(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-11-01
(45)【発行日】2022-11-10
(54)【発明の名称】サーボガンのためのセンサレス圧力変化検出
(51)【国際特許分類】
B23K 11/24 20060101AFI20221102BHJP
B23K 11/11 20060101ALI20221102BHJP
G01L 5/00 20060101ALI20221102BHJP
G01L 25/00 20060101ALI20221102BHJP
G01L 1/00 20060101ALI20221102BHJP
【FI】
B23K11/24 336
B23K11/11 570Z
G01L5/00 B
G01L25/00 B
G01L1/00 M
【外国語出願】
(21)【出願番号】P 2017148497
(22)【出願日】2017-07-31
【審査請求日】2020-06-04
(32)【優先日】2016-07-29
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】514079114
【氏名又は名称】ファナック アメリカ コーポレイション
(74)【代理人】
【識別番号】100099759
【氏名又は名称】青木 篤
(74)【代理人】
【識別番号】100123582
【氏名又は名称】三橋 真二
(74)【代理人】
【識別番号】100112357
【氏名又は名称】廣瀬 繁樹
(72)【発明者】
【氏名】フランク ガルサ
【審査官】岩見 勤
(56)【参考文献】
【文献】特開2014-188585(JP,A)
【文献】特開平10-094882(JP,A)
【文献】特開2014-042931(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B23K 11/24
B23K 11/11
G01L 5/00
G01L 25/00
G01L 1/00
(57)【特許請求の範囲】
【請求項1】
パーツを溶接するように構成された、可動チップと、該可動チップに対向する固定チップと
、を
備えたサーボガンを有するロボット溶接システムのサーボガンチップでの圧力変化を検出するための方法であって、
ばね定数、圧力推定量、効率、及び無負荷動作時の慣性/摩擦についてのベンチマーク値を保存するステップと、
第1の校正された力をガンチップに加えるためにサーボガンを動作させ、結果として生じるガンチップでの第1のたわみ値を測定するステップと、
第2の校正された力をガンチップに加えるためにサーボガンを動作させ、結果として生じるガンチップでの第2のたわみ値を測定するステップと、
測定された前記第1及び第2のたわみ値及び前記圧力推定量を用いて、前記ばね定数、第1のガンチップ圧力、第2のガンチップ圧力、前記効率及び前記無負荷
動作時の慣性/摩擦についての現在値を計算するステップと、
前
記現在値
の各々と前記ベンチマーク値
の対応
する値とを比較するステップと、
前記対応
するベンチマーク値と予め決定された量だけ
相違する現在値
のいずれかについてエラー表示を生成するステップと、
を備える方法。
【請求項2】
標準的な力の値を選択することと、前記サーボガンを対応
する校正されたトルク値で作動させるために、前記標準的な力の値及びモータのモータトルク定数に基づいてモータトルクコマンドを計算することと、前記校正されたトルク値及び圧力校正テーブルから、校正された力の値を計算することと
、を備える
、請求項1に記載の方法。
【請求項3】
校正された圧力値と、前記ガンチップの対応
する測定たわみ値についての2点をプロットし、前記2点間に線を引き、前記線を、新たな測定たわみ値から新たな校正された力の値を決定するための方程式に変換することによって前記圧力推定量を形成することを備える
、請求項2に記載の方法。
【請求項4】
前記ばね定数の現在値が前記ばね定数のベンチマーク値と
相違する場合
にエラー表示を生成することを備える
、請求項1に記載の方法。
【請求項5】
前記第1の
ガンチップ圧力の現在値が前記第1の
ガンチップ圧力のベンチマーク値と
相違する場合に、エラー表示を生成することを備える
、請求項1に記載の方法。
【請求項6】
前
記相違が10%より大きい場合にのみエラー表示を生成することを備える
、請求項5に記載の方法。
【請求項7】
前記第2の
ガンチップ圧力の現在値が前記第2の
ガンチップ圧力のベンチマーク値と
相違する場合
にエラー表示を生成することを備える
、請求項1に記載の方法。
【請求項8】
前
記相違が10%より大きい場合にのみエラー表示を生成することを備える
、請求項7に記載の方法。
【請求項9】
前記効率の現在値が前記効率のベンチマーク値と
相違する場合
にエラー表示を生成するこ
とを備える
、請求項1に記載の方法。
【請求項10】
前
記相違が前記効率の現在値の前記効率のベンチマーク値に対する比率についての予め決定された範囲より小さいか又はそれより大きい場合にの
み前記エラー表示を生成することを備える
、請求項9に記載の方法。
【請求項11】
前記範囲は、65%から135%である、請求項10に記載の方法。
【請求項12】
前記慣性/摩擦の現在値が前記慣性/摩擦のベンチマーク値と
相違する場合にのみ前記エラー表示を生成することを備える
、請求項1に記載の方法。
【請求項13】
前
記相違が30パーセントよりも大きい場合にのみ前記エラー表示を生成することを備える
、請求項12に記載の方法。
【請求項14】
前記ガンチップ上でチップ摩耗測定を実行することと、チップ摩耗測定が予め決定されたチップ摩耗スケジュール条件を満たす場合にのみ前記ステップを実行することと、を備える
、請求項1に記載の方法。
【請求項15】
前記現在値
のいずれかがベンチマーク値
の対応
する値と
相違することに応じ
て前記サーボガンを制御するコンピュータから前記エラー表示を生成するこ
とを備える
、請求項1に記載の方法。
【請求項16】
ロボット溶接システムにおける圧力変化を検出するための装置であって、
固定チップに対向する可動チップを有するサーボガンと、
前記可動チップを前記固定チップに対して接離させるために前記可動チップに連結されたモータと、
前記可動チップを動かすように前記モータを作動させるために前記モータに接続されたコンピュータと、
前記コンピュータによって実行される圧力テストコンピュータプログラムと、を備え、
前記圧力テストコンピュータプログラムは、
前記モータに、前記固定チップに第1の圧力を加えるように前記可動チップを動かすようにさせ、
前記モータに、次に、前記固定チップに第2の圧力を加えるように前記可動チップを動かすようにさせ、
前記コンピュータに、前記第1及び第2の圧力に対するチップたわみ値を格納させ、
前記コンピュータに、格納された前記たわみ値から、ばね定数、圧力推定量、効率、及び無負荷動作時の慣性/摩擦についての値を計算し格納させ、
圧力テストが最初の圧力テストである場合に、格納された前記値をベンチマーク値として指定する、装置。
【請求項17】
圧力テストが最初の圧力テストでない場合、格納された前記値を現在値として指定する、請求項
16に記載の装置。
【請求項18】
前記コンピュータは、前記現在値のいずれかが前記ベンチマーク値
の対応
する値と
相違することに応じてエラー表示を生成するように前記圧力テストコンピュータプログラムを実行する、請求項17に記載の装置。
【請求項19】
パーツを溶接するように構成された、可動チップと、該可動チップに対向する固定チップとを有するサーボガンを有するロボット溶接システムのサーボガンチップでの圧力変化を検出するための方法であって、
前記可動チップと前記固定チップに圧力を加えるために前記可動チップを前記固定チップに対して閉じるステップと、
前記可動チップと前記固定チップでの圧力ゼロに対応する基準点からの前記固定チップのたわみ値を
、非接触光センサを用いて測定するステップと、
圧力推定量を用いて、前記たわみ値を校正された圧力値に変換するステップと、
校正された前記圧力値とベンチマーク圧力値とを比較するステップと、
前記比較された値間の相違が予め決定された量を超えた場合、エラー表示を生成するステップと、備える方法。
【請求項20】
校正された圧力値と、
前記可動チップと前記固定チップの対応
する測定たわみ値
との2点をプロットし、前記2点間に線を引き、前記線を、新たな測定たわみ値から新たな校正された力の値を決定するための方程式に変換することによって前記圧力推定量を生成するこ
とを備える
、請求項19に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ロボット溶接ガン、及びガンチップの圧力変化を検出すための方法及び装置に関する。
【背景技術】
【0002】
この節は、本開示に関連する、必ずしも従来技術ではない背景情報を提供する。
【0003】
スポット溶接ガンを有する溶接ロボットシステムは、例えば、高橋等による米国特許出願公報2011/0089146A1及び長沢等による米国特許第5,898,285号に記載されている。典型的なスポット溶接サーボガンは、固定電極チップと可動電極チップを有する本体を備える。固定電極チップは、可動電極チップに対向配置されている。固定電極チップは、一般的には、スポット溶接ガンの本体に対して動かすことができず、可動電極チップは本体に取り付けられ、溶接作業中に開閉する。
【0004】
Garza等による米国特許第9,144,860号は、可動チップと固定チップとを有するサーボガンを備えた溶接ロボットを制御する方法について記載しており、この方法は、基準テストポイントとこの基準テストポイントから離間した少なくとも2つの追加のテストポイントを測定するために可動チップを別々にパーツの表面に接触させるステップを備える。2つの同一線上にないベクトルが、少なくとも2つの追加のテストポイントから計算される。法線ベクトルが,2つの同一線上にないベクトルから計算される。元のサーボガンの姿勢と法線ベクトルとの間の角度が決定される。サーボガンの姿勢は、例えば、角度がユーザ指定の許容値内である場合に変更されてもよい。
【0005】
サーボガンの制御に関連するもう一つの問題は、加圧力である。特開平10-94882号は、溶接ガンの加圧力を制御する方法について記載している。この方法では、可動側電極チップを固定側電極チップに接触させさらに押し込んだときに生じる固定側電極チップの微量の弾性変位を、可動側電極チップを駆動するサーボモータのエンコーダによって検出する。より詳細には、弾性変位量は、可動側電極チップが固定側電極チップに接触し電流が急増してから、可動側電極チップが固定側電極チップをさらに押し込んだ際のサーボモータの回転量に基づいて決定される。電極チップ間の実加圧力は、固定側電極チップの測定された弾性変位に基づいて計算される。次に、電極チップ間の設定加圧力が、計算された実加圧力と等しくなるように補正される。
【0006】
しかしながら、溶接ガンを制御するための上述の従来の方法には以下のような問題がある。
【0007】
第1に、可動側電極チップと可動側電極チップを駆動するためのサーボモータとを備える溶接ガンの可動側部は減速機を有しているため、可動側部の機械的インピーダンスは、溶接ガンの固定側部の機械的インピーダンスよりも大きく且つ動的に硬い。この場合において、機械的インピーダンスは、電極チップの運動を方程式:m・d2x/dt2+c・dx/dt+kx=F(t)で表した場合には、|m,c,k|のベクトルで表されるインピーダンスと定義される。
【0008】
ベクトルがkのみを含む場合、機械的インピーダンスはばね定数である。エンコーダは、サーボモータの減速機を基準として可動側電極チップの反対側にあるので、可動側電極チップの押込み量、加圧変位及び加圧力の変動の、減速機を介してのエンコーダへの伝達は、小さくかつ遅い。その結果、エンコーダの出力に基づいて溶接ガンが制御される従来の方法では、応答性が低くなり、正確な応答を得るのが困難になる。
【0009】
第2に、固定側電極チップ及びアームを含む固定側部の機械的インピーダンスが可動側部の機械的インピーダンスとほぼ等しくなるように、固定側電極チップを支持するアームの剛性が上げられているので、アームのサイズ及び重量が大きくなり、溶接ガンのサイズ及び重量の増加を招いていた。
【0010】
Suitaの米国特許第6,531,674号は、固定側部に固定側センサを備える知能化された溶接ガンを記載している。固定側部の機械的インピーダンスは小さくされ、それにより、固定側センサが固定側溶接チップの位置と固定側溶接チップにかかる加圧力の少なくとも一つを効率的に検出することができる範囲に機械的インピーダンスを設定することが可能になる。固定側センサ及び可動側センサは冗長なセンサ測定システムを構成する。上述の溶接ガンを用いて行われる様々な方法は、(基準点及びゲインの校正を含む)センサ校正方法、溶接チリ抑制制御方法、再溶接フィードバック制御方法、溶接強度制御方法、ワークピース間間隙低減制御方法、溶接ロボット軌道補正方法、及び溶接打点位置精度変化管理方法を含む。
【0011】
しかしながら、米国特許第6,531,674号に記載されているセンサを有する溶接ガンは短所も持っている。この溶接ガンは、適応のために設計されており、不具合検出のためには設計されていない。また、この溶接ガンはセンサを必要とする。
【発明の概要】
【0012】
本発明は、溶接ガンアームのたわみは、繰り返し発生し得るものであり、ガンチップ圧力に比例するとの見解に基づいている。校正された圧力の変化(FcDif%)は、潜在的な圧力校正の問題を明らかにする。例えば、圧力計器が不正確で及び/又は測定が圧力校正において異なった態様で実行された場合である。たわみ変化Kdif%は、以下を示す:
・(モータ出力の変化又はアクチェータの低下のために)圧力校正が必要であること。
・ガンアーム折れ及び/又はモータ劣化。
圧力校正エラーは、溶接効率において現れるが、効率はハードウェアが不良であることも示すことができる。例えば、80A ampが指定されている場合、効率は50%未満であるが、40A ampが搭載される。
【0013】
本発明は、パーツを溶接するように構成された、可動チップと、該可動チップに対向する固定チップとを有するサーボガンを有するロボット溶接システムのサーボガンチップでの圧力変化を検出するための方法にかかわるものである。方法は、ばね定数、圧力推定量、効率、及び無負荷動作時の慣性/摩擦についてのベンチマーク値を保存するステップと、第1の校正された力をガンチップに加えるためにサーボガンを動作させ、結果として生じるガンチップでの第1のたわみ値を測定するステップと、第2の校正された力をガンチップに加えるためにサーボガンを動作させ、結果として生じるガンチップでの第2のたわみ値を測定するステップと、測定された第1及び第2のたわみ値及び圧力推定量を用いて、ばね定数、第1のガンチップ圧力、第2のガンチップ圧力、効率及び無負荷時の慣性/摩擦についての現在値を計算するステップと、各現在値とベンチマーク値のうちの対応の値とを比較するステップと、対応のベンチマーク値と予め決定された量だけ異なる現在値のうちのいずれかについてエラー表示を生成するステップと、を備える。
【0014】
上記方法は、標準的な力の値を選択することと、サーボガンを対応の校正されたトルク値で作動させるために、標準的な力の値及びモータのモータトルク定数に基づいてモータトルクコマンドを計算することと、校正されたトルク値及び圧力校正テーブルから、校正された力の値を計算することと、を備える。
【0015】
上記方法は、校正された圧力値と、ガンチップの対応の測定たわみ値についての2点をプロットし、2点間に線を引き、この線を、新たな測定たわみ値から新たな校正された力の値を決定するための方程式に変換することによって圧力推定量を形成することを更に備える。
【0016】
ばね定数の現在値がばね定数のベンチマーク値と異なる場合に、上記方法はエラー表示を生成する。
【0017】
第1の圧力の現在値が第1の圧力のベンチマーク値と異なる場合に、上記方法はエラー表示を生成する。上記方法は、第1の圧力の現在値と第1の圧力のベンチマーク値との相違が10%より大きい場合にのみエラー表示を生成することを備えることができる。
【0018】
第2の圧力の現在値が第2の圧力のベンチマーク値と異なる場合に、上記方法はエラー表示を生成する。上記方法は、第2の圧力の現在値と第2の圧力のベンチマーク値との相違が10%より大きい場合にのみエラー表示を生成することを備えることができる。
【0019】
効率の現在値が効率のベンチマーク値と異なる場合に、上記方法はエラー表示を生成する。上記方法は、効率の現在値と効率のベンチマーク値との相違が効率の現在値の効率のベンチマーク値に対する比率についての予め決定された範囲より小さいか又はそれより大きい場合にのみ、エラー表示を生成することを備えることができる。この範囲は、65%から135%とすることができる。
【0020】
上記方法は、慣性/摩擦の現在値が慣性/摩擦のベンチマーク値と異なる場合にのみエラー表示を生成することを備えることができる。上記方法は、慣性/摩擦の現在値と慣性/摩擦のベンチマーク値との相違が30パーセントよりも大きい場合にのみエラー表示を生成することを備えることができる。
【0021】
上記方法は、チップ摩耗測定を実行することと、チップ摩耗測定が予め決定されたチップ摩耗スケジュール条件を満たす場合にのみ上記ステップを実行することと、を備える。
【0022】
上記方法は、現在値のうちのいずれかがベンチマーク値のうちの対応の値と異なることに応じて、サーボガンを制御するコンピュータからエラー表示を生成することを備える。
【0023】
本発明は、ロボット溶接システムにおける圧力変化を検出するための装置にかかわるものである。装置は、固定チップに対向する可動チップを有するサーボガンと、可動チップを固定チップに対して接離させるために可動チップに連結されたモータと、可動チップを動かすようにモータを作動させるためにモータに接続されたコンピュータと、コンピュータによって実行される圧力テストコンピュータプログラムとを備える。プログラムの実行は、モータに、固定チップに第1の圧力を加えるように可動チップを動かすようにさせ、モータに、次に、固定チップに第2の圧力を加えるように可動チップを動かすようにさせ、コンピュータに、第1及び第2の圧力に対するチップたわみ値を格納させ、コンピュータに、格納されたたわみ値から、ばね定数、圧力推定量、効率、及び無負荷動作時の慣性/摩擦についての値を計算し格納させ、圧力テストが最初の圧力テストである場合に、格納された値をベンチマーク値として指定させる。圧力テストが最初の圧力テストでない場合、格納された値は現在値として指定される。
【0024】
コンピュータは、現在値のいずれかがベンチマーク値のうちの対応のものと異なることに応じてエラー表示を生成するように圧力テストコンピュータプログラムを実行する。
【0025】
パーツを溶接するように構成された、可動チップと、該可動チップに対向する固定チップとを有するサーボガンを有するロボット溶接システムのサーボガンチップでの圧力変化を検出するための方法は、可動チップと固定チップに圧力を加えるために可動チップを固定チップに対して閉じるステップと、可動チップと固定チップでの圧力ゼロに対応する基準点からの固定チップのたわみ値を測定するステップと、圧力推定量を用いて、たわみ値を校正された圧力値に変換するステップと、校正された圧力値とベンチマーク圧力値とを比較するステップと、比較された値間の相違が予め決定された量を超えた場合、エラー表示を生成するステップと、備える。
【0026】
上記方法は、校正された圧力値と、チップの対応の測定たわみ値についての2点をプロットし、2点間に線を引き、この線を、新たな測定たわみ値から新たな校正された力の値を決定するための方程式に変換することによって圧力推定量を生成すること、を備える。
【0027】
本発明の上記及び他の利点は、添付図面を参照しながら考慮したときに好適な実施の形態の以下の詳細な説明から当業者には容易に明らかになるであろう。
【図面の簡単な説明】
【0028】
【
図1】従来技術のロボット溶接ガンの模式図である。
【
図2】本発明によるサーボガン圧力チェック方法のフローチャートである。
【
図3】
図2に示される方法に従って生成される警告のテーブルである。
【
図4】
図3に記載された警告を生成させるパラメータ値のグラフ表現である。
【
図5】本発明による圧力テスト構成の模式図である。
【
図6】本発明による、圧力を推定するための力対たわみのプロットである。
【発明を実施するための形態】
【0029】
以下の詳細な説明及び添付の図面は、本発明の様々な代表的実施形態について記載及び説明している。詳細な説明及び図面は、当業者が本発明を製造し使用することを可能にし、いかなる態様においても本発明の範囲を限定することを意図するものではない。開示された方法に関しては、提示されたステップは、本来的には代表的なものであり、よって、各ステップの順番は必須ではなく、決定的に重要な意味をもつものではない。
【0030】
図1は、米国特許第9,144,860B2に記載されているガンチップ姿勢正規化方法と共に用いられる従来のロボット溶接システム100を示す。ロボット溶接システム100は、可動チップ106と固定チップ108とを有するサーボガン104を具備する溶接ロボット102を備える。溶接ロボット102は、自動車用の金属パネルのようなパーツ110を溶接するように構成されている。他のタイプのパーツ110を、ロボット溶接システム100によって溶接することもできる。
【0031】
可動チップ106を、例えば、パーツ110に向かう方向に可動チップ106を作動させるように構成された少なくとも一つのモータ111に結合することができる。少なくとも一つのモータ111を、例えば、微細な位置制御のために自動的なフィードバックを行うように構成されたサーボモータとすることができる。当業者は、所望に応じて可動チップ106を作動させる他の手段を用いることもできる。
【0032】
図1に更に示すように、方法は、基準テストポイント114を測定するために可動チップ106をパーツ110の表面112に接触させるステップと、基準テストポイント114から離間した少なくとも2つの追加のテストポイント116、118、120、122を測定するために可動チップ106を表面112に接触させるステップと、を有する。2つの同一線上にない測定ベクトルは、少なくとも2つのテストポイント116、118、120、122から計算される。法線ベクトルは、これらの2つのベクトルから計算され、法線ベクトルと元のサーボガン104の姿勢のベクトルとの間の角度が決定される。
【0033】
方法は、法線ベクトルに対するサーボガン104の姿勢を調整するステップを更に有することができる。調整を、元の姿勢(ベクトル)と法線ベクトルとの間の角度に基づいて条件付きで行うことができる。例えば、法線ベクトルとサーボガンの元の姿勢との間の角度が非常に大きい場合には、姿勢変更を省略することができる。サーボガン104の姿勢についての他のタイプの調整を用いることもできる。
【0034】
特定の実施形態において、パーツ110に接触するステップ中に基準テストポイント114及び少なくとも2つの追加のテストポイント116、118、120、122を検出するステップは、導通測定を有することができる。例えば、パーツ110が接地されている場合、接地されたパーツ110の表面112に可動チップ106が接触したためにチップ電圧が予め決定されたレベルより下に降下したときに、可動チップ106が表面112に接触したことを決定する。
図1に示すように、導通測定を、信号線131を通じて、非限定的な例としてのサーボガン制御装置又はロボット制御装置のようなコンピュータ133に送信することができる。予め決定された電圧及び可動チップの106の電圧を測定する手段を、所望に応じて当業者によって選択することができる。
【0035】
他の実施形態において、パーツ110に接触するステップ中に基準テストポイント114及び少なくとも2つの追加のテストポイント116、118、120、122を検出するステップは、
図1に示すように、信号線137によってコンピュータ133と通信する非接触光センサ135を有することができる。非接触光センサ135は、可動チップ106とパーツ110の表面112との間のZ方向の距離を測定することができる。例えば、非接触光センサ135を、エレクトリック・アイ(electric eye)とレーザビーム検出器のうちの少なくとも一方とすることができる。当業者は、可動チップ106のパーツ110の表面112への接触を測定するための他のタイプの非接触光センサ135を所望に応じて選択することができる。
【0036】
パーツ110に接触するステップ中に基準テストポイント114及び少なくとも2つの追加のテストポイント116、118、120、122を検出するステップを、モータ111での可動チップ106の外乱トルクのフィードバックを測定することによって行うことができる。外乱トルクのフィードバックを、所望に応じて信号線131又は他の手段によってコンピュータ133に送信することもできる。外乱トルクのフィードバックを、チップを閉じる動作中に、閉じる方向におけるガン摩擦の変化を検出するために用いることもできる。このことにより、圧力制御にあまりに早く切り替わることを防止すること(低圧力)が可能となり、また、サーボガンが注油を必要としていること又は摩耗の兆候を示していることを検出することが可能になる。
【0037】
上記の通り、サーボガンチップの圧力変化を検出するための方法及び装置を提供することが望ましい。このような変化は、圧力校正エラー検出、ばね変化検出、及びガン効率チェック(Fc/Fb・100、ここでFcは現在の圧力、Fbはベンチマーク圧力)を提供することができる。
【0038】
図2は、本発明によるサーボガン圧力チェック方法のフロー図である。新たな圧力測定は、ステップ10で開始するチップ摩耗更新後に実行される。ステップ11において、ガンチップは0位置にリセットされる。0位置では、サーボガンは、加圧力がゼロで接触するチップによって閉じられている。ステップ12では、チップ摩耗測定が更新される。ステップ13“スケジュール条件は満たされるか?”では、摩耗スケジュール条件がチェックされる。条件が満たされていない場合、本方法は、“no”から、チップ摩耗更新処理が終了する“終了”ステップ14に分岐する。
【0039】
摩耗スケジュール条件が満たされている場合、本方法は、新たな圧力テスト、すなわち測定処理を開始するために、“yes”においてステップS13からステップ15へ分岐する。本方法は、圧力F1及びF2をガンチップに加えるようにサーボガン104を動作させ、測定値を例えばコンピュータ133に格納する。測定値は、F1及びF2圧力値、及びそれに対応するガンたわみ値である。本方法は、次に、閾値測定プログラムを実行し、取得された測定値を格納するためにステップ16に入る。ステップ17において、方法は、ばね係数(K),圧力推定量(FcEst)、効率及び負荷無し動作中の慣性/摩擦(P183)のパラメータのための値を計算する。ステップ18では、ベンチマークを設定するために、第1の圧力テスト“BenchDate=0 ?”であるか否かが判定される。答えが“yes”である場合、ステップ19においてパラメータ値がベンチマーク値として格納され、本方法は、“終了”ステップ20において抜け出る。
【0040】
引き続いての各圧力テストにおいて、本方法は、ベンチマークばね定数に対して現在のばね定数をチェックするために“現在のばね定数はok?”、ステップ18の“no”からステップ21へ分岐する。ばね定数値が異なっている場合、本方法は、“no”において分岐し、ステップ22においてエラー表示を生成し、“終了”ステップ23において抜け出る。このようなエラーは、ばね定数が変わったこと及び/又は圧力のたわみに対する関係が変化したことを示すことができる。このように、ガンアームは折れ得るし、或いは、モータトルクが変化する。
【0041】
ばね定数が変化していない場合、現在の第1圧力が変化したか否か“圧力1は許容できるか?”をチェックするために、本方法は、ステップ21の“yes”からステップ24に分岐する。圧力値が異なる場合、本方法は、“no”において分岐し、ステップ25“警告を提示”でエラー表示を生成し、ステップ26に入る。例えば、このエラーは、圧力値は変化したがたわみが同じである場合、又は、圧力値は同じであるがたわみが変化している場合に生成することができる。第1圧力値が変化していない場合、本方法は、ステップ24の“yes”からステップ26に分岐する。
【0042】
ステップ26では、本方法は、現在の第2圧力が変化したか否か“圧力2は許容できるか?”をチェックする。圧力値が異なる場合、本方法は、“no”において分岐し、ステップ27“警告を提示”にてエラー表示を生成し、ステップ28に入る。例えば、エラーは、圧力は変化したがたわみが同じである場合、又は、圧力値が同じでたわみ値が変化している場合に生成することができる。第2圧力値が変化していない場合、本方法は、ステップ24の“yes”からステップ26に分岐する。
【0043】
ステップ28において、ベンチマーク圧力の予測圧力値に対する比率を決定するために“効率はokか?”がチェックされる。効率が、例えば65%から135%といった予め決定された範囲より小さい又は大きい場合には、本方法は、ステップ28から“no”において分岐し、ステップ29“警告を提示”でエラー表示を生成し、ステップ30に入る。比率が許容できる場合には、本方法は、ステップ28の“yes”からステップ30に分岐する。
【0044】
ステップ30では、動きに対する無負荷圧力/抵抗がチェックされる“P183はokか?”。無負荷動作時の慣性/摩擦(P183)は、位置から圧力制御への遷移のためのベースとなる。P183値の変化は、達成された圧力に影響し得るし、また、ガン(ワイパー、ブッシュ等)の機械的な問題も示すことができる。P183は、新たな圧力測定処理の間に測定され、その後は変化しない。P183値は30%の許容差を持つので、誤検出及び/又は圧力エラーは、最小接触圧力の実際の値がこの許容差を超える場合に起こっているであろう。本方法は、ステップ30から“no”において分岐し、ステップ31“警告を提示”でエラー表示を生成し、ステップ32に入る。例えば、このエラーは、終了閾値が30%よりも大きく変化しガン終了誤検出の可能性がある場合に生成される。値が許容できる場合、方法は、ステップ30の“yes”からステップ32に分岐する。
【0045】
図3は、
図2に示される方法の実行中に生成される警告を要約するテーブルである。警告番号1-5は、ステップ22、25、27、29及び31にそれぞれ対応する。警告は、現在値とベンチマーク値とを比較することによって検出される。圧力テストメッセージは、ベンチマーク変数のためではない、圧力パラメータのための変数を有する。ベンチマーク変数は、溶接ロボット制御装置(コンピュータ133)のローカルメモリに格納され、エラー警告メッセージの一部ではない。制御装置は、制御装置ベースの警告をサポートするためのベンチマーク変数を有する。クラウド分析が、制御装置警告結果をレポートすることができ、又は、警告が存在しているかを独立に決定することができる。後者は、柔軟性のために好ましい。警告“2”及び“3”では、dF=(Fc-Fcbench/fcbench)・100 及びdX=(X-Xbench/Xbench)・100であり、ここで“bench”はベンチマーク値を示す。
【0046】
図4は、上述の警告番号“1-5”についての、パラメータ値対サンプル番号(テスト)のプロットを示している。
【0047】
図5は、本発明による圧力テスト構成の模式図である。サーボガン40は、ガンたわみ値Xを生じる標準的な力Fsを加えるように操作される。サーボガンチップで標準的な力Fsを加えるであろう、校正された値Ts(理論的)を生成するために、標準的な力の値及びモータトルク定数41に基づいて、トルクコマンドが計算される。圧力校正テーブル42を用いることによって校正されたトルク値Tsに基づいて、校正された力の値Fcが計算される。加えられたトルクの結果としてのガンたわみXが測定される。圧力(F)はユーザにとっていっそう直観的に理解でき/意味が分かるものなので、データパラメータとして用いられる。2点の圧力Fmax及びFmax/2は、全体的な範囲について十分なフィードバックを提供する。Fmaxでチェックすることは、ばね定数の最も良い推定値を提供する。チップ106と108が“ゼロ”位置を設定するように接触するとき、サーボガン104(
図1)は加圧力がゼロで閉じられる。次に、チップ106を移動させることによって圧力Fmax/2が加えられ、結果として生じるたわみX1がセンサ135(
図1)を用いて測定される。次に、チップ106を更に移動させることによって圧力Fmaxが加えられ、結果として生じるたわみX2がセンサ135を用いて測定される。センサ135は、チップ姿勢及び摩耗チェックのために既に存在しているので、圧力テストのために追加のセンサは必要ではない。2セットの圧力及びたわみ値が、
図6に示される圧力推定量(pressure estimator)を生成するために使用される。
【0048】
ばね変化検出(ステップ21)は標準的な力Fsに基づいている。標準的な力は、校正とは独立であり、入力の励起(力)は一定である。このことは、結果が、X(たわみ)のみの関数であることを意味している。ベンチマーク値は第1の圧力テストで格納される。第2及びそれに続く圧力テストで、現在値がベンチマーク値と比較され、相違パーセンテージが、
Kdif%=(Ks[n]/Ksb-1)・100
として計算される。
【0049】
図6は、圧力を推定するための力対たわみのプロットである。圧力推定量は、ばね定数及び校正された圧力(ベンチマーク)に基づいている。上記の通り、これらのパラメータは第1の圧力測定(ステップ19)で記録される。ベンチマークの校正された圧力ポイント(F1cb及びF2cb)44,45がプロットされ、ポイントを通して線が引かれている。方程式m=(F2cb-F1cb)/(X2b-X1b)が計算され、定数mが、方程式Fo=F2cb-X2b・mにおいて用いられる。次に、計算Fc2est=Fo+X2・m及びFc1est=Fo+X1・mが実行される。第2及びそれに続くテストの間、ステップ24について第1の圧力相違をF1cdif%=(Fc1est/Fc1-1)・100として計算することができ、ステップ26について第2の圧力相違をF2cdif%=(Fc2est/Fc1-1)として計算することができる。
【0050】
効率チェック(ステップ28)は、校正された圧力値の予測圧力値に対する比率の計算である。トルクを圧力に変換する際にある程度エネルギーが、失われるので、効率は常に100%よりも低い。しかしながら、効率が65%より低い場合には、構成データ又はモータに問題があるであろう。効率=F2c/F2s・100
【0051】
特許法の条項にしたがい、本発明は好ましい実施形態を表すように考慮され記述されてきた。しかしながら、本発明は、その精神と範囲を逸脱することなく、具体的に説明されたものと違うやり方で実施することができることに留意すべきである。