(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-11-01
(45)【発行日】2022-11-10
(54)【発明の名称】流体管理システム
(51)【国際特許分類】
A61M 1/00 20060101AFI20221102BHJP
A61M 5/142 20060101ALI20221102BHJP
【FI】
A61M1/00 140
A61M5/142 530
(21)【出願番号】P 2021162731
(22)【出願日】2021-10-01
(62)【分割の表示】P 2020037973の分割
【原出願日】2014-04-08
【審査請求日】2021-10-01
(32)【優先日】2013-04-08
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】506192652
【氏名又は名称】ボストン サイエンティフィック サイムド,インコーポレイテッド
【氏名又は名称原語表記】BOSTON SCIENTIFIC SCIMED,INC.
(74)【代理人】
【識別番号】100094569
【氏名又は名称】田中 伸一郎
(74)【代理人】
【識別番号】100109070
【氏名又は名称】須田 洋之
(74)【代理人】
【識別番号】100130937
【氏名又は名称】山本 泰史
(74)【代理人】
【識別番号】100144451
【氏名又は名称】鈴木 博子
(74)【代理人】
【識別番号】100123607
【氏名又は名称】渡邊 徹
(72)【発明者】
【氏名】ベク ロビン
(72)【発明者】
【氏名】ジェルマン アーロン
(72)【発明者】
【氏名】クライン カイル
(72)【発明者】
【氏名】ウォーカー マイケル ディー
【審査官】土谷 秀人
(56)【参考文献】
【文献】米国特許出願公開第2013/0079702(US,A1)
【文献】国際公開第2012/145543(WO,A1)
【文献】特表2003-513742(JP,A)
【文献】特表2010-517681(JP,A)
【文献】特表2009-502301(JP,A)
【文献】米国特許出願公開第2012/0172888(US,A1)
【文献】特開平7-178044(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61M 1/00
A61B 17/42
A61B 17/22
A61B 17/3205
A61B 18/14
A61M 5/142
(57)【特許請求の範囲】
【請求項1】
流体管理システムであって、
コントローラと、
前記コントローラによって作動されかつ流入配管を通して流体の流入を行うように構成された流入ポンプと、を含み、
前記コントローラのアルゴリズムは、前記流入ポンプへの入力電圧をモニタし、
前記アルゴリズムが、前記流入ポンプが予め決められた閾値電圧レベルを超える入力電圧で作動していると決定した場合に、タイマが開始され、
前記流入ポンプの入力電圧が予め決められた電圧閾値レベルを超えている間にタイマが予め選択された時間間隔を超える場合に、コントローラは、通知警告及び可聴警報を表して漏出又は流体損失を示す、流体管理システム。
【請求項2】
コントローラアルゴリズムは、前記流入ポンプの入力電圧を漏出又は流体損失の信号を送る経過時間間隔に関連付けた線形適合曲線を使用してシステムにおける漏出又は流体損失を検出する、請求項1に記載の流体管理システム。
【請求項3】
流入速度が公称流入速度を超えて増加する時に、前記予め選択された時間間隔は短くなる、請求項2に記載の流体管理システム。
【請求項4】
閾値電圧レベルは、設定圧力、実体腔内圧力、及びどの作動モードが作動中であるかの関数である、請求項1に記載の流体管理システム。
【請求項5】
更に、前記コントローラによって作動されかつ流出配管を通して流体の流出を行うように構成された流出ポンプを含む、請求項4に記載の流体管理システム。
【請求項6】
作動モードの各々で流出速度が異なる、請求項5に記載の流体管理システム。
【請求項7】
作動モードの各々及びそれに対応する流出速度に対して、異なる閾値電圧レベル、流体の流入速度、及び時間間隔を使用して不要な流体損失が存在するか否かを決定する、請求項6に記載の流体管理システム。
【請求項8】
流体管理システムであって、
コントローラと、
前記コントローラによって作動されかつ流入配管を通して流体の流入を行うように構成された流入ポンプと、を含み、
コントローラアルゴリズムは、前記流入ポンプへの入力電圧をモニタし、
前記アルゴリズムが、前記流入ポンプが予め決められた閾値電圧レベルを超える入力電圧で作動していると決定した場合に、タイマが開始され、
前記流入ポンプの入力電圧が予め決められた電圧閾値レベルを超えている間にタイマが予め選択された時間間隔を超える場合に、コントローラは、通知警告及び可視警報を表して漏出又は流体損失を示す、流体管理システム。
【請求項9】
コントローラアルゴリズムは、前記流入ポンプの入力電圧を漏出又は流体損失の信号を送る経過時間間隔に関連付けた線形適合曲線を使用してシステムにおける漏出又は流体損失を検出する、請求項8に記載の流体管理システム。
【請求項10】
流入速度が公称流入速度を超えて増加する時に、前記予め選択された時間間隔は短くなる、請求項9に記載の流体管理システム。
【請求項11】
閾値電圧レベルは、設定圧力、実体腔内圧力、及びどの作動モードが作動中であるかの関数である、請求項8に記載の流体管理システム。
【請求項12】
更に、前記コントローラによって作動されかつ流出配管を通して流体の流出を行うように構成された流出ポンプを含む、請求項11に記載の流体管理システム。
【請求項13】
作動モードの各々で流出速度が異なる、請求項12に記載の流体管理システム。
【請求項14】
作動モードの各々及びそれに対応する流出速度に対して、異なる閾値電圧レベル、流体の流入速度、及び時間間隔を使用して不要な流体損失が存在するか否かを決定する、請求項13に記載の流体管理システム。
【発明の詳細な説明】
【技術分野】
【0001】
〔関連出願への相互参照〕
本出願は、2013年4月8日出願の米国仮特許出願第61/809,681号(代理人整理番号41878-722.101)からの優先権を主張するものであり、その全開示は、引用によって本明細書に組み込まれている。
【0002】
本発明は、例えば、子宮筋腫及びポリープのような異常な子宮組織の切除及び抽出を可能にするために子宮腔を膨張させる際に使用するための外科的流体管理システム及び方法に関する。
【背景技術】
【0003】
子宮筋腫は、子宮の壁で発育する非がん腫瘍である。そのような子宮筋腫は、女性人口の大きい割合で生じ、一部の研究は、全女性の40パーセントまでが子宮筋腫を有することを示している。子宮筋腫は、時間と共に成長して直径が数センチメートルになる可能性があり、症状は、月経過多、生殖機能障害、骨盤圧、及び疼痛を含む可能性がある。
【0004】
子宮筋腫の1つの現在の治療は、子宮鏡の作業チャネルを通した切除器具の挿入と共に子宮鏡を用いた子宮への経頸管的アクセスを伴う子宮鏡切除又は筋腫摘出である。切除器具は、機械的組織カッター又は切断ループのような電気手術切除デバイスである場合がある。機械的切断デバイスは、特許文献1~4に開示されている。電気手術切除デバイスは、特許文献5に開示されている。
【0005】
筋腫摘出又は子宮鏡切除では、手順の初期段階は、子宮鏡を通して見るのを補助するための作業空間を生成する子宮腔の膨張を含む。弛緩状態では、子宮腔は潰れており、子宮壁は、互いに接触している。流体管理システムを使用して子宮を膨張させ、十分な加圧下で流体を子宮鏡内の通路を通して投与して子宮腔を拡張又は膨張させる作業空間を提供する。子宮を膨張させるのに使用する流体は、典型的には、生理食塩水又は糖ベースの水溶液のような液体水溶液である。
【0006】
一部のRF電気手術切除手順では、膨張流体は、RF電流伝達を制限するために非導電性水溶液である。
【0007】
1つの特定の懸念は、流体管理システムが、典型的に100mmHgまで又はそれよりも高い加圧下で流体を投与し、これが、膨張流体が子宮腔に露出された切断血管によって取込まれる場合があるという重大な危険をもたらすという事実である。そのような不要な流体の取込みは、重篤な合併症及び死亡にさえ至る可能性がある血管内異物侵入として公知である。この理由により、流体管理システムは、典型的には、子宮腔を通って流れる膨張流体を捕捉、収集、かつ計量する複雑なシステムを使用して手順中に継続的に患者の流体の取込みをモニタするように開発されている。
【先行技術文献】
【特許文献】
【0008】
【文献】米国特許第7,226,459号明細書
【文献】米国特許第6,032,673号明細書
【文献】米国特許第5,730,752号明細書
【文献】米国公開特許出願第2009/0270898号明細書
【文献】米国特許第5,906,615号明細書
【発明の概要】
【発明が解決しようとする課題】
【0009】
子宮鏡切除は子宮筋腫を除去するのに有効である可能性があるが、多くの市販の器具は、直径が大き過ぎ、従って、手術室環境において麻酔を必要とする。従来の切除内視鏡は、約9mmまでの頸部直径を必要とする。必要なものは、小直径の子宮鏡を通して子宮筋腫組織を効果的に切除して除去することができるシステムである。
【課題を解決するための手段】
【0010】
本発明の第1の態様において、子宮筋腫治療システムは、コントローラと、コントローラによって作動され、かつ患者の子宮腔までの流路を通して流体の流入を行うように構成された流入ポンプと、コントローラによって作動され、かつ子宮腔までの流路を通して流体の流出を行うように構成された流出ポンプと、コントローラによって作動するモータ駆動式切除デバイスとを含む。切除デバイスは、2.4mmよりも小さくない直径でそこに組織抽出チャネルを有する細長いントロデューサ部材と、3.8mmよりも大きくない直径を有する外側スリーブとを含む。更に、切除デバイスは、少なくとも2gm/分の割合で子宮筋腫組織を除去するようになっている。一変形例では、コントローラは、上述のように、子宮腔内の流体圧力の信号に応答して、流入ポンプ及び流出ポンプを作動させ、かつターゲット圧力を維持するように構成することができる。これに加えて、流体圧力の信号は、子宮腔と連通する静止流体柱に結合された圧力センサによって提供することができる。別の変形例では、コントローラは、以下で更に説明するように、流入ポンプ速度、流出ポンプ速度、及び子宮腔内の流体圧力の信号から構成される群から選択される少なくとも1つのパラメータに応答して、切除デバイスを作動するように構成することができる。
【0011】
本発明の第2の態様において、流体管理システムは、コントローラを含む。第1ポンプは、コントローラによって作動され、かつ流体の流入を患者の身体内の部位に提供するように構成される。第2ポンプもコントローラによって作動され、かつ流体の流出を患者の身体内の部位から行うように構成される。コントローラは、第1ポンプ速度、流体の流入速度、第2ポンプ速度、及び流体の流出速度又は流出流量又は流出流量から構成される群から選択される少なくとも1つの作動パラメータを維持するように構成され、コントローラは、第1ポンプ速度が予め決められたレベルを予め選択された時間間隔にわたって超えていれば、流体損失警告を与えるように構成される。
【0012】
第2の態様の例示的実施形態において、予め選択された時間間隔は、少なくとも1秒、少なくとも5秒、又は少なくとも10秒とすることができる。コントローラは、第1ポンプ速度が予め決められたレベルを予め選択された時間間隔にわたって超えていれば、少なくとも1つのポンプを不作動にするように更に構成することができ、コントローラは、第1ポンプ速度が予め決められたレベルを予め選択された時間間隔にわたって超えていれば、その部位に位置決めされた給電中の切除デバイスを不作動にするように更に構成することができる。
【0013】
本発明の第3の態様において、流体管理システムは、コントローラを含む。流入ポンプは、コントローラによって作動され、かつ流路を通して患者の身体内の部位に流体の流入を行うようになっている。流出ポンプもコントローラによって作動され、かつ流路を通して患者の身体内の部位から流体の流出を行うようになっている。コントローラは、第1ポンプ速度、流体の流入速度、第2ポンプ速度、及び流体の流出速度又は流出流量から構成される群から選択される少なくとも1つの作動パラメータを維持するように構成され、コントローラは、流入ポンプを駆動するための計算電力が予め決められたレベルを予め選択された時間間隔にわたって超えていれば、流れ遮断警告を与えるように構成される。
【0014】
本発明の第3の態様の例示的実施形態において、コントローラは、流入ポンプを駆動するための計算電力が予め決められたレベルを予め選択された時間間隔にわたって超えていれば、少なくとも1つのポンプを不作動にするように更に構成することができる。コントローラは、流入ポンプを駆動するための計算電力が予め決められたレベルを予め選択された時間間隔にわたって超えていれば、その部位に位置決めされた給電中の切除デバイスを不作動にするように更に構成することができる。
【0015】
本発明の第4の態様において、流体管理システムは、コントローラを含む。第1ポンプは、コントローラによって作動され、かつ患者の身体内の部位に流体の流入を行うように構成される。第2ポンプもコントローラによって作動され、かつ患者の身体内の部位から流体の流出を行うように構成される。コントローラは、第1ポンプ速度、流体の流入速度、第2ポンプ速度、及び流体の流出速度又は流出流量から構成される群から選択される少なくとも1つの作動パラメータを維持するように構成され、コントローラは、流入ポンプモータへの入力電圧が予め選択された時間間隔にわたって予め決められた閾値電圧よりも低ければ、流れ遮断警告を与えるように更に構成される。
【0016】
本発明の第4の態様の例示的実施形態において、予め選択された時間間隔は、5秒から120秒に及ぶ場合がある。コントローラは、流入ポンプへの入力電圧が予め選択された時間間隔にわたって予め決められたレベルよりも下がった場合に、少なくとも1つのポンプを不作動にするように更に構成することができ、コントローラは、流入ポンプモータへの電圧が予め決められたレベルを予め選択された時間間隔にわたって超えていれば、その部位に位置決めされた給電中の切除デバイスを不作動にするように更に構成することができる。
【0017】
本発明の第5の態様において、流体管理システムは、コントローラを含む。流入ポンプは、コントローラによって作動され、かつ流路を通して患者の身体内の部位に流体の流入を行うように構成される。流出ポンプもコントローラによって作動され、かつ流路を通して患者の身体内の部位から流体の流出を行うように構成される。コントローラは、第1ポンプ速度、流体の流入速度、第2ポンプ速度、及び流体の流出速度又は流出流量から構成される群から選択される少なくとも1つの作動パラメータを維持するように構成され、コントローラは、流出ポンプへの測定電流が予め決められた閾値電圧を予め選択された時間間隔にわたって超えていれば、流れ遮断警告を与えるように更に構成される。
【0018】
本発明の第6の態様において、組織切除手順に使用するための流体管理システムは、コントローラを含む。流入ポンプは、コントローラによって作動され、かつ流路を通して患者の身体内の部位に流体の流入を行うように構成される。流出ポンプもコントローラによって作動され、かつ流路を通して患者の身体内の部位から流体の流出を行うように構成される。その部位で組織を切除するためのモータ駆動式切除デバイスも提供される。コントローラは、患者の身体内の部位での実際の圧力の信号に応答して、流入ポンプ及び流出ポンプをそれぞれ作動させ、その部位のターゲット圧力を維持するように流体の流入及び流体の流出を行うように構成され、コントローラは、部位内の実際の圧力が予め決められた閾値圧力レベルよりも下がったことを感知すると、モータ駆動式切除デバイスを不作動にするように更に構成される。
【0019】
本発明の第6の態様の例示的実施形態において、コントローラは、部位内の実際の圧力が予め決められた閾値圧力レベルよりも下がった場合に、モータ駆動式切除デバイス内のモータを不作動にするように更に構成することができる。コントローラは、これに代えて、部位内の実際の圧力が予め決められた閾値圧力レベルよりも下がった場合に、モータ駆動式組織切除デバイス内の少なくとも1つの組織切除電極を不作動にするように構成することができる。閾値圧力レベルは、100mmHg未満、50mmHg未満、又は25mmHg未満である。
【0020】
本発明の第7の態様において、組織切除に使用するための流体管理システムは、コントローラを含む。コントローラは、(a)患者の身体内の部位内の実際の圧力の信号に応答して、流入ポンプ及び流出ポンプをそれぞれ作動させ、それによってその部位のターゲット圧力を維持するように流体の流入及び流体の流出を行い、(b)切除ツールが部位内のターゲット組織と係合することから生じる予め選択された間隔内の実際の圧力の予め決められた増加を感知した後に、組織係合信号をコントローラに送信し、(c)切除ツールがその後に組織から離脱することから生じる予め選択された間隔内の実際の圧力の予め決められた減少を感知した後に、組織離脱信号をコントローラに送信し、かつ(d)組織係合信号又は組織離脱信号に応答して、流体管理システムの作動パラメータを調節するように構成される。
【0021】
本発明の第7の態様の例示的実施形態において、コントローラは、組織係合信号に応答して、選択された高流入速度を提供するための待機状態に流入ポンプを置くように更に構成することができる。コントローラはまた、組織離脱信号に応答して、選択された高流入速度を提供するために流入ポンプを作動するように構成することができる。
【図面の簡単な説明】
【0022】
【
図1】子宮鏡と子宮鏡の作業チャネルを通して挿入された本発明に対応する組織切除デバイスとを含むアセンブリの平面図である。
【
図2】子宮を膨張させて電気手術組織切除及び抽出を補助するために使用する流体管理システムの概略斜視図である。
【
図3】そこに様々なチャネルを示す
図1の子宮鏡のシャフトの断面図である。
【
図4】外側スリーブ及び往復内側スリーブ、並びに電極配置を示す
図1の電気手術組織切除デバイスの作業端の概略側面図である。
【
図5】その電極縁部を示す
図4の内側スリーブの作業端の概略斜視図である。
【
図6A】外側スリーブ、内側RF切除スリーブ、及び外側スリーブの組織受入れ窓の一部分の概略切り取り図である。
【
図6B】内側RF切除スリーブの別の実施形態の遠位端部分の概略図である。
【
図8】内側RF切除スリーブの別の実施形態の遠位端部分の概略図である。
【
図10A】往復RF切除スリーブが非拡張位置にある
図1の組織切除デバイスの作業端の斜視図である。
【
図10B】往復RF切除スリーブが部分拡張位置にある
図1の組織切除デバイスの斜視図である。
【
図10C】往復RF切除スリーブが組織受入れ窓にわたって完全拡張位置にある
図1の組織切除デバイスの斜視図である。
【
図11A】往復RF切除スリーブが非拡張位置にある
図10Aの組織切除デバイスの作業端の断面図である。
【
図11B】往復RF切除スリーブが部分拡張位置にある
図10Bの作業端の断面図である。
【
図11C】往復RF切除スリーブが完全拡張位置にある
図10Cの作業端の断面図である。
【
図12A】往復RF切除スリーブが部分拡張位置にあって第1のRFモードのRF場及び組織を切除するプラズマを示す
図11Bの組織切除デバイスの作業端の拡大断面図である。
【
図12B】往復RF切除スリーブがほとんど完全に拡張され、
図12に示す第1のRFモードから第2のRFモードに切り換えるRF場を示す
図11Cの作業端の拡大断面図である。
【
図12C】往復RF切除スリーブがここでもまたほとんど完全に拡張され、近位方向に切除組織を放出する捕捉液体容積の爆発的な蒸発を示す
図11Cの作業端の拡大断面図である。
【
図13】内部チャンバ及び溝付き発射要素を示す
図12Cの作業端の一部分の拡大斜視図である。
【
図14】内部チャンバ及び発射要素の変形を示す
図12Cの作業端の断面図である。
【
図15】内部チャンバ及び捕捉液体容積を爆発的に蒸発させるように構成された発射要素の変形を示す
図12Cの作業端の断面図である。
【
図16】流体管理システムを含む子宮筋腫除去のためのシステムの概略図である。
【
図17】子宮筋腫組織を切除して抽出する位置にある
図1~12Cで全体を説明するような組織除去プローブの作業端の拡大図と共に
図16の流体管理システムの概略図である。
【
図18】
図16~17の流体管理システムの圧力センサ構成要素の概略図である。
【
図19】
図16~17の流体管理システムのフィルタモジュールの切り取り概略図である。
【
図20】診断モードに使用される内視鏡及び流体管理システムの概略図である。
【
図21】アセンブリが非診断又は治療モードに使用される時の切除プローブと共に
図20の内視鏡及び流体管理システムの概略図である。
【発明を実施するための形態】
【0023】
図1は、内視鏡の作業チャネル102を通って延びる組織切除デバイス100と共に子宮鏡に対して使用する内視鏡50を含むアセンブリを示している。内視鏡又は子宮鏡50は、5mm~7mの直径を有する細長いシャフト105に結合されたハンドル104を有する。そこにある作業チャネル102は、円形のD字形又はいずれかの他の適切な形状とすることができる。内視鏡シャフト105は、流体の流入源120又は任意的に負圧源125(
図1~2)に結合するように構成された弁コネクタ110a、110bと連通する光学系チャネル106及び1つ又はそれよりも多くの流体の流入/流出チャネル108a、108b(
図3)によって更に構成される。流体の流入源120は、当業技術で公知のような流体管理システム126の構成要素であり(
図2)、流体の流入源120は、子宮鏡50を通して子宮腔の中に流体を送り込む流体容器128及びポンプ機構130を含む。
図2で認められるように、流体管理システム126は、組織切除デバイス100に結合された負圧源125(これは、手術室壁吸引源を含むことができる)を更に含む。内視鏡のハンドル104は、ビデオカメラ135を作動的に結合することができる光学系を有する傾斜延長部分132を含む。光源136も、子宮鏡50のハンドル上の光カプリング138に結合される。子宮鏡の作業チャネル102は、組織切除及び抽出デバイス100の挿入及び操作用に構成され、例えば、子宮筋腫組織を治療して除去する。一実施形態において、子宮鏡シャフト105は、21cmの軸線方向長さを有し、0°スコープ又は15°~30°スコープを含むことができる。
【0024】
尚も
図1を参照すると、組織切除デバイス100は、子宮鏡内の作業チャネル102を通って延びるように構成された非常に細長いシャフトアセンブリ140を有する。組織切除デバイス100のハンドル142は、デバイスの電気手術作業端145を操作するようになっている。使用中に、ハンドル142は、回転可能に及び軸線方向の両方に操作され、例えば、作業端145をターゲット子宮筋腫組織を切除するように向けることができる。組織切除デバイス100は、そのハンドル142に結合されたサブシステムを有し、ターゲット組織の電気手術切除を可能にする。無線周波数発生器又はRF源150及びコントローラ155は、以下で詳細に説明するように、作業端145によって担持された少なくとも1つのRF電極に結合される。
図1に示す一実施形態において、電気ケーブル156及び負圧源125は、ハンドル142のコネクタ158と作動的に結合される。電気ケーブルは、RF源150を電気手術作業端145に結合する。負圧源125は、組織抽出デバイス100(
図4)のシャフトアセンブリ140の組織抽出チャネル160と連通する。
【0025】
図1は、作業チャネル102において組織切除デバイス100のシャフト140を密封するために子宮鏡ハンドル104によって担持された可撓性シール164を担持して膨張流体が子宮腔から逃げるのを防止する密封ハウジング162を更に示している。
【0026】
図1に示す一実施形態において、組織切除デバイス100のハンドル142は、以下に説明するように、電気手術作業端145の切除構成要素を往復又はそうでなければ移動するためのモータドライブ165を含む。ハンドル142は、デバイスを作動するために1つ又はそれよりも多くのアクチュエータボタン166を任意的に含む。別の実施形態において、フットスイッチを使用してデバイスを作動させることができる。一実施形態において、システムは、スイッチ又は制御機構を含み、複数の往復速度、例えば、1Hz、2Hz、3Hz、4Hz、及び8Hzまでを提供する。更に、システムは、非拡張位置及び拡張位置で往復切除スリーブを移動及び係止するための機構を含むことができる。更に、システムは、単一往復ストロークを作動するための機構を含むことができる。
【0027】
図1及び4を参照すると、電気手術組織切除デバイスは、通路又は内腔172を有する外部又は第1の外側スリーブ170を含んで縦軸線168の回りに延びる細長いシャフトアセンブリ140を含み、これは、内腔172で往復して(かつ任意的に回転又は首振りして)管状カッターの当業技術で公知のように組織を切除する第2の又は内側スリーブ175を収容する。一実施形態において、外側スリーブ170の組織受入れ窓176は、10mm~30mmに及ぶ軸線方向長さを有し、スリーブの軸線168に対して外側スリーブ170の回りを約45°~210°の半径方向角度で延びる。外側及び内側スリーブ170及び175は、以下で詳細に説明するように、薄壁ステンレス鋼材料を含み、対向する複数の電極として機能することができる。
図6A~8は、外側及び内側スリーブ170及び175によって担持される絶縁層を示し、スリーブに向かう特定の部分の間の不要な電流の流れを制限、制御、及び/又は防止する。一実施形態において、ステンレス鋼外側スリーブ170は、3.6mm~3.8mmのO.D.(外径)を有し、3.38mm~3.5mmのI.D.(内径)を有し、内側絶縁層(以下に説明する)を有し、スリーブは、約3.175mm’’の公称I.D.を有する。この実施形態において、ステンレス鋼内側スリーブ175は、約3.05mmのO.D.を有し、約2.84mm’’のI.D.を有する。外側絶縁層を有する内側スリーブ175は、内腔172で往復するように約3.12mm’’の公称O.D.を有する。内側スリーブ部分の内径は、以下に説明されている。
図4で認められるように、内側スリーブ175の遠位端177は、プラズマを生成することができる遠位切除電極縁部180を有する第1極性電極を含む。電極縁部180はまた、電極縁部180がこうして対向する極性又は戻り電極よりも実質的に小さい表面積を有するので、組織切除中に活性電極と説明することができる。
図4の一実施形態において、外側スリーブ170の露出面は、第2極性電極185を含み、従って、第2極性電極185は、使用中にそのような電極表面が活性電極縁部180の機能的露出表面積に比べて実質的に大きい表面積を有するので、戻り電極と説明することができる。
【0028】
本発明の1つの態様において、内側スリーブ又は切除スリーブ175は、電気手術的に組織容積を迅速に切除し、その後目詰まりなく非常に細長い内腔160を通して切除組織ストリップを一貫して抽出するように構成された第1及び第2の内径を有する内部組織抽出内腔160を有する。ここで
図5及び6Aを参照すると、内側スリーブ175は、スリーブ175のハンドル142(
図1)から遠位領域192まで延びる第1直径部分190Aを有し、組織抽出内腔は、切除電極縁部180を提供する電極スリーブ要素195によって定められたBで示す小径を有するより小さい第2直径内腔190Bへ移行することを見ることができる。縮小断面内腔190Bの軸線方向長さCは、約2mm~20mmに及ぶことができる。一実施形態において、第1直径Aは、2.8mm~2.9mmであり、第2直径Bは、2.4mm~2.5mmである。
図5に示すように、内側スリーブ175は、導電性ステンレス鋼とすることができ、小径電極部分はまた、溶接部196(
図6A)によって事前設定位置に溶接されたステンレス鋼電極スリーブ要素195を含むことができる。別の代替実施形態において、電極及び小径電極スリーブ要素195は、内側スリーブ175の遠位端198の中に圧入することができるタングステン管を含む。
図5及び6Aは、それぞれ第1及び第2のスリーブ170、175によって担持される接続絶縁層202及び204を更に示している。
図6Aでは、外側スリーブ170は、PFAのような薄壁絶縁材料200又は以下に説明する別の材料で裏打ちされている。同様に、内側スリーブ175は、外部絶縁層202を有する。これらのコーティング材料は、滑らかであると同時に電気絶縁にして内側スリーブ175の往復中に摩擦を低減することができる。
【0029】
上述の絶縁層200及び202は、滑らかな疎水性又は親水性ポリマー材料を含むことができる。例えば、材料は、PFA、TEFLON(登録商標)、ポリテトラフルオロエチレン(PTFE)、FEP(フッ化エチレンプロピレン)、ポリエチレン、ポリアミド、ECTFE(エチレンクロロトリフルオロエチレン)、ETFE、PVDF、ポリ塩化ビニル、又はシリコーンのような生体適合性材料を含むことができる。
【0030】
ここで
図6Bに戻ると、内側スリーブ175の別の変形は、組織容積がプラズマ電極縁部180で切除された概略図で示されている。この実施形態において、本発明の開示の他の実施形態におけるように、RF源は、当業技術で公知のように、選択された作動パラメータで作動させて電極スリーブ195の電極縁部180の周りにプラズマを生成する。従って、電極縁部180で生成されるプラズマは、組織220内の経路Pを切除して融除することができ、子宮筋腫組織及び他の異常な子宮組織を切除するのに適している。
図6Bでは、切除スリーブ175の遠位部分は、電極スリーブ195の遠位縁部180に隣接しているセラミックカラー222を含む。セラミック222カラーは、遠位電極縁部180の回りにプラズマ形成を閉じ込めるように機能し、作動中にプラズマが切除スリーブ175上のポリマー絶縁層202と接触して損傷を与えるのを更に防止するように機能する。本発明の1つの態様において、電極縁部180でプラズマを用いて組織220内に切断された経路Pは、Wに示す融除幅を有する経路Pを提供し、そのような経路幅Wは、組織蒸発により実質的に広くなる。経路Pにおける組織の除去及び蒸発は、様々な従来技術のデバイスにあるような鋭い刃先で同様の組織を切断する効果とは実質的に異なる。鋭い刃先は、組織を分けることができるが(焼灼せずに)、組織に機械力を印加して組織の大きい断面スラグが切断されるのを防止することができる。対照的に、電極縁部180でのプラズマは、組織にいかなる実質的な力も印加することなく組織の経路Pを蒸発させ、従って、組織のより大きい断面又はスラグストリップを切除することができる。更に、プラズマ切除効果は、組織抽出内腔190Bで受入れる組織ストリップ225の断面を縮小する。
図6Bは、組織の蒸発により内腔よりも小さいそのような断面を有する内腔190Bに入る組織ストリップ225を示している。更に、組織225の断面は、それがより大きい断面の内腔190Aに入ると、組織ストリップ225の周りに更に大きい自由空間196をもたらす。従って、組織抽出内腔160のより小さい断面(190B)からより大きい断面(190A)への内腔移行と共に、プラズマ電極縁部180を用いた組織の切除は、連続切除組織ストリップ225が内腔を目詰まりさせる可能性を有意に低下又は排除することができる。そのような小さい直径の組織抽出内腔を有する従来技術の切除デバイスには、典型的に組織目詰まりに関連付けられた問題がある。
【0031】
本発明の別の態様において、組織抽出内腔160(
図1及び4を参照)の近位端に結合された負圧源225はまた、デバイスのハンドル142の外側の収集リザーバ(図示せず)に対して近位方向に組織ストリップ225を吸引し及び移動させるのを補助する。
【0032】
図7A~7Bは、
図6Bの切除スリーブ175の内腔径の変化を示している。
図8は、上述の管状電極要素195(
図5及び6A)とは対照的に部分的に管状である電極切除要素195’で構成された様々な切除スリーブ175’の遠位端を示している。
図9A~9Bは、
図8の切除スリーブ175’の縮小断面領域190B’と増大断面領域190A’との間の組織抽出内腔の断面の変化をここでもまた示している。従って、機能性は、切除電極要素195’が管状であっても一部分が管状であっても同じままである。
図8Aでは、セラミックカラー222’は、一変形例では切除電極要素195’の半径方向角度と協働するようにスリーブ175の周りで部分的にのみ延びると示されている。更に、
図8の変形は、セラミックカラー222’が絶縁層202よりも大きい外径を有することを示している。従って、セラミックカラー222’の短い軸線方向長さは、外側スリーブ170の内腔172の内面の回りに接続する絶縁層200に対して接続して摺動し、従って、摩擦は減少することができる。
【0033】
一般的に、本発明の1つの態様は、軸を有する第1及び第2の同心スリーブを含む組織切除及び抽出デバイス(
図10~11C)を含み、第2の(内側)スリーブ175は、そこに軸線方向に延びる組織抽出内腔を有し、第2のスリーブ175は、組織を切除するように第1のスリーブ170内の組織受入れ窓176に対して軸線方向非拡張及び拡張位置の間で移動可能であり、組織抽出内腔160は、第1及び第2の断面を有する。第2のスリーブ175は、第1のスリーブ170の組織受入れ窓176に配置された組織を切除するようにプラズマ電極縁部180として構成された遠位端を有する。更に、第2のスリーブの遠位端、特に、電極縁部180は、実質的に広い組織の経路のプラズマ融除に対して構成される。一般的に、組織抽出デバイスは、内腔160の内側及び近位部分の断面よりも小さい縮小断面を有する遠位端部分を有する組織抽出内腔160から構成される。
【0034】
本発明の1つの態様において、
図7A~7B及び9A~9Bを参照すると、組織抽出内腔160は、プラズマ切除先端又は電極縁部180に近い内腔領域190Aに縮小断面積を有し、この縮小断面は、組織抽出内腔の内側及び近位部分190Bの断面積よりも95%、90%、85%、又は80%よりも小さく、組織抽出内腔の軸線方向長さは、少なくとも10cm、20cm、30cm、又は40cmである。子宮鏡子宮筋腫切除及び抽出(
図1)のための組織切除デバイス100の一実施形態において、組織切除デバイスのシャフトアセンブリ140は、長さが35cmである。
【0035】
図10A~10Cは、外側スリーブ170の組織受入れ窓176に対して3つの異なる軸線方向位置で往復切除スリーブ又は内側スリーブ175を有する組織切除デバイス100の作業端145を示している。
図10Aでは、切除スリーブ175は、後退又は非拡張位置に示されており、ここで、スリーブ175は、近位運動限界状態にあり、拡張位置の遠位に進む準備ができており、それによって窓176の中に位置決めされた及び/又は吸引された組織を電気手術的に切除する。
図10Bは、組織切除窓176に対して部分的に進行した又は中間の位置の遠位に移動して進行した切除スリーブ175を示している。
図10Cは、その運動の遠位限界まで完全に進行して拡張した切除スリーブ175を示し、プラズマ切除電極180は、組織受入れ窓176の遠位端226を過ぎて拡張し、この瞬間に切除組織ストリップ225が組織容積220から切り取られて縮小断面内腔領域190Aに捕捉される。
【0036】
ここで
図10A~10C及び
図11A~11Cを参照すると、本発明の別の態様は、切除スリーブ175の内腔160の近位方向に組織ストリップ225を「変位」させて移動し、従って、組織が内側スリーブ175の内腔を目詰まりさせないことを保証する複数の要素及びプロセスによって提供された「組織変位」機構を含む。
図10A及び
図11A~11Cの拡大図で認められるように、1つの組織変位機構は、外側スリーブ170に固定的に取りつけられた遠位先端232から近位に延びる発射要素230を含む。発射要素230は、外側スリーブ170及び遠位先端232によって予め決められた遠位チャンバ240の中心軸168に沿って近位に延びる。
図11Aに示す一実施形態において、シャフト状発射要素230は、第1の機能面では、切除スリーブ175がその完全前進又は拡張位置まで移動すると、切除スリーブ175の小さい断面内腔190Bから近位に捕捉組織ストリップ225を押圧するように機能する機械的押し込み器を含む。第2の機能面では、スリーブ170の遠位端のチャンバ240は、作業空間から一定の容積の生理食塩水膨張流体244を捕捉するように構成され、作業端145の既存のRF電極は、捕捉流体244を爆発的に蒸発させ、切除スリーブ175の内腔160に切除されて配置された組織ストリップ225に加わる近位方向の力を発生させるように更に構成される。これらの2つの機能要素及びプロセス(組織変位機構)の両方は、チャンバ240中の液体の爆発的な蒸発を使用して捕捉組織ストリップ225に加わる実質的な機械力を印加することができ、組織抽出内腔160において近位方向に組織ストリップ225を移動するように機能することができる。複数の機能要素及びプロセスの組合せを使用することで、組織が組織抽出内腔160を目詰まりさせる可能性を事実上排除することができることが見出されている。
【0037】
特に、
図12A~12Cは、チャンバ240において捕捉された流体の組織変位機構及び爆発的な蒸発の機能面を順次示している。
図12Aでは、往復切除スリーブ175は、遠位に進む中間の位置に示されており、切除電極縁部180にあるプラズマは、切除スリーブ175の内腔160内に配置された組織ストリップ225を切除している。
図12A~12Cでは、システムは、組織受入れ窓176に対して切除スリーブ175の運動の往復及び軸線方向範囲に対応する第1及び第2の電気手術的にモードで作動することを見ることができる。本明細書に使用される場合に、用語「電気手術的モード」は、2つの対向する極性電極のどの電極が「活性電極」として機能し、どの電極が「戻り電極」として機能するかを指している。用語「活性電極」及び「戻り電極」は、当業技術では習慣に従って使用され、活性電極は、戻り電極よりも小さい表面積を有し、従って、活性電極は、そのような活性電極の回りにRFエネルギ密度を集中させる。
図10A~11Cの作業端145では、切除電極要素195及びその切除電極縁部180は、エネルギを電極の回りに集中させて組織切除のためにプラズマを生成するように活性電極を含む必要がある。電極縁部180におけるそのような高密度のエネルギプラズマは、
図12A~12Bに示すストロークX全体を通して組織を切除するのに必要である。第1のモードは、スリーブが組織受入れ窓176を横断する時に内側切除スリーブ175の移動の軸線方向長さにわたって起こり、その時点で外側スリーブ170の外面全体は、185に示す戻り電極を含む。第1のRFモードの電界EFは、全体的に
図12Aに示されている。
【0038】
図12Bは、内側切除スリーブ175の遠位進行又は拡張が組織受入れ窓176を完全に横断した瞬間を示している。この時点で、電極スリーブ195及びその電極縁部180は、外側スリーブ170及び遠位先端232によって定められた大部分が絶縁された壁チャンバ240内に閉じ込められる。この時に、システムは第2のRFモードに切り換えるように構成され、ここで、電界EFは第1のRFモードで上述したものから切り換わる。
図12Bで認められるように、この第2のモードでは、チャンバ240に接続する遠位先端232の限られた内面積250は、活性電極として機能し、チャンバ240に露出された切除スリーブ175の遠位端部分は、戻り電極として作用する。このモードでは、非常に高いエネルギ密度が表面250当たりに起こり、そのように含まれる電界EFは、チャンバ240において捕捉された流体244を爆発的かつ瞬時に蒸発させることができる。水蒸気の膨張は劇的であり、従って、とてつもない機械力及び流体圧力を組織ストリップ225に印加し、組織ストリップを組織抽出内腔160において近位方向に移動することができる。
図12Cは、チャンバ240に捕捉された膨張流体244のそのような爆発的又は膨張蒸発を示し、内側切除スリーブ175の内腔を近位方向に放出している組織ストリップ225を更に示している。
図14は、切除スリーブ175の拡張運動範囲において活性及び戻り電極の相対表面積を更に示し、非絶縁遠位端面250の表面積が、戻り電極を含む電極スリーブの表面255に比べて小さいことをここでもまた示している。
【0039】
尚も
図12~12Cを参照すると、RF源150及びコントローラ155に対する単一電力設定は、(i)電極スリーブ195の電極切除縁部180においてプラズマを生成して第1のモードで組織を切除し、(ii)第2のモードで捕捉膨張流体244を爆発的に蒸発させるように構成することができることが見出されている。更に、システムは、1秒当たり0.5サイクル~1秒当たり8又は10サイクルに及ぶ好ましい往復速度で自動的にRFモード切り換えによって機能することができることが見出されている。試験的に、上述の組織切除デバイスは、組織抽出内腔160を目詰まりさせる組織ストリップ225に対していかなる可能性もなく2グラム/分~8グラム/分の割合で組織を切除して抽出することができることが見出されている。一実施形態において、負圧源125は、組織抽出内腔160に結合させて組織抽出力を内腔の組織ストリップに印加することができる。
【0040】
特に興味深いことに、スリーブ170及び遠位先端232によって定められた流体捕捉チャンバ240は、選択された容積、露出電極表面積、長さ、及び形状を有し、切除組織ストリップ225への放出力の印加を最適化するように設計することができる。一実施形態において、チャンバの直径は3.175mmで、長さは5.0mmであり、直径は、約0.040mLの捕捉流体容積を提供する発射要素230を考慮に入れるものである。他の変形例では、捕捉液体量は、0.004~0.080mLに及ぶことができる。
【0041】
1つの実施例では、瞬間気化の100%変換効率と共に0.040mLの捕捉液体容積を有するチャンバ240は、液体を室温から水蒸気に加熱するのに103ジュール必要であると考えられる。作動中に、ジュールはW*sであり、システムは3Hzで往復し、従って、必要な電力は、水蒸気への完全な瞬時変換のためには約311Wであると考えられる。1700xの対応する理論的膨張は、相転移で起こると考えられ、相転移は、25,000psi(172.3MPa)までを瞬時にもたらす(14.7psix1700又は101.3KPax1700)と考えられるが、効率及び非瞬時膨張の損失により、実際の圧力は小さくなると考えられる。いずれの場合でも、圧力はかなりのものであり、プローブ中の抽出チャネルの長さだけ捕捉組織ストリップ225を放出するのに十分な放出力を印加することができる。
【0042】
図12Aを参照すると、内部チャンバ240は、約0.5mm~10mmの軸線方向長さを有し、約0.004mL~0.010mLに及ぶ液体容積を捕捉することができる。チャンバ240の内壁が、従って、チャンバ240に露出された電極表面積250を制限する絶縁層200を有することは、
図12Aで理解することができる。一実施形態において、遠位先端232はステンレス鋼であり、外側スリーブ170に溶接される。柱要素248は、先端232に溶接されるか又はその特徴部として機械加工される。この実施形態における発射要素230は、非導電性セラミックである。
図13は、溝付きであるセラミック発射要素230の断面を示し、セラミック発射要素230は、一実施形態において、その表面に3つの対応する軸線方向溝262の3つの溝付き要素260を有する。いくつかの溝付きチャネルなどは、例えば、2~約20が可能である。この設計の目的は、発射要素230の近位端にかなりの断面積を提供して組織ストリップ225を押圧することであるが、3つの溝262は、水蒸気の近位方向の噴射が溝262に露出された組織に影響を与えることを可能にする。一実施形態において、発射要素230の軸線方向長さDは、電極スリーブ要素195の縮小断面領域190Bから組織を完全に押し出すように構成される。別の実施形態において、チャンバ240の容積は、爆発的に蒸発した時に、デバイスの抽出チャネル160の全長の10%、抽出チャネル160の少なくとも20%、抽出チャネル160の少なくとも40%、抽出チャネル160の少なくとも60%、抽出チャネル160の少なくとも80%、又は抽出チャネル160の少なくとも100%によって定められた少なくともその量に膨張させてこれを占有するのに十分なガス(水蒸気)量を提供する液体を捕捉するように構成される。
【0043】
図12A~12Cで理解することができるように、作業空間の膨張流体244は、切除スリーブ175が近位方向に又はその非拡張位置に向けて移動するとチャンバ240に捕捉流体を補充する。従って、切除スリーブ175が切除組織に対して遠位方向に再度移動する時に、内部チャンバ240は、次に、再度含まれる流体244で充填され、次に、切除スリーブ175が組織受入れ窓176を閉じる時に上述のように爆発的な蒸発に利用可能である。別の実施形態において、一方向性弁は、流体が窓176を通して移動する必要なく流体を直接内部チャンバ240の中に吸い込むように遠位先端232に設けることができる。
【0044】
図15は、第2のモードの活性電極表面積250’が、捕捉流体244に接触した複数の離散的領域各々の上に集中RFエネルギ送出を分配する効果を有することができる導電性及び非導電性領域260を有する発射要素230を含む別の変形を示している。この構成は、チャンバ240中の捕捉流体容積をより効率的に蒸発させることができる。一実施形態において、導電性領域250’は、柱248上に金属ディスク又はワッシャーを含むことができる。他の変形(図示せず)では、導電性領域250’は、導電性柱248の上に固定されたセラミック材料260に孔、ポート、又は孔隙を含むことができる。
【0045】
別の実施形態において、RF源150及びコントローラ155をプログラムして、
図12A~12CのストロークX及びストロークY中にエネルギ送出パラメータを調節し、(i)電極縁部180によってプラズマ切除するために、かつ(ii)チャンバ240において捕捉流体を爆発的に蒸発させるために最適エネルギを提供することができる。一変形例では、コントローラ155は、切除スリーブ175がその拡張位置に向けて遠位方向に移動して組織を切除するとRFエネルギを作業端に送出することができるが、切除スリーブ175がその非拡張位置に向けて近位方向に移動すると作業端へのRFエネルギ送出を終了する。切除スリーブ175の近位ストローク中のRFエネルギ送出の終了は、組織を切除していない時に電極縁部180へのエネルギ送出を排除し、これは、切除スリーブの前方及び後方ストロークの両方の間にRFエネルギを送出する時に起こると考えられる膨張流体の不要な加熱をこうして防止する。
【0046】
図16~18は、体腔、空間、又は潜在的空間502(
図17)において組織を治療する時に使用することができる流体管理システム500を示している。流体管理システム500は、上述したものと類似する可能性がある内視鏡又は子宮鏡512及び組織切除プローブ515を使用して子宮筋腫又は他の異常な子宮内組織の切除及び抽出に対して適合している子宮鏡組織切除システム510に概略的に描かれている。
図16は、子宮鏡512の本体523及びシャフト524を通って延びる作業チャネル522を通して導入することができる作業端520(
図17)を有する外側スリーブ518を含むハンドル516及び延長部材を有する組織切除プローブ515を示している。
図16は、電力ケーブル526によってコントローラ及び電源に結合された組織切除プローブのハンドル516のモジュール525を更に示している。
図17は、ターゲット子宮筋腫530に近い子宮腔における切除プローブ515の作業端520を示している。
【0047】
図16~17を参照すると、一般的に、流体管理システム500は、膨張流体244の流体源又はリザーバ535、コントローラ、及びポンプシステムを含み、体腔の膨張を維持するように構成された流体の流入及び流出、並びに体腔から除去されてその後流体源535に戻る膨張流体244を濾過するためのフィルタシステム540を提供する。回収及び濾過流体244、並びに流体源535の補充の使用は、(i)閉ループ流体管理システムが、流体欠損を実質的に測定し、それによって血管内異物侵入をモニタして患者の安全性を保証することができ、(ii)システムが、非常に時間効率の良い方式で設定して作動させることができ、(iii)システムを小型で高価ではなく、それによってオフィスベースの手順を可能にするのを助けるために有利である。
【0048】
流体管理システム500(
図16)は、一体化コントローラ545のRF制御システムと一体化されたコンピュータ制御システムを含む。コントローラ545体腔を膨張させる目的のために供給源535から塩水溶液のような膨張流体244の流入及び流出を提供するために、第1及び第2の蠕動ポンプ546A及び546Bを制御するようになっている。第1の蠕動ポンプはまた、本明細書では流入ポンプ又は注入ポンプと呼ばれる場合がある。第2の蠕動ポンプはまた、本明細書では流出ポンプ又は吸引ポンプと呼ばれる場合がある。コントローラ545及び制御アルゴリズムは、
図17に示すように、組織切除及び抽出手順中に体腔内圧力を制御するようになっている。
図16~18に示す一実施形態において、コントローラ545は、流入ポンプ546Aを制御して、ポンプ(
図17)の流出側548で正圧を提供し、子宮鏡515において付属品561及び流体の流入チャネル108aと連通状態にある流入管路550を通して膨張流体244の流入を提供する。流路108aは、以前の実施形態で上述され、上の
図3に示されている。コントローラ545は、流出ポンプ546Bを更に制御して、ポンプ(
図17)の流入側552で負圧を流出管路555に提供し、体腔502からの膨張流体244の流出を提供する。上述のように、切除プローブ515の作業端525の流体の爆発的な蒸発は、切除スリーブ175の抽出チャネル160の近位に組織ストリップ225を放出するように機能し、切除スリーブ175は、ポンプ546Bによって提供される管路555において負圧と共に作動させることができる。作動中に、流出ポンプ546Bはまた、第2の流出管路部材555’のポンプ546Bの流出側556に正圧を提供して、フィルタシステム540を通して膨張流体244の流出をポンピングして流体源535に戻すように作動する。
【0049】
1つのシステムの実施形態において、コントローラ545は、子宮鏡を通って延びる流路108b(
図16を参照)と連通する子宮鏡512において付属品562に結合された圧力センサ560から圧力信号によって体腔502の圧力を制御するように作動する。一実施形態において、流路108bは、少なくとも1.0mmの直径を有し、実体腔内圧力の高精度の感知を可能にする。従来技術の市販の流体管理システムでは、体腔内圧力は、典型的には、逆圧を測定することができる流体の流入管路においてポンプ又は遠隔圧力センサを通して公知の流量を使用して様々な計算によって推定される。そのような従来技術の流体管理システムは、独立システムであり、広範な子宮鏡及び内視鏡と共に使用するようになっており、そのほとんどは、圧力センサと連通するために専用流路をもっていない。このために、従来技術の流体管理システムは、アルゴリズム及び計算に依存して体腔内圧力を推定するに過ぎない。
【0050】
一実施形態において、
図16に示すように、圧力センサ560は、使い捨てであり、内視鏡512に取外し可能に結合され、内視鏡の流路108bを通して体腔と流体連通状態にある。圧力センサ560は、ケーブル564によってコントローラ545と作動的に結合される。圧力センサは、侵襲的血圧モニタに使用するタイプの生体適合性の圧電シリコンセンサとすることができる。例えば、センサは、Measurement Specialities,Ltd.,45738 Northport Loop West,Fremont,CA 94538から入手可能な圧電シリコン圧力センサModel No.1620とすることができる。センサは、セラミック基板上に装着された圧力感知要素で設計される。誘電材料ゲルは、センサ要素の上に置かれ、電気及び流体分離を行うことができる。センサハウジングは、「ルアー」接続部を有して内視鏡512に結合することができる。更に、センサ本体は、冗長過度圧力保護(図示せず)のために圧力逃し弁を有することができる。
【0051】
図16及び17から理解することができるように、圧力センサ560を内視鏡512に取りつけて、内視鏡シャフトを通して体腔まで延びる流体チャネルと連通する。圧力センサ560によって使用される流体チャネル又はセンサチャネル108bは、体腔への膨張流体の流入のために使用する流路108aとは無関係である。センサチャネル108bに流体流れがない場合に、チャネル108b中の流体は、体腔中の圧力が変化する時に圧力が変化する非圧縮性の流体の静止コラムを形成する。1mm又はそれよりも大きいセンサチャネル断面により、圧力チャネルコラム内の圧力及び体腔中の圧力は、同等である。従って、圧力センサ560は、体腔内の圧力を直接測定することができる。
図18に概略的に示す別の変形例では、
図16に示すような圧力センサ560は、単一流体チャネル108bからセンサ560の中に延びる流体と両方接続する2つの独立感知要素560’及び560’’から構成することができる。感知要素560’及び560’’は、ケーブル564’及び564’’(
図18)を通してコントローラ545に圧力信号を送信する。手順の開始時に又は手順中に、次に、コントローラは、独立感知要素560’及び560’’からの圧力信号をモニタ又は比較するように構成することができる。2つのセンサの圧力信号が互いに予め選択された範囲にない場合に、コントローラ545は、センサ誤作動の警告を与え及び/又は流体管理システム又は切除デバイスのあらゆる進行中の作動を終了又は調節することができる。
【0052】
図17は、作動中の流体管理システム500を概略的に示している。子宮腔502は、潜在的空間であり、膨張させて子宮鏡観察を可能にするのに必要である。選択された圧力は、例えば、タッチスクリーン565を通してコントローラ545に設定することができ、医師が経験から知っているこのタッチスクリーン565は、体腔502を膨張させるのに及び/又は手順を実施するのに適している。一実施形態において、選択された圧力は、0~150mmHgのあらゆる圧力とすることができる。1つのシステムの実施形態において、流入ポンプ546Aは、第1の管路又は流入管路550を通して850ミリリットル/分までの割合を提供するように作動される可変速度ポンプとして作動させることができる。この実施形態において、流出ポンプ546Bは、固定速度で作動させて第2の管路又は流出管路555中の流体を移動することができる。使用中に、コントローラ545は、選択された整合又は不整合速度でポンプ546A及び546Bを作動させて、子宮腔502中の膨張流体244の量を増加、減少、又は維持することができる。従って、流入ポンプ及び流出ポンプ546A及び546Bのポンプ流量の独立制御により、体腔中の選択された設定温度は、センサ560によって提供される実体腔内圧力の信号に応答して、達成されて維持することができる。
【0053】
図17及び19に示すような1つのシステムの実施形態において、流体管理システム500は、体腔502から抽出されて切除されている組織ストリップ225を捕捉するように構成された第1のフィルタ又は組織捕捉フィルタ570を含むことができるフィルタモジュール又はシステム540を含む。第2のフィルタ又は分子フィルタ575、典型的には、中空繊維フィルタは、第1のフィルタ570を超えて設けられ、分子フィルタ575は、膨張流体244から血液及び他の生体物質を除去するようになっている。特に、分子フィルタ575は、体腔の内視鏡観察がいかなるそのような血液成分又は他の汚染物質によっても曖昧にされないように又は曇らないように、膨張流体244から赤血球、ヘモグロビン、特定の物質、たんぱく質、バクテリア、ウイルスなどを除去することができる。
図16~19から理解することができるように、その流出側556にある流出ポンプ546Bは、流体流れに対する正圧をフィルタモジュール540の中に提供し、第1及び第2のフィルタ570及び575を通して膨張流体244及び身体媒体を循環流に移動して流体源535に戻す。
【0054】
図19を参照すると、実施形態において、第1のフィルタ570は、取外し可能なキャップ577を有する容器部分又はバイアル576を含む。膨張流体244及び身体媒体の流入は、管路部分555を通して及び付属品578を通してバイアル576の内部チャンバ582に配置されたメッシュサック又は穿孔構造580の中に流れ込む。穿孔構造580の孔隙サイズは、約200ミクロン~10ミクロンロンに及ぶことができる。第2のフィルタ575における中空繊維585の内腔径は、約400ミクロン~20ミクロンとすることができる。一般的に、第1のフィルタ570における穿孔構造580の孔隙サイズは、第2のフィルタ575における中空繊維585の内腔の直径未満である。一実施形態において、穿孔構造580の孔隙サイズは100ミクロンであり、分子フィルタ575における中空繊維585の内腔サイズは、200ミクロンである。一実施形態において、分子フィルタ575は、Nephros,Inc.,41 Grand Ave.,River Edge,NJ07661から入手可能なNephros DSUフィルタである。一変形例では、フィルタ575は、50kDa、30kDa又は20kDa未満の公称分子量限界(NMWL)を有する中空繊維から構成される。
【0055】
本発明の別の態様において、分子フィルタ575は、流体流れが循環しているので大量の膨張流体を濾過するように構成される。更に、分子フィルタ575は、流体と混合することになる血液、血液生成物などで汚染する場合があるかなりの潜在的な量の膨張流体を濾過するように構成される。一実施形態において、分子フィルタ575は、少なくとも0.6m2、0.8m2、1.0m2、1.2m2、及び1.4m2の膜表面積を有し、膜表面積は、分子フィルタ575における中空繊維585の内腔の全表面積として定められる。本発明の別の態様において、流体管理の方法は、体空間を膨張させる段階と、その後に膨張流体244から血液の少なくとも20ml、40ml又は60mlを除去することができるフィルタシステム540を通して膨張流体流れの850ミリリットル/分までの割合を体空間の内外に維持する段階とを含むことができる。
【0056】
図19を参照すると、フィルタモジュール540は、様々な流体流れ管路の間に取外し可能な接続部を含み、フィルタ及び流れ管路の迅速結合及び切り離しを可能にすることを見ることができる。特に、組織切除プローブ515から延びる流れ管路555は、第1のフィルタ546Aにおいて入口付属品578に接続するコネクタ部分592を有する。フィルタ546A及び546Bの中間にある流れ管路部分555’は、第1のフィルタ542Aにおいて出口付属品596bに接続するコネクタ部分596aを有する。流れ管路555’の流出端は、第2のフィルタ546Bの入口付属品598bに接続するコネクタ598aを有する。第2のフィルタ546B及び流体源535の中間にある戻り流れ管路600は、第2のフィルタ546Bの出口付属品602bに接続するコネクタ部分602aを有する。一実施形態において、少なくとも1つの逆止弁605は、例えば、管路555’、コネクタ596a、598a、又は付属品596b、598bとすることができるフィルタ546A、546Bの中間の流路に設けられる。
図19では、逆止弁605は、第2のフィルタ546Bの入口端608と一体化される。使用中に、システムの作動は、第2のフィルタ内にかなりの流体圧力をもたらすことになり、逆止弁605は、例えば、組織切除手順が終了し、医師又は看護師が、その中のバイアル576及び組織ストリップ225を生検目的のための異なる部位に輸送したい時に、環境の中への流体媒体の圧力逃げ及び解放なしに第1のフィルタの切り離しを可能にする。一般的に、逆止弁605のような一方向性弁は、流れ管路555及び555’の1つ又はそれよりも多くの位置に設けられて、管路555を通して切除デバイス515への圧力の逆流を防止することができる。例えば、フロート弁のような一方向性弁605’は、
図19(
図20~21も参照)に破線によって示すように、管路555又は付属品578内の1つ又はそれよりも多くの位置に設けることができる。フロート弁605’’はまた、生理食塩水源535に近い管路550に設けることができる。
【0057】
1つの態様において、流体管理システムは、膨張流体224を流体源535から体空間に搬送するように構成された第1の流体管路550と、流体を体空間から第1のフィルタ570に、次に、第2のフィルタ575に搬送し、次に、流体源535に戻るように構成された第2の流体管路55、555’、及び560と、第2の流体管路と作動的に結合された流出ポンプと、第1及び第2のフィルタ570及び575の中間の第2の流体管路における少なくとも1つの逆止弁605とを含む。
【0058】
一実施形態において、流体管理システム500のコントローラ545は、体空間502に送出された流体容積と子宮筋腫除去のような医療治療中に体空間から回収された流体容積との間の差として測定された流体欠損の計算に対して構成される(
図16~19を参照)。子宮鏡手順における流体管理の方法は、予め決められた容積を有する膨張流体源535(
図17)を与える段階と、供給源535から第1の流れ管路又は流入管路550を通して子宮腔の中へ、体腔から第2の流れ管路又は流出管路555を通してフィルタモジュール540の中へ、かつ第2の流れ管路の別の部分600を通して流体源535に戻る流体(例えば、生理食塩水)を導入する段階とを含み、第1及び第2の流れ管路、並びにフィルタモジュールの内部容積は、予め決められた容積の供給源535から取り去る時に2.5リットル又はそれ未満に等しい。次に、使用のための指示は、単一の3リットルの生理食塩水バッグだけをあらゆる子宮筋腫又はポリープ除去手順に使用することができる要件を含むことができ、これは、次に、食塩水血管内侵入が2.5リットルを決して超えないことを保証することになる。この変形例では、予め決められた容積の供給源535は、標準3リットル生理食塩水バッグにおけるような3.0リットルとすることができ、内部システムの容積は、少なくとも0.5リットルとすることができる。
【0059】
図20及び21は、上述のタイプのRF組織切除プローブ515及び上述のタイプの流体管理システム500の一体化作動に関連付けられた概略図である。一般的に、コントローラ545、RF発生器670、及び流体管理システム500は、体腔内のターゲット圧力を維持する一方で流体流れと同時に切除プローブへのRFエネルギ送出を行いながら、体腔502の内外に膨張流体の流れを制御するようになっている。1つのシステムの実施形態において、システムは、全てコントローラ545によって制御される(i)子宮鏡のための診断モード、(ii)組織切除及び抽出のための切除治療モード、及び(iii)組織凝固のための凝固治療モードの3つの異なるモードで作動させることができる。
【0060】
図20を参照すると、診断モードでは、流入又は注入ポンプ546A、流出又は吸引ポンプ546B、及び圧力センサ560、並びにモニタリングシステムは、全て起動される。一実施形態において、コントローラ545上のタッチスクリーン565は、医師によって調節することができる流体制御設定を備えたグラフィカルユーザインタフェース(GUI)を有する(
図16)。流入ポンプ546Aは、GUI上の流入ポンプボタンを触れることによってオン/オフを切り換えることができる。ターゲット体腔内圧力は、例えば、0~150mmHg又はそれよりも多くをタッチスクリーン565上で設定することができる(
図16)。
【0061】
図20に示すような作動方法では、医師は、ターゲット体腔内圧力をGUI上に設定し、次に、流入又は注入管路550及び内視鏡512を通して体腔502の中に膨張流体244の流れを生じる流入ポンプ546Aを起動する。一実施形態において、診断モードの流入ポンプ546Aは、タッチスクリーン565に対して作動することができる。診断モードでは、コントローラ545は、設定圧力が達成されるか又は過度の圧力状態が存在するまで流出ポンプ546Bを作動しないように構成される。その後に、一変形例では、流出ポンプ546Aは、次に、固定速度で作動することになり、流入ポンプ速度は、圧力センサからの信号に応答して、調節されてターゲット体腔圧力当たりの圧力を安定化させることができる。圧力センサ560によって測定された実体腔内圧力は、コントローラGUI(
図16)上に表示することができる。
【0062】
体腔の流体圧力を安定化させるために、コントローラ545は、フィードバック制御ループとして構成された圧力制御アルゴリズムを含む。コントローラマイクロプロセッサは、圧力センサ560からの信号に基づいて体腔内圧力設定値と実体腔圧力の両方を読み取る。これらの2つのパラメータに応答して、アルゴリズムは、一般比例積分(PI)制御アルゴリズムに基づいてデルタ値信号を計算する。デルタ値は、デジタルアナログ変換器に送信され、流入ポンプ546Aを駆動するモータ増幅器の中に給送される。次に、コントローラアルゴリズムは、流入(注入)ポンプ546Aの速度を調節することによって設定圧力と実際の圧力との間との差を最小にする。
【0063】
一実施形態において、システムは、体腔502を洗い流すために迅速流体の流入及び流体の流出を行うようにアクチュエータ及びアルゴリズムを更に含み、これは、例えば、フットスイッチアセンブリ675上のアクチュエータボタン672とすることができる。この洗い流す方法では、流出(吸引)ポンプ546Bを作動して増加レベルの流出を提供し、次に、圧力アルゴリズムは、流入(注入)ポンプ546Aの速度を調節して体腔中のターゲット圧力を維持する。従って、診断モードでは、システムを作動して、流体の流入及び流出で体腔を迅速に洗い流すことができるが、コントローラアルゴリズムは、上述のように体腔内圧力を維持する。システム及び体腔を通る流量は、100ミリリットル/分又はそれよりも多く、例えば、200ミリリットル/分又は300ミリリットル/分で事前設定することができる。別の実施形態において、医師は、200ミリリットル/分~800ミリリットル/分でタッチスクリーン上の迅速流量を選択することができる。
【0064】
組織を切除するための非診断又は治療切除モードでは、
図21を参照すると、コントローラ545は、無線周波数エネルギをプローブ515の双極電極配置(
図12A~12Cを参照)に送出して組織を切除し、また上述のように、2つのポンプを作動させて流体の流入及び流出を提供する。切除モードで作動するために、医師は、タッチスクリーン565(
図16)を使用して作動の非診断(治療)モードに入る。その後に、フットスイッチ675上の第1のペダル677aを使用して、切除モードでシステムを作動させて組織を切除することができる。第1のペダル677aの作動は、同時にコントローラをもたらし、(i)400ミリリットル/分~850ミリリットル/分の割合で流出を提供するように固定速度で流出ポンプ546Bを起動し、(ii)上述のようにコントローラ545によって制御されて調節される回転速度を有して体腔中のターゲット圧力を維持する流入ポンプ564Aを起動し、(iii)切除スリーブ175を往復させるように切除プローブ515のモータ525にDC電圧を送出し、かつ(iv)切除プローブ515の双極電極配置にRFエネルギを送出する。一実施形態において、RF発生器670及びコントローラ545は、切除プローブのモータ525への5~20ボルトの可変DC電圧、200ワットのピークRF電力、及び148kHz周波数における240ボルトのピークRF電圧を提供する。
【0065】
切除モードでは、コントローラの圧力アルゴリズムは、動的流れ条件下で作動させ、体腔502から膨張流体244の流出は、それが組織切除の流量と切除組織ストリップ225及び流体244が抽出チャネル160を通して移動することができる速度とに依存するので変化する。体腔内圧力は、システムが診断モードで作動する時に上述のものと類似の方式で作動するフィードバックループによって設定圧力に維持される。切除組織ストリップ225は、上述のようにシステムを通して移動して流出管路555を通して体腔及びプローブから抽出される。流体の流出は、
図21で認められるように、切除組織、血液、及び他の流体を第1のフィルタ570、次に、第2のフィルタ575の中に搬送する。医師が第1のペダル677aに加わる圧力を解除する時に、切除プローブ515は、次に停止され、流入546Aのみが、上述のように体腔内圧力を制御するのに活性なままであることになる。
【0066】
凝固モードでは、コントローラ545及びコントローラアルゴリズムは、上述のように、プローブ515の双極電極配置を起動して組織を凝固させ、また流体流れ機能を断続的に作動する。プローブハンドル中のモータ525は起動されず、切除スリーブ175は、外側スリーブ518(
図12Aを参照)の窓517の中間位置に位置決めされる。窓517の切除スリーブ175の中間位置は、プローブモータ525へのDC電流が終了する毎に起こる初期位置である。
【0067】
凝固モードの下で作動を開始するために、医師は、タッチスクリーン565を使用して作動の非診断(治療)モードを予め選択していると仮定される。次に、医師は、フットスイッチ675上の第2のペダル677bを作動して組織を凝固させることができる。第2のペダル677bの作動は、同時にコントローラが、(i)切除プローブ515の双極電極配置にRFエネルギを送出し、(ii)上述のように体腔内圧力を維持しながら循環流体流れを引き起こすように流入ポンプ及び流出ポンプ546A及び546Bを断続的に作動させることをもたらす。一実施形態において、二重ポンプは、10秒以上にわたって連続間隔のRFエネルギ送出後に1~8秒にわたって作動する。流体流量は、100~600ミリリットル/分とすることができる。更に医師がRFエネルギ送出を終了する毎に、流入ポンプ及び流出ポンプ546A及び546Bは、1~10秒にわたって起動することができる。凝固モードの断続的循環流は、可視化に役に立ち、更にRFエネルギ印加の結果として体腔502において膨張流体244の加熱を防止するようになっている。一実施形態において、RF発生器670及びコントローラ545は、110ワットのピークRF電力及び148kHz周波数における200ボルトのピーク電圧で凝固のために双極無線周波数出力を提供する。
【0068】
いずれかの診断又は治療モードでシステムを作動させる際に、コントローラ545は、圧力がターゲット体腔内設定圧力を超えるという場合に、過度圧力保護アルゴリズムを有する。一実施形態において、体腔内圧力が予め選択された期間中に予め決められた容積だけ設定圧力を超える場合に、コントローラ545は、体腔中の測定流体圧力が設定圧力よりも小さくなるまで流入ポンプ546Aよりも高いポンプ流量で流出ポンプ546Bを起動することができる。任意的に、コントローラ545は、体腔内圧力がターゲットレベルに低下するまで流入ポンプ546Aを遅くするか又は不作動にすることができる。一変形例では、測定圧力が1秒、2秒、又は5秒以上にわたって5mmHgだけ設定圧力を超える場合に、1つのポンプ又は複数のポンプを起動して体腔内圧力を低減することができる。
【0069】
過度圧力保護のための別の機構は、
図18に示すような圧力逃し弁680の形態で提供される。一変形例では、圧力逃し弁680は、センサ560のハウジング682に結合され、センサ560において流路108b’と連通し、センサ本体を通して流体排出及び圧力逃しを可能にする。圧力逃し弁680は、100mmHg以上、例えば、100mmHg、125mmHg、150mmHg、又は別の予め決められた圧力の適切な圧力で圧力を緩和することができる。従って、体腔内圧力がターゲット最大レベルを超える場合に、コントローラ545は、ポンプを調節することによってアルゴリズムベースの圧力逃し機構を提供するが、逆止弁680は、圧力逃しのバックアップ形態を提供する(
図18)。更に、システムは、追加の安全性冗長化(
図20)のために内視鏡に結合された使い捨て付属品712に手動圧力逃し弁688を含むことができる。
【0070】
本発明の別の態様において、コントローラ545は、治療部位内の実際の圧力が予め決められた閾値レベルよりも低いという場合に、給電中の切除デバイスを不作動にするように構成されたアルゴリズムを含む。コントローラ545には、圧力センサアセンブリ560(
図18)から部位内の実際の圧力の連続信号が提供される。一変形例では、部位内の実際の圧力が許容可能な閾値圧力レベルよりも下がった場合に、コントローラアルゴリズムは、往復又は回転切除部材を駆動するモータを自動で不作動にすることができる。別の変形例では、コントローラアルゴリズムは、
図16~17に示すように、切除デバイス515の作業端へのRFエネルギ送出を不作動にすることができる。RFエネルギ送出を不作動にするこの変形例では、アルゴリズムは、選択された間隔にわたって切除スリーブ175の連続移動を許容することができ、次に、RFは、瞬時に又はそのような圧力が選択された間隔にわたって、例えば、1~10秒にわたって閾値レベルを超える時に、体腔内圧力レベルが予め決められた閾値を超えて増加した後に再起動することができる。別の変形例では、コントローラアルゴリズムは、閾値圧力レベルよりも低い圧力低下の結果、モータドライブ及びRF送出の両方を不作動にすることができる。このアルゴリズムの閾値圧力レベルは、いずれかの予め決められた圧力、例えば、100mmHg又はそれ未満、50mmHg又はそれ未満、又は25mmHg又はそれ未満とすることができる。
【0071】
組織の治療及び体空間の圧力の直接感知に関する本発明の1つの態様において、方法は、(i)膨張流体244の空間への流入及び空間からの流体の流出を提供するように構成された電気手術組織切除プローブを含む少なくとも1つのシステム構成要素を用いて体空間又は潜在的体空間にアクセスする段階と、(ii)空間の実際の圧力を測定するように構成された1つ又はそれよりも多くの構成要素に結合された圧力センサを与える段階と、(iii)空間において圧力設定値を達成又は維持するように、感知圧力に応答して、空間内の圧力を感知する段階と、流入及び流出速度を調節する段階と、(iv)組織を切除するように第1のRFパラメータで電気手術的プローブを作動させる段階とを含む。プローブは、第2のRFパラメータで作動させて組織を凝固させることができる。流入速度を調節する段階は、0ミリリットル/分~800ミリリットル/分の流入を提供することができる。圧力設定値は、30mmHg~200mmHgとすることができる。上述のように、圧力を感知する段階は、膨張流体の流入及び流出を搬送する流路とは個別の独立流体チャネルに結合されたセンサによって達成される。
【0072】
一般的に、本発明に対応する子宮筋腫治療システムは、コントローラと、コントローラによって作動され、かつ流路を通して患者の子宮腔まで流体の流入を行うように構成された流入ポンプと、コントローラによって作動され、かつ流路を通して患者の子宮腔まで流体の流出を行うように構成された流出ポンプと、コントローラによって作動するモータ駆動式切除デバイスとを含む。切除デバイスは、2.4mmよりも小さくない直径を有する組織抽出チャネル(
図6Aの190A、190B)をそこに有する細長いントロデューサと、3.8mmよりも大きくない直径を有する外側スリーブ170とを含む。切除デバイスは、少なくとも2gm/分の割合で子宮筋腫組織を除去するようになっている。この変形例では、コントローラは、上述のように、子宮腔内の流体圧力の信号に応答して、流入ポンプ及び流出ポンプを作動させ、ターゲット圧力を維持するように構成することができる。特に、流体圧力の信号は、子宮腔と連通する静止流体柱に結合された圧力センサによって提供することができる。別の変形例では、コントローラは、以下で更に説明するように、流入ポンプ速度、流出ポンプ速度、及び子宮腔内の流体圧力の信号から構成される群から選択される少なくとも1つのパラメータに応答して、切除デバイスを作動するように構成することができる。本発明の別の態様において、患者の身体内の部位の中に膨張流体の流入を提供するように構成された流入ポンプ546Aと、少なくとも第1及び第2の流れ制御モードのオペレータ選択に対して構成された制御システムとを含む、流体管理システム500及び協働する電気手術的プローブが提供され、第1の流れ制御モードは組織切除に対して構成され、流入ポンプを作動させて第1のピーク流入速度を提供し、第2の流れ制御モードは、組織凝固に対して構成され、流入ポンプを作動させて第2のピーク流入速度を提供する。典型的に、第1のピーク流入速度は、第2のピーク流入速度よりも大きい。一変形例では、第1のピーク流入は、1,000ミリリットル/分、800ミリリットル/分、600ミリリットル/分、又は500ミリリットル/分である。流体管理及び手順システムは、その部位における圧力設定値のオペレータ選択に対して構成された制御システムを含む。上述のように、流体管理システム及びコントローラは、流入ポンプ及び流出ポンプを作動させてその部位からの膨張流体の流出を提供し、第1及び第2の流れ制御モードの両方において圧力設定値を達成又は維持するように構成される。
【0073】
図16~21を参照すると、本発明の流体管理システム500は、患者の身体内の部位の中への膨張流体244の流入を提供するように構成された流入ポンプ546Aと、その部位からの流体の流出を提供するように構成された流出ポンプ546Bと、第1、第2、及び第3の流れ制御モードのオペレータ選択に対して構成されたコントローラ545とを含み、第1の流れ制御モードは、診断手順に対して構成され、800ミリリットル/分までの流入速度を提供し、第2の流れ制御モードは、組織切除手順に対して構成され、1000ミリリットル/分までの流入速度を提供し、第3の流れ制御モードは、組織凝固手順に対して構成され、予め選択された時間間隔での断続的流出で800ミリリットル/分までの流入速度を提供する。
【0074】
尚も
図16~21を参照すると、本発明に対応する流体管理及び切除システムは、患者の身体内の部位にアクセスして手順を実施するように構成された細長いアセンブリを含み、システム構成要素は、内視鏡、組織切除プローブ、流体源及び配管セット、流入ポンプ及び流出ポンプ、並びにコントローラを含み、流入ポンプは、流体源からアセンブリの中の第1のチャネルを通してその部位への流体の流入を提供するように構成され、流出ポンプは、その部位からアセンブリの中の第2のチャネルを通した流体の流出を提供するように構成され、コントローラは、その部位におけるオペレータ選択の圧力設定値を提供して維持するように作動すること、並びに流入ポンプ及び流出ポンプのうちの少なくとも1つのモードでのプローブの同時制御に対して構成される。
【0075】
システムは、システム構成要素に取外し可能に結合された使い捨て圧力センサを更に含み、一変形例では、圧力センサは、典型的には内視鏡内のシステムにおいて第3のチャネルと作動的に結合される。別の変形例では、圧力センサは、配管セットと作動的に結合される。典型的には、上述の第1のチャネルは、内視鏡シャフト524内にあり、第2のチャネルは、組織切除プローブ515内にある。
【0076】
本発明の別の態様において、
図20~21を参照すると、流体管理システムは、密封流出ポート702を有する流体源535、典型的には生理食塩水バッグと少なくとも1つの矢じり形態を含むコネクタ端部705を有する流入管路配管550とを含み、矢じり形態は、そのコネクタ端部705が流出ポート702の中に進んでこれをスパイクすることを可能にするが、流出ポート702から上述のコネクタ端部705の引き戻しを防止するように構成される。
【0077】
本発明の別の態様において、流体管理システム500(
図16~17)は、配備時及び診断又は治療手順の使用中にシステム内の有意な流体漏出又は損失を検出するように構成されたコントローラアルゴリズムを含む。そのような漏出は、流入又は流出管路(550、555)において又は内視鏡512(
図17を参照)の細長いシャフト524の周りの頸管によるなどの流体通路の中のどこかの流体損失から構成することができる。
【0078】
漏出又は流体損失を決定するために、コントローラアルゴリズムは、絶えず流入又は注入ポンプ546Aへの入力電圧をモニタし、そのような入力電圧は、直接ポンプ速度に対応し、従って、流入速度に対応する。アルゴリズムは、更に流体の流出速度又は流出流量に直接に対応する流出又は吸引ポンプ546Bのモータへの入力電圧を絶えずモニタする。そのような連続モニタ中に、流入ポンプモータが予め決められた閾値電圧レベルを超える入力電圧(流入速度)で作動しているとアルゴリズムが決定する場合に、タイマが開始される。閾値電圧レベルは、設定圧力、実体腔内圧力、及びその時点でどの作動モード(診断モード、切除モード、その他)が作動中であるかの関数である。作動モードの各々では、各モードの目的を達成する流出ポンプの入力電圧(流出速度)は異なる。従って、各異なるモード及び対応する流出速度に対して、異なる閾値電圧、流体の流入速度、及び時間間隔を使用して不要な流体損失が存在するか否かを決定する。別の変形例では、コントローラアルゴリズムは、注入モータ電圧を経過時間間隔に関連付けて漏出又は流体損失に信号を送る線形適合曲線を使用してシステムにおける漏出又は流体損失を検出することができる。このタイプのアルゴリズムは、切除モードにおけるようなより高速で流入ポンプモータが作動する作動モードでの流体損失のより速い検出を可能にする。換言すると、流体損失は、より高速の損失が存在する場合により速く検出することができる。試験データを収集し、ある時間間隔にわたって異なるモータ速度で流体損失を測定し、そのような線形適合曲線を作成することができる。
【0079】
流入ポンプモータの入力電圧が予め決められた電圧閾値を超える間にタイマが予め選択された時間間隔を超える場合に、コントローラは、通知警告及び/又は可聴又は可視警報を表示して漏出又は流体損失を示すことになる。予め選択された間隔の長さも、システムの作動モードのいずれにおいても流入速度、すなわち、流入ポンプモータに対する入力電圧の重度に応じて変化する可能性がある。流入速度がいずれかのモードで公称流入速度を超えて増加する時に、流体損失警告又は警報に先行する時間間隔は短くなる。一変形例では、予め決められた電圧閾値レベルは、少なくとも25ミリリットル/分、少なくとも50ミリリットル/分、又は少なくとも100ミリリットル/分の流入速度に対応することができ、予め選択された時間間隔は、少なくとも1秒、少なくとも5秒、又は少なくとも10秒とすることができる。
【0080】
本発明の別の態様において、コントローラ545は、流入管路550の注入配管又は流出管路555の吸引配管において捩れ又は目詰まりを検出するように構成されたアルゴリズムを含む。流入管路550又は流出管路555のいずれの可撓性配管も捩れる場合があり、これは医師又は看護スタッフが一時的に気付かないままの場合がある。流入管路550が捩られている場合に、治療部位の中への流体の流入の減少は、その部位に圧力の損失をもたらすことになり、作業空間は圧潰する場合がある。流出管路555の捩れは、治療部位において不要な流体圧力増加をもたらす可能性がある。
【0081】
流入ポンプ564Aの正圧側の流入管路550において捩れを迅速に検出するために、コントローラアルゴリズムは、流入ポンプモータを駆動する計算電力が予め選択された時間間隔にわたって予め決められた値を超える場合に、捩れ配管警告を与えるようになっている。そのような予め決められた値は、モータ、ギアボックス、ポンプヘッド、及び予め決められた圧力限界に依存する。二重ポンプシステムの上記説明から理解することができるように、モータ電力は、流入ポンプ564Aの正圧側に加わる圧力に直接に対応する。流入配管の圧力が配管における捩れ又は目詰まりの結果として増加すると、配管からポンプローラにかかる水圧負荷は増加することになり、これは負荷を流入ポンプモータへ伝達する。次に、モータにかかるこの負荷の増加は、ターゲット速度でポンプモータを駆動するのに必要な電流の増加をもたらす。コントローラ545は、その様々なモードで流体管理システムの使用中に負荷があっても、予め決められたレベルでポンプ速度(及び対応する流量)を維持するためのアルゴリズムを含む。電力値は、コントローラアルゴリズムによって測定され、予め決められた限界では、アルゴリズムは、(i)捩れ配管に関連している流体流れの遮断、又は流路又はフィルタ575の目詰まりの警告を表示し、(ii)分子フィルタ575が目詰まりした場合があるというメッセージ又は警告を表示し、又は(iii)フィルタ575を交換するメッセージを表示することができる。アルゴリズムは、ポンプ546A、546Bを不作動にすることによって及び/又は使用中にいずれかの組織切除デバイス515に対する電力を不作動にすることによって手順を更に遮断することができる。
【0082】
流体管理システム500は、流出ポンプ546Bの負圧側の流出管路555において捩れ又は目詰まりを検出するためのコントローラアルゴリズムを更に含む。この捩れ検出は、両ポンプモータのモータ電圧をモニタすることによって達成される。システムが切除モード又は診断モードのいずれかで作動している場合に、アルゴリズムは、流出ポンプ546Bがオン状態にあるか否かを決定するために最初に検査し、次に、電圧が流入ポンプ546に印加されたことを検査する。流入ポンプ546Aのモータが予め決められた閾値レベルよりも低い電圧で作動している場合に、タイマが開始される。流入ポンプモータの予め決められた電圧閾値は、切除及び診断モード中に予想入力モータ電圧に基づいて選択される。切除及び診断モード中の子宮腔からの典型的な流体の流出速度又は流出流量は、250~500ミリリットル/分であり、その流量は、圧力を維持するために流入ポンプモータに対して最小モータ電圧入力を必要とする。流出管路555における捩れの結果として子宮腔からの流出が減少又は不作動にする場合に、実体腔内圧力は、比較的静止レベルに留まると考えられる。この静止状態では、流入ポンプモータの入力電圧は、予め決められた閾値入力電圧を下回り、従って、捩れ検出タイマを開始することになる。タイマが5秒~120秒に及ぶ予め選択された時間間隔を超える時に、アルゴリズムを適用して捩れ配管警告を与える。更に、アルゴリズムは、使用中に、いずれかの切除デバイス515に対してポンプ(546A、546B)を不作動にすることによって及び/又は電力を不作動にすることによって手順を遮断することができる。
【0083】
流体管理システム500は、流出ポンプ546Bの正圧側の流出管路555の配管における捩れを検出するためのコントローラアルゴリズムを更に含む。コントローラアルゴリズムは、流出ポンプ546Bを駆動するモータの測定モータ電流が予め決められたレベルを超える場合に、流出管路555においてそのような捩れを検出する。予め決められたレベルは、ここでもまたモータ、ギアボックス、ポンプヘッド、及び予め決められた圧力限界に依存する。モータ電流は、ポンプ546Bの正圧側の圧力に直接に対応する。配管の圧力が増加すると(配管捩れ又は目詰まりフィルタの結果として)、配管からポンプローラにかかる水圧負荷が増加し、水圧負荷は負荷をモータへ伝達する。モータへのこの負荷の増加は、ターゲット速度及び流量でモータを駆動するのに必要な電流を増加させる。上述のように、コントローラ545は、様々なモードで流体管理システムの使用中に予め決められたレベルでポンプ速度を維持するアルゴリズムを含む。従って、捩れ検出アルゴリズムは、流出ポンプモータを駆動する電流を測定し、予め選択された時間間隔にわたる予め決められた電流限界において、アルゴリズムは、(i)捩れ配管の警告を表示し、(ii)分子フィルタ575が目詰まりしたというメッセージ又は警告を表示し、又は(iii)フィルタ575を交換するというメッセージを表示ことができる。更に、アルゴリズムは、捩れ配管又は流路の目詰まりの検出に応答して、ポンプ(546A、546B)を不作動にすることによって及び/又は使用中のあらゆる切除デバイス515への電力を不作動にすることによって手順を自動的に遮断することができる。
【0084】
本発明の別の態様において、コントローラ545は、フィードバック制御ループを使用してターゲット設定圧力を維持する組織切除間隔中に部位内の流体圧力を更に制御して最適化するように構成されたアルゴリズムを含む。フィードバック制御ループは、その部位でモータ実際の圧力をモニタする圧力センサ560の利用、次に、流入ポンプ546A及び流出ポンプ546B(
図21)の両方の速度を調節するコントローラアルゴリズムの利用から構成される。特に、医師が、
図16~17及び21に示すように組織切除デバイス515で組織切除を開始する時に、窓517(
図21)と接続する組織容積は、窓を少なくとも部分的に遮断し、従って、内側スリーブ175内の抽出チャネル160を通した流体の流出を遅くし始めることになる。流出の減少の結果、圧力センサ560からコントローラ545への信号は、部位内の実際の圧力の増加を示すことになり、これは、次に、上述のアルゴリズムの下では、流入ポンプモータにおける入力電圧の減少がこうして流入速度を低速にする。流出減少の状態が第1の予め選択された時間間隔にわたって続く場合に、コントローラアルゴリズムは、切除デバイスが組織を切除しており、組織係合信号をコントローラに送信することを認識するであろう。その後の又は第2の予め選択された時間間隔の後に、アルゴリズムは、コントローラ545が流出ポンプモータの入力電圧(及び流体の流出速度又は流出流量)をより高い電圧レベル(例えば、15~30ボルト範囲)からより低い電圧(例えば、5~12ボルト範囲)に減少することを可能にし、同時に流入ポンプを「待機」状態にすることになる。この待機状態では、部位内の実際の圧力の突然の減少が圧力センサ560によって信号で送られたとしたら、アルゴリズムは、流入ポンプモータへの最大電圧(例えば、公称電圧ではなくて30ボルト)の送出を引き起こし、従って、その部位の中への最大流体の流入とを引き起こすと考えられる。そのような圧力の突然の減少の結果、次に、アルゴリズムは、組織離脱信号をコントローラに送信し、コントローラは、上述のように最大電圧で流入ポンプを作動する。通常作動条件では、公称流入ポンプ電圧は、10~20ボルト電圧範囲にあると考えられる。この圧力維持アルゴリズムの目的は、切除デバイスが作動している間に切除デバイスの窓517から組織が取り除かれる時に、又は抽出チャネル160を通して組織チップが取り除かれ、これが次に流出の急速増加をもたらす時に、その部位の圧力の突然の減少を予想することである。次に、進行中の流出ポンプ電圧の減少も、流出速度を低減し、流入ポンプの「待機」状態は、突然の組織除去状態(組織離脱信号)が起こる時に、流入ポンプ546Aが流出速度に符合又はそれを超えるその最大電圧及び流入速度で起動され、これが次に部位内の実際の圧力のいかなる低下も防止することになることを保証する。最大流入速度及び低減流出速度は、ターゲット設定圧力が、0.1秒~10秒に及ぶ可能性がある予め選択された間隔にわたって維持されるまで続くことになる。
【0085】
図16~21に示すような流体管理システム及びRF切除プローブを作動させる別の方法は、(i)内視鏡の遠位端及び電気手術的プローブの作業端を用いて患者の身体内の部位にアクセスする段階と、(ii)その部位においてエネルギを組織に印加するようにRFエネルギを作業端に送出する段階と、(iii)選択されたその部位への流入速度及びその部位からの流体の流出速度又は流出流量を提供するように流体管理システムを同時に作動させる段階と、(iv)作動中にプローブの電気パラメータの信号の変化を検出し、その変化の検出に応答して、上述の流体管理システムの少なくとも1つの作動パラメータを切り換える段階とを含む。典型的には、電気パラメータは、インピーダンスレベル、電力レベル、電圧レベル、及び電流レベルのうちの少なくとも1つを含むことができる。調節することができる流体管理システムの作動パラメータは、その部位への流入速度、その部位からシステム流出チャネルを通る流体の流出速度又は流出流量、流体の流入チャネルと連通する正圧レベル、流体の流出チャネルと連通する負圧レベル、その部位におけるターゲット圧力設定値、及び上述のいずれかの変化率のうちの少なくとも1つを含む。別の変形例では、少なくとも1つの作動パラメータは、その部位での流体圧力を決定するように構成された圧力感知システムを作動させるためのアルゴリズムを含むことができる。上述の方法では、印加されたエネルギは、組織を融除して切除するか又は組織を凝固させるように適応させることができる。
【0086】
本発明のある一定の実施形態を詳細に上述したが、これは、例示的な目的に過ぎず、本発明の上記説明は網羅的ではないことは理解されるであろう。本発明の特定の特徴は、一部の図面に示されているが、他の図面に示されておらず、これは、便宜上に過ぎず、いずれの特徴も、本発明により別のものと組み合わせることができる。いくつかの変形及び代替は、当業者には明らかであろう。そのような代替及び変形は、特許請求の範囲に含まれることを意図している。従属請求項に提示されている特定の特徴は、組み合わせて本発明の範囲に入ることができる。本発明はまた、従属請求項がこれに代えて他の独立請求項を参照して多重従属請求項フォーマットで書かれたかのような実施形態を包含する。
【符号の説明】
【0087】
500 流体管理システム
502 子宮腔(体腔)
512 内視鏡
515 組織切除プローブ
545 コントローラ
546A 流入ポンプ
546B 流出ポンプ
560 圧力センサ
560’、560’’ 感知要素