IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日東電工株式会社の特許一覧

<>
  • 特許-防汚層付き光学フィルム 図1
  • 特許-防汚層付き光学フィルム 図2
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-11-01
(45)【発行日】2022-11-10
(54)【発明の名称】防汚層付き光学フィルム
(51)【国際特許分類】
   B32B 27/00 20060101AFI20221102BHJP
   B32B 9/00 20060101ALI20221102BHJP
   B32B 7/02 20190101ALI20221102BHJP
   C23C 14/06 20060101ALI20221102BHJP
   C23C 14/10 20060101ALI20221102BHJP
   C23C 14/34 20060101ALI20221102BHJP
   G02B 1/113 20150101ALI20221102BHJP
   G02B 1/115 20150101ALI20221102BHJP
   G02B 1/18 20150101ALI20221102BHJP
   G02B 1/14 20150101ALN20221102BHJP
【FI】
B32B27/00 101
B32B27/00 103
B32B27/00 Z
B32B9/00 A
B32B7/02
C23C14/06 E
C23C14/06 Q
C23C14/10
C23C14/34 N
G02B1/113
G02B1/115
G02B1/18
G02B1/14
【請求項の数】 7
(21)【出願番号】P 2022536376
(86)(22)【出願日】2021-07-13
(86)【国際出願番号】 JP2021026250
(87)【国際公開番号】W WO2022014572
(87)【国際公開日】2022-01-20
【審査請求日】2022-08-26
(31)【優先権主張番号】P 2020120131
(32)【優先日】2020-07-13
(33)【優先権主張国・地域又は機関】JP
(31)【優先権主張番号】P 2020146144
(32)【優先日】2020-08-31
(33)【優先権主張国・地域又は機関】JP
(31)【優先権主張番号】P 2020166844
(32)【優先日】2020-10-01
(33)【優先権主張国・地域又は機関】JP
(31)【優先権主張番号】P 2020166847
(32)【優先日】2020-10-01
(33)【優先権主張国・地域又は機関】JP
(31)【優先権主張番号】P 2020190468
(32)【優先日】2020-11-16
(33)【優先権主張国・地域又は機関】JP
【早期審査対象出願】
(73)【特許権者】
【識別番号】000003964
【氏名又は名称】日東電工株式会社
(74)【代理人】
【識別番号】100103517
【弁理士】
【氏名又は名称】岡本 寛之
(74)【代理人】
【識別番号】100149607
【弁理士】
【氏名又は名称】宇田 新一
(72)【発明者】
【氏名】宮本 幸大
(72)【発明者】
【氏名】梨木 智剛
(72)【発明者】
【氏名】角田 豊
【審査官】赤澤 高之
(56)【参考文献】
【文献】特開2002-6103(JP,A)
【文献】特開2000-144097(JP,A)
【文献】特開平10-232301(JP,A)
【文献】特開2000-9906(JP,A)
【文献】特開2002-243906(JP,A)
【文献】特開2010-210945(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B32B 1/00- 43/00
C23C 14/00- 14/58
G02B 1/00- 1/18
(57)【特許請求の範囲】
【請求項1】
透明基材と防汚層とを厚さ方向に順に備え、
前記防汚層における前記透明基材とは反対の表面側の、X線光電子分光法での元素分析によって検出されるSiに対するFの比率が、分析深さ1nmでは20以上である、防汚層付き光学フィルムロール
【請求項2】
前記防汚層における前記比率が、分析深さ1nmから分析深さ5nmにかけて単調減少する、請求項1に記載の防汚層付き光学フィルムロール
【請求項3】
前記防汚層が、パーフルオロポリエーテル基を有するアルコキシシラン化合物を含有する、請求項1または2に記載の防汚層付き光学フィルムロール
【請求項4】
前記防汚層がドライコーティング膜である、請求項1から3のいずれか一つに記載の防汚層付き光学フィルムロール
【請求項5】
前記透明基材と前記防汚層との間に無機酸化物下地層を備え、当該無機酸化物下地層上に前記防汚層が配置されている、請求項1から4のいずれか一つに記載の防汚層付き光学フィルムロール
【請求項6】
前記無機酸化物下地層が二酸化ケイ素を含む、請求項5に記載の防汚層付き光学フィルムロール
【請求項7】
前記無機酸化物下地層における前記防汚層側の表面が、0.5nm以上10nm以下の表面粗さRaを有する、請求項5または6に記載の防汚層付き光学フィルムロール
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、防汚層付き光学フィルムに関する。
【背景技術】
【0002】
タッチパネルディスプレイなどのディスプレイにおける画像表示側の外表面には、防汚性の観点から、例えば、防汚層付き光学フィルムが貼り合わせられる。防汚層付き光学フィルムは、透明基材と、当該透明基材の一方面側の最表面に配置された防汚層とを備える。防汚層により、ディスプレイ表面において、手脂などの汚染物質の付着が抑制され、また、付着した汚染物質が除去されやすくなる。このような防汚層付き光学フィルムに関する技術については、例えば下記の特許文献1に記載されている。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2020-52221号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
防汚層付き光学フィルムの使用時において、防汚層に付着した汚染物質は、例えば、拭取り作業によって除去される。しかしながら、防汚層に対する拭取り作業の繰り返しは、防汚層の防汚性低下の原因となる。防汚層付き光学フィルムの防汚機能の観点から、防汚層の防汚性低下は、好ましくない。
【0005】
本発明は、防汚層の防汚性の低下を抑制するのに適した、防汚層付き光学フィルムを提供する。
【課題を解決するための手段】
【0006】
本発明[1]は、透明基材と防汚層とを厚さ方向に順に備え、前記防汚層における前記透明基材とは反対の表面側の、X線光電子分光法での元素分析によって検出されるSiに対するFの比率が、分析深さ1nmでは20以上である、防汚層付き光学フィルムを含む。
【0007】
本発明[2]は、前記防汚層における前記比率が、分析深さ1nmから分析深さ5nmにかけて単調減少する、上記[1]に記載の防汚層付き光学フィルムを含む。
【0008】
本発明[3]は、前記防汚層が、パーフルオロポリエーテル基を有するアルコキシシラン化合物を含有する、上記[1]または[2]に記載の防汚層付き光学フィルムを含む。
【0009】
本発明[4]は、前記防汚層がドライコーティング膜である、上記[1]から[3]のいずれか一つに記載の防汚層付き光学フィルムを含む。
【0010】
本発明[5]は、前記透明基材と前記防汚層との間に無機酸化物下地層を備え、当該無機酸化物下地層上に前記防汚層が配置されている、上記[1]から[4]のいずれか一つに記載の防汚層付き光学フィルムを含む。
【0011】
本発明[6]は、前記無機酸化物下地層が二酸化ケイ素を含む、上記[5]に記載の防汚層付き光学フィルムを含む。
【0012】
本発明[7]は、前記無機酸化物下地層における前記防汚層側の表面が、0.5nm以上10nm以下の表面粗さRaを有する、上記[5]または[6]に記載の防汚層付き光学フィルムを含む。
【発明の効果】
【0013】
本発明の防汚層付き光学フィルムは、上記のように、防汚層における透明基材とは反対の表面側の、X線光電子分光法での元素分析によって検出されるSiに対するFの比率が、分析深さ1nmでは20以上である。そのため、本防汚層付き光学フィルムは、防汚層の防汚性の低下を抑制するのに適する。
【図面の簡単な説明】
【0014】
図1】本発明の光学フィルムの一実施形態の断面模式図である。
図2】本発明の光学フィルムの変形例の断面模式図である(本変形例は光学機能層を備えない)。
【発明を実施するための形態】
【0015】
本発明の防汚層付き光学フィルムの一実施形態としての光学フィルムFは、図1に示すように、透明基材10と、光学機能層20と、防汚層30とを、厚さ方向Tの一方側に向かってこの順で備える。光学フィルムFは、本実施形態では、透明基材10と、密着層41と、光学機能層20と、防汚層30とを、厚さ方向Tの一方側に向かってこの順で備える。また、光学フィルムFは、厚さ方向Tに直交する方向(面方向)に広がる形状を有する。
【0016】
透明基材10は、本実施形態では、樹脂フィルム11と、ハードコート層12とを厚さ方向Tの一方側に向かってこの順で備える。
【0017】
樹脂フィルム11は、可撓性を有する透明な樹脂フィルムである。樹脂フィルム11の材料としては、例えば、ポリエステル樹脂、ポリオレフィン樹脂、ポリスチレン樹脂、アクリル樹脂、ポリカーボネート樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、ポリアミド樹脂、ポリイミド樹脂、セルロース樹脂、ノルボルネン樹脂、ポリアリレート樹脂、およびポリビニルアルコール樹脂が挙げられる。ポリエステル樹脂としては、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、およびポリエチレンナフタレートが挙げられる。ポリオレフィン樹脂としては、例えば、ポリエチレン、ポリプロピレン、およびシクロオレフィンポリマー(COP)が挙げられる。セルロース樹脂としては、例えば、トリアセチルセルロース(TAC)が挙げられる。これら材料は、単独で用いられてもよいし、二種類以上が併用されてもよい。樹脂フィルム11の材料としては、透明性および強度の観点から、ポリエステル樹脂、ポリオレフィン樹脂、およびセルロース樹脂からなる群より選択される一つが用いられ、より好ましくは、PET、COP、およびTACからなる群より選択される一つが用いられる。
【0018】
樹脂フィルム11におけるハードコート層12側の表面は、表面改質処理されていてもよい。表面改質処理としては、例えば、コロナ処理、プラズマ処理、オゾン処理、プライマー処理、グロー処理、およびカップリング剤処理が挙げられる。
【0019】
樹脂フィルム11の厚さは、強度の観点から、好ましくは5μm以上、より好ましくは10μm以上、更に好ましくは20μm以上である。樹脂フィルム11の厚さは、取扱い性の観点から、好ましくは300μm以下、より好ましくは200μm以下である。
【0020】
樹脂フィルム11の全光線透過率(JIS K 7375-2008)は、好ましくは80%以上、より好ましくは90%以上、更に好ましくは95%以上である。このような構成は、タッチパネルディスプレイなどのディスプレイの表面に光学フィルムFが備えられる場合に当該光学フィルムFに求められる透明性を、確保するのに適する。樹脂フィルム11の全光線透過率は、例えば100%以下である。
【0021】
ハードコート層12は、樹脂フィルム11の厚さ方向Tの一方面上に配置されている。ハードコート層12は、光学フィルムFの露出表面(図1では上面)に擦り傷が形成されにくくするための層である。
【0022】
ハードコート層12は、硬化性樹脂組成物の硬化物である。硬化性樹脂組成物が含有する硬化性樹脂としては、例えば、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂、アクリルウレタン樹脂、アミド樹脂、シリコーン樹脂、エポキシ樹脂、およびメラミン樹脂が挙げられる。これら硬化性樹脂は、単独で用いられてもよいし、二種類以上が併用されてもよい。ハードコート層12の高硬度の確保の観点からは、硬化性樹脂としては、好ましくはアクリルウレタン樹脂が用いられる。
【0023】
また、硬化性樹脂組成物としては、例えば、紫外線硬化型の樹脂組成物、および、熱硬化型の樹脂組成物が挙げられる。高温加熱せずに硬化可能であるために光学フィルムFの製造効率向上に役立つ観点から、硬化性樹脂組成物としては、好ましくは、紫外線硬化型の樹脂組成物が用いられる。紫外線硬化型の樹脂組成物には、紫外線硬化型モノマー、紫外線硬化型オリゴマー、および紫外線硬化型ポリマーからなる群より選択される少なくとも一種類が含まれる。紫外線硬化型の樹脂組成物の具体例としては、特開2016-179686号公報に記載のハードコート層形成用組成物が挙げられる。
【0024】
硬化性樹脂組成物は、微粒子を含有してもよい。硬化性樹脂組成物に対する微粒子の配合は、ハードコート層12における硬さの調整、表面粗さの調整、屈折率の調整、および防眩性の付与に、役立つ。微粒子としては、例えば、金属酸化物粒子、ガラス粒子、および有機粒子が挙げられる。金属酸化物粒子の材料としては、例えば、シリカ、アルミナ、チタニア、ジルコニア、酸化カルシウム、酸化スズ、酸化インジウム、酸化カドミウム、および酸化アンチモンが挙げられる。有機粒子の材料としては、例えば、ポリメチルメタクリレート、ポリスチレン、ポリウレタン、アクリル・スチレン共重合体、ベンゾグアナミン、メラミン、およびポリカーボネートが挙げられる。
【0025】
ハードコート層12の厚さは、ハードコート層12の硬度の確保による防汚層30表面の硬度の確保の観点から、好ましくは1μm以上、より好ましくは3μm以上、更に好ましくは5μm以上である。ハードコート層12の厚さは、光学フィルムFの柔軟性確保の観点から、好ましくは50μm以下、より好ましくは40μm以下、更に好ましくは35μm以下、特に好ましくは30μm以下である。
【0026】
ハードコート層12における密着層41側の表面は、表面改質処理されていてもよい。表面改質処理としては、例えば、プラズマ処理、コロナ処理、オゾン処理、プライマー処理、グロー処理、およびカップリング剤処理が挙げられる。ハードコート層12と密着層41との間において高い密着力を確保する観点からは、ハードコート層12における密着層41側表面は、好ましくはプラズマ処理されている。
【0027】
透明基材10の厚さは、強度の観点から、好ましくは5μm以上、より好ましくは10μm以上、更に好ましくは20μm以上である。透明基材10の厚さは、取扱い性の観点から、好ましくは300μm以下、より好ましくは200μm以下である。
【0028】
透明基材10の全光線透過率(JIS K 7375-2008)は、好ましくは80%以上、より好ましくは90%以上、更に好ましくは95%以上である。このような構成は、タッチパネルディスプレイなどのディスプレイの表面に光学フィルムFが備えられる場合に当該光学フィルムFに求められる透明性を、確保するのに適する。透明基材10の全光線透過率は、例えば100%以下である。
【0029】
密着層41は、透明基材10(本実施形態ではハードコート層12)に対する無機酸化物層(本実施形態では後記の第1高屈折率層21)の密着力を確保するための層である。密着層41は、ハードコート層12の厚さ方向Tの一方面上に配置されている。密着層41の材料としては、例えば、シリコン、インジウム、ニッケル、クロム、アルミニウム、錫、金、銀、白金、亜鉛、チタン、タングステン、ジルコニウム、パラジウム等の金属、これら金属の2種類以上の合金、および、これら金属の酸化物が挙げられる。有機層(具体的にはハードコート層12)および無機酸化物層(本実施形態では具体的には第1高屈折率層21)の両方に対する密着性と、密着層41の透明性との両立の観点からは、密着層41の材料としては、好ましくは、インジウムスズ酸化物(ITO)または酸化シリコン(SiOx)が用いられる。密着層41の材料として酸化シリコンが用いられる場合、好ましくは、化学量論組成よりも酸素量の少ないSiOxが用いられ、より好ましくは、xが1.2以上1.9以下のSiOxが用いられる。
【0030】
密着層41の厚さは、ハードコート層12と無機酸化物層(本実施形態では第1高屈折率層21)との間の密着力の確保と、密着層41の透明性との両立の観点から、好ましくは1nm以上であり、また、好ましくは10nm以下である。
【0031】
光学機能層20は、密着層41の厚さ方向Tの一方面上に配置されている。本実施形態では、光学機能層20は、外光の反射強度を抑制するための反射防止層である。すなわち、光学フィルムFは、本実施形態では反射防止フィルムである。
【0032】
光学機能層20(反射防止層)は、相対的に屈折率が大きな高屈折率層と、相対的に屈折率が小さな低屈折率層とを、厚さ方向に交互に有する。反射防止層では、複数の薄層(高屈折率層,低屈折率層)における複数の界面での反射光間の干渉作用により、正味の反射光強度が減衰される。また、反射防止層では、各薄層の光学膜厚(屈折率と厚さとの積)の調整により、反射光強度を減衰させる干渉作用を発現させることができる。このような反射防止層としての光学機能層20は、具体的には、第1高屈折率層21と、第1低屈折率層22と、第2高屈折率層23と、第2低屈折率層24とを、厚さ方向Tの一方側に向かってこの順で有する。
【0033】
第1高屈折率層21および第2高屈折率層23は、それぞれ、波長550nmにおける屈折率が好ましくは1.9以上の高屈折率材料からなる。高屈折率と可視光の低吸収性との両立の観点から、高屈折率材料としては、例えば、酸化ニオブ(Nb)、酸化チタン、酸化ジルコニウム、スズドープ酸化インジウム(ITO)、およびアンチモンドープ酸化スズ(ATO)が挙げられ、好ましくは酸化ニオブが用いられる。
【0034】
第1高屈折率層21の光学膜厚(屈折率と厚さとの積)は、例えば20nm以上であり、また、例えば55nm以下である。第2高屈折率層23の光学膜厚は、例えば60nm以上であり、また、例えば330nm以下である。
【0035】
第1低屈折率層22および第2低屈折率層24は、それぞれ、波長550nmにおける屈折率が好ましくは1.6以下の低屈折率材料からなる。低屈折率と可視光の低吸収性との両立の観点から、低屈折率材料としては、例えば、二酸化ケイ素(SiO)およびフッ化マグネシウムが挙げられ、好ましくは二酸化ケイ素が用いられる。
【0036】
第1低屈折率層22の光学膜厚は、例えば15nm以上であり、また、例えば70nm以下である。第2低屈折率層24の光学膜厚は、例えば100nm以上であり、また、例えば160nm以下である。
【0037】
また、光学機能層20において、第1高屈折率層21の厚さは、例えば1nm以上、好ましくは5nm以上であり、また、例えば30nm以下、好ましくは20nm以下である。第1低屈折率層22の厚さは、例えば10nm以上、好ましくは20nm以上であり、また、例えば50nm以下、好ましくは30nm以下である。第2高屈折率層23の厚さは、例えば50nm以上、好ましくは80nm以上であり、また、例えば200nm以下、好ましくは150nm以下である。第2低屈折率層24の厚さは、例えば50nm以上、好ましくは60nm以上であり、また、例えば150nm以下、好ましくは100nm以下である。
【0038】
第2低屈折率層24は、本実施形態では、防汚層30の耐剥離性を確保する無機酸化物下地層(無機酸化物下地層42)を兼ねる。このような第2低屈折率層24の材料としては、防汚層30との密着性確保の観点からも、例えば、二酸化ケイ素およびフッ化マグネシウムが挙げられ、好ましくは二酸化ケイ素が用いられる。防汚層30における耐剥離性の確保の観点からは、第2低屈折率層24の厚さは、好ましくは50nm以上、より好ましくは65nm以上、更に好ましくは80nm以上、特に好ましくは90nm以上である。同厚さは、例えば150nm以下である。
【0039】
無機酸化物下地層42における防汚層30側の表面は、表面改質処理されていてもよい。表面改質処理としては、例えば、コロナ処理、プラズマ処理、オゾン処理、プライマー処理、グロー処理、およびカップリング剤処理が挙げられる。
【0040】
無機酸化物下地層42における防汚層30側の表面の表面粗さRa(算術平均表面粗さ)は、好ましくは0.5nm以上、より好ましくは0.8nm以上である。同表面粗さRaは、好ましくは10nm以下、より好ましくは8nm以下である。表面粗さRaは、例えば、AFM(原子間力顕微鏡)による1μm四方の観察像から求められる。
【0041】
防汚層30は、防汚機能を有する層である。防汚層30は、無機酸化物下地層42の厚さ方向Tの一方面上に配置されている。防汚層30は、厚さ方向Tの一方側に表面31(外表面)を有する。防汚層30の防汚機能には、光学フィルムFの使用時のフィルム露出面に対する手脂などの汚染物質の付着の抑制機能、および、付着した汚染物質を除去しやすくする機能が含まれる。
【0042】
防汚層30の材料としては、例えば、有機フッ素化合物が挙げられる。有機フッ素化合物としては、好ましくは、パーフルオロポリエーテル基を有するアルコキシシラン化合物が用いられる。パーフルオロポリエーテル基を有するアルコキシシラン化合物としては、例えば、下記の一般式(1)で表される化合物が挙げられる。
【0043】
-R-X-(CH)-Si(OR) (1)
【0044】
一般式(1)において、Rは、アルキル基における一つ以上の水素原子がフッ素原子に置換された、直鎖状または分岐状のフッ化アルキル基(炭素数は例えば1以上20以下)を表し、好ましくは、アルキル基の水素原子のすべてがフッ素原子に置換されたパーフルオロアルキル基を表す。
【0045】
は、パーフルオロポリエーテル(PFPE)基の繰り返し構造を少なくとも一つ含む構造を表し、好ましくは、PFPE基の繰り返し構造を二つ含む構造を表す。PFPE基の繰り返し構造としては、例えば、直鎖状PFPE基の繰り返し構造、および、分岐状PFPE基の繰り返し構造が挙げられる。直鎖状PFPE基の繰り返し構造としては、例えば、-(OC2n)-で表される構造(nは、1以上20以下の整数を表し、pは、1以上50以下の整数を表す。以下同じ)が挙げられる。分岐状PFPE基の繰り返し構造としては、例えば、-(OC(CF))-で表される構造、および、-(OCFCF(CF)CF)-で表される構造が挙げられる。PFPE基の繰り返し構造としては、好ましくは、直鎖状PFPE基の繰り返し構造が挙げられ、より好ましくは、-(OCF)-および-(OC)-が挙げられる。
【0046】
は、炭素数1以上4以下アルキル基を表し、好ましくはメチル基を表す。
【0047】
Xは、エーテル基、カルボニル基、アミノ基、またはアミド基を表し、好ましくはエーテル基を表す。
【0048】
mは、1以上の整数を表す。また、mは、好ましくは20以下、より好ましくは10以下、更に好ましくは5以下の整数を表す。
【0049】
このようなパーフルオロポリエーテル基を有するアルコキシシラン化合物のうち、好ましくは、下記の一般式(2)に示される化合物が用いられる。
【0050】
CF-(OCF)-(OC)-O-(CH)-Si(OCH) (2)
【0051】
一般式(2)において、qは、1以上50以下の整数を表し、rは、1以上50以下の整数を表す。
【0052】
また、パーフルオロポリエーテル基を有するアルコキシシラン化合物は、単独で用いられてもよいし、二種類以上が併用されてもよい。
【0053】
防汚層30の表面31(防汚層30における透明基材10とは反対側の表面)の、X線光電子分光法での元素分析によって検出されるSiに対するFの比率(F/Si,原子数比率)は、分析深さ1nmにおいて、20以上であり、好ましくは22以上、より好ましくは24以上、更に好ましくは26以上である。防汚層30の表面31に存在するフッ素原子が多いほど、前記比率は高い。防汚層30が、パーフルオロポリエーテル基を有するアルコキシシラン化合物を含有する場合には、次のような配向をとる同化合物の当該配向性が高いほど、また、そのような配向をとる同化合物が多いほど、上記比率は高い。前記配向とは、同化合物の長鎖構造における一端のフッ化アルキル基(好ましくは、パーフルオロアルキル基)が表面31側に位置し、他端のアルコキシシラン構造部が光学機能層20側に位置し、好ましくは厚さ方向Tに沿って前記長鎖構造が延びている配向である。
【0054】
防汚層30の表面31の、X線光電子分光法での元素分析によって検出されるSiに対するFの比率(F/Si)は、分析深さ1nmから分析深さ5nmにかけて、好ましくは単調減少する。防汚層30が、パーフルオロポリエーテル基を有するアルコキシシラン化合物を含有する場合には、上記配向をとる同化合物の当該配向性が高いほど、また、上記配向をとる同化合物が多いほど、前記単調減少の変化の程度は大きい。
【0055】
X線光電子分光法による防汚層30の元素分析は、具体的には、実施例に関して後述するように実施される。また、上記比率(F/Si)の調整方法としては、例えば、上記有機フッ素化合物の種類の選択、防汚層30における有機フッ素化合物の含有割合の調整、防汚層30の形成方法の選択、防汚層30の下地層(本実施形態では第2低屈折率層24)の材料の選択、および、同下地層の防汚層30側表面の表面粗さの調整が挙げられる。上記比率(F/Si)の調整方法としては、防汚層30にとっての下地層(本実施形態では第2低屈折率層24)の形成工程と下地層上への防汚層30の形成工程とを、ロールトゥロール方式での一続きのラインで(即ち、両工程の間でワークフィルムを巻き取らずに)実施するかどうかの選択も、挙げられる。
【0056】
防汚層30は、本実施形態では、ドライコーティング法で形成された膜(ドライコーティング膜)である。ドライコーティング法としては、スパッタリング法、真空蒸着法、およびCVDが挙げられる。防汚層30は、好ましくはドライコーティング膜であり、より好ましくは真空蒸着膜である。
【0057】
防汚層30の材料が、パーフルオロポリエーテル基を有するアルコキシシラン化合物を含有し、且つ、防汚層30が、ドライコーティング膜(好ましくは真空蒸着膜)である構成は、光学機能層20に対する防汚層30の高い接合力の確保に適し、従って、防汚層30の耐剥離性の確保に適する。防汚層30の耐剥離性が高いことは、防汚層30の防汚機能の維持に役立つ。
【0058】
防汚層30の外表面31の水接触角(純水接触角)は、110°以上であり、好ましくは111°以上、より好ましくは112°以上、更に好ましくは113°以上、特に好ましくは114°以上である。外表面31における水接触角がこの程度に高い構成は、防汚層30において高い防汚性を実現するのに適する。同水接触角は、例えば130°以下である。水接触角は、防汚層30の外表面31(露出表面)に直径2mm以下の水滴(純水の液滴)を形成して、防汚層30表面に対する当該水滴の接触角を測定することにより、求められる。外表面31の水接触角は、例えば、防汚層30の組成、外表面31の粗さ、ハードコート層12の組成、および、ハードコート層12の光学機能層20側の表面の粗さの調整によって、調整できる。
【0059】
防汚層30の厚さは、好ましくは1nm以上、より好ましくは3nm以上、更に好ましくは5nm以上、特に好ましくは7nm以上である。このような構成は、防汚層30の耐剥離性を確保するのに適する。防汚層30の厚さは、好ましくは25nm以下、より好ましくは20nm以下、更に好ましくは18nm以下である。このような構成は、防汚層30において上記の水接触角を実現するのに適する。
【0060】
光学フィルムFは、長尺の透明基材10を用意した後、例えばロールトゥロール方式において、透明基材10上に密着層41、光学機能層20、および防汚層30を順次に積層することによって、作製できる。光学機能層20は、密着層41上に第1高屈折率層21、第1低屈折率層22、第2高屈折率層23、および第2低屈折率層24を順次に積層することによって形成できる。
【0061】
透明基材10は、樹脂フィルム11上にハードコート層12を形成することによって作製できる。ハードコート層12は、例えば、樹脂フィルム11上に、硬化性樹脂と必要に応じて微粒子とを含有する硬化性樹脂組成物を塗布して塗膜を形成した後、この塗膜を硬化させることによって形成できる。硬化性樹脂組成物が紫外線化型樹脂を含有する場合には、紫外線照射によって前記塗膜を硬化させる。硬化性樹脂組成物が熱硬化型樹脂を含有する場合には、加熱によって前記塗膜を硬化させる。
【0062】
透明基材10上に形成されたハードコート層12の露出表面は、必要に応じて、表面改質処理される(ハードコート層前処理工程)。表面改質処理としてプラズマ処理する場合、処理ガスとしては、例えば、アルゴンガスおよび酸素ガスが挙げられる。また、プラズマ処理における放電電力は、例えば10W以上であり、また、例えば10000W以下である。
【0063】
密着層41、第1高屈折率層21、第1低屈折率層22、第2高屈折率層23、および第2低屈折率層24は、それぞれ、ドライコーティング法で材料を順次に成膜することによって形成できる(ドライ成膜工程)。ドライコーティング法としては、スパッタリング法、真空蒸着法、およびCVDが挙げられ、好ましくはスパッタリング法が用いられる。
【0064】
スパッタリング法では、スパッタ室内に真空条件下でガスを導入しつつ、カソード上に配置されたターゲットにマイナスの電圧を印加する。これにより、グロー放電を発生させてガス原子をイオン化し、当該ガスイオンを高速でターゲット表面に衝突させ、ターゲット表面からターゲット材料を弾き出し、弾き出たターゲット材料を所定面上に堆積させる。成膜速度の観点から、スパッタリング法としては、反応性スパッタリングが好ましい。
反応性スパッタリングでは、ターゲットとして金属ターゲットを用い、上述のガスとして、アルゴンなどの不活性ガスと酸素(反応性ガス)との混合ガスを用いる。不活性ガスと酸素との流量比(sccm)の調整により、成膜される無機酸化物に含まれる酸素の割合を調整できる。
【0065】
スパッタリング法を実施するための電源としては、例えば、DC電源、AC電源、RF電源、および、MFAC電源(周波数帯が数kHz~数MHzのAC電源)が挙げられる。スパッタリング法における放電電圧は、例えば200V以上であり、また、例えば1000V以下である。また、スパッタリング法が実施されるスパッタ室内の成膜気圧は、例えば0.01Pa以上であり、また、例えば2Pa以下である。
【0066】
反射防止層の露出表面は、必要に応じて、表面改質処理される(下地層前処理工程)。表面改質処理としてプラズマ処理する場合、処理ガスとしては、例えば、酸素ガスおよびアルゴンガスが挙げられ、好ましくは酸素ガスが用いられる。また、プラズマ処理における放電電力は、例えば10W以上であり、好ましくは50W以上であり、より好ましくは70W以上である。同放電電力は、例えば10000W以下であり、好ましくは8000W以下であり、より好ましくは5000W以下、更に好ましくは4000W以下、特に好ましくは3000W以下である。
【0067】
防汚層30は、光学機能層20上に上述の有機フッ素化合物を成膜することによって形成できる(防汚層形成工程)。防汚層30の形成手法としては、ドライコーティング法が挙げられる。ドライコーティング法としては、例えば、真空蒸着法、スパッタリング法、およびCVDが挙げられ、好ましくは真空蒸着法が用いられる。
【0068】
好ましくは、ドライ成膜工程から防汚層形成工程までの一連のプロセスを、ロールトゥロール方式でワークフィルムを走行させながら一つの連続ラインで実施する。より好ましくは、ハードコート層前処理工程から防汚層形成工程までの一連のプロセスを、ロールトゥロール方式でワークフィルムを走行させながら一つの連続ラインで実施する。一つの連続ラインでのプロセス中、ワークフィルムは一度も大気中に出されず、好ましくは、ロール状に巻き回されない。
【0069】
例えば以上のようにして、光学フィルムFを製造できる。光学フィルムFは、透明基材10側が例えば粘着剤を介して被着体に貼り合わされて、使用される。被着体としては、例えば、タッチパネルディスプレイなどのディスプレイにおける画像表示側に配置される透明カバーが挙げられる。
【0070】
光学フィルムFでは、上述のように、防汚層30の表面31の、X線光電子分光法での元素分析によって検出されるSiに対するFの比率(F/Si,原子数比率)は、分析深さ1nmにおいて、20以上であり、好ましくは22以上、より好ましくは24以上、更に好ましくは26以上である。また、前記比率は、分析深さ1nmから分析深さ5nmにかけて、好ましくは単調減少する。これら構成は、表面31において、有機フッ素化合物の末端フッ化アルキル基に起因する高い疎水性と高い疎油性との重畳的発現により、優れた防汚性を発現させるのに適する。加えて、比率(F/Si)に関する上記構成は、表面31において末端フッ化アルキル基が配向性高く緻密に配置される状態を確保するのに適する。表面31において末端フッ化アルキル基が配向性高く緻密に配置されるほど、表面31の劣化が抑制され、従って、防汚層30の防汚性の低下が抑制される。
【0071】
光学フィルムFは、反射防止フィルム以外の他の光学フィルムであってもよい。他の光学フィルムとしては、例えば、透明導電性フィルムおよび電磁波遮蔽フィルムが挙げられる。
【0072】
光学フィルムFが透明導電性フィルムである場合、当該光学フィルムFの光学機能層20は、例えば、第1誘電体薄膜と、ITO膜などの透明電極膜と、第2誘電体膜とを厚さ方向Tの一方側に向かってこの順で備える。このような積層構成を有する光学機能層20において、可視光透過性と導電性とが両立される。
【0073】
光学フィルムFが電磁波遮蔽フィルムである場合、当該光学フィルムFの光学機能層20は、例えば、電磁波反射能を有する金属薄膜と、金属酸化物膜とを厚さ方向Tに交互に備える。このような積層構成を有する光学機能層20において、特定波長の電磁波に対する遮蔽性と可視光透過性とが両立される。
【0074】
また、光学フィルムFは、図2に示すように、光学的機能層20を備えなくてもよい。図2に示す光学フィルムFは、透明基材10(樹脂フィルム11,ハードコート層12)と、密着層41と、無機酸化物下地層42と、防汚層30とを、厚さ方向Tの一方側に向かってこの順で備える。本変形例では、無機酸化物下地層42は、密着層41上に配置されている。
【実施例
【0075】
本発明について、以下に実施例を示して具体的に説明する。本発明は実施例に限定されない。また、以下に記載されている配合量(含有量)、物性値、パラメータなどの具体的数値は、上述の「発明を実施するための形態」において記載されている、それらに対応する配合量(含有量)、物性値、パラメータなど該当記載の上限(「以下」または「未満」として定義されている数値)または下限(「以上」または「超える」として定義されている数値)に代替できる。
【0076】
〔実施例1〕
まず、透明な樹脂フィルムとしての長尺のトリアセチルセルロース(TAC)フィルム(厚さ80μm)の片面に、ハードコート層を形成した(ハードコート層形成工程)。本工程では、まず、紫外線硬化型のアクリルモノマー(商品名「GRANDIC PC-1070」,DIC社製)100質量部と、ナノシリカ粒子を含有するオルガノシリカゾル(商品名「MEK-ST-L」,ナノシリカ粒子の平均一次粒子径は50nm,固形分濃度30質量%,日産化学社製)25質量部(ナノシリカ粒子換算量)と、チキソトロピー付与剤(商品名「ルーセンタイトSAN」,有機粘土である合成スメクタイト,コープケミカル社製)1.5質量部と、光重合開始剤(商品名「OMNIRAD907」,BASF社製)3質量部と、レベリング剤(商品名「LE303」,共栄社化学社製)0.15質量部とを混合して、固形分濃度55質量%の組成物(ワニス)を調製した。混合には、超音波分散機を使用した。次に、上記TACフィルムの片面に組成物を塗布して塗膜を形成した。次に、この塗膜を、紫外線照射により硬化させた後、加熱により乾燥させた。紫外線照射では、光源として高圧水銀ランプを使用し、波長365nmの紫外線を用い、積算照射光量を200mJ/cmとした。また、加熱の時間は80℃とし、加熱の温度は3分間とした。これにより、TACフィルム上に厚さ6μmのハードコート(HC)層を形成した。
【0077】
次に、ワークフィルムとしてのHC層付きTACフィルムをロールトゥロール方式で走行させながら、当該フィルムのHC層表面を、プラズマ処理装置によって1.0Paの真空雰囲気下でプラズマ処理した(HC層前処理工程)。このプラズマ処理では、処理ガスとしてアルゴンガスを用い、放電電力(放電出力)を150Wとした。
【0078】
次に、プラズマ処理後のHC層付きTACフィルムのHC層上に、密着層と反射防止層とを順次に形成した(スパッタ成膜工程)。具体的には、ロールトゥロール方式のスパッタ成膜装置により、HC層付きTACフィルムのHC層上に、密着層としての厚さ1.5nmのインジウムスズ酸化物(ITO)層と、第1高屈折率層としての厚さ12nmのNb層と、第1低屈折率層としての厚さ28nmのSiO層と、第2高屈折率層としての厚さ100nmのNb層と、第2低屈折率層としての厚さ85nmのSiO層とを、順次に形成した。密着層の形成では、ITOターゲットを用い、不活性ガスとしてのアルゴンガスと、アルゴンガス100体積部に対して10体積部の反応性ガスとしての酸素ガスとを用い、放電電圧を400Vとし、成膜室内の気圧(成膜気圧)を0.2Paとし、MFACスパッタリングによってITO層を成膜した。第1高屈折率層の形成では、Nbターゲットを用い、100体積部のアルゴンガスおよび5体積部の酸素ガスを用い、放電電圧を415Vとし、成膜気圧を0.42Paとし、MFACスパッタリングによってNb層を成膜した。第1低屈折率層の形成では、Siターゲットを用い、100体積部のアルゴンガスおよび30体積部の酸素ガスを用い、放電電圧を350Vとし、成膜気圧を0.3Paとし、MFACスパッタリングによってSiO層を成膜した。第2高屈折率層の形成では、Nbターゲットを用い、100体積部のアルゴンガスおよび13体積部の酸素ガスを用い、放電電圧を460Vとし、成膜気圧を0.5Paとし、MFACスパッタリングによってNb層を成膜した。第2低屈折率層の形成では、Siターゲットを用い、100体積部のアルゴンガスおよび30体積部の酸素ガスを用い、放電電圧を340Vとし、成膜気圧を0.25Paとし、MFACスパッタリングによってSiO層を成膜した。以上のようにして、HC層付きTACフィルムのHC層上に、密着層を介して反射防止層(第1高屈折率層,第1低屈折率層,第2高屈折率層,第2低屈折率層)を積層形成した。
【0079】
次に、形成された反射防止層の表面を、プラズマ処理装置によって、1.0Paの真空雰囲気下でプラズマ処理した(下地層前処理工程)。このプラズマ処理では、処理ガスとして酸素ガスを用い、放電電力を100Wとした。
【0080】
次に、反射防止層上に防汚層を形成した(防汚層形成工程)。具体的には、パーフルオロポリエーテル基含有のアルコキシシラン化合物を蒸着源として用いた真空蒸着法により、厚さ8nmの防汚層を反射防止層上に形成した。蒸着源は、ダイキン工業社製の「オプツール UD509」(上記一般式(2)で表されるパーフルオロポリエーテル基含有アルコキシシラン化合物,固形分濃度20質量%)を乾燥して得た固形分である。また、真空蒸着法における蒸着源の加熱温度は260℃とした。
【0081】
上述のHC層前処理工程から防汚層形成工程までの一連のプロセスは、ロールトゥロール方式でワークフィルムを走行させながら一つの連続ラインで実施した。このプロセス中、ワークフィルムは一度も大気中に出されていない。
【0082】
以上のようにして、実施例1の光学フィルムを作製した。実施例1の光学フィルムは、透明基材(樹脂フィルム,ハードコート層)と、密着層と、反射防止層と、防汚層とを、厚さ方向一方側に向かってこの順で備える。
【0083】
〔実施例2〕
次のこと以外は、実施例1の光学フィルムと同様にして、実施例2の光学フィルムを作製した。下地層前処理工程を実施しなかった(即ち、下地層前処理としてのプラズマ処理の放電電力は0Wとした)。防汚層形成工程(真空蒸着)において、蒸着源として、信越化学社製の「KY1903-1」(パーフルオロポリエーテル基含有アルコキシシラン化合物)を乾燥して得た固形分を用いた。
【0084】
〔比較例1〕
下地層前処理工程後であって防汚層形成工程前に、ワークフィルムを一旦 ロール状に巻き取ったこと以外は、実施例1の光学フィルムと同様にして、比較例1の光学フィルムを作製した。
【0085】
〔比較例2〕
防汚層形成工程以外は、実施例1の光学フィルムと同様にして、比較例2の光学フィルムを作製した。本比較例の防汚層形成工程では、ウェットコーティング法によって防汚層を形成した。具体的には、まず、コーティング剤としての「オプツール UD509」(ダイキン工業社製)を、希釈溶媒(商品名「フロリナート」,3M社製)で希釈して、固形分濃度0.1質量%のコーティング液を調製した。次に、スパッタ成膜工程で形成された反射防止層の上に、コーティング液をグラビアコーティングによって塗布して塗膜を形成した。次に、この塗膜を、60℃で2分間の加熱によって乾燥させた。これにより、反射防止層上に厚さ7nmの防汚層を形成した。
【0086】
〈X線光電子分光法による防汚層の分析〉
実施例1,2および比較例1,2の各光学フィルムの防汚層表面を、X線光電子分光法(ESCA)によって分析した。分析用の試料は、光学フィルムから10mm×10mm程度のサイズに切り出して用意した。分析には、X線光電子分光装置(商品名「Quantum 2000」,アルバック・ファイ社製)を使用した。本分析では、下記の条件でX線光電子分光測定を行った。
【0087】
励起X線源:モノクロ AI Kα
X-ray Settinng:200μmφ(15kV,30W)
光電子取り出し角:試料表面に対して5度、15度、30度、45度
【0088】
本分析では、光電子取り出し角の調整によって分析深さを調整した。具体的には、光電子取り出し角を5度とすることによって分析深さを1nmとし、光電子取り出し角を15度とすることによって分析深さを2nmとし、光電子取り出し角を30度とすることによって分析深さを3nmとし、光電子取り出し角を45度とすることによって分析深さを5nmとした。元素分析結果を表1に示す。検出されたSiに対するFの比率も表1に示す。
【0089】
〈水接触角〉
実施例1,2および比較例1,2の各光学フィルムについて、防汚層表面の水接触角を調べた。まず、光学フィルムの防汚層表面に、約1μLの純水の滴下によって水滴を形成した。次に、防汚層表面上の水滴の表面と防汚層表面とがなす角度を測定した。測定には、接触角計(商品名「DMo-501」,協和界面科学社製)を使用した。その測定結果を、初期の水接触角θとして表1に示す。
【0090】
〈消しゴム摺動試験〉
実施例1,2および比較例1,2の各光学フィルムについて、消しゴム摺動試験を経ることによる防汚層表面の防汚性低下の程度を調べた。具体的には、まず、光学フィルムの防汚層表面に対して消しゴムを摺動させつつ往復動させる摺動試験を実施した。この試験では、Minoan社製の消しゴム(Φ6mm)を使用し、防汚層表面に対する消しゴムの荷重を1kg/6mmΦとし、防汚層表面上の消しゴムの摺動距離(往復動における片道)を20mmとし、消しゴムの摺動速度を40rpmとし、防汚層表面に対して消しゴムを往復動させる回数は3000往復とした。次に、光学フィルムの防汚層表面における消しゴム摺動箇所の水接触角を、初期の水接触角θの測定方法と同様の方法で測定した。その測定結果を、消しゴム摺動試験後の水接触角θとして、表1に示す。
【0091】
〈評価〉
実施例1,2の光学フィルムでは、比較例1,2の各光学フィルムと比較して、消しゴム摺動試験を経ることによる防汚層表面における水接触角の低下の程度が有意に小さく、従って、防汚性の低下が有意に小さい(防汚層表面では、水接触角の低下が小さいほど、防汚性の低下は小さい)。
【0092】
【表1】
【0093】
上述の実施形態は本発明の例示であり、当該実施形態によって本発明を限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記の請求の範囲に含まれる。
【産業上の利用可能性】
【0094】
本発明の防汚層付き光学フィルムは、例えば、防汚層付き反射防止フィルム、防汚層付き透明導電性フィルム、および、防汚層付き電磁波遮蔽フィルムに適用できる。
【符号の説明】
【0095】
F 光学フィルム(防汚層付き光学フィルム)
10 透明基材
11 樹脂フィルム
12 ハードコート層
20 光学機能層
21 第1高屈折率層
22 第1低屈折率層
23 第2高屈折率層
24 第2低屈折率層
30 防汚層
31 表面
41 密着層
42 無機酸化物下地層
T 厚さ方向
図1
図2