IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ソニーセミコンダクタソリューションズ株式会社の特許一覧

特許7169132半導体素子の製造システム、半導体素子、および、半導体素子の製造方法
<>
  • 特許-半導体素子の製造システム、半導体素子、および、半導体素子の製造方法 図1
  • 特許-半導体素子の製造システム、半導体素子、および、半導体素子の製造方法 図2
  • 特許-半導体素子の製造システム、半導体素子、および、半導体素子の製造方法 図3
  • 特許-半導体素子の製造システム、半導体素子、および、半導体素子の製造方法 図4
  • 特許-半導体素子の製造システム、半導体素子、および、半導体素子の製造方法 図5
  • 特許-半導体素子の製造システム、半導体素子、および、半導体素子の製造方法 図6
  • 特許-半導体素子の製造システム、半導体素子、および、半導体素子の製造方法 図7
  • 特許-半導体素子の製造システム、半導体素子、および、半導体素子の製造方法 図8
  • 特許-半導体素子の製造システム、半導体素子、および、半導体素子の製造方法 図9
  • 特許-半導体素子の製造システム、半導体素子、および、半導体素子の製造方法 図10
  • 特許-半導体素子の製造システム、半導体素子、および、半導体素子の製造方法 図11
  • 特許-半導体素子の製造システム、半導体素子、および、半導体素子の製造方法 図12
  • 特許-半導体素子の製造システム、半導体素子、および、半導体素子の製造方法 図13
  • 特許-半導体素子の製造システム、半導体素子、および、半導体素子の製造方法 図14
  • 特許-半導体素子の製造システム、半導体素子、および、半導体素子の製造方法 図15
  • 特許-半導体素子の製造システム、半導体素子、および、半導体素子の製造方法 図16
  • 特許-半導体素子の製造システム、半導体素子、および、半導体素子の製造方法 図17
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-11-01
(45)【発行日】2022-11-10
(54)【発明の名称】半導体素子の製造システム、半導体素子、および、半導体素子の製造方法
(51)【国際特許分類】
   H01L 25/065 20060101AFI20221102BHJP
   H01L 25/07 20060101ALI20221102BHJP
   H01L 25/18 20060101ALI20221102BHJP
   H01L 21/68 20060101ALI20221102BHJP
【FI】
H01L25/08 Z
H01L25/08 B
H01L21/68 G
【請求項の数】 15
(21)【出願番号】P 2018166543
(22)【出願日】2018-09-06
(65)【公開番号】P2020038946
(43)【公開日】2020-03-12
【審査請求日】2021-07-16
(73)【特許権者】
【識別番号】316005926
【氏名又は名称】ソニーセミコンダクタソリューションズ株式会社
(74)【代理人】
【識別番号】100112955
【弁理士】
【氏名又は名称】丸島 敏一
(72)【発明者】
【氏名】池田 和斎
【審査官】平林 雅行
(56)【参考文献】
【文献】特開2007-081296(JP,A)
【文献】特開2011-138966(JP,A)
【文献】特開2013-115349(JP,A)
【文献】特開2006-269838(JP,A)
【文献】特開2004-356284(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 21/00-21/02
H01L 21/04-21/16
H01L 21/339
H01L 21/67-21/683
H01L 21/822
H01L 25/00-25/07
H01L 25/10-25/11
H01L 25/16-25/18
H01L 27/04
H01L 27/14-27/148
H01L 27/30
H01L 29/762
(57)【特許請求の範囲】
【請求項1】
複数の半導体ウェハのそれぞれに形成された複数の半導体チップのうち所定範囲内の測定値が測定された半導体チップのそれぞれを良品チップとして示す情報を取得する情報取得部と、
前記複数の半導体ウェハのうち一対の半導体ウェハの一方の回転前の外周の特定個所から中心への線分と回転後の前記特定個所から前記中心への線分とのなす回転角度のうち、前記一対の半導体ウェハの前記一方を他方に対して回転させて積層した際に重なり合う前記良品チップの個数が最大になる前記回転角度を前記情報に基づいて取得する回転角度取得部と、
前記一対の半導体ウェハの前記一方を前記他方に対して前記回転角度だけ回転させて積層する処理を行う積層処理部と
を具備する半導体素子の製造システム。
【請求項2】
前記半導体チップの形状は、所定軸の周りに所定角度だけ回転させても変化しない形状であり、
前記回転角度取得部は、前記所定角度の倍数のいずれかを前記回転角度として求める
請求項1記載の製造システム。
【請求項3】
前記半導体チップの形状は正方形であり、
前記回転角度取得部は、90度の倍数のいずれかを前記回転角度として求める
請求項2記載の製造システム。
【請求項4】
前記一対の半導体ウェハの前記他方に対応する前記半導体チップには、所定数の端子が形成され、
前記一対の半導体ウェハの前記一方には、前記所定角度ごとに前記所定数の端子が形成され、
前記一対の半導体ウェハの前記一方に係る前記端子の配列は、前記所定軸の周りに前記所定角度だけ回転させても変化しない形状である
請求項2記載の製造システム。
【請求項5】
前記一対の半導体ウェハの前記一方に係る前記端子は、前記所定角度ごとに異なるグループに属し、
前記一対の半導体ウェハの前記一方に対応する前記半導体チップには、前記グループそれぞれの回転対称な位置の前記端子に共通に接続された回路がさらに形成される
請求項4記載の製造システム。
【請求項6】
前記一対の半導体ウェハの前記一方に係る前記端子の配列は、矩形である
請求項4記載の製造システム。
【請求項7】
前記一対の半導体ウェハの前記一方に係る前記端子の配列は、十字形状である
請求項4記載の製造システム。
【請求項8】
前記一対の半導体ウェハの前記一方に係る前記端子の配列は、斜め十字形状である
請求項4記載の製造システム。
【請求項9】
前記一対の半導体ウェハの前記一方に係る前記端子の配列は、円形である
請求項4記載の製造システム。
【請求項10】
前記一対の半導体ウェハの前記一方の前記特定個所にノッチが形成される
請求項1記載の製造システム。
【請求項11】
前記複数の半導体チップの配列は、所定軸の周りに所定角度だけ回転させても変化しない形状である
請求項1記載の製造システム。
【請求項12】
前記複数の半導体チップのいずれかが、前記一対の半導体ウェハのそれぞれの中心に配置される
請求項11記載の製造システム。
【請求項13】
前記複数の半導体チップのそれぞれは、前記一対の半導体ウェハのそれぞれの中心に位置しない
請求項11記載の製造システム。
【請求項14】
前記測定値が前記所定範囲内であるか否かを検査して検査結果を出力する検査部と、
前記検査結果に基づいて前記情報を生成して保持する外部データベースと
をさらに具備する
請求項1記載の製造システム。
【請求項15】
複数の半導体ウェハのそれぞれに形成された複数の半導体チップのうち所定範囲内の測定値が測定された半導体チップのそれぞれを良品チップとして示す情報を取得する情報取得手順と、
前記複数の半導体ウェハのうち一対の半導体ウェハの一方の回転前の外周の特定個所から中心への線分と回転後の前記特定個所から前記中心への線分とのなす回転角度のうち、前記一対の半導体ウェハの前記一方を他方に対して回転させて積層した際に重なり合う前記良品チップの個数が最大になる前記回転角度を前記情報に基づいて取得する回転角度取得手順と、
前記一対の半導体ウェハの前記一方を前記他方に対して前記回転角度だけ回転させて積層する処理を行う積層処理手順と
を具備する半導体素子の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本技術は、半導体素子の製造システム、半導体素子、および、半導体素子の製造方法に関する。詳しくは、複数の半導体チップを積層した半導体素子の製造システム、半導体素子、および、半導体素子の製造方法に関する。
【背景技術】
【0002】
従来より、面積の削減を目的として、複数の半導体チップを積層した積層型の半導体素子が様々な電子装置において用いられている。例えば、2つの半導体ウェハのそれぞれに複数の半導体チップを形成し、それらの半導体ウェハを積層する製造システムが提案されている(例えば、特許文献1参照。)。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2013-115349号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
上述の従来技術では、半導体ウェハの積層により、多数の積層型の半導体素子を効率的に製造することができる。しかしながら、上述の製造システムでは、積層する複数の半導体チップの中に不良品が1つでも存在すると、その半導体素子全体が正常に動作せず、不良品となってしまう。そのため、半導体素子を量産した際の良品の比率である歩留まりを向上させることが難しい。
【0005】
本技術はこのような状況に鑑みて生み出されたものであり、積層型の半導体素子において、半導体素子の歩留まりを向上させることを目的とする。
【課題を解決するための手段】
【0006】
本技術は、上述の問題点を解消するためになされたものであり、その第1の側面は、複数の半導体ウェハのそれぞれに形成された複数の半導体チップのうち所定範囲内の測定値が測定された半導体チップのそれぞれを良品チップとして示す情報を取得する情報取得部と、上記複数の半導体ウェハのうち一対の半導体ウェハの一方の回転前の外周の特定個所から中心への線分と回転後の上記特定個所から上記中心への線分とのなす回転角度のうち、上記一対の半導体ウェハの上記一方を他方に対して回転させて積層した際に重なり合う上記良品チップの個数が最大になる上記回転角度を上記情報に基づいて取得する回転角度取得部と、上記一対の半導体ウェハの上記一方を上記他方に対して上記回転角度だけ回転させて積層する処理を行う積層処理部とを具備する半導体素子の製造システム、および、その製造方法である。これにより、重なり合う良品チップの個数が最大になるという作用をもたらす。
【0007】
また、この第1の側面において、上記半導体チップの形状は、所定軸の周りに所定角度だけ回転させても変化しない形状であり、上記回転角度取得部は、上記所定角度の倍数のいずれかを上記回転角度として求めてもよい。これにより、回転対称性に対応する回転角度により半導体ウェハが回転されるという作用をもたらす。
【0008】
また、この第1の側面において、上記半導体チップの形状は正方形であり、上記回転角度取得部は、90度の倍数のいずれかを上記回転角度として求めてもよい。これにより、正方形の半導体チップが積層されるという作用をもたらす。
【0009】
また、この第1の側面において、上記一対の半導体ウェハの上記他方に対応する上記半導体チップには、所定数の端子が形成され、上記一対の半導体ウェハの上記一方には、上記所定角度ごとに上記所定数の端子が形成され、上記一対の半導体ウェハの上記一方に係る上記端子の配列は、上記所定軸の周りに上記所定角度だけ回転させても変化しない形状であってもよい。これにより、回転対称性に応じた個数の端子が配列されるという作用をもたらす。
【0010】
また、この第1の側面において、上記一対の半導体ウェハの上記一方に係る上記端子は、上記所定角度ごとに異なるグループに属し、上記一対の半導体ウェハの上記一方に対応する上記半導体チップには、上記グループそれぞれの回転対称な位置の上記端子に共通に接続された回路がさらに形成されてもよい。これにより、回転前後で電気的な接続関係が変更されないという作用をもたらす。
【0011】
また、この第1の側面において、上記一対の半導体ウェハの上記一方に係る上記端子の配列は、矩形であってもよい。これにより、矩形の配列の端子が信号線と接続されるという作用をもたらす。
【0012】
また、この第1の側面において、上記一対の半導体ウェハの上記一方に係る上記端子の配列は、十字形状であってもよい。これにより、十字形状の配列の端子が信号線と接続されるという作用をもたらす。
【0013】
また、この第1の側面において、上記一対の半導体ウェハの上記一方に係る上記端子の配列は、斜め十字形状であってもよい。これにより、斜め十字形状の配列の端子が信号線と接続されるという作用をもたらす。
【0014】
また、この第1の側面において、上記一対の半導体ウェハの上記一方に係る上記端子の配列は、円形であってもよい。これにより、円形の配列の端子が信号線と接続されるという作用をもたらす。
【0015】
また、この第1の側面において、上記一対の半導体ウェハの上記一方の上記特定個所にノッチが形成されてもよい。これにより、ノッチから中心への線分のなす角度で半導体ウェハが回転されるという作用をもたらす。
【0016】
また、この第1の側面において、上記複数の半導体チップの配列は、所定軸の周りに所定角度だけ回転させても変化しない形状であってもよい。これにより、回転対称な形状に半導体チップが配列された半導体ウェハが積層されるという作用をもたらす。
【0017】
また、この第1の側面において、上記複数の半導体チップのいずれかが、上記一対の半導体ウェハのそれぞれの中心に配置されてもよい。これにより、半導体ウェハ当たりの半導体チップの個数が増大するという作用をもたらす。
【0018】
また、この第1の側面において、上記複数の半導体チップのそれぞれは、上記一対の半導体ウェハのそれぞれの中心に位置しなくてもよい。これにより、回転した際に全ての半導体チップの位置が変わるという作用をもたらす。
【0019】
また、この第1の側面において、上記測定値が上記所定範囲内であるか否かを検査して判定結果を出力する検査部と、上記検査結果に基づいて上記情報を生成して保持する外部データベースとをさらに具備してもよい。これにより、外部データベースから良品、不良品に関する情報が取得されるという作用をもたらす。
【0020】
また、本技術の第2の側面は、所定数の端子が配列され、所定軸の周りに所定角度だけ回転させても変化しない形状の第1半導体チップと、上記第1半導体チップに積層され、上記所定角度ごとに上記所定数の端子が配列された第2半導体チップとを具備する半導体素子である。これにより、半導体ウェハを回転させて積層する製造システムにより半導体素子が製造されるという作用をもたらす。
【図面の簡単な説明】
【0021】
図1】本技術の実施の形態における製造システムの一構成例を示すブロック図である。
図2】本技術の実施の形態における上ウェハ製造部および下ウェハ製造部の一構成例を示すブロック図である。
図3】本技術の実施の形態における良品・不良品情報の一例を示す図である。
図4】本技術の実施の形態における積層ウェハ製造部の一構成例を示すブロック図である。
図5】本技術の実施の形態における検査前後の上ウェハの平面図の一例である。
図6】本技術の実施の形態における検査前後の下ウェハの平面図の一例である。
図7】本技術の実施の形態における回転角度が0度である場合の積層前後のウェハの平面図の一例である。
図8】本技術の実施の形態における回転角度が90度である場合の積層前後のウェハの平面図の一例である。
図9】本技術の実施の形態における回転角度が180度である場合の積層前後のウェハの平面図の一例である。
図10】本技術の実施の形態における回転角度が270度である場合の積層前後のウェハの平面図の一例である。
図11】本技術の実施の形態における半導体素子の積層構造の一例を示す図である。
図12】本技術の実施の形態における上チップの平面図の一例である。
図13】本技術の実施の形態における下チップの平面図の一例である。
図14】本技術の実施の形態におけるパッドの配列を変更した下チップの平面図の一例である。
図15】本技術の実施の形態における製造システムの動作の一例を示すフローチャートである。
図16】本技術の実施の形態における回転角度算出処理を示すフローチャートである。
図17】本技術の実施の形態の変形例における上ウェハの平面図の一例である。
【発明を実施するための形態】
【0022】
以下、本技術を実施するための形態(以下、実施の形態と称する)について説明する。説明は以下の順序により行う。
1.実施の形態(下チップを回転させて積層する例)
2.変形例
【0023】
<1.第1の実施の形態>
[製造システムの構成例]
図1は、本技術の実施の形態における製造システムの一構成例を示すブロック図である。この製造システムは、積層型の半導体素子を製造するシステムであり、上ウェハ製造部110、下ウェハ製造部120、外部データベース130および積層ウェハ製造部200を備える。
【0024】
製造システムが製造する半導体素子は、複数(例えば、2つ)の半導体チップを積層したものであり、それらの半導体チップの一方を以下、「上チップ」と称し、他方を「下チップ」と称する。また、上チップと下チップとは、互いに異なる半導体ウェハ上に形成される。上チップが形成される半導体ウェハを以下、「上ウェハ」と称し、下チップが形成される半導体ウェハを「下ウェハ」と称する。
【0025】
上ウェハ製造部110は、上ウェハを製造するものである。この上ウェハ製造部110は、複数の上チップを形成した半導体ウェハを上ウェハとして製造し、上ウェハを製造するたびにウェハ識別情報を付与する。また、上ウェハ製造部110は、上チップごとに物理的および電気的特性を測定する。物理的な特性は、例えば、半導体チップの配線層などの層厚、配線の幅や、格子欠陥の密度である。また、電気的な特性は、例えば、半導体チップに形成される回路の電流値、電圧値や周波数特性である。
【0026】
そして、上ウェハ製造部110は、物理的および電気的な特性の測定値が、そのチップが正常に動作するための所定範囲内であるか否かを上チップごとに検査する。測定値が所定範囲外である場合には、その上チップは不良品であると判断され、所定範囲内である場合には、良品であると判断される。以下、不良品の半導体チップを「不良チップ」と称し、良品の半導体チップを「良品チップ」と称する。上ウェハ製造部110は、検査結果を外部データベース130に送信する。また、上ウェハ製造部110は、製造した上ウェハを積層ウェハ製造部200に供給する。
【0027】
下ウェハ製造部120は、下ウェハを製造するものである。この下ウェハ製造部120は、複数の下チップを形成した半導体ウェハを下ウェハとして製造し、下ウェハを製造するたびにウェハ識別情報を付与する。また、下ウェハ製造部120は、下チップごとに物理的および電気的特性を測定し、その測定値が所定範囲内であるか否かを上チップごとに検査して検査結果を外部データベース130に送信する。また、下ウェハ製造部120は、製造した下ウェハを積層ウェハ製造部200に供給する。
【0028】
外部データベース130は、上ウェハおよび下ウェハの検査結果に基づいて、上チップおよび下チップのそれぞれについて、そのチップが不良チップおよび良品チップのいずれであるかを示す良品・不良品情報を生成して保持するものである。
【0029】
積層ウェハ製造部200は、上ウェハと下ウェハとを積層するものである。この積層ウェハ製造部200は、上ウェハおよび下ウェハのそれぞれの良品・不良品情報を外部データベース130から取得する。そして、積層ウェハ製造部200は、それらの情報に基づいて、上ウェハおよび下ウェハの一方(例えば、上ウェハ)に対して他方(例えば、下ウェハ)を回転させて積層し、ウェハ積層体として後段の製造装置に供給する。このウェハ積層体における、積層された上チップおよび下チップは、積層型の1つの半導体素子として機能する。
【0030】
なお、積層ウェハ製造部200は、上ウェハに対して下ウェハを回転させているが、逆に下ウェハに対して上ウェハを回転させることもできる。また、上ウェハおよび下ウェハは、特許請求の範囲に記載の複数の半導体ウェハの一例である。
【0031】
図2は、本技術の実施の形態における上ウェハ製造部110および下ウェハ製造部120の一構成例を示すブロック図である。同図におけるaは、上ウェハ製造部110の一構成例を示すブロック図であり、同図におけるbは、下ウェハ製造部120の一構成例を示すブロック図である。上ウェハ製造部110は、欠陥検査部111および電気的検査部112を備える。一方、下ウェハ製造部120は、欠陥検査部121および電気的検査部122を備える。なお、同図において、上ウェハおよび下ウェハを製造するための各種の製造装置は、省略されている。
【0032】
欠陥検査部111は、上チップのそれぞれの格子欠陥の密度を検査するものである。この欠陥検査部111は、検査結果を外部データベース130に供給する。電気的検査部112は、上チップのそれぞれの電気的特性を検査するものである。この電気的検査部112は、検査結果を外部データベース130に供給する。
【0033】
欠陥検査部121は、下チップのそれぞれの格子欠陥の密度を検査するものである。この欠陥検査部121は、検査結果を外部データベース130に供給する。電気的検査部122は、下チップのそれぞれの電気的特性を検査するものである。この電気的検査部122は、検査結果を外部データベース130に供給する。
【0034】
図3は、本技術の実施の形態における良品・不良品情報の一例を示す図である。この良品・不良品情報は、積層位置、ウェハ識別情報、チップ位置および検査結果を含む。積層位置は、半導体ウェハが積層される際に上側および下側のいずれに位置するかを示す。ウェハ識別情報は、半導体ウェハを識別するための識別情報である。チップ位置は、半導体ウェハ内の半導体チップの位置を示す。検査結果は、物理的および電気的な特性の検査結果を示す。例えば、上ウェハ製造部110が、上側のウェハ識別情報「W01」の上ウェハにおいてチップ位置「L01」の上チップを検査し、全ての測定値が正常な範囲内であった場合を考える。この場合に外部データベース130は、その上チップの検査結果として、良品チップであることを示す「Pass」を生成して保持する。
【0035】
また、上ウェハ製造部110が、上側のウェハ識別情報「W01」の上ウェハにおいてチップ位置「L02」の上チップを検査し、いずれかの測定値が正常な範囲外であった場合を考える。この場合に外部データベース130は、その上チップの検査結果として、不良チップであることを示す「Fail」を生成して保持する。
【0036】
[積層ウェハ製造部の構成例]
図4は、本技術の実施の形態における積層ウェハ製造部200の一構成例を示すブロック図である。この積層ウェハ製造部200は、上ウェハセット部211、下ウェハセット部212および取り出しアーム部220を備える。また、積層ウェハ製造部200は、良品・不良品情報取得部230、回転角度取得部240、積層処理部250、搬送アーム部260、積層前処理部270および積層ウェハ払い出し部280を備える。
【0037】
上ウェハセット部211は、上ウェハ製造部110からの上ウェハを取り出しアーム部220にセットするものである。下ウェハセット部212は、下ウェハ製造部120からの下ウェハを取り出しアーム部220にセットするものである。
【0038】
取り出しアーム部220は、上ウェハおよび下ウェハを、セットされた位置から取り出して、搬送アーム部260に供給するものである。搬送アーム部260は、自身の一端から他端へ上ウェハおよび下ウェハを搬送するものである。
【0039】
良品・不良品情報取得部230は、良品・不良品情報を外部データベース130から取得するものである。この良品・不良品情報取得部230は、上ウェハおよび下ウェハを搬送アーム部260から一時的に取り出し、それらのウェハのウェハ識別情報を読み取る。ウェハ識別情報は、例えば、上ウェハ製造部110および下ウェハ製造部120により半導体ウェハの所定位置に記載される。良品・不良品情報取得部230は、読み取ったウェハ識別情報に対応する良品・不良品情報内のチップ位置および検査結果を外部データベース130に問い合わせ、その情報を受信する。そして、良品・不良品情報取得部230は、取得した情報を回転角度取得部240に供給し、上ウェハおよび下ウェハを搬送アーム部260に戻す。なお、良品・不良品情報取得部230は、特許請求の範囲に記載の情報取得部の一例である。
【0040】
積層前処理部270は、上ウェハおよび下ウェハに対し、洗浄などの所定の積層前処理を実行するものである。この積層前処理部270は、良品・不良品情報の取得後に上ウェハおよび下ウェハを搬送アーム部260から取り出し、それらについて積層前処理を実行する。処理後に積層前処理部270は、上ウェハおよび下ウェハを搬送アーム部260に戻す。
【0041】
回転角度取得部240は、上ウェハに対して下ウェハを回転させた際に重なり合う良品チップの個数が最大になる回転角度を良品・不良品情報に基づいて取得するものである。ここで、下ウェハの回転角度として、回転前の下ウェハの外周の特定個所から中心への線分と、回転後のその特定個所から中心への線分とのなす角度が用いられる。回転角度取得部240は、取得した回転角度を積層処理部250に供給する。
【0042】
積層処理部250は、取得された回転角度だけ上ウェハに対して下ウェハを回転させて、それらのウェハを積層するものである。この積層処理部250は、積層前処理後の上ウェハおよび下ウェハを搬送アーム部260から取り出し、下ウェハを回転させて積層する。そして、積層処理部250は、積層後のウェハ積層体を搬送アーム部260に戻す。
【0043】
積層ウェハ払い出し部280は、ウェハ積層体を搬送アーム部260から外部へ払い出すものである。
【0044】
図5は、本技術の実施の形態における検査前後の上ウェハ510の平面図の一例である。同図におけるaは、欠陥検査前の上ウェハ510の平面図の一例である。同図におけるbは、欠陥検査後の上ウェハ510の平面図の一例であり、同図におけるcは、電気的検査後の上ウェハ510の平面図の一例である。
【0045】
上ウェハ510の形状は、円形であり、その外周の特定個所に切欠きがノッチ512として形成される。また、上ウェハ510には、複数の上チップ511が形成される。これらの上チップ511の配列は、上ウェハ510の中心軸の周りに、所定角度だけ回転させても変化しない形状である。このように、所定角度だけ回転させても形状が変化しない特性は、回転対称性と呼ばれる。360/n(nは、整数)度だけ回転させても変化しない回転対称性は、n回対称と呼ばれる。例えば、正方形は、90度回転させても同じ形状であり、4回対称である。また、長方形は、180度回転させても同じ形状であり、2回対称である。
【0046】
また、上チップ511の個々の形状も配列と同様にn回対称である。例えば、上チップ511の配列と、個々の形状との両方は、90度回転させても同じ形状の4回対称である。4回対称の上チップ511として、例えば、正方形のチップが用いられる。また、上チップ511の配列の形状を4回対称にするために、例えば、i行×j列(i、jは整数)で、その中心が上ウェハ510の中心に位置するように配置した際に、上ウェハ510内に位置しないチップ(4隅など)を削減した配列が用いられる。以下、半導体チップの位置を座標(i、j)により表す。
【0047】
また、複数の上チップ511は、それぞれのチップが、上ウェハ510の中心に位置しないように配列される。例えば、iおよびjは偶数に設定される。このような配列により、90度回転させた際に、下チップの全ての位置を変えることができる。
【0048】
上ウェハ製造部110は、欠陥検査を行い、(1、2)の位置において測定値が正常な範囲外であったものとする。この場合には、(1、2)の位置の上チップ511が不良チップであり、それ以外が良品チップである旨を示す良品・不良品情報が外部データベース130内に保持される。同図におけるbの斜線部分は、欠陥検査終了時の不良チップを示す。
【0049】
そして、上ウェハ製造部110は、電気的検査を行い、(2、2)の位置において測定値が正常な範囲外であったものとする。この場合には、良品・不良品情報において、(2、2)の位置の上チップ511に対応する検査結果が、不良チップである旨を示す情報に更新される。同図におけるcの斜線部分は、電気的検査終了時の不良チップを示す。
【0050】
図6は、本技術の実施の形態における検査前後の下ウェハ520の平面図の一例である。同図におけるaは、欠陥検査前の下ウェハ520の平面図の一例である。同図におけるbは、欠陥検査後の下ウェハ520の平面図の一例であり、同図におけるcは、電気的検査後の下ウェハ520の平面図の一例である。
【0051】
下ウェハ520の形状およびサイズは、上ウェハ510と同一である。下ウェハ520の外周にも切欠きがノッチ522として形成される。また、下ウェハ520には、複数の下チップ521が形成される。これらの下チップ521の形状、サイズおよび配列は、上チップ511と同様である。また、上ウェハ510のノッチ512と下ウェハ520のノッチ522とのそれぞれは、初期状態において回転させずに積層した際に重なり合う個所に位置するものとする。
【0052】
下ウェハ製造部120は、欠陥検査を行い、(3、1)の位置において測定値が正常な範囲外であったものとする。同図におけるbの斜線部分は、欠陥検査終了時の不良チップを示す。そして、下ウェハ製造部120は、電気的検査を行い、(3、2)の位置において測定値が正常な範囲外であったものとする。同図におけるcの斜線部分は、電気的検査終了時の不良チップを示す。
【0053】
図5および図6に例示した不良チップの位置に基づいて、回転角度取得部240は、上ウェハに対して下ウェハを回転させた際に互いに重なり合う良品チップの個数が最大になる回転角度を求める。この回転角度は、回転前の下ウェハの外周の特定個所(ノッチなど)から中心への線分と、回転後のその特定個所(ノッチなど)から中心への線分とのなす角度である。回転角度の候補は、半導体チップの形状がn回対称の場合、360/n度の倍数である。例えば、半導体チップの形状が4回対称(正方形など)である場合、90度の倍数である、0度、90度、180度および270度が回転角度の候補となる。
【0054】
回転角度取得部240は、それぞれの候補の角度ごとに、その角度で回転させた際に、互いに重なり合う良品チップの個数を求める。不良チップの位置は、様々な要因により、半導体ウェハごとに同一とは限らず、ばらつきが生じる。このため、回転角度ごとに、重なり合う良品チップの個数が異なることがある。前述したように積層型の半導体素子では、積層する複数の半導体チップのそれぞれが協同して動作するため、それらのうち1つ以上に不良品があると、半導体素子全体が正常に動作しなくなる。したがって、不良チップと重なる良品チップの個数が多いほど、積層後において不良品の比率が高くなり、良品の比率である歩留まりが低下する。逆に、他の良品チップと重なる良品チップの個数が多いほど、不良品の比率が低下し、歩留まりが向上する。
【0055】
図7は、本技術の実施の形態における回転角度が0度である場合の積層前後のウェハの平面図の一例である。同図におけるaは、上ウェハ510の平面図の一例であり、同図におけるbは、回転角度が0度の下ウェハ520の平面図の一例である。同図におけるcは、積層後の半導体素子の平面図の一例である。また、同図における斜線部分は、不良品の半導体チップないし半導体素子を示す。
【0056】
上ウェハ510の不良チップは、(1、2)および(2、2)の位置であり、下ウェハ520の不良チップは、(3、1)および(3、2)の位置である。0度の回転角度で(すなわち、回転せずに)積層した場合、積層後において、不良品の半導体素子は、(1、2)、(2、2)、(3、1)および(3、2)の位置となる。良品は、12個のうち8個であるため、歩留まりは、8/12となる。なお、この積層後の半導体素子は、実際には製造されず、歩留まりは、回転角度取得部240によってシミュレーションにより求められる。
【0057】
図8は、本技術の実施の形態における回転角度が90度である場合の積層前後のウェハの平面図の一例である。同図におけるaは、上ウェハ510の平面図の一例であり、同図におけるbは、回転前の下ウェハ520の平面図の一例である。同図におけるcは、90度だけ回転させた下ウェハ520の平面図の一例である。同図におけるdは、積層後の半導体素子の平面図の一例である。また、同図における斜線部分は、不良品の半導体チップないし半導体素子を示す。
【0058】
図8において回転前の上ウェハ510および下ウェハ520のそれぞれにおける不良チップの位置は、図7と同様である。上ウェハ510に対して、下ウェハ520を時計回りに90度回転させた場合、不良チップの(3、1)および(3、2)の座標は、回転行列との積により、(1、2)および(2、2)となる。この回転後の下ウェハ520を上ウェハ510と積層した場合、上側の不良チップ2つが両方とも下側の不良チップと重なり合う。この結果、積層後において、不良品の半導体素子は、(1、2)および(2、2)の位置となる。良品は、12個のうち10個であるため、歩留まりは、10/12となる。
【0059】
図9は、本技術の実施の形態における回転角度が180度である場合の積層前後のウェハの平面図の一例である。同図におけるaは、上ウェハ510の平面図の一例であり、同図におけるbは、回転前の下ウェハ520の平面図の一例である。同図におけるcは、180度だけ回転させた下ウェハ520の平面図の一例である。同図におけるdは、積層後の半導体素子の平面図の一例である。また、同図における斜線部分は、不良品の半導体チップないし半導体素子を示す。
【0060】
図9において回転前の上ウェハ510および下ウェハ520のそれぞれにおける不良チップの位置は、図7と同様である。上ウェハ510に対して、下ウェハ520を180度回転させた場合、不良チップの(3、1)および(3、2)の座標は、回転行列との積により、(2、4)および(2、3)となる。この回転後の下ウェハ520を上ウェハ510と積層した場合、上側および下側の不良チップのそれぞれが良品チップと重なり合う。この結果、積層後において、不良品の半導体素子は、(1、2)、(2、2)、(2、4)および(2、3)の位置となる。良品は、12個のうち8個であるため、歩留まりは、8/12となる。なお、この積層後の半導体素子は、実際には製造されず、歩留まりは、回転角度取得部240によってシミュレーションにより求められる。
【0061】
図10は、本技術の実施の形態における回転角度が270度である場合の積層前後のウェハの平面図の一例である。同図におけるaは、上ウェハ510の平面図の一例であり、同図におけるbは、回転前の下ウェハ520の平面図の一例である。同図におけるcは、270度だけ回転させた下ウェハ520の平面図の一例である。同図におけるdは、積層後の半導体素子の平面図の一例である。また、同図における斜線部分は、不良品の半導体チップないし半導体素子を示す。
【0062】
図10において回転前の上ウェハ510および下ウェハ520のそれぞれにおける不良チップの位置は、図7と同様である。上ウェハ510に対して、下ウェハ520を時計回りに270度回転させた場合、不良チップの(3、1)および(3、2)の座標は、回転行列との積により、(4、3)および(3、3)となる。この回転後の下ウェハ520を上ウェハ510と積層した場合、上側および下側の不良チップのそれぞれが良品チップと重なり合う。この結果、積層後において、不良品の半導体素子は、(1、2)、(2、2)、(4、3)および(3、3)の位置となる。良品は、12個のうち8個であるため、歩留まりは、8/12となる。なお、この積層後の半導体素子は、実際には製造されず、歩留まりは、回転角度取得部240によってシミュレーションにより求められる。
【0063】
図7乃至図10に例示したように、回転角度の変更により、不良チップの位置が変化する。このため、重なり合う良品チップの個数が回転角度により変わり、歩留まりも変化する。図7乃至図10より、回転角度が0度、180度および270度のときの歩留まりは8/12であるのに対し、回転角度が90度のときの歩留まりは10/12となる。このため、回転角度取得部240は、歩留まりが最も高くなる回転角度として90度を取得する。そして、後段の積層処理部250は、上ウェハ510に対して下ウェハ520を90度だけ回転し、それらのウェハを積層する。これにより、回転しない場合、すなわち、回転角度が0度の場合と比較して歩留まりを向上させることができる。
【0064】
なお、積層処理部250は、上ウェハ510および下ウェハ520の2枚を積層しているが、3枚以上を積層することもできる。3枚以上を積層する際には、積層処理部250は、3枚のうち2枚を、残りの1枚に対して回転させればよい。また、上チップ511および下チップ521のそれぞれの半導体チップの形状を正方形としているが、回転対称性を有するものであれば、正方形に限定されない。例えば、半導体チップの形状は、2回対称の長方形であってもよい。
【0065】
図11は、本技術の実施の形態における半導体素子の積層構造の一例を示す図である。半導体素子として、例えば、固体撮像素子が製造される。この固体撮像素子は、下チップ521と、その下チップ521に積層された上チップ511とを備える。これらのチップは、ビアなどの接続部を介して電気的に接続される。なお、ビアの他、Cu-Cu接合やバンプ、TCI(ThruChip Interface)などの誘導結合通信技術により接続することもできる。また、製造システムは、積層により固体撮像素子を製造しているが、固体撮像素子以外の半導体素子を積層により製造することもできる。
【0066】
[上チップの構成例]
図12は、本技術の実施の形態における上チップ511の平面図の一例である。この上チップ511には、画素アレイ部310と、m(mは、整数)個のパッド321とが設けられる。画素アレイ部310には、複数の画素311が二次元格子状に配列される。
【0067】
m個のパッド321のそれぞれは、上チップ511の4辺のいずれかに沿って一列に配列される。これらのパッドは、下チップ521と電気的に接続するための端子として用いられる。なお、パッド321は、特許請求の範囲に記載の「端子」の一例である。
【0068】
画素311は、光電変換により、光量に応じた画素信号を生成するものである。この画素311のそれぞれには、複数本の駆動線と、1本の垂直信号線とが配線される。駆動線は、画素311を駆動するための駆動信号が伝送される信号線であり、垂直信号線は、生成された画素信号が伝送される信号線である。これらの信号線は、互いに異なるパッド321に接続される。例えば、座標(0、0)の画素311の駆動線のいずれかが、パッド番号「1」のパッド321(すなわち、端子)に接続される。また、座標(0、1)の画素311の駆動線のいずれかが、パッド番号「2」のパッド321に接続される。座標(0、0)の画素311の他の駆動線および垂直信号線と、座標(0、1)の画素311の他の駆動線および垂直信号線とのそれぞれは、パッド番号「3」以降のパッド321に接続される。
【0069】
なお、上チップ511は、特許請求の範囲に記載の第1半導体チップの一例である。
【0070】
[下チップの構成例]
図13は、本技術の実施の形態における下チップ521の平面図の一例である。この下チップ521には、回路配置部330が配置される。また、半導体チップの形状をn回対称として、回路配置部330の周囲には、360/n度(例えば、90度)ごとに、m個のパッド322が配置される。半導体チップが4回対称の正方形である場合には、合計で4×m個のパッド322が配置される。また、半導体チップが2回対称の長方形である場合には、合計で2×m個のパッド322が配置される。回路配置部330には、例えば、駆動回路331、制御回路332、信号処理回路333およびDAC(Digital to Analog Converter)334が配置される。
【0071】
駆動回路331は、画素311のそれぞれを駆動するものである。信号処理回路333は、画素311のそれぞれからの画素信号を処理するものである。例えば、アナログの画素信号とランプ信号との比較結果が反転するまでの時間に亘って計数を行うことによりデジタル信号を生成するAD変換処理が実行される。
【0072】
DAC334は、DA変換によりランプ信号を生成して信号処理回路333に供給するものである。制御回路332は、駆動回路331、信号処理回路333およびDAC334を制御するものである。
【0073】
また、パッド322のそれぞれは、360/n度ごとに、異なるグループに属する。半導体チップが4回対称の正方形である場合には、4×m個のパッド322は、それぞれがm個からなる4個のグループに分割される。4個のグループのそれぞれは、下チップ521の互いに異なる辺に沿って配列され、それらの配列の形状は、正方形となる。また、それぞれのグループにおいて相対位置が同一(言い換えれば、回転対称な位置)のパッド322には、同一のパッド番号が割り当てられる。このため、あるグループ内の特定のパッド番号(「1」など)のパッドを360/n度(90度など)の単位で回転させると、別のグループ内の同じパッド番号(「1」など)のパッドと重なることとなる。
【0074】
駆動回路331は、グループのそれぞれにおいて相対位置が同一(例えば、パッド番号が「1」)のパッド322に共通に接続される。グループが4個である場合、パッド番号が同一の4個のパッド322に駆動回路331が共通に接続される。駆動回路331は、それらのパッド322を介して、対応する画素311を駆動する。同様に、信号処理回路333も、グループのそれぞれにおいて、パッド番号が同一のパッドに接続され、それらのパッドからの画素信号を処理する。
【0075】
同図に例示したように90度ごとにm個のパッドを下チップ521に配置することにより、90度単位で下チップ521を回転させた際に、4個のグループのいずれかのパッド322を、上チップ511の対応する位置のパッド321と接続することができる。例えば、上チップ511のパッド番号「1」のパッドは、下チップ521内の4個のグループのいずれかのパッド番号「1」のパッドと接続される。これにより、上チップ511内の回路と、下チップ521内の回路との電気的な接続関係は、回転前後で変更されることが無い。したがって、下チップ521の回転によって電気的な接続関係が変更されて正常に動作しなくなることを防止することができる。
【0076】
なお、下チップ521は、特許請求の範囲に記載の第2半導体チップの一例である。また、下チップ521のパッド322を正方形に配列しているが、パッド322の配列の形状は、n回対称(4回対称など)であれば、正方形に限定されない。例えば、図14におけるaに例示するように、十字形状であってもよいし、同図におけるbに例示するように斜め十字形状であってもよい。また、同図におけるcに例示するように円形であってもよい。
【0077】
図15は、本技術の実施の形態における製造システムの動作の一例を示すフローチャートである。この動作は、例えば、積層型の半導体素子の製造が指示されたときに開始される。
【0078】
製造システム内の上ウェハ製造部110は、上ウェハ510を1ロット分、製造して上ウェハロットとして積層ウェハ製造部200にセットする(ステップS901)。また、下ウェハ製造部120は、下ウェハ520を1ロット分、製造して下ウェハロットとして積層ウェハ製造部200にセットする(ステップS902)。
【0079】
そして、積層ウェハ製造部200は、適切な回転角度を算出するための回転角度算出処理を実行し(ステップS910)、積層前処理を行う(ステップS903)。
【0080】
積層ウェハ製造部200は、算出した回転角度が0度より大きいか否かを判断する(ステップS904)。回転角度が0度より大きい場合(ステップS904:Yes)、積層ウェハ製造部200は、上ウェハに対して下ウェハを、算出した回転角度だけ回転させる(ステップS905)。回転角度が0度である場合(ステップS904:No)、または、ステップS905の後に積層ウェハ製造部200は、下ウェハの位置を測定し(ステップS906)、積層時に位置がずれないように、下ウェハの位置合わせを行う(ステップS907)。
【0081】
続いて積層ウェハ製造部200は、位置合わせ後の下ウェハに上ウェハを積層し(ステップS908)、ウェハ積層体の払い出しを行う(ステップS909)。ステップS909の後に、製造システムは、積層ウェハを製造するための動作を終了する。
【0082】
図16は、本技術の実施の形態における回転角度算出処理を示すフローチャートである。積層ウェハ製造部200は、外部データベース130から、上ウェハおよび下ウェハのそれぞれの良品・不良品情報を取得する(ステップS911)。そして、積層ウェハ製造部200は、その良品・不良品情報に基づいて、積層した際に重なり合う良品チップの個数が最大となる回転角度を算出する(ステップS912)。ステップS912の後に積層ウェハ製造部200は、回転角度算出処理を終了する。
【0083】
なお、上側のロットと下側のロットとの組合せは、固定としてもよいし、良品・不良品情報に基づいて製造開始時と異なる組合わせに変更してもよい。後者の場合、図4の積層ウェハ製造部200に上下のウェハがセットされる前に、積層ウェハ製造部200は、外部データベース130から良品・不良品情報を取得する。そして、積層ウェハ製造部200は、取得済の良品・不良品情報に基づいて製造前に図16の回転角度算出処理などを実行し、全てのリソースから最適の上下のロットの組合せと、最適の上下ウェハの組合せとを求める。そして、それらの組合わせにより、積層型半導体素子の製造が開始される。これにより、歩留まりをさらに改善することができる。
【0084】
このように、本技術の第1の実施の形態によれば、重なり合う良品チップの個数が最大となる回転角度だけ、上ウェハに対して下ウェハを回転させて積層するため、重なり合う良品チップの個数を最大にして歩留まりを向上させることができる。
【0085】
<2.変形例>
上述の実施の形態では、半導体ウェハの中心に半導体チップが位置しないように、複数の半導体チップを配列していたが、この配列方法では、半導体ウェハ当たりの半導体チップの個数を十分に多くすることができないおそれがある。この実施の形態の変形例の製造システムは、いずれかの半導体チップが半導体ウェハの中心に位置する配列により、半導体ウェハ当たりの半導体チップ数を増大させる点において実施の形態と異なる。
【0086】
図17におけるaは、本技術の実施の形態の変形例における上ウェハ510の平面図の一例である。この実施の形態の変形例の上ウェハ510は、その中心に、いずれかの上チップ511が位置するように、複数の上チップ511が配列される点において実施の形態と異なる。例えば、半導体チップの行数iおよび列数jを奇数にすれば、上ウェハ510の中心に、いずれかの上チップ511を配置することができる。このような配列により、実施の形態と比較して、上ウェハ510当たりの上チップ511の個数を増大することができる。
【0087】
例えば、半導体ウェハの直径を「6」とし、半導体チップを一辺が「1」の正方形とし、説明を簡易にするために隣りと間を空けずに二次元格子状に半導体チップを配列する場合を考える。行数および列数を実施の形態と同様に偶数とすると、同図におけるbに例示するように、最大で4行×4列の16個の半導体チップを配列することができる。一方、行数および列数を実施の形態の変形例と同様に奇数とすると、同図におけるcに例示するように最大で21個の半導体チップを配列することができる。
【0088】
なお、下ウェハ520における下チップ521の配列も、上チップ511と同様である。
【0089】
このように、本技術の実施の形態の変形例によれば、いずれかの半導体チップが半導体ウェハの中心に位置するように、複数の半導体チップを配列したため、半導体ウェハ当たりの半導体チップの個数を増大することができる。
【0090】
なお、上述の実施の形態は本技術を具現化するための一例を示したものであり、実施の形態における事項と、特許請求の範囲における発明特定事項とはそれぞれ対応関係を有する。同様に、特許請求の範囲における発明特定事項と、これと同一名称を付した本技術の実施の形態における事項とはそれぞれ対応関係を有する。ただし、本技術は実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において実施の形態に種々の変形を施すことにより具現化することができる。
【0091】
なお、本明細書に記載された効果はあくまで例示であって、限定されるものではなく、また、他の効果があってもよい。
【0092】
なお、本技術は以下のような構成もとることができる。
(1)複数の半導体ウェハのそれぞれに形成された複数の半導体チップのうち所定範囲内の測定値が測定された半導体チップのそれぞれを良品チップとして示す情報を取得する情報取得部と、
前記複数の半導体ウェハのうち一対の半導体ウェハの一方の回転前の外周の特定個所から中心への線分と回転後の前記特定個所から前記中心への線分とのなす回転角度のうち、前記一対の半導体ウェハの前記一方を他方に対して回転させて積層した際に重なり合う前記良品チップの個数が最大になる前記回転角度を前記情報に基づいて取得する回転角度取得部と、
前記一対の半導体ウェハの前記一方を前記他方に対して前記回転角度だけ回転させて積層する処理を行う積層処理部と
を具備する半導体素子の製造システム。
(2)前記半導体チップの形状は、所定軸の周りに所定角度だけ回転させても変化しない形状であり、
前記回転角度取得部は、前記所定角度の倍数のいずれかを前記回転角度として求める
前記(1)記載の製造システム。
(3)前記半導体チップの形状は正方形であり、
前記回転角度取得部は、90度の倍数のいずれかを前記回転角度として求める
前記(2)記載の製造システム。
(4)前記一対の半導体ウェハの前記他方に対応する前記半導体チップには、所定数の端子が形成され、
前記一対の半導体ウェハの前記一方には、前記所定角度ごとに前記所定数の端子が形成され、
前記一対の半導体ウェハの前記一方に係る前記端子の配列は、前記所定軸の周りに前記所定角度だけ回転させても変化しない形状である
前記(2)または(3)に記載の製造システム。
(5)前記一対の半導体ウェハの前記一方に係る前記端子は、前記所定角度ごとに異なるグループに属し、
前記一対の半導体ウェハの前記一方に対応する前記半導体チップには、前記グループそれぞれの回転対称な位置の前記端子に共通に接続された回路がさらに形成される
請求項4記載の製造システム。
前記(4)記載の製造システム。
(6)前記一対の半導体ウェハの前記一方に係る前記端子の配列は、矩形である
前記(4)または(5)に記載の製造システム。
(7)前記一対の半導体ウェハの前記一方に係る前記端子の配列は、十字形状である
前記(4)または(5)に記載の製造システム。
(8)前記一対の半導体ウェハの前記一方に係る前記端子の配列は、斜め十字形状である
前記(4)または(5)に記載の製造システム。
(9)前記一対の半導体ウェハの前記一方に係る前記端子の配列は、円形である
前記(4)または(5)に記載の製造システム。
(10)前記一対の半導体ウェハの前記一方の前記特定個所にノッチが形成される
前記(1)から(9)のいずれかに記載の製造システム。
(11)前記複数の半導体チップの配列は、所定軸の周りに所定角度だけ回転させても変化しない形状である
前記(1)から(10)のいずれかに記載の製造システム。
(12)前記複数の半導体チップのいずれかが、前記一対の半導体ウェハのそれぞれの中心に配置される
前記(11)記載の製造システム。
(13)前記複数の半導体チップのそれぞれは、前記一対の半導体ウェハのそれぞれの中心に位置しない
前記(11)記載の製造システム。
(14)前記測定値が前記所定範囲内であるか否かを検査して判定結果を出力する検査部と、
前記検査結果に基づいて前記情報を生成して保持する外部データベースと
をさらに具備する
前記(1)から(13)のいずれかに記載の製造システム。
(15)所定数の端子が配列され、所定軸の周りに所定角度だけ回転させても変化しない形状の第1半導体チップと、
前記第1半導体チップに積層され、前記所定角度ごとに前記所定数の端子が配列された第2半導体チップと
を具備する半導体素子。
(16)複数の半導体ウェハのそれぞれに形成された複数の半導体チップのうち所定範囲内の測定値が測定された半導体チップのそれぞれを良品チップとして示す情報を取得する情報取得手順と、
前記複数の半導体ウェハのうち一対の半導体ウェハの一方の回転前の外周の特定個所から中心への線分と回転後の前記特定個所から前記中心への線分とのなす回転角度のうち、前記一対の半導体ウェハの前記一方を他方に対して回転させて積層した際に重なり合う前記良品チップの個数が最大になる前記回転角度を前記情報に基づいて取得する回転角度取得手順と、
前記一対の半導体ウェハの前記一方を前記他方に対して前記回転角度だけ回転させて積層する処理を行う積層処理手順と
を具備する半導体素子の製造方法。
【符号の説明】
【0093】
110 上ウェハ製造部
111、121 欠陥検査部
112、122 電気的検査部
120 下ウェハ製造部
130 外部データベース
200 積層ウェハ製造部
211 上ウェハセット部
212 下ウェハセット部
220 取り出しアーム部
230 良品・不良品情報取得部
240 回転角度取得部
250 積層処理部
260 搬送アーム部
270 積層前処理部
280 積層ウェハ払い出し部
310 画素アレイ部
311 画素
321、322 パッド
330 回路配置部
331 駆動回路
332 制御回路
333 信号処理回路
334 DAC
510 上ウェハ
511 上チップ
512、522 ノッチ
520 下ウェハ
521 下チップ
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17