位置を測定する第1の位置測定部と、
UAVにより撮像された撮像画像に前記
撮像画像の撮影時の前記UAVの位置情報を付加し、付加された前記位置情報を用いて前記撮像画像に含まれる前記対空標識の地上位置を推定し、前記推定に基づいて、前記UAVにより撮像された前記対空標識を含む撮像画像から前記対空標識を検出し、検出された撮像画像中の対空標識の位置と前記地上位置とを対応付ける処理部と、を備え、
前記対空標識は、複数の多角形を組み合わせて配置した形状、又は異なる半径を有する複数の円が同心円状に配置された形状であり、互いに隣接した領域の色彩に対応する色相は所定の閾値以上異なるか、一方が黒色であり、
前記GNSS受信部は、前記対空標識の略中央の位置に配置される、
情報処理システム。
【請求項2】
GNSS衛星から信号を受信するGNSS受信部を備えた複数の対空標識と、
前記複数の対空標識により受信された複数の前記信号に基づいて少なくとも1つの対空標識の地上位置を測定する第1の位置測定部と、
UAVにより撮像された撮像画像の特徴量に基づいて、複数の撮像画像を繋ぎ合わせ、かつ、前記UAVにより撮像された前記対空標識を含む撮像画像から前記対空標識を検出し、検出された撮像画像中の対空標識の位置と前記地上位置とを対応付ける処理部と、を備え、
前記対空標識は、複数の多角形を組み合わせて配置した形状、又は異なる半径を有する複数の円が同心円状に配置された形状であり、互いに隣接した領域の色彩に対応する色相は所定の閾値以上異なるか、一方が黒色であり、
前記GNSS受信部は、前記対空標識の略中央の位置に配置される、
情報処理システム。
【請求項3】
前記第1の位置測定部は、前記対空標識とは異なる処理装置に備えられ、干渉測位法により前記地上位置を測定する、
請求項1または2に記載の情報処理システム。
【請求項4】
前記第1の位置測定部は、スタティック法により前記地上位置を測定する、
請求項3に記載の情報処理システム。
【請求項5】
前記信号の受信を開始してから所定時間が経過したことを通知する通知部をさらに備える、
請求項4に記載の情報処理システム。
【請求項6】
前記第1の位置測定部は、RTK法により前記地上位置を測定する、
請求項3に記載の情報処理システム。
【請求項7】
前記第1の位置測定部は、前記対空標識に備えられる、
請求項6に記載の情報処理システム。
【請求項8】
前記対空標識を含む撮像画像は、前記対空標識のGNSS受信部が前記信号を受信している時に前記UAVにより撮像された撮像画像である、
請求項1ないし7のいずれか1項に記載の情報処理システム。
【請求項9】
前記信号に基づいて、単独測位法により前記対空標識の第2の地上位置を測定する第2の位置測定部をさらに備える、
請求項1から8のいずれか1項に記載の情報処理システム。
【請求項10】
前記第2の位置測定部は、前記対空標識に備えられる、
請求項9に記載の情報処理システム。
【請求項11】
前記情報処理システムは情報処理端末をさらに備え、
前記情報処理端末は、
前記第2の地上位置に関する情報を受信する第2の受信部と、
前記第2の地上位置に関する情報の表示を制御する表示制御部と、を備える、
請求項9または10に記載の情報処理システム。
【請求項12】
前記情報処理端末は、前記第2の地上位置に基づいて前記対空標識を空撮するUAVの飛行経路を生成する飛行経路生成部をさらに備える、
請求項11に記載の情報処理システム。
【請求項13】
前記第2の受信部は、前記信号に関する情報も受信し、
前記表示制御部は、前記信号に関する情報の表示も制御する、
請求項11または12に記載の情報処理システム。
【請求項14】
前記GNSS受信部は、前記対空標識から分離可能に備えられる、
請求項1ないし13のいずれか1項に記載の情報処理システム。
【請求項15】
前記処理部は、検出された撮像画像中の対空標識の位置と前記地上位置とを対応付けた情報に基づいて地上の3Dモデルデータを生成する、
請求項1ないし14のいずれか1項に記載の情報処理システム。
【請求項16】
前記対空標識は、異なる半径を有する前記複数の円が同心円状に配置された形状を有し、前記複数の円は、同心円状に配置された3つの円を含む、
請求項1ないし15のいずれか1項に記載の情報処理システム。
【請求項17】
前記GNSS受信部のアンテナが前記対空標識の略中央の位置に配置される、
請求項1ないし16のいずれか1項に記載の情報処理システム。
【請求項18】
複数の対空標識により受信されたGNSS衛星からの信号の各々に基づいて少なくとも1つの対空標識の地上位置を測定する第1の位置測定部と、
UAVにより撮像された撮像画像に前記
撮像画像の撮影時の前記UAVの位置情報を付加し、付加された前記位置情報を用いて前記撮像画像に含まれる前記対空標識の地上位置を推定し、前記推定に基づいて、前記UAVにより撮像された前記対空標識を含む撮像画像から前記対空標識を検出し、検出された撮像画像中の対空標識の位置と前記地上位置とを対応付ける処理部と、を備え、
前記対空標識は、複数の多角形を組み合わせて配置した形状、又は異なる半径を有する複数の円が同心円状に配置された形状であり、互いに隣接した領域の色彩に対応する色相は所定の閾値以上異なるか、一方が黒色であり、
前記
GNSS衛星から前記信号を受信するGNSS受信部は、前記対空標識の略中央の位置に配置される、
情報処理装置。
【請求項19】
複数の対空標識により受信されたGNSS衛星からの信号の各々に基づいて少なくとも1つの対空標識の地上位置を測定する第1の位置測定部と、
UAVにより撮像された撮像画像の特徴量に基づいて、複数の撮像画像を繋ぎ合わせ、かつ、前記UAVにより撮像された前記対空標識を含む撮像画像から前記対空標識を検出し、検出された撮像画像中の対空標識の位置と前記地上位置とを対応付ける処理部と、を備え、
前記対空標識は、複数の多角形を組み合わせて配置した形状、又は異なる半径を有する複数の円が同心円状に配置された形状であり、互いに隣接した領域の色彩に対応する色相は所定の閾値以上異なるか、一方が黒色であり、
前記
GNSS衛星から前記信号を受信するGNSS受信部は、前記対空標識の略中央の位置に配置される、
情報処理装置。
【請求項20】
複数の対空標識により受信されたGNSS衛星からの信号の各々に基づいて少なくとも1つの対空標識の地上位置を測定することと、
UAVにより撮像された撮像画像に前記
撮像画像の撮影時の前記UAVの位置情報を付加し、付加された前記位置情報を用いて前記撮像画像に含まれる前記対空標識の地上位置を推定し、前記推定に基づいて、前記UAVにより撮像された前記対空標識を含む撮像画像から前記対空標識を検出し、検出された撮像画像中の対空標識の位置と前記地上位置とを対応付けることと、を有し、
前記対空標識は、複数の多角形を組み合わせて配置した形状、又は異なる半径を有する複数の円が同心円状に配置された形状であり、互いに隣接した領域の色彩に対応する色相は所定の閾値以上異なるか、一方が黒色であり、
前記
GNSS衛星から前記信号を受信するGNSS受信部は、前記対空標識の略中央の位置に配置される、
情報処理方法。
【請求項21】
複数の対空標識により受信されたGNSS衛星からの信号の各々に基づいて少なくとも1つの対空標識の地上位置を測定することと、
UAVにより撮像された撮像画像の特徴量に基づいて、複数の撮像画像を繋ぎ合わせ、かつ、前記UAVにより撮像された前記対空標識を含む撮像画像から前記対空標識を検出し、検出された撮像画像中の対空標識の位置と前記地上位置とを対応付けることと、を有し、
前記対空標識は、複数の多角形を組み合わせて配置した形状、又は異なる半径を有する複数の円が同心円状に配置された形状であり、互いに隣接した領域の色彩に対応する色相は所定の閾値以上異なるか、一方が黒色であり、
前記
GNSS衛星から前記信号を受信するGNSS受信部は、前記対空標識の略中央の位置に配置される、
情報処理方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、情報処理システム、情報処理装置および情報処理方法に関する。
【背景技術】
【0002】
近年、地表に設置された対空標識を含む複数の画像を空から撮影し、その撮影により得られる撮影画像から対空標識を検出し、同時に撮影画像中の対空標識の地上位置(緯度、経度および標高等)を測定することによって、撮影画像に基づいて予め作成された3Dモデルデータを補正する技術が研究されている。当該技術においては、対空標識の地上位置をより高い精度で測定することが3Dモデルデータの精度をより高くするために重要である。
【0003】
なお、以下の特許文献1には、UAV(無人航空機:Unmanned aerial vehicle)に搭載されたGNSS(Global Navigation Satellite System)受信機によって、UAVを目標位置まで飛行させるための飛行計画を作成する技術が開示されている。また、特許文献2には、ユーザが、UAVの飛行領域の外周の各端点を移動しながら各端点の地上位置を記録し、その記録をUAVの飛行計画に使用するUAV飛行計画装置が開示されている。また、特許文献3には、UAVに搭載されたGNSS受信機による位置検出誤差を、UAVと地上基準点との離隔距離の測定結果に基づいて補正することで、空撮に使用されたカメラの位置を正確に求め、3Dモデルデータの精度を向上させる技術が開示されている。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2005-263112号公報
【文献】特開2002-211494号公報
【文献】特開2006-27331号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
ここで、既存技術を用いては、対空標識の地上位置の測定が容易ではなかった。例えば、レーザー測定器(トータルステーション)等の地上測量機器によって対空標識の地上位置が測定される場合、対空標識の数が多ければ多いほど、地上測量に要する時間が長くなる。また、対空標識が設置される地点が、山岳地帯等のように測量者の立ち入りが困難な場所である場合には、測量者が地上測量機器を運搬することすら困難である場合がある。そのため、地上測量の作業が、UAV写真測量に要する工数を増やし、UAV写真測量の普及の障害となっている。
【0006】
また、既存の地上測量機器による地上測量においては、対空標識の中央と一致するように地上測量機器の位置が調整されなければならないため、測量者はそのための専門技術を有していることが求められた。また、地上測量の精度が各測量者のスキルに影響されていた。さらに、既存の地上測量機器は、地上測量の際に、対空標識に覆い被さるように設置されることで対空標識が適切に空撮されないため、測量者は、地上測量とUAVによる空撮を同時に、かつ、並行して行うことができなかった。
【0007】
そこで、本開示は、上記に鑑みてなされたものであり、本開示は、より簡単な方法で対空標識の地上位置を測定することが可能な、新規かつ改良された情報処理システム、情報処理装置および情報処理方法を提供する。
【課題を解決するための手段】
【0008】
本開示によれば、GNSS衛星から信号を受信するGNSS受信部を備えた複数の対空標識と、前記複数の対空標識により受信された複数の前記信号に基づいて少なくとも1つの対空標識の地上位置を測定する第1の位置測定部と、UAVにより撮像された撮像画像に前記撮影画像の撮影時の前記UAVの位置情報を付加し、付加された前記位置情報を用いて前記撮像画像に含まれる前記対空標識の地上位置を推定し、前記推定に基づいて、前記UAVにより撮像された前記対空標識を含む撮像画像から前記対空標識を検出し、検出された撮像画像中の対空標識の位置と前記地上位置とを対応付ける処理部と、を備え、前記対空標識は、複数の多角形を組み合わせて配置した形状、又は異なる半径を有する複数の円が同心円状に配置された形状であり、互いに隣接した領域の色彩に対応する色相は所定の閾値以上異なるか、一方が黒色であり、前記GNSS受信部は、前記対空標識の略中央の位置に配置される、情報処理システムが提供される。
また、本開示によれば、GNSS衛星から信号を受信するGNSS受信部を備えた複数の対空標識と、前記複数の対空標識により受信された複数の前記信号に基づいて少なくとも1つの対空標識の地上位置を測定する第1の位置測定部と、UAVにより撮像された撮像画像の特徴量に基づいて、複数の撮像画像を繋ぎ合わせ、かつ、前記UAVにより撮像された前記対空標識を含む撮像画像から前記対空標識を検出し、検出された撮像画像中の対空標識の位置と前記地上位置とを対応付ける処理部と、を備え、前記対空標識は、複数の多角形を組み合わせて配置した形状、又は異なる半径を有する複数の円が同心円状に配置された形状であり、互いに隣接した領域の色彩に対応する色相は所定の閾値以上異なるか、一方が黒色であり、前記GNSS受信部は、前記対空標識の略中央の位置に配置される、情報処理システムが提供される。
【0009】
また、本開示によれば、複数の対空標識により受信されたGNSS衛星からの信号の各々に基づいて少なくとも1つの対空標識の地上位置を測定する第1の位置測定部と、UAVにより撮像された撮像画像に前記撮影画像の撮影時の前記UAVの位置情報を付加し、付加された前記位置情報を用いて前記撮像画像に含まれる前記対空標識の地上位置を推定し、前記推定に基づいて、前記UAVにより撮像された前記対空標識を含む撮像画像から前記対空標識を検出し、検出された撮像画像中の対空標識の位置と前記地上位置とを対応付ける処理部と、を備え、前記対空標識は、複数の多角形を組み合わせて配置した形状、又は異なる半径を有する複数の円が同心円状に配置された形状であり、互いに隣接した領域の色彩に対応する色相は所定の閾値以上異なるか、一方が黒色であり、前記GNSS受信部は、前記対空標識の略中央の位置に配置される、情報処理装置が提供される。
また、本開示によれば、複数の対空標識により受信されたGNSS衛星からの信号の各々に基づいて少なくとも1つの対空標識の地上位置を測定する第1の位置測定部と、UAVにより撮像された撮像画像の特徴量に基づいて、複数の撮像画像を繋ぎ合わせ、かつ、前記UAVにより撮像された前記対空標識を含む撮像画像から前記対空標識を検出し、検出された撮像画像中の対空標識の位置と前記地上位置とを対応付ける処理部と、を備え、前記対空標識は、複数の多角形を組み合わせて配置した形状、又は異なる半径を有する複数の円が同心円状に配置された形状であり、互いに隣接した領域の色彩に対応する色相は所定の閾値以上異なるか、一方が黒色であり、前記GNSS受信部は、前記対空標識の略中央の位置に配置される、情報処理装置が提供される。
【0010】
また、本開示によれば、複数の対空標識により受信されたGNSS衛星からの信号の各々に基づいて少なくとも1つの対空標識の地上位置を測定することと、UAVにより撮像された撮像画像に前記撮影画像の撮影時の前記UAVの位置情報を付加し、付加された前記位置情報を用いて前記撮像画像に含まれる前記対空標識の地上位置を推定し、前記推定に基づいて、前記UAVにより撮像された前記対空標識を含む撮像画像から前記対空標識を検出し、検出された撮像画像中の対空標識の位置と前記地上位置とを対応付けることと、を有し、前記対空標識は、複数の多角形を組み合わせて配置した形状、又は異なる半径を有する複数の円が同心円状に配置された形状であり、互いに隣接した領域の色彩に対応する色相は所定の閾値以上異なるか、一方が黒色であり、前記GNSS受信部は、前記対空標識の略中央の位置に配置される、情報処理方法が提供される。
また、本開示によれば、複数の対空標識により受信されたGNSS衛星からの信号の各々に基づいて少なくとも1つの対空標識の地上位置を測定することと、UAVにより撮像された撮像画像の特徴量に基づいて、複数の撮像画像を繋ぎ合わせ、かつ、前記UAVにより撮像された前記対空標識を含む撮像画像から前記対空標識を検出し、検出された撮像画像中の対空標識の位置と前記地上位置とを対応付けることと、を有し、前記対空標識は、複数の多角形を組み合わせて配置した形状、又は異なる半径を有する複数の円が同心円状に配置された形状であり、互いに隣接した領域の色彩に対応する色相は所定の閾値以上異なるか、一方が黒色であり、前記GNSS受信部は、前記対空標識の略中央の位置に配置される、情報処理方法が提供される。
【発明の効果】
【0011】
以上説明したように本開示によれば、より簡単な方法で対空標識の地上位置を測定することが可能になる。
【0012】
なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。
【図面の簡単な説明】
【0013】
【
図1】第1の実施例に係る情報処理システムの構成を示す図である。
【
図2】第1の実施例に係る対空標識の一例を示す図である。
【
図3】第1の実施例に係る対空標識の一例を拡大した図である。
【
図4】第1の実施例に係る位置測定部の機能構成を示すブロック図である。
【
図5】第1の実施例に係るクラウドサーバの機能構成を示すブロック図である。
【
図6】第1の実施例に係る管制装置の機能構成を示すブロック図である。
【
図7】第1の実施例におけるUAV写真測量の手順および各装置の動作を示すフローチャートである。
【
図8】第1の実施例におけるUAV写真測量の手順および各装置の動作を示すフローチャートである。
【
図9】第2の実施例に係る位置測定部の機能構成を示すブロック図である。
【
図10】第2の実施例におけるUAV写真測量の手順および各装置の動作を示すフローチャートである。
【
図11】第2の実施例におけるUAV写真測量の手順および各装置の動作を示すフローチャートである。
【
図13】管制装置による位置測定部から提供された情報の活用例を示す図である。
【
図14A】対空標識の地上位置情報がUAVの飛行経路の作成に利用される例を示す図である。
【
図14B】対空標識の地上位置情報がUAVの飛行経路の作成に利用される例を示す図である。
【
図15】本開示に係る位置測定部、クラウドサーバまたは管制装置を具現する情報処理装置のハードウェア構成を示すブロック図である。
【発明を実施するための形態】
【0014】
以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
【0015】
なお、説明は以下の順序で行うものとする。
1.第1の実施例
1-1.情報処理システムの構成
1-2.背景
1-3.情報処理システムの機能概要
1-4.各装置の機能構成
1-5.土量測量における手順および各装置の動作
2.第2の実施例
3.対空標識の変形例
4.位置測定部から提供された情報の活用例
5.各装置のハードウェア構成
6.むすび
【0016】
<1.第1の実施例>
(1-1.情報処理システムの構成)
以降では、本開示に係る情報処理システムの実施例について説明していく。なお、以降に記載する実施例では、本開示に係る情報処理システムが、土量測量を行うシステムである場合について説明するが、これに限定されず、本開示に係る情報処理システムは他の用途に使用されてもよい。
【0017】
まず、
図1を参照して、本開示の第1の実施例に係る情報処理システムの構成について説明する。
図1は、第1の実施例に係る情報処理システムの構成を示す図である。
【0018】
図1に示すように、本実施例に係る情報処理システムは、対空標識100と、UAV200と、クラウドサーバ300と、管制装置400と、を備える。また、UAV200はカメラ210を搭載している。
【0019】
本実施例に係る情報処理システムでは、UAV200による土量測量が行われる。より具体的に説明すると、UAV200が地表に設置されている対空標識100を含む画像を上空から撮影し、生成された撮影画像の解析が行われることによって、3Dモデルデータが生成され、当該3Dモデルデータに基づいて土量測量が行われる。本実施例に係るUAV200はいわゆるドローンの1種であり、複数のプロペラ及びモーターを有する飛行体である。
【0020】
本実施例に係る対空標識100は、土量測量に用いられる標定点として機能する。より具体的に説明すると、土量測量の測量者は、土量測量を行う対象領域に、所定(例えば、数百メートル程度)の間隔で対空標識100を設置し、当該対象領域がUAV200に搭載されたカメラ210によって上空から撮影される。その後、撮影画像中から検出される複数の対空標識100のそれぞれの位置(緯度、経度および標高等)と、各対空標識100が設置された地点の地上位置の情報とが対応付けられることで、地上の正確な3Dモデルデータの補正が行われ、当該3Dモデルデータに基づいて土量測量が行われる。
【0021】
ここで、
図2を参照して、本実施例に係る対空標識100の一例について説明する。
図2は、本実施例に係る対空標識100の一例を示す図である。対空標識100は、
図2の対空標識100aのように、正方形(または四角形)の形状を有しており、正方形の各対頂点から対角線が引かれることで区分された領域に色彩が付された標識でもよい。また、対空標識100は、
図2の対空標識100bのように、正方形が小さな4個の正方形の領域に区分され、それぞれの領域に色彩が付された標識でもよい。撮影画像を解析する装置は、当該マークの形状、模様または色彩に基づいて撮影画像から対空標識100を検出する。
【0022】
また、本実施例に係る対空標識100はGNSS受信機を搭載していることを特徴としている。詳細については後述する。なお、GNSSとは、GPS、GLONASS、Galileoまたは準天頂衛星等の衛星測位システムである。本実施例においては、単独の衛星測位システムが測位処理に用いられてもよいし、複数の衛星測位システムが測位処理に用いられてもよい。
【0023】
UAV200は、対空標識100が設置された土量測量の対象領域を空撮する飛行体である。より具体的に説明すると、UAV200は、予め設定された飛行経路等に基づいて自律的に飛行し、搭載したカメラ210を用いて対空標識100が設置されている対象領域を空撮する。そして、カメラ210によって各撮影位置で生成された複数の撮影画像データは、後述するクラウドサーバ300にアップロードされる。
【0024】
クラウドサーバ300は、撮影画像データを解析する情報処理装置である。より具体的に説明すると、クラウドサーバ300は、UAV200のカメラ210によって生成された撮影画像データを解析することで暫定的な3Dモデルデータを作成する。併せて、クラウドサーバ300は、撮影画像データから対空標識100を検出し、検出した対空標識100の位置情報と各対空標識100が設置された地上位置情報とを対応付けること等の処理を行う。その後、クラウドサーバ300は、予め作成した暫定的な3Dモデルデータを、当該処理結果に基づいて補正し、補正後の3Dモデルデータに基づいて土量測量を行う。
【0025】
管制装置400は、GCS(Ground Control Station)またはGS(Ground Station)として機能する専用の装置で構成される情報処理端末である。または、管制装置400は、PC(Personal Computer)、タブレットPCもしくはスマートフォン等の通信機能を有する装置が、そのような装置をGCSまたはGSとして機能させるためのプログラムを実行することで具現され得る。
【0026】
管制装置400は、測量者の操作に従って、UAV200と無線通信を行い、UAV200の飛行の制御、UAV200の位置の取得、UAV200に搭載されたカメラ210による撮影の制御等を行う。また、管制装置400は、UAV200およびカメラ210以外の各種装置(対空標識100またはクラウドサーバ300等)を制御してもよい。なお、本実施例に係る管制装置400は、対空標識100と無線通信を行うことで様々な機能を実現することができる。詳細については後述する。
【0027】
(1-2.背景)
以上では、第1の実施例に係る情報処理システムの構成について説明した。続いて、本開示の背景について説明する。
【0028】
近年、簡単かつ低コストで現実世界の3Dモデルデータを生成する技術が様々な分野で求められている。例えば、土木分野または建築分野においては、施工進捗管理または保守点検等のために、土木現場または建造物の3Dモデルデータを生成する技術が求められている。または、考古学分野または観光分野においては、デジタルアーカイブとして歴史的建造物または遺跡等の3Dモデルデータを生成する技術が求められている。
【0029】
3Dモデルデータを生成する技術としては、主に「地上レーザー測量」、「航空レーザー測量」、「UAV写真測量」等が存在するが、近年、UAVのコスト面、精度面および測量に要する工数面等が改善されることによって、「UAV写真測量」が特に注目されている。
【0030】
UAV写真測量において、高精度の測量を実現するためには、地上に対空標識を設置し、レーザー測定器(トータルステーション)等の地上測量機器を使用して、各対空標識の地上位置を1~2[cm]程度の精度で測定し、その測定結果により3Dモデルデータを補正する等の対応が行われている。対空標識の数が多ければ多いほど、地上測量に要する時間が長くなる。また、対空標識が設置される地点が、山岳地帯等のように測量者の立ち入りが困難な場所である場合には、測量者が地上測量機器を運搬することすら困難である場合がある。そのため、地上測量の作業が、UAV写真測量に要する工数を増やし、UAV写真測量の普及の障害となっている。
【0031】
また、既存の地上測量機器による地上測量においては、対空標識の中央と一致するように地上測量機器の位置が調整されなければならないため、測量者はそのための専門技術を有していることが求められた。また、地上測量の精度が各測量者のスキルに影響されていた。さらに、既存の地上測量機器は、地上測量の際に、対空標識に覆い被さるように設置されることで対空標識が適切に空撮されないため、測量者は、地上測量とUAVによる空撮を同時に、かつ、並行して行うことができなかった。
【0032】
本件の開示者は、上記事情に鑑み本開示を創作するに至った。本実施例に係る対空標識100は、GNSS受信機を備えた位置測定部を搭載することで自装置の地上位置を測定することができる。これによって、UAV写真測量の測量者は、地上測量に要するリソースを削減することができる。また、測量者は、複数の対空標識100の地上位置の測定を同時に、かつ、並行して実施することができる。また、測量者は、地上測量のような専門技術を保有していなくても、より簡単に安定した精度の測定結果を得ることができる。さらに、測量者は、対空標識100の地上位置の測定とUAVによる空撮を同時に、かつ、並行して行うことができる。上記によって、本開示に係る情報処理システムは、既存技術に比べて、3Dモデルデータの生成および土量測量に要するリソースを削減することができる。
【0033】
以降では本実施例について詳細に説明していくが、その前提として、GNSS受信機を利用した測位の概要について説明する。
【0034】
GNSS受信機を利用した測位においては、1台の受信機が4台以上のGNSS衛星からの電波信号を受信し、これらの信号を用いて各GNSS衛星と受信機との離隔距離が算出されることによって測位が行われる「単独測位」が一般的である。
【0035】
一方、複数台の受信機が4台以上のGNSS衛星からの電波を同時に受信し、これらの信号を用いて複数台の受信機の相対位置関係が算出される相対測位が、近年の技術革新によって容易に実現可能になっている。相対測位の中でも特に、干渉測位と呼ばれる、2台の受信機から所定のGNSS衛星までの距離の差(行路差)が搬送波の位相に基づいて算出され、基線ベクトル(距離と方向)が決定される測位方法が比較的精度が高いとされている(ミリメートル程度の精度まで測定可能とされている)。干渉測位は、実施方法の違いにより、スタティック法、RTK(Realtime Kinematic)法等に分類される。
【0036】
スタティック法は、複数の受信機によって4台以上のGNSS衛星からの信号が所定時間(例えば、1時間)以上受信され、GNSS衛星の時間的位置変化に基づいて搬送波波長の整数値バイアスが決定される方法である。スタティック法については、測位に要する時間が他の方法よりも比較的長いが、ミリメートル程度の高い精度が期待され得る。
【0037】
RTK法は、観測開始時に搬送波波長の整数値バイアスが決定され、その後、受信機間の無線通信によって観測データの交信が行われることで、リアルタイムに測位処理が行われる方法である。RTK法については、測位に要する時間が他の方法よりも短いが、その精度は、スタティック法よりも劣り、数センチメートル程度であるとされている。
【0038】
なお、干渉測位は複数の受信機の相対位置関係を測定するものであるため、基本的には、受信機のうちのいずれか一方が基準局(その位置が既知である受信機)であることが求められる。ここで、いずれか一方の受信機を観測点とし、国土地理院によって提供されている電子基準点を基準局として、事前に干渉測位が行われることで、観測点である受信機の絶対位置が測定される。その後、絶対位置が測定された観測点を基準局としてその他の受信機の絶対位置が測定され得る。
【0039】
本明細書では、スタティック法による測位処理が行われる場合を第1の実施例として説明し、RTK法による測位処理が行われる場合を第2の実施例として説明する。また、以降では、便宜的に「対空標識100の地上位置が測定される」旨の説明を行うが、本実施例において、対空標識100の地上位置が測定されることと位置測定部110の地上位置が測定されることは等価であるとする。すなわち、「対空標識100の地上位置」は、「位置測定部110の地上位置」と解釈されてもよい。
【0040】
(1-3.情報処理システムの機能概要)
上記では、本開示の背景について説明した。続いて、本実施例に係る情報処理システムの機能概要について説明する。
【0041】
上記のとおり、本実施例に係る対空標識100がGNSS受信機を備えた位置測定部を搭載する。これによって、本実施例に係る情報処理システムは、GNSS受信機によって取得されたGNSS観測データを用いて対空標識100の位置を測定することができる。
【0042】
より具体的には、本実施例に係る対空標識100の位置測定部は、GNSS観測データを用いて単独測位の処理を行うことで対空標識100の地上位置を測定し、かつ、GNSS観測データを記憶する。ここで、外部PCなど対空標識100以外の装置が測位計算を行うためには、当該外部PCに測位計算前の生データを提供することが求められる。以降、便宜的に、GNSS衛星から受信された測位計算前のデータを「RAWデータ」と呼称する。RAWデータには少なくとも、GNSS衛星から受信した信号の搬送波の位相データが含まれる。
【0043】
その後、当該RAWデータは、所定の方法によって対空標識100から取り出され、クラウドサーバ300にアップロードされる。そして、クラウドサーバ300は、当該RAWデータを用いてスタティック法による測位処理を行うことで対空標識100の地上位置をより詳細に測定することができる。このように、クラウドサーバ300が、より負荷の大きい測位処理を担うことによって、対空標識100に備えられるGNSS受信機の負荷を低減させることができる。換言すると、GNSS受信機は高性能な処理機能を有していなくてもよいため、測量コストがより低減され得る。
【0044】
続いて、
図3を参照して、本実施例に係る対空標識100について具体的に説明する。
図3は、本実施例に係る対空標識100の一例を拡大した図である。
図3に示すように、本実施例に係る対空標識100は位置測定部110を備えており、位置測定部110はGNSS受信機を備えていることとする。
【0045】
ここで、位置測定部110(厳密には、位置測定部110のアンテナ)は、対空標識100の中央に近い位置に備えられることが好ましい。例えば、
図3のように、正方形(四角形)の各対頂点から対角線が引かれているような対空標識100については、位置測定部110は、2本の対角線の交点(または交点の直上もしくは直下)に近い位置に備えられることが好ましい。ここで、撮影画像から検出される対空標識100の撮影画像中の位置は対空標識100の中央であるため、位置測定部110が対空標識100の中央に備えられることによって、後工程にて、撮影画像中の対空標識100の位置と位置測定部110によって測定される対空標識100の地上位置とが適切に対応付けられる。
【0046】
(1-4.各装置の機能構成)
上記では、本実施例に係る情報処理システムの機能概要について説明した。続いて、
図4~
図6を参照して、本実施例に係る各装置の機能構成について説明する。
【0047】
(位置測定部110の機能構成)
図4は、対空標識100に備えられる位置測定部110の機能構成を示すブロック図である。
図4に示すように、本実施例に係る位置測定部110は、アンテナ111と、GNSS受信機112と、データ処理部113と、無線通信部114と、記憶部115と、を備える。
【0048】
アンテナ111は、GNSS衛星からの電波信号を受信するGNSS受信部として機能し、当該電波信号を後述するGNSS受信機112に提供する。
【0049】
GNSS受信機112は、アンテナ111によって受信された電波信号からGNSS観測データを抽出する。なお、GNSS受信機112は、アンテナ111と共にGNSS受信部として機能してもよい。
【0050】
また、GNSS受信機112はRF回路やベースバンド回路を含んで構成され、GNSS観測データを用いて単独測位法による測位処理を行うことで対空標識100の地上位置(第2の地上位置)を測定する第2の位置測定部としても機能する。なお、クラウドサーバ300によってスタティック法に基づく測位処理が行われるように、GNSS受信機112は、単独測位法により生成した地上位置情報だけでなくRAWデータも出力する。GNSS受信機112は、単独測位法により生成した地上位置情報およびRAWデータを後述するデータ処理部113に提供する。
【0051】
データ処理部113は、各種データ処理を行う。例えば、データ処理部113は、GNSS受信機112によって出力された地上位置情報およびRAWデータを後述する記憶部115に記憶させる。また、データ処理部113は、単独測位法により生成された地上位置情報を無線通信部114に提供することで、無線通信部114が当該情報を管制装置400へ送信できるようにする。なお、データ処理部113がGNSS受信機112の代りに単独測位法による測位処理を行ってもよい。
【0052】
無線通信部114は、各種情報を管制装置400へ無線送信する。例えば、無線通信部114は、単独測位法により生成された対空標識100の地上位置情報を管制装置400へ無線送信する。また、例えば、無線通信部114は、GNSS観測データに関する情報(例えば、GNSS衛星からの電波信号の受信強度情報またはGNSS衛星の位置情報等が含まれ得るが、これらの情報に限定されない)、対空標識100の識別情報、バッテリー残量または記憶媒体の残容量等に関する情報を管制装置400に無線送信してもよい。これによって、管制装置400は、様々な機能を実現することができる。詳細については「4.位置測定部から提供された情報の活用例」にて説明する。
【0053】
記憶部115は、各種情報を記憶する。例えば、記憶部115は、単独測位法により生成された対空標識100の地上位置情報およびRAWデータ等を記憶する。また、記憶部115によって記憶されている情報のうち少なくともRAWデータは、所定の方法で記憶部115から取り出される。例えば、RAWデータは、リムーバブル記憶媒体によって取り出されたり、記憶部115に接続されたケーブル等によって取り出されたりする。取り出されたRAWデータは、クラウドサーバ300へアップロードされることによって、クラウドサーバ300によるスタティック法に基づく測位処理に使用される。
【0054】
(クラウドサーバ300の機能構成)
図5は、クラウドサーバ300の機能構成を示すブロック図である。
図5に示すように、本実施例に係るクラウドサーバ300は、通信部310と、情報取得部320と、処理部330と、制御部340と、記憶部350と、を備える。
【0055】
通信部310は各種通信を行う。例えば、測量者が、各対空標識100の位置測定部110によって出力されたRAWデータ、または、カメラ210によって生成された撮影画像データをアップロードした場合、通信部310は、アップロードされたこれらのデータを受信する。通信部310は、受信した各種情報を後述する情報取得部320に提供する。
【0056】
情報取得部320は、各種情報を取得する。例えば、情報取得部320は、通信部310により受信されたRAWデータおよび撮影画像データ等をメモリなどから読み出すことにより取得し、これらの情報を後述する処理部330に提供する。なお、情報取得部320は、取得した情報に対して各種データ処理を行ってもよい。例えば、情報取得部320は、取得した情報のうち土量測量に不要な情報を削除したり、撮影画像データのデータ量を削減したりしてもよい。例えば、UAV200の飛行前から飛行後まで撮影をした場合に取得される、離着陸時の画像や、旋回時の重複画像、高度調整時の重複画像の中から、不要な画像を削除してもよい。また、取得された複数の撮影画像のうち、重複している領域を除去してもよい。
【0057】
処理部330は、土量測量に関する各種処理を行う。例えば、処理部330は、アップロードされた撮影画像から対空標識100を検出する処理を行う。また、処理部330は、アップロードされたRAWデータを用いてスタティック法による測位処理を行うことで、各対空標識100の地上位置を測定する第1の位置測定部として機能する。このとき、処理部330は、所定のソフトウェアを使用して測位処理を行ってもよい。例えば、処理部330は、RTKLIBという、C言語により記述された簡潔で可搬性の高いRTK-GPS測位演算ライブラリ、または、これを利用して生成されたアプリケーションプログラム集を使用して測位処理を行ってもよい。RTKLIBはオープンソースソフトウェアであるため、測位処理がより安価に実現され得る。
【0058】
また、処理部330は、撮影画像から検出した各対空標識100の画像中の位置情報と、各対空標識100の地上位置情報とを自律的に対応付ける。より具体的には、アップロードされた撮影画像データには、各撮影画像が撮影された時点のUAV200またはカメラ210の位置情報が付加されており、処理部330は、当該情報を用いて、撮影画像に含まれる各対空標識100の大まかな地上位置を推定することができるため、この推定等に基づいて撮影画像中の各対空標識100の位置情報と地上位置情報とを自律的に対応付けることができる。これによって、処理部330は、撮影画像中の各対空標識100の地上位置を特定することができる。
【0059】
また、処理部330は3Dモデルデータの生成処理を行う。より具体的には、処理部330は、各撮影画像の特徴量等に基づいて複数の撮影画像を繋ぎ合せる処理を行う。そして、処理部330は、繋ぎ合せた後の撮影画像に基づいて暫定的な3Dモデルデータを生成した後、各対空標識100の撮影画像中の位置情報と地上位置情報との対応付け結果に基づいて暫定的な3Dモデルデータを補正することで最終的な3Dモデルデータを生成する。なお、この方法はあくまで一例であり、3Dモデルデータを生成する方法は任意である。例えば、処理部330は、暫定的な3Dモデルデータを生成することなく、各対空標識100の撮影画像中の位置情報と地上位置情報との対応付け結果に基づいて直に最終的な3Dモデルデータを生成してもよい。
【0060】
さらに、処理部330は、生成した3Dモデルデータを用いて土量測量に関する処理を行う。例えば、処理部330は、上記の処理によって生成された3Dモデルデータと、3D CADの造成計画図(着工前・完成後の三次元モデルデータなど)を比較し、差分等を算出する。これによって、測量者は、工事の進捗管理等を容易に行うことができる。なお、処理部330は、差分等を所定のディスプレイに表示するための各種処理を行ってもよい。
【0061】
制御部340は、クラウドサーバ300の各機能構成を統括的に制御する。例えば、制御部340は、測量者による入力によって、上記で説明した各種処理の開始を制御したり、3Dモデルデータまたは土量測量結果を測量者に提供する処理を制御したりする。なお、これらの処理はあくまで一例であり、制御部340はその他の処理を制御してもよい。
【0062】
記憶部350は、各種情報を記憶する。例えば、記憶部350は、アップロードされたRAWデータもしくは撮影画像データ、3Dモデルデータまたは土量測量結果等を記憶してもよい。また、記憶部350は、クラウドサーバ300の各機能構成によって使用されるプログラムまたはパラメータ等を記憶してもよい。
【0063】
(管制装置400の機能構成)
図6は、管制装置400の機能構成を示すブロック図である。
図6に示すように、本実施例に係る管制装置400は、通信部410と、制御部420と、表示部430と、記憶部440と、を備える。
【0064】
通信部410は各種通信を行う。例えば、通信部410は、位置測定部110によって単独測位法を用いて生成された対空標識100の地上位置情報を無線通信によって受信する第2の受信部として機能する。また、例えば、通信部410は、上記のように、GNSS観測データに関する情報(例えば、GNSS衛星からの電波信号の受信強度情報またはGNSS衛星の位置情報等が含まれ得るが、これらの情報に限定されない)、対空標識100の識別情報、バッテリー残量または記憶媒体の残容量等に関する情報を位置測定部110から受信してもよい。通信部410は、受信したこれらの情報を後述する制御部420に提供する。
【0065】
制御部420は、管制装置400の各機能構成を統括的に制御する。例えば、制御部420は、通信部410によって受信された各種情報に基づいて制御信号を生成し、当該制御情報を後述する表示部430に提供することによって、表示部430による各種情報の表示を実現する表示制御部として機能する。なお、当該制御はあくまで一例であり、制御部420は、その他の任意の処理を制御し得る。例えば、制御部420は、通信部410によって受信された各種情報に基づいて制御信号を生成し、当該制御信号を音声出力部(図示なし)に提供することによって、音声出力部による音声出力を実現してもよい。また、制御部420は、通信部410によって受信された各種情報に基づいてUAV200の飛行経路を自律的に生成する飛行経路生成部として機能する。例えば、制御部420は、各対空標識100の地上位置情報および各種パラメータ等に基づいてより効率的に空撮を行うことが可能な飛行経路を自律的に算出する。上記の制御部420の処理については「4.位置測定部110から提供された情報の活用例」にて具体的に説明する。
【0066】
表示部430は、各種オブジェクトを表示する。より具体的に説明すると、表示部430は、制御部420から提供された制御情報に基づいて位置測定部110から受信された各種情報をディスプレイに表示する。上記の表示部430の表示内容については「4.位置測定部110から提供された情報の活用例」にて具体的に説明する。
【0067】
(1-5.土量測量における手順および各装置の動作)
上記では、各装置の機能構成について説明した。続いて、
図7および
図8を参照して、土量測量における手順および各装置の動作について説明する。まず、
図7を参照して、対空標識100が回収されるまでの手順について説明する。
【0068】
ステップS1000では、土量測量の測量者が測量対象となる区域周辺の地図情報等を参考にして、複数の対空標識100を設置する場所を事前に計画する。ステップS1004では、測量者が、計画した設置場所に対空標識100を設置する。ステップ1008では、対空標識100の位置測定部110が、GNSS衛星からの電波信号の受信を開始する。受信された電波信号はRAWデータとして記憶部115に時系列に従って記録される。なお、位置測定部110は、上記のとおり、単独測位による地上位置の測定を行い、その結果を管制装置400へ無線送信してもよい。
【0069】
ステップS1012では、全ての対空標識100が設置された後に、UAV200は、事前に計画された飛行経路に従って測量対象となる区域の上空を飛行する。そして、カメラ210は、測量対象となる区域を含む空撮を行う。この際、各撮像地点において撮像された画像には、撮像時間情報と撮像位置情報とが関連付けられる。例えば所定のフォーマットに従い、撮像画像データ内に撮像時間情報と撮像位置情報が記録される。また、本実施例ではスタティック法による測位処理が行われるため、空撮が正常に完了し、かつ、位置測定部110がGNSS衛星からの電波信号を所定時間(例えば、1時間)以上受信したと測量者が判断した場合(ステップS1016/Yes)、ステップS1020にて、位置測定部110はGNSS衛星からの電波信号の受信を終了し対空標識100が回収される。このように各対空標識100が位置測定部110を有していることにより、各対空標識100の位置測定部110がGNSS衛星から電波信号を受信するのと同時に、かつ、並行して、UAV200は当該対空標識100を含む地上画像を撮像することができる。
【0070】
続いて、
図8を参照して、クラウドサーバ300が3Dモデルデータの生成等を行う処理手順について説明する。まず複数の対空標識100から取り出された、各対空標識100がGNSS受信機112により受信したRAWデータと、UAV200のカメラ210により各撮像位置で撮像された複数の撮像画像データがクラウドサーバ300にアップロードされる。ステップS1100では、クラウドサーバ300がアップロードされた各対空標識100のGNSS受信機112が受信したそれぞれのRAWデータ、及びUAV200のカメラ210により各撮像位置で撮像された複数の撮像画像データを受信する。ステップS1104では、クラウドサーバ300の処理部330が各撮像位置で撮像された複数の撮影画像データから対空標識100の画像を検出し、撮像画像中の対空標識100の位置を特定する処理を行う。ステップS1108では、処理部330が、各対空標識100のGNSS受信機112が受信したそれぞれのRAWデータを用いてスタティック法による測位処理を行うことで、各対空標識100の地上位置を測定する。
【0071】
ステップS1112では、処理部330が、撮影画像から検出した各対空標識100の撮影画像中の位置情報とスタティック法により測位された各対空標識100の地上位置情報とを対応付ける。ステップS1116では、処理部330が3Dモデルデータを生成する。より具体的には、処理部330は、所定の方法で複数の撮影画像を繋ぎ合せ、繋ぎ合せた後の撮影画像に基づいて暫定的な3Dモデルデータを生成し、その後、各対空標識100の撮影画像中の位置情報と地上位置情報との対応付け結果に基づいて暫定的な3Dモデルデータを補正することで最終的な3Dモデルデータを生成する。ステップS1120では、処理部330が生成した3Dモデルデータを用いて土量測量に関する処理を行う。例えば、処理部330は、上記のように、3Dモデルデータと3D CADの造成計画図を比較し差分等を算出する。
【0072】
<2.第2の実施例>
上記では、本開示に係る第1の実施例について説明した。続いて、本開示に係る第2の実施例について説明する。第1の実施例においては、スタティック法によって対空標識100の位置が測定されていた。一方で、第2の実施例は、RTK法によって対空標識100の位置が測定される実施例である。以降では、基本的に、第1の実施例の説明と重複する内容は省略し、第1の実施例との差分について説明する。
【0073】
まず、
図9を参照して、第2の実施例に係る位置測定部110の機能構成について説明する。
図9は、第2の実施例に係る位置測定部110の機能構成を示すブロック図である。
【0074】
本実施例に係るGNSS受信機112は、RTK法による測位処理機能を有している。より具体的には、GNSS受信機112は、2台の対空標識100に備えられた位置測定部110(自装置に備えられた位置測定部110と、他の対空標識100に備えられた位置測定部110)によって取得されたGNSS観測データを用いて対空標識100の地上位置を測定する第1の位置測定部として機能する。本実施例に係る無線通信部114は、
図9に示すように、他の対空標識100に備えられた位置測定部110(図中には「位置測定部110c」と記載)と無線通信を行うことによって、RTK法による測位処理に用いられるGNSS観測データを共有し、データ処理部113を介して当該データを測位処理を行うGNSS受信機112に提供する。
【0075】
なお、GNSS受信機112ではなく、データ処理部113がRTK法による測位処理を行ってもよいし、GNSS受信機112およびデータ処理部113が分担してRTK法による測位処理を行ってもよい。なお、第1の実施例において、GNSS受信機112は単独測位処理を行っていたが、第2の実施例においても、GNSS受信機112はRTK法による測位処理だけでなく単独測位処理も行ってよい。
【0076】
本実施例に係る記憶部115は、RTK法による測位処理で出力された対空標識100の地上位置情報を記憶する。なお、記憶部115は、地上位置情報だけでなく、第1の実施例と同様に、RAWデータも記憶してよい。これによって、例えば、クラウドサーバ300が位置測定部110のGNSS受信機112に比べて高性能な測位機能を有している場合、測量者は、GNSS受信機112による測位結果だけでなく、クラウドサーバ300による測位処理の結果も適宜利用することができる。
【0077】
続いて、
図10を参照して、第2の実施例において、対空標識100が回収されるまでの手順について説明する。ステップS1200およびステップS1204は、
図7のステップS1000およびステップS1004と同一であるため、説明を省略する。ステップS1208では、対空標識100に備えられる位置測定部110は、GNSS衛星からの電波信号の受信を開始すると共に、他の対空標識100に備えられる位置測定部110とGNSS観測データの共有を行うことによってRTK法を用いた測位処理を開始する。RTK法においては、スタティック法と異なりリアルタイムに測位処理が行われるため、ステップS1212にてUAV200およびカメラ210による空撮が行われた後に、所定時間の経過が待たれることなく、ステップS1216にて、対空標識100が回収され得る。
【0078】
続いて、
図11を参照して、第2の実施例におけるクラウドサーバ300が3Dモデルデータの生成等を行う処理手順について説明する。まず複数の対空標識100から取り出された、各対空標識100がGNSS受信機112により生成した地上位置情報と、UAV200のカメラ210により各撮像位置で撮像された複数の撮像画像データがクラウドサーバ300にアップロードされる。ステップS1300では、クラウドサーバ300がアップロードされた地上位置情報および撮影画像データを受信する。ステップS1304では、クラウドサーバ300の処理部330が各撮像位置で撮像された複数の撮影画像データから対空標識100の画像を検出し、撮像画像中の対空標識100の位置を特定する処理を行う。ステップS1308では、処理部330が、撮影画像から検出した各対空標識100の撮影画像中の位置情報と各対空標識100の地上位置情報とを対応付ける。ステップS1312およびステップS1316の動作は、
図8のステップS1116およびステップS1120の動作と同様であるため、説明を省略する。
【0079】
本実施例のように、位置測定部110によってRTK法に基づく測位処理が行われることによって、クラウドサーバ300は、測位処理を行うことなく、アップロードされた地上位置情報を用いて3Dモデルデータの生成および土量測量処理を行うことができる。
【0080】
また、スタティック法においては、測量者は、所定時間後(例えば、対空標識100が回収された後)にならなければ後処理に適切なRAWデータが取得されているか否かがわからない。したがって、仮に、適切なRAWデータが取得されていない場合に、測量者は、対空標識100の設置、空撮および対空標識100の回収等の作業をやり直さなければならなくなる。一方、RTK法においては、リアルタイムに測位処理が行われるため、測量者は、適切なRAWデータが取得されているか否か、および測位処理が適切に行われているか否かを把握することができる。
【0081】
なお、上記のとおり、基本的に、RTK法による測位処理の精度は、スタティック法による測位処理の精度に比べて低い場合が多いが、単独測位の精度に比べると高い。そのため、リアルタイム性と求められる精度次第で第2の実施例は利用され得る。
【0082】
なお、上記で説明してきた第1の実施例の処理と第2の実施例の処理が適宜組み合わされてもよい。例えば、複数の対空標識100のうちの一部の地上位置が第1の実施例であるスタティック法により求められ、残りの対空標識100の地上位置が第2の実施例であるRTK法により求められてもよい。測量者は、第1の実施例および第2の実施例を組み合わせることによって、測量対象となる区域の特性、天気等の周辺環境または求められる精度等に柔軟に対応することができる。
【0083】
<3.対空標識の変形例>
上記では、本開示に係る第2の実施例について説明した。続いて、
図12A~
図12Cを参照して、対空標識100の変形例について説明する。
図12A~
図12Cは、対空標識100の変形例を示す図である。
【0084】
図12A~
図12Cに示す対空標識100は、位置測定部110と対空標識部120を備える。また、対空標識部120は、黒丸領域121と、赤丸領域122と、黒丸領域123と、杭124と、を備える。ここで、黒丸領域121、赤丸領域122および黒丸領域123は、それぞれ大きさが異なっており、黒丸領域121が最も大きく、赤丸領域122が2番目に大きく、黒丸領域123が最も小さくなっている。これらの各構成が重ねられることによって、当該対空標識100が空撮された場合に、異なる半径を有する複数の円が同心円状に配置された形状が撮影される。また、赤と黒のように色相が所定の閾値以上異なる色彩が互いに隣接した円に付されることによって、撮影画像から対空標識100が検出され易くなる。
【0085】
ここで、最も小さい黒丸領域123は、所定の筐体を備えた位置測定部110が分離可能に設置される構造を有している。そして、測量者は、黒丸領域121、赤丸領域122および黒丸領域123を重ねて設置し、これらを貫通するように杭124を打つことでこれらを固定した後に、位置測定部110を黒丸領域123上部に設置する。なお、最も大きな黒丸領域121と2番目に大きな赤丸領域122は一体化されていてもよい。
【0086】
黒丸領域123が位置測定部110を分離可能に設置する構造を有していることで、測量者は、それぞれの構成を分離した状態で対空標識100を運搬することができるため、より容易に対空標識100を運搬することができる。例えば、複数人が分離後の各構成を分担して運搬することができる。また、測量者は、それぞれの構成を分離することで、対空標識100をより小さく収納することが可能になる(例えば、測量者は黒丸領域121および赤丸領域122を小さく折り畳んで収納すること等が可能になる)。
【0087】
さらに、対空標識100の構成の一部が破損または故障した場合には、測量者は、破損または故障した構成のみを修理することができ、かつ、破損または故障していない他の対空標識100の構成を代用することができる。さらに、測量者は、本実施例のように位置測定部110の使用の有無を容易に変更することができる。すなわち、位置測定部110が不要な場合には、測量者は、位置測定部110を除去し、黒丸領域121、赤丸領域122、黒丸領域123および杭124のみを使用することで土量測量を実施することができる。
【0088】
<4.位置測定部110から提供された情報の活用例>
上記では、対空標識100の変形例について説明した。上記のとおり、位置測定部110は、単独測位によって測定した自装置の地上位置(第2の地上位置)やGNSS観測データ等の様々な情報を、無線通信部114を介して管制装置400へ送信する。そして、管制装置400は、これらの情報を受信する第2の受信部、および、これらの情報の表示を制御する表示制御部を備えており、様々な機能を実現することができる。そこで、続いては、
図13および
図14を参照して、管制装置400による位置測定部110から提供された情報の活用例について説明する。
【0089】
図13は、管制装置400による位置測定部110から提供された情報の活用例を示す図である。より具体的には、管制装置400は、自装置に備えられているディスプレイの領域450に対空標識100の水平位置(緯度および経度)情報を表示している。例えば、管制装置400は、対象区域の地図を領域450に表示し、各対空標識100からの地上位置情報に基づいて各対空標識100を地図上に表示する。そして、測量者が地図上に表示されたいずれかの対空標識100を選択すると、管制装置400は、
図13のように当該対空標識100の水平位置情報をポップアップ表示する。なお、これはあくまで一例であり、選択された対空標識100に関する任意の情報を表示してもよい。例えば、対空標識100の識別情報、バッテリー残量、記憶媒体の残容量、対空標識100が設置された地点の標高、もしくはGNSS観測データの受信開始からの経過時間等を表示してもよい。
【0090】
測量者はこれらの情報を様々に活用することができる。例えば、対空標識100の設置の際に、測量者は地図または他の対空標識100の設置場所を確認することができるため、設置のための効率的な経路を容易に検討することができる。また、対空標識100の回収の際に、測量者は対空標識100が設置されている地上位置を把握することができるため、迷うことなく効率的に対空標識100の回収を行うことができる。また、測量者は土量測量の実施を妨げる様々な問題(位置測定部110のバッテリー残量の低下もしくは記憶媒体の残容量の低下等)を容易に把握することができる。
【0091】
さらに、例えばスタティック法による測位が行われる場合、管制装置400が、GNSS観測データの受信開始からの経過時間に基づいて、GNSS観測データの受信開始から所定時間(例えば1時間)が経過したことを測量者に通知する通知部として機能することで、測量者は、対空標識100を回収してよいタイミングを容易に把握することができる。
【0092】
また、
図13に示すように、管制装置400は、ディスプレイの領域460にはGNSS衛星の位置情報を表示している(図中には、GNSS衛星が黒丸として表現されている)。例えば、管制装置400は、GNSS衛星が対空標識100の真上に近い位置にあるほど領域460に表示した円の中心に近い位置に当該GNSS衛星に対応する印(黒丸)を表示する。一般的に、GNSS衛星が測位対象の真上から離れる程、測位精度が下がる。したがって、GNSS衛星の位置情報が表示されることによって、測量者は、当該対空標識100の測位精度を予想したり、より高い精度が期待できる地上位置に対空標識100を移動させたりすることができる。
【0093】
また、
図13に示すように、管制装置400は、ディスプレイの領域470には各GNSS衛星からの電波信号の受信強度情報を表示している。例えば、管制装置400は、選択された対空標識100が各GNSS衛星から受信している電波信号の受信強度を、棒グラフ等を用いて表示する。一般的に、電波信号の受信強度が低いほど、測位精度が下がる。したがって、電波信号の受信強度が表示されることによって、測量者は、上記と同様に、当該対空標識100の測位精度を予想したり、より高い精度が期待できる地上位置に対空標識100を移動させたりすることができる。
【0094】
上記では、位置測定部110から提供された各種情報が管制装置400によって利用される例について説明したが、各種情報は管制装置400以外の装置によって利用されてもよい。例えば、位置測定部110から提供された各種情報は、UAV200、カメラ210またはクラウドサーバ300によって利用されてもよいし、その他の装置(例えば、測量者のスマートフォン等)によって利用されてもよい。また、管制装置400は、各種情報をディスプレイに表示するのではなく、その他の方法(音、光または信号等を用いた方法)によって出力してもよい。
【0095】
続いて、
図14Aおよび
図14Bを用いて、対空標識100の地上位置情報がUAV200の飛行経路の作成に利用される例について説明する。
図14Aおよび
図14Bは、対空標識100の地上位置情報がUAV200の飛行経路の作成に利用される例を示す図である。
【0096】
図14Aに示すように、土量測量の対象区域に複数の対空標識100が設置される。そして、管制装置400は、複数の対空標識100の全てが空撮されるようにUAV200の飛行経路を生成する飛行経路生成部も備えている。飛行経路生成部は、各対空標識100の地上位置情報を用いて自律的にUAV200の飛行経路を作成することができる。
【0097】
より具体的には、管制装置400は、各種パラメータ(各撮影画像が重なり合う度合い(オーバーラップ率、サイドラップ率)、カメラ210の画角、UAV200の飛行速度もしくは高度等)および各対空標識100の地上位置情報に基づいてより効率的に空撮することが可能な飛行経路を自律的に算出する。そして、管制装置400は、
図14Bに示すように、全ての対空標識100を内包する領域を飛行区域として設定し、当該飛行区域および飛行経路の算出結果等をディスプレイに表示する。
【0098】
これによって、測量者は、複数の対空標識100を設置するだけで、適切なUAV200の飛行経路を得ることができる。また、飛行区域が設定されることによって、UAV200は、当該飛行区域をジオフェンス(飛行可能な領域)として利用することで飛行区域外に出ることなく安全に飛行することができる。
【0099】
なお、測量者は、空撮時の状況(障害物の有無、天気状況(風向、風速または降雨等))に応じて、管制装置400によって作成された飛行経路を修正することができてもよい。また、管制装置400は、飛行中のUAV200からのフィードバックを受信し、当該フィードバックに基づいて飛行経路を随時修正できてもよい。
【0100】
<5.各装置のハードウェア構成>
上記では、対空標識100から提供された情報の活用例について説明した。続いて、
図15を参照して、各装置のハードウェア構成について説明する。上記の各種処理は、ソフトウェアと以下に説明するハードウェアとの協働により実現される。
【0101】
図15は、本開示に係る位置測定部110、クラウドサーバ300または管制装置400を具現する情報機器900のハードウェア構成を示すブロック図である。情報機器900は、CPU(Central Processing Unit)901と、ROM(Read Only Memory)902と、RAM(Random Access Memory)903と、ホストバス904と、を備える。また、情報機器900は、ブリッジ905と、外部バス906と、インタフェース907と、入力装置908と、出力装置909と、ストレージ装置(HDD)910と、ドライブ911と、通信装置912と、を備える。
【0102】
CPU901は、演算処理装置および制御装置として機能し、各種プログラムに従って情報機器900内の動作全般を制御する。また、CPU901は、マイクロプロセッサであってもよい。ROM902は、CPU901が使用するプログラムや演算パラメータ等を記憶する。RAM903は、CPU901の実行において使用するプログラムや、その実行において適宜変化するパラメータ等を一時記憶する。これらはCPUバスなどから構成されるホストバス904により相互に接続されている。当該CPU901、ROM902およびRAM903の協働により、位置測定部110のGNSS受信機112もしくはデータ処理部113、クラウドサーバ300の情報取得部320、処理部330もしくは制御部340、または、管制装置400の制御部420が実現され得る。
【0103】
ホストバス904は、ブリッジ905を介して、PCI(Peripheral Component Interconnect/Interface)バスなどの外部バス906に接続されている。なお、必ずしもホストバス904、ブリッジ905および外部バス906を分離構成する必要はなく、1つのバスにこれらの機能を実装してもよい。
【0104】
入力装置908は、タッチパネル、ボタン、マイクロフォンおよびスイッチなどユーザが情報を入力するための入力手段と、ユーザによる入力に基づいて入力信号を生成し、CPU901に出力する入力制御回路などから構成されている。情報機器900のユーザは、該入力装置908を操作することにより、情報機器900に対して各種のデータを入力したり処理動作を指示したりすることができる。
【0105】
出力装置909は、例えば、CRT(Cathode Ray Tube)ディスプレイ装置、液晶ディスプレイ(LCD)装置、OLED(Organic Light Emitting Diode)装置およびランプなどの表示装置を含む。さらに、出力装置909は、スピーカおよびヘッドホンなどの音声出力装置を含んでもよい。出力装置909は、例えば、再生されたコンテンツを出力する。具体的には、表示装置は再生された映像データ等の各種情報をテキストまたはイメージで表示する。一方、音声出力装置は、再生された音声データ等を音声に変換して出力する。当該出力装置909により、管制装置400の表示部430が実現され得る。
【0106】
ストレージ装置910は、データ格納用の装置である。ストレージ装置910は、記憶媒体、記憶媒体にデータを記録する記録装置、記憶媒体からデータを読み出す読出し装置および記憶媒体に記録されたデータを削除する削除装置などを含んでもよい。ストレージ装置910は、例えば、HDD(Hard Disk Drive)で構成される。このストレージ装置910は、ハードディスクを駆動し、CPU901が実行するプログラムや各種データを格納する。当該ストレージ装置910により、位置測定部110の記憶部115、クラウドサーバ300の記憶部350、または、管制装置400の記憶部440が実現され得る。
【0107】
ドライブ911は、記憶媒体用リーダライタであり、情報機器900に外付けされる。ドライブ911は、装着されている磁気ディスク、光ディスク、光磁気ディスク、または半導体メモリ等のリムーバブル記憶媒体913に記録されている情報を読み出して、RAM903に出力する。また、ドライブ911は、リムーバブル記憶媒体913に情報を書き込むこともできる。
【0108】
通信装置912は、例えば、通信網914に接続するための通信デバイス等で構成された通信インタフェースである。当該通信装置912により、位置測定部110のアンテナ111、GNSS受信機112もしくは無線通信部114、クラウドサーバ300の通信部310、または、管制装置400の通信部410が実現され得る。
【0109】
<6.むすび>
以上で説明してきたように、本実施例に係る対空標識100は、GNSS受信機を備えた位置測定部110を搭載することで自装置の地上位置を測定することができる。これによって、測量者は、地上測量に要するリソースを削減することができる。また、測量者は、複数の対空標識100の地上位置の測定を同時に、かつ、並行して実施することができる。また、測量者は、地上測量のような専門技術を保有していなくても、より簡単に安定した精度の測定結果を得ることができる。さらに、測量者は、対空標識100の地上位置の測定と空撮を同時に、かつ、並行して行うことができる。上記によって、本開示に係る情報処理システムは、既存技術に比べて、3Dモデルデータの生成および土量測量に要するリソースを削減することができる。
【0110】
以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
【0111】
例えば、上記の各フローチャートに示した各ステップは、必ずしもフローチャートとして記載された順序に沿って時系列に処理する必要はない。すなわち、各ステップは、フローチャートとして記載した順序と異なる順序で処理されても、並列的に処理されてもよい。例えば、
図8のステップS1104およびステップS1108は、
図8とは異なる順序で処理されても、並列的に処理されてもよい。
【0112】
また、位置測定部110およびクラウドサーバ300の構成の一部は、適宜外部装置に設けられ得る。また、位置測定部110の機能の一部が、データ処理部113によって具現されてもよい。例えば、データ処理部113がGNSS受信機112または無線通信部114の機能の一部を具現してもよい。また、クラウドサーバ300の機能の一部が、制御部340によって具現されてもよい。例えば、制御部340が通信部310、情報取得部320または処理部330の機能の一部を具現してもよい。
【0113】
また、対空標識100、位置測定部110、UAV200、カメラ210、クラウドサーバ300および管制装置400の間の通信形態は上記で説明した形態に限定されず、適宜変更され得る。例えば、上記では、RAWデータおよび撮影画像データは、測量者によって位置測定部110およびカメラ210から取り出されて、クラウドサーバ300にアップロードされる旨を説明した。しかし、これに限定されず、RAWデータおよび撮影画像データは、無線通信によって位置測定部110およびカメラ210から直接クラウドサーバ300に送信されてもよいし、例えば、管制装置400を経由してクラウドサーバ300に送信されてもよい。また、クラウドサーバ300は、管制装置400と無線通信を行うことで、例えば、対空標識100の詳細な地上位置情報、3Dモデルデータまたは土量測量結果等を管制装置400に送信してもよい。
【0114】
また、上記で説明した対空標識100の回収方法は任意である。例えば、対空標識100は、UAV200によって回収されてもよい。より具体的には、対空標識100に備えられた位置測定部110が単独測位によって算出した自装置の地上位置情報を、UAV200が取得し、当該情報に基づいて各対空標識100が設置されている地上位置まで飛行し、各対空標識100を回収してもよい。ここで、UAV200が位置測定部110によって生成された地上位置情報を取得する方法は任意である。例えば、UAV200は、位置測定部110から地上位置情報を受信した管制装置400と無線通信を行うこと等により各対空標識100の地上位置情報を取得してもよいし、UAV200が直接位置測定部110と無線通信を行うことで各対空標識100の地上位置情報を取得してもよい。また、UAV200に備えられる対空標識100を回収可能な機構は任意である。例えば、UAV200は、対空標識100を把持する機構および収納する機構を有していてもよい。
【0115】
また、対空標識100は移動機能を有していてもよい。例えば、GNSS衛星からの電波信号の受信環境が劣悪である場合に、受信環境がより良い場所まで対空標識100が自律的に移動することができてもよい。既存技術によっては、例えば、対空標識の回収後でなければ良好な電波信号が受信されているか否かが明らかにならなかったが、本開示のように対空標識100に位置測定部110が備えられることによって、良好な電波信号が受信されているか否かが即時に明らかになるため、上記のような対空標識100の移動機能が有用である。また、対空標識100は、当該移動機能により、空撮等の作業前に設置予定場所まで自律的に移動し、空撮等の作業後には回収場所まで自律的に移動してもよい。
【0116】
また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
【0117】
なお、以下のような構成も本開示の技術的範囲に属する。
(1)
GNSS衛星から信号を受信するGNSS受信部を備えた複数の対空標識と、
前記複数の対空標識により受信された複数の前記信号に基づいて少なくとも1つの対空標識の地上位置を測定する第1の位置測定部と、
UAVにより撮像された撮像画像に前記撮影画像の撮影時の前記UAVの位置情報を付加し、付加された前記位置情報を用いて前記撮像画像に含まれる前記対空標識の地上位置を推定し、前記推定に基づいて、前記UAVにより撮像された前記対空標識を含む撮像画像から前記対空標識を検出し、検出された撮像画像中の対空標識の位置と前記地上位置とを対応付ける処理部と、を備え、
前記対空標識は、複数の多角形を組み合わせて配置した形状、又は異なる半径を有する複数の円が同心円状に配置された形状であり、互いに隣接した領域の色彩に対応する色相は所定の閾値以上異なるか、一方が黒色であり、
前記GNSS受信部は、前記対空標識の略中央の位置に配置される、
情報処理システム。
(2)
GNSS衛星から信号を受信するGNSS受信部を備えた複数の対空標識と、
前記複数の対空標識により受信された複数の前記信号に基づいて少なくとも1つの対空標識の地上位置を測定する第1の位置測定部と、
UAVにより撮像された撮像画像の特徴量に基づいて、複数の撮像画像を繋ぎ合わせ、かつ、前記UAVにより撮像された前記対空標識を含む撮像画像から前記対空標識を検出し、検出された撮像画像中の対空標識の位置と前記地上位置とを対応付ける処理部と、を備え、
前記対空標識は、複数の多角形を組み合わせて配置した形状、又は異なる半径を有する複数の円が同心円状に配置された形状であり、互いに隣接した領域の色彩に対応する色相は所定の閾値以上異なるか、一方が黒色であり、
前記GNSS受信部は、前記対空標識の略中央の位置に配置される、
情報処理システム。
(3)
前記第1の位置測定部は、前記対空標識とは異なる処理装置に備えられ、干渉測位法により前記地上位置を測定する、
上記(1)または(2)に記載の情報処理システム。
(4)
前記第1の位置測定部は、スタティック法により前記地上位置を測定する、
上記(3)に記載の情報処理システム。
(5)
前記信号の受信を開始してから所定時間が経過したことを通知する通知部をさらに備える、
上記(4)に記載の情報処理システム。
(6)
前記第1の位置測定部は、RTK法により前記地上位置を測定する、
上記(3)に記載の情報処理システム。
(7)
前記第1の位置測定部は、前記対空標識に備えられる、
上記(6)に記載の情報処理システム。
(8)
前記対空標識を含む撮像画像は、前記対空標識のGNSS受信部が前記信号を受信している時に前記UAVにより撮像された撮像画像である、
上記(1)ないし(7)のいずれか1つに記載の情報処理システム。
(9)
前記信号に基づいて、単独測位法により前記対空標識の第2の地上位置を測定する第2の位置測定部をさらに備える、
上記(1)ないし(8)のいずれか1つに記載の情報処理システム。
(10)
前記第2の位置測定部は、前記対空標識に備えられる、
上記(9)に記載の情報処理システム。
(11)
前記情報処理システムは情報処理端末をさらに備え、
前記情報処理端末は、
前記第2の地上位置に関する情報を受信する第2の受信部と、
前記第2の地上位置に関する情報の表示を制御する表示制御部と、を備える、
上記(9)または(10)に記載の情報処理システム。
(12)
前記情報処理端末は、前記第2の地上位置に基づいて前記対空標識を空撮するUAVの飛行経路を生成する飛行経路生成部をさらに備える、
上記(11)に記載の情報処理システム。
(13)
前記第2の受信部は、前記信号に関する情報も受信し、
前記表示制御部は、前記信号に関する情報の表示も制御する、
上記(11)または(12)に記載の情報処理システム。
(14)
前記GNSS受信部は、前記対空標識から分離可能に備えられる、
上記(1)ないし(13)のいずれか1つに記載の情報処理システム。
(15)
前記処理部は、検出された撮像画像中の対空標識の位置と前記地上位置とを対応付けた情報に基づいて地上の3Dモデルデータを生成する、
上記(1)ないし(14)のいずれか1つに記載の情報処理システム。
(16)
前記対空標識は、異なる半径を有する前記複数の円が同心円状に配置された形状を有し、前記複数の円は、同心円状に配置された3つの円を含む、
上記(1)ないし(15)のいずれか1つに記載の情報処理システム。
(17)
前記GNSS受信部のアンテナが前記対空標識の略中央の位置に配置される、
上記(1)ないし(16)のいずれか1つに記載の情報処理システム。
(18)
複数の対空標識により受信されたGNSS衛星からの信号の各々に基づいて少なくとも1つの対空標識の地上位置を測定する第1の位置測定部と、
UAVにより撮像された撮像画像に前記撮影画像の撮影時の前記UAVの位置情報を付加し、付加された前記位置情報を用いて前記撮像画像に含まれる前記対空標識の地上位置を推定し、前記推定に基づいて、前記UAVにより撮像された前記対空標識を含む撮像画像から前記対空標識を検出し、検出された撮像画像中の対空標識の位置と前記地上位置とを対応付ける処理部と、を備え、
前記対空標識は、複数の多角形を組み合わせて配置した形状、又は異なる半径を有する複数の円が同心円状に配置された形状であり、互いに隣接した領域の色彩に対応する色相は所定の閾値以上異なるか、一方が黒色であり、
前記GNSS受信部は、前記対空標識の略中央の位置に配置される、
情報処理装置。
(19)
複数の対空標識により受信されたGNSS衛星からの信号の各々に基づいて少なくとも1つの対空標識の地上位置を測定する第1の位置測定部と、
UAVにより撮像された撮像画像の特徴量に基づいて、複数の撮像画像を繋ぎ合わせ、かつ、前記UAVにより撮像された前記対空標識を含む撮像画像から前記対空標識を検出し、検出された撮像画像中の対空標識の位置と前記地上位置とを対応付ける処理部と、を備え、
前記対空標識は、複数の多角形を組み合わせて配置した形状、又は異なる半径を有する複数の円が同心円状に配置された形状であり、互いに隣接した領域の色彩に対応する色相は所定の閾値以上異なるか、一方が黒色であり、
前記GNSS受信部は、前記対空標識の略中央の位置に配置される、
情報処理装置。
(20)
複数の対空標識により受信されたGNSS衛星からの信号の各々に基づいて少なくとも1つの対空標識の地上位置を測定することと、
UAVにより撮像された撮像画像に前記撮影画像の撮影時の前記UAVの位置情報を付加し、付加された前記位置情報を用いて前記撮像画像に含まれる前記対空標識の地上位置を推定し、前記推定に基づいて、前記UAVにより撮像された前記対空標識を含む撮像画像から前記対空標識を検出し、検出された撮像画像中の対空標識の位置と前記地上位置とを対応付けることと、を有し、
前記対空標識は、複数の多角形を組み合わせて配置した形状、又は異なる半径を有する複数の円が同心円状に配置された形状であり、互いに隣接した領域の色彩に対応する色相は所定の閾値以上異なるか、一方が黒色であり、
前記GNSS受信部は、前記対空標識の略中央の位置に配置される、
情報処理方法。
(21)
複数の対空標識により受信されたGNSS衛星からの信号の各々に基づいて少なくとも1つの対空標識の地上位置を測定することと、
UAVにより撮像された撮像画像の特徴量に基づいて、複数の撮像画像を繋ぎ合わせ、かつ、前記UAVにより撮像された前記対空標識を含む撮像画像から前記対空標識を検出し、検出された撮像画像中の対空標識の位置と前記地上位置とを対応付けることと、を有し、
前記対空標識は、複数の多角形を組み合わせて配置した形状、又は異なる半径を有する複数の円が同心円状に配置された形状であり、互いに隣接した領域の色彩に対応する色相は所定の閾値以上異なるか、一方が黒色であり、
前記GNSS受信部は、前記対空標識の略中央の位置に配置される、
情報処理方法。
【符号の説明】
【0118】
100 対空標識
110 位置測定部
111 アンテナ
112 GNSS受信機
113 データ処理部
114 無線通信部
115 記憶部
200 UAV
210 カメラ
300 クラウドサーバ
310 通信部
320 情報取得部
330 処理部
340 制御部
350 記憶部
400 管制装置
410 通信部
420 制御部
430 表示部
440 記憶部