(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-11-02
(45)【発行日】2022-11-11
(54)【発明の名称】共振装置及び共振装置製造方法
(51)【国際特許分類】
H03H 9/24 20060101AFI20221104BHJP
H03H 3/007 20060101ALI20221104BHJP
【FI】
H03H9/24 Z
H03H9/24 B
H03H3/007 Z
(21)【出願番号】P 2021508700
(86)(22)【出願日】2019-10-15
(86)【国際出願番号】 JP2019040421
(87)【国際公開番号】W WO2020194810
(87)【国際公開日】2020-10-01
【審査請求日】2021-08-19
(31)【優先権主張番号】P 2019058267
(32)【優先日】2019-03-26
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000006231
【氏名又は名称】株式会社村田製作所
(74)【代理人】
【識別番号】100079108
【氏名又は名称】稲葉 良幸
(74)【代理人】
【識別番号】100109346
【氏名又は名称】大貫 敏史
(74)【代理人】
【識別番号】100117189
【氏名又は名称】江口 昭彦
(74)【代理人】
【識別番号】100134120
【氏名又は名称】内藤 和彦
(74)【代理人】
【識別番号】100126480
【氏名又は名称】佐藤 睦
(72)【発明者】
【氏名】福光 政和
(72)【発明者】
【氏名】樋口 敬之
【審査官】竹内 亨
(56)【参考文献】
【文献】国際公開第2017/047663(WO,A1)
【文献】特開2011-061416(JP,A)
【文献】国際公開第2017/212677(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H03H 9/00-9/76
H03H 3/00-3/10
(57)【特許請求の範囲】
【請求項1】
共振子を含む第1基板と、
前記第1基板に対向する面に第1酸化膜を含む第2基板と、
前記共振子の振動空間を封止するように、前記第1基板と前記第2基板とを接合する接合部と、を備え、
前記第1酸化膜は、前記第2基板を平面視したときに前記振動空間の周囲の少なくとも一部に形成され、前記面まで貫通する第1貫通孔を含み、
前記第1貫通孔は、第1金属を含
み、
前記接合部は、前記第1基板に形成される第2金属と前記第2基板に形成される第3金属との共晶合金を主成分とする共晶層を含み、
前記第1金属の材料は、前記第3金属の材料と同じであり、
前記第1基板は、前記第2基板に対向する面に積層された圧電膜及び第2酸化膜を含み、
前記第2酸化膜は、前記第1基板を平面視したときに前記振動空間の周囲の少なくとも一部に形成され、前記圧電膜まで貫通する第2貫通孔を含み、
前記第2貫通孔は、第4金属を含み、かつ、前記第1基板を平面視したときに環状の形状を有する、
共振装置。
【請求項2】
前記第2金属は、アルミニウムを主成分とする金属であり、
前記第3金属は、ゲルマニウムである、
請求項
1に記載の共振装置。
【請求項3】
前記第2金属は、ゲルマニウムであり、
前記第3金属は、アルミニウムを主成分とする金属である、
請求項
1に記載の共振装置。
【請求項4】
前記アルミニウムを主成分とする金属は、アルミニウム、アルミニウム-銅合金、又はアルミニウム-シリコン-銅合金である、
請求項
2又は
3に記載の共振装置。
【請求項5】
前記第4金属の材料は、前記第2金属の材料と同じである、
請求項
1に記載の共振装置。
【請求項6】
前記第2基板の材料は、シリコンであり、
前記第1酸化膜の材料は、二酸化シリコンである、
請求項
1から
5のいずれか一項に記載の共振装置。
【請求項7】
前記接合部は、前記共晶層と前記第2基板との間にチタン層を含む、
請求項
6に記載の共振装置。
【請求項8】
前記第1貫通孔は、前記第2基板を平面視したときに環状の形状を有する、
請求項1から
7のいずれか一項に記載の共振装置。
【請求項9】
前記接合部の端部は、前記第1貫通孔の側面から距離を空けて配置される、
請求項1から
8のいずれか一項に記載の共振装置。
【請求項10】
共振子を含む第1基板と、
前記第1基板に対向する面に第1酸化膜を含む第2基板と、
前記共振子の振動空間を封止するように、前記第1基板と前記第2基板とを接合する接合部と、を備え、
前記第1酸化膜は、前記第2基板を平面視したときに前記振動空間の周囲の少なくとも一部に形成され、前記面まで貫通する第1貫通孔を含み、
前記第1貫通孔は、第1金属を含み、かつ、前記第2基板を平面視したときに環状の形状を有する、
共振装置。
【請求項11】
共振子を含む第1基板を用意する工程と、
前記第1基板に対向する面に第1酸化膜を含む第2基板を用意する工程と、
前記共振子の振動空間を封止するように、前記第1基板と前記第2基板とを接合する工程と、を含み、
前記第2基板を用意する工程は、
前記第2基板を平面視したときに、前記第1酸化膜における前記振動空間の周囲の少なくとも一部に、前記面まで貫通する第1貫通孔を形成することと、
前記第1貫通孔に第1金属を形成することと、を含
み、
前記第1基板と前記第2基板とを接合する工程は、
前記第1基板に形成される第2金属と前記第2基板に形成される第3金属との共晶合金を主成分とする共晶層を含む接合部を形成すること、を含み、 前記第1基板を用意する工程は、
前記第1基板を平面視したときに、第2酸化膜における前記振動空間の周囲の少なくとも一部に、前記第2基板に対向する面に積層された圧電膜まで貫通する第2貫通孔を形成することと、
前記第2貫通孔に第4金属を形成することと、を含み、
前記第1金属の材料は、前記第3金属の材料と同じであり、
前記第2貫通孔は、前記第1基板を平面視したときに環状の形状を有する、
共振装置製造方法。
【請求項12】
共振子を含む第1基板を用意する工程と、
前記第1基板に対向する面に第1酸化膜を含む第2基板を用意する工程と、
前記共振子の振動空間を封止するように、前記第1基板と前記第2基板とを接合する工程と、を含み、
前記第2基板を用意する工程は、
前記第2基板を平面視したときに、前記第1酸化膜における前記振動空間の周囲の少なくとも一部に、前記面まで貫通する第1貫通孔を形成することと、
前記第1貫通孔に第1金属を形成することと、を含み、
前記第1貫通孔は、前記第2基板を平面視したときに環状の形状を有する、
共振装置製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、共振装置及び共振装置製造方法に関する。
【背景技術】
【0002】
従来、MEMS(Micro Electro Mechanical Systems)技術を用いて製造された共振装置が普及している。このデバイスは、例えば共振子を有する下側基板に、上側基板を接合して形成される。
【0003】
例えば、特許文献1には、第1剛性率を有する第1金属層を表面に形成した第1ウ工ハと、第1剛性率よりも高い第2剛性率を有する第2金属層を表面に形成した第2ウ工ハと、を用意する工程と、第1金属層の表面の酸化膜を除去しない一方で、第2金属層の表面の酸化膜を除去する工程と、第1ウ工ハの表面と第2ウ工ハの表面とを接合する工程と、を含む、ウ工ハの接合方法が開示されている。また、特許文献1は、上側基板をその周縁部で圧電共振子の支持枠上に受け止める方法として、アルミニウム(Al)を主成分とする金属から形成される第1金属層と、ゲルマニウム(Ge)を主成分とする金属から形成される第2金属との共晶接合によって圧電共振子と上側基板とを接合している。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
特許文献1のように、アルミニウム(Al)とゲルマニウム(Ge)とを共晶接合する場合、シリコン基板上に共晶層を形成しようとすると、共晶層にシリコン(Si)が拡散する。このため、シリコン基板上に二酸化シリコン(SiO2)等の酸化膜を形成して共晶層への拡散を抑制する方法が提案されている。
【0006】
しかしながら、二酸化シリコン(SiO2)等の酸化膜は、ヘリウム等のガスを透過することが知られている。そのため、ヘリウムガスが存在する環境下では、酸化膜からヘリウムガスが侵入し、共振子の振動空間の真空度が低下することがある。真空度が低下した結果、装置内部の共振子は、Q値等の振動特性が劣化するおそれがあった。
【0007】
本発明はこのような事情に鑑みてなされたものであり、共振子の振動空間における真空度の低下を抑制することのできる共振装置及び共振装置製造方法を提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明の一側面に係る共振装置は、共振子を含む第1基板と、第1基板に対向する面に第1酸化膜を含む第2基板と、共振子の振動空間を封止するように、第1基板と第2基板とを接合する接合部と、を備え、第1酸化膜は、第2基板を平面視したときに振動空間の周囲の少なくとも一部に形成され、面まで貫通する第1貫通孔を含み、第1貫通孔は、第1金属を含む。
【0009】
本発明の他の一側面に係る共振装置製造方法は、共振子を含む第1基板を用意する工程と、第1基板に対向する面に第1酸化膜を含む第2基板を用意する工程と、共振子の振動空間を封止するように、第1基板と第2基板とを接合する工程と、を含み、第2基板を用意する工程は、第2基板を平面視したときに、第1酸化膜における振動空間の周囲の少なくとも一部に、面まで貫通する第1貫通孔を形成することと、第1貫通孔に第1金属を形成することと、を含む。
【発明の効果】
【0010】
本発明によれば、共振子の振動空間における真空度の低下を抑制することができる。
【図面の簡単な説明】
【0011】
【
図1】
図1は、本発明の一実施形態に係る共振装置の外観を概略的に示す斜視図である。
【
図2】
図2は、
図1に示した共振装置の構造を概略的に示す分解斜視図である。
【
図3】
図3は、
図2に示した共振子の構造を概略的に示す平面図である。
【
図4】
図4は、
図1から
図3に示した共振装置のIV-IV線に沿った断面の構成を概略的に示す断面図である。
【
図5】
図5は、
図4に示した接合部の周辺の構成を概略的に示す要部拡大断面図である。
【
図6】
図6は、
図1から
図4に示した上蓋の裏面を平面視したときの構成を概略的に示す平面図である。
【
図7】
図7は、本発明の一実施形態に係る共振装置の製造方法を示すフローチャートである。
【
図8】
図8は、
図7に示した工程を説明するための断面図である。
【
図9】
図9は、
図7に示した工程を説明するための断面図である。
【
図14】
図14は、
図5に示した接合部の周辺の第1変形例を示す要部拡大断面図である。
【
図15】
図15は、
図5に示した接合部の周辺の第2変形例を示す要部拡大断面図である。
【
図16】
図16は、
図5に示した接合部の周辺の第3変形例を示す要部拡大断面図である。
【
図17】
図17は、第3変形例におけるMEMS基板の表面を平面視したときの構成を概略的に示す平面図である。
【発明を実施するための形態】
【0012】
以下に本発明の実施形態を説明する。以下の図面の記載において、同一又は類似の構成要素は同一又は類似の符号で表している。図面は例示であり、各部の寸法や形状は模式的なものであり、本発明の技術的範囲を当該実施形態に限定して解するべきではない。
【0013】
<実施形態>
まず、
図1及び
図2を参照しつつ、本発明の一実施形態に係る共振装置の概略構成について説明する。
図1は、本発明の一実施形態に係る共振装置1の外観を概略的に示す斜視図である。
図2は、
図1に示した共振装置1の構造を概略的に示す分解斜視図である。
【0014】
共振装置1は、下蓋20と、共振子10(以下、下蓋20と共振子10とを合わせて「MEMS基板50」ともいう。)と、上蓋30と、を備えている。すなわち、共振装置1は、MEMS基板50と、接合部60と、上蓋30とが、この順で積層されて構成されている。なお、MEMS基板50は本発明の「第1基板」の一例に相当し、上蓋30は本発明の「第2基板」の一例に相当する。
【0015】
以下において、共振装置1の各構成について説明する。なお、以下の説明では、共振装置1のうち上蓋30が設けられている側を上(又は表)、下蓋20が設けられている側を下(又は裏)、として説明する。
【0016】
共振子10は、MEMS技術を用いて製造されるMEMS振動子である。共振子10と上蓋30とは、後述する接合部60を介して接合されている。また、共振子10と下蓋20は、それぞれシリコン(Si)基板(以下、「Si基板」という)を用いて形成されており、Si基板同士が互いに接合されている。なお、MEMS基板50(共振子10及び下蓋20)は、SOI基板を用いて形成されてもよい。
【0017】
上蓋30はXY平面に沿って平板状に広がっており、その裏面に例えば平たい直方体形状の凹部31が形成されている。凹部31は、側壁33に囲まれており、共振子10が振動する空間である振動空間の一部を形成する。また、上蓋30の凹部31の共振子10側の面には、後述するゲッター層34が形成されている。なお、上蓋30は凹部31を有さず、平板状の構成でもよい。
【0018】
下蓋20は、XY平面に沿って設けられる矩形平板状の底板22と、底板22の周縁部からZ軸方向、つまり、下蓋20と共振子10との積層方向、に延びる側壁23と、を有する。下蓋20には、共振子10と対向する面において、底板22の表面と側壁23の内面とによって形成される凹部21が形成されている。凹部21は、共振子10の振動空間の一部を形成する。なお、下蓋20は凹部21を有さず、平板状の構成でもよい。また、下蓋20の凹部21の共振子10側の面には、ゲッター層が形成されてもよい。
【0019】
次に、
図3を参照しつつ、本発明の一実施形態に係る共振子10の概略構成について説明する。同図は、
図2に示した共振子10の構造を概略的に示す平面図である。
【0020】
図3に示すように、共振子10は、MEMS技術を用いて製造されるMEMS振動子であり、
図3の直交座標系におけるXY平面内で面外振動する。なお、共振子10は、面外屈曲振動モードを用いた共振子に限定されるものではない。共振装置1の共振子は、例えば、広がり振動モード、厚み縦振動モード、ラム波振動モード、面内屈曲振動モード、表面波振動モードを用いるものであってもよい。これらの振動子は、例えば、タイミングデバイス、RFフィルタ、デュプレクサ、超音波トランスデューサー、ジャイロセンサ、加速度センサ等に応用される。また、アクチュエーター機能を持った圧電ミラー、圧電ジャイロ、圧力センサ機能を持った圧電マイクロフォン、超音波振動センサ等に用いられてもよい。さらに、静電MEMS素子、電磁駆動MEMS素子、ピエゾ抵抗MEMS素子に適用してもよい。
【0021】
共振子10は、振動部120と、保持部140と、保持腕110と、を備える。
【0022】
保持部140は、XY平面に沿って振動部120の外側を囲むように、矩形の枠状に形成される。例えば、保持部140は、角柱形状の枠体から一体に形成されている。なお、保持部140は、振動部120の周囲の少なくとも一部に設けられていればよく、枠状の形状に限定されるものではない。
【0023】
保持腕110は、保持部140の内側に設けられ、振動部120と保持部140とを接続する。
【0024】
振動部120は、保持部140の内側に設けられており、振動部120と保持部140との間には、所定の間隔で空間が形成されている。
図3に示す例では、振動部120は、基部130と4本の振動腕135A~135D(以下、まとめて「振動腕135」ともいう)と、を有している。なお、振動腕の数は、4本に限定されるものではなく、例えば1本以上の任意の数に設定される。本実施形態において、各振動腕135A~135Dと、基部130とは、一体に形成されている。
【0025】
基部130は、平面視において、X軸方向に長辺131a、131b、Y軸方向に短辺131c、131dを有している。長辺131aは、基部130の前端の面(以下、「前端131A」ともいう)の一つの辺であり、長辺131bは基部130の後端の面(以下、「後端131B」ともいう)の一つの辺である。基部130において、前端131Aと後端131Bとは、互いに対向するように設けられている。
【0026】
基部130は、前端131Aにおいて、振動腕135に接続され、後端131Bにおいて、後述する保持腕110に接続されている。なお、基部130は、
図3に示す例では平面視において、略長方形の形状を有しているがこれに限定されるものではない。基部130は、長辺131aの垂直二等分線に沿って規定される仮想平面Pに対して略面対称に形成されていればよい。例えば、基部130は、長辺131bが131aより短い台形であってもよいし、長辺131aを直径とする半円の形状であってもよい。また、基部130の各面は平面に限定されるものではなく、湾曲した面であってもよい。なお、仮想平面Pは、振動部120における、振動腕135が並ぶ方向の中心を通る平面である。
【0027】
基部130において、前端131Aから後端131Bに向かう方向における、前端131Aと後端131Bとの最長距離である基部長は35μm程度である。また、基部長方向に直交する幅方向であって、基部130の側端同士の最長距離である基部幅は265μm程度である。
【0028】
振動腕135は、Y軸方向に延び、それぞれ同一のサイズを有している。振動腕135は、それぞれが基部130と保持部140との間にY軸方向に平行に設けられ、一端は、基部130の前端131Aと接続されて固定端となっており、他端は開放端となっている。また、振動腕135は、それぞれ、X軸方向に所定の間隔で、並列して設けられている。なお、振動腕135は、例えばX軸方向の幅が50μm程度、Y軸方向の長さが465μm程度である。
【0029】
振動腕135は、それぞれ、例えば開放端から150μm程度の部分が、振動腕135の他の部位よりもX軸方向の幅が広くなっている。この幅が広くなった部位は、錘部Gと呼ばれる。錘部Gは、例えば、振動腕135の他の部位よりも、X軸方向に沿って左右に幅が10μmずつ広く、X軸方向の幅が70μm程度である。錘部Gは、振動腕135と同一プロセスによって一体形成される。錘部Gが形成されることで、振動腕135は、単位長さ当たりの重さが、固定端側よりも開放端側の方が重くなっている。従って、振動腕135のそれぞれが開放端側に錘部Gを有することで、各振動腕における上下方向の振動の振幅を大きくすることができる。
【0030】
振動部120の表面(上蓋30に対向する面)には、その全面を覆うように後述の保護膜235が形成されている。また、振動腕135A~135Dの開放端側の先端における保護膜235の表面には、それぞれ、周波数調整膜236が形成されている。保護膜235及び周波数調整膜236によって、振動部120の共振周波数を調整することができる。
【0031】
なお、本実施形態では、共振子10の表面(上蓋30と対向する側の面)は、その略全面が保護膜235によって覆われている。さらに保護膜235の表面は、その略全面が寄生容量低減膜240で覆われている。ただし、保護膜235は少なくとも振動腕135を覆っていればよく、共振子10の略全面を覆う構成に限定されるものではない。
【0032】
次に、
図4を参照しつつ、本発明の一実施形態に係る共振装置1の積層構造について説明する。同図は、
図1から
図3に示した共振装置1のIV-IV線に沿った断面の構成を概略的に示す断面図である。
【0033】
図4に示すように、共振装置1は、下蓋20の側壁23上に共振子10の保持部140が接合され、さらに共振子10の保持部140と上蓋30の側壁33とが接合される。このように下蓋20と上蓋30との間に共振子10が保持され、下蓋20と上蓋30と共振子10の保持部140とによって、振動腕135が振動する振動空間が形成される。また、上蓋30の上面(共振子10と対向する面と反対側の面)には端子T4が形成されている。端子T4と共振子10とは、貫通電極V3、接続配線70、及びコンタクト電極76A,76Bによって電気的に接続されている。
【0034】
上蓋30は、所定の厚みを有するSi基板L3により形成されている。上蓋30はその周辺部(側壁33)で後述する接合部60によって共振子10の保持部140と接合されている。上蓋30における、共振子10に対向する表面は、酸化ケイ素膜L31に覆われている。酸化ケイ素膜L31は、例えば二酸化シリコン(SiO2)であり、Si基板L3の表面の酸化や、化学気相蒸着(CVD:Chemical Vapor Deposition)によって、Si基板L3の表面に形成される。なお、上蓋30の裏面及び貫通電極V3の側面についても、酸化ケイ素膜L31に覆われていることが好ましい。
【0035】
また、上蓋30の凹部31における、共振子10と対向する側の面にはゲッター層34が形成されている。ゲッター層34は、例えばチタン(Ti)等から形成され、振動空間に発生するアウトガスを吸着する。本実施形態に係る上蓋30には、凹部31において共振子10に対向する面のほぼ全面にゲッター層34が形成されるため、振動空間の真空度の低下を抑制することができる。
【0036】
また、上蓋30の貫通電極V3は、上蓋30に形成された貫通孔に導電性材料が充填されて形成される。充填される導電性材料は、例えば、不純物ドープされた多結晶シリコン(Poly-Si)、銅(Cu)、金(Au)、不純物ドープされた単結晶シリコン等である。貫通電極V3は、端子T4と電圧印加部141とを電気的に接続させる配線としての役割を果たす。
【0037】
下蓋20の底板22及び側壁23は、SiウエハL1により、一体的に形成されている。また、下蓋20は、側壁23の上面によって、共振子10の保持部140と接合されている。Z軸方向に規定される下蓋20の厚みは例えば、150μm、凹部21の深さは例えば50μmである。なお、SiウエハL1は、縮退されていないシリコンから形成されており、その抵抗率は例えば16mΩ・cm以上である。
【0038】
共振子10における、保持部140、基部130、振動腕135、及び保持腕110は、同一プロセスで一体的に形成される。共振子10は、基板の一例であるSi基板F2の上に、Si基板F2を覆うように圧電薄膜F3が形成され、さらに圧電薄膜F3の上には、金属層E2が積層されている。そして、金属層E2の上には、金属層E2を覆うように圧電薄膜F3が積層されており、さらに、圧電薄膜F3の上には、金属層E1が積層されている。金属層E1の上には、金属層E1を覆うように保護膜235が積層され、保護膜235の上には寄生容量低減膜240が積層されている。
【0039】
Si基板F2は、例えば、厚さ6μm程度の縮退したn型シリコン(Si)半導体から形成されており、n型ドーパントとしてリン(P)やヒ素(As)、アンチモン(Sb)等を含むことができる。Si基板F2に用いられる縮退シリコン(Si)の抵抗値は、例えば16mΩ・cm未満であり、より好ましくは1.2mΩ・cm以下である。さらに、Si基板F2の下面には、温度特性補正層の一例として、例えば二酸化シリコン(SiO2)である酸化ケイ素層F21が形成されている。これにより、温度特性を向上させることが可能になる。なお、酸化ケイ素層F21は、Si基板F2の上面に形成されてもよいし、Si基板F2の上面及び下面の両方に形成されてもよい。
【0040】
また、金属層E1、E2は、例えば厚さ0.1μm以上0.2μm以下程度であり、成膜後に、エッチング等により所望の形状にパターニングされる。金属層E1、E2は、結晶構造が体心立法構造である金属が用いられている。具体的には、金属層E1、E2は、Mo(モリブデン)、タングステン(W)等を用いて形成される。
【0041】
金属層E1は、例えば振動部120上においては、上部電極としての役割を果たすように形成される。また、金属層E1は、保持腕110や保持部140上においては、共振子10の外部に設けられた交流電源に上部電極を接続するための配線としての役割を果たすように形成される。
【0042】
一方、金属層E2は、振動部120上においては、下部電極としての役割を果たすように形成される。また、金属層E2は、保持腕110や保持部140上においては、共振子10の外部に設けられた回路に下部電極を接続するための配線としての役割を果たすように形成される。
【0043】
圧電薄膜F3は、印加された電圧を振動に変換する圧電体の薄膜である。圧電薄膜F3は、結晶構造がウルツ鉱型六方晶構造を持つ材質から形成されており、例えば、窒化アルミニウム(AlN)、窒化スカンジウムアルミニウム(ScAlN)、酸化亜鉛(ZnO)、窒化ガリウム(GaN)、窒化インジウム(InN)等の窒化物や酸化物を主成分とすることができる。なお、窒化スカンジウムアルミニウムは、窒化アルミニウムにおけるアルミニウムの一部がスカンジウムに置換されたものであり、スカンジウムの代わりにマグネシウム(Mg)及びニオブ(Nb)やマグネシウム(Mg)及びジルコニウム(Zr)等の2元素で置換されていてもよい。また、圧電薄膜F3は、例えば1μmの厚さを有するが、0.2μmから2μm程度の厚さを用いることも可能である。
【0044】
圧電薄膜F3は、金属層E1、E2によって圧電薄膜F3に印加される電界に応じて、XY平面の面内方向すなわちY軸方向に伸縮する。この圧電薄膜F3の伸縮によって、振動腕135は、下蓋20及び上蓋30の内面に向かってその自由端を変位させ、面外の屈曲振動モードで振動する。
【0045】
本実施形態では、外側の振動腕135A、135Dに印加される電界の位相と、内側の振動腕135B、135Cに印加される電界の位相とが互いに逆位相になるように設定される。これにより、外側の振動腕135A、135Dと内側の振動腕135B、135Cとが互いに逆方向に変位する。例えば、外側の振動腕135A、135Dが上蓋30の内面に向かって自由端を変位すると、内側の振動腕135B、135Cは下蓋20の内面に向かって自由端を変位する。
【0046】
保護膜235は、圧電振動用の上部電極である金属層E2の酸化を防ぐ。保護膜235は、エッチングによる質量低減の速度が周波数調整膜236より遅い材料により形成されることが好ましい。質量低減速度は、エッチング速度、つまり、単位時間あたりに除去される厚みと密度との積により表される。保護膜235は、例えば、窒化アルミニウム(AlN)、窒化スカンジウムアルミニウム(ScAlN)、酸化亜鉛(ZnO)、窒化ガリウム(GaN)、窒化インジウム(InN)等の圧電膜の他、窒化シリコン(SiN)、二酸化シリコン(SiO2)、酸化アルミナ(Al2O3)等の絶縁膜で形成される。保護膜235の厚さは、例えば0.2μm程度である。
【0047】
周波数調整膜236は、振動部120の略全面に形成された後、エッチング等の加工により所定の領域のみに形成される。周波数調整膜236は、エッチングによる質量低減の速度が保護膜235より速い材料により形成される。具体的には、周波数調整膜236は、モリブデン(Mo)や、タングステン(W)、金(Au)、白金(Pt)、ニッケル(Ni)、チタン(Ti)等の金属で構成される。
【0048】
なお、保護膜235と周波数調整膜236とは、質量低減速度の関係が前述の通りであれば、エッチング速度の大小関係は任意である。
【0049】
寄生容量低減膜240は、オルトケイ酸テトラエチル(TEOS)から形成されている。寄生容量低減膜240の厚さは1μm程度である。引回し配線部における寄生容量を低減するとともに、異なる電位の配線がクロスする際の絶縁層としての機能と、振動空間を広げるためのスタンドオフとしての機能と、を有する。
【0050】
接続配線70は、貫通電極V3を介して端子T4に電気的に接続されるとともに、コンタクト電極76A、76Bに電気的に接続される。
【0051】
コンタクト電極76Aは、共振子10の金属層E1に接触するように形成され、接続配線70と共振子10とを電気的に接続する。コンタクト電極76Bは、共振子10の金属層E2に接触するように形成され、接続配線70と共振子10とを電気的に接続する。具体的には、コンタクト電極76Aと金属層E1との接続にあたり、金属層E1が露出するように、金属層E1上に積層された圧電薄膜F3、保護膜235、及び寄生容量低減膜240の一部が除去され、ビアV1が形成される。形成されたビアV1の内部にコンタクト電極76Aと同様の材料が充填され、金属層E1とコンタクト電極76Aとが接続される。同様に、コンタクト電極76Bと金属層E2との接続にあたり、金属層E2が露出するように、金属層E2上に積層された圧電薄膜F3及び寄生容量低減膜240の一部が除去され、ビアV2が形成される。形成されたビアV2の内部にコンタクト電極76Bが充填され、金属層E2とコンタクト電極76Bとが接続される。コンタクト電極76A、76Bは、例えばアルミニウム(Al)、金(Au)、錫(Sn)等の金属で構成される。なお、金属層E1とコンタクト電極76Aとの接続箇所、及び金属層E2とコンタクト電極76Bとの接続箇所は、振動部120の外側の領域であることが好ましく、本実施形態では保持部140で接続されている。
【0052】
また、上蓋30のSi基板L3において、MEMS基板50に対向する面に形成された酸化ケイ素膜L31には、第1金属層80を含む貫通孔が形成されている。
【0053】
接合部60は、共振子10における振動部120の周囲、例えば保持部140上において、MEMS基板50(共振子10及び下蓋20)と上蓋30との間に、XY平面に沿って矩形の環状に形成される。接合部60は、共振子10の振動空間を封止するように、MEMS基板50と上蓋30とを接合する。これにより、振動空間は気密に封止され、真空状態が維持される。
【0054】
本実施形態では、接合部60は、MEMS基板50に形成される第2金属層61と、上蓋30に形成される第3金属層62とを含み、第2金属層61と第3金属層62とを共晶接合させることで、MEMS基板50と上蓋30とが接合している。
【0055】
次に、
図5を参照しつつ、本発明の一実施形態に係る接合部60の周辺の積層構造について説明する。
図5は、
図4に示した接合部60の周辺の構成を概略的に示す要部拡大断面図である。
【0056】
図5に示すように、接合部60は、共晶合金を主成分とする共晶層65を含んでいる。共晶層65の共晶合金は、例えば、アルミニウム(Al)を主成分とする第2金属層61と、ゲルマニウム(Ge)の第3金属層62との共晶合金である。
【0057】
図5に示す例では、第2金属層61と、第3金属層62とは、それぞれ独立した層として記載しているが、実際には、これらの界面は共晶接合している。すなわち、共晶層65は、アルミニウム(Al)を主成分とする第2金属と、ゲルマニウム(Ge)の第3金属との共晶合金を主成分として構成されている。このように、第2金属層61の第2金属がアルミニウム(Al)を主成分とする金属であり、第3金属層62の第3金属がゲルマニウム(Ge)であることにより、上蓋30とMEMS基板50とを共晶接合させる接合部60を、容易に実現することができる。また、MEMS基板50にアルミニウム(Al)を主成分とする第2金属層61が形成されるので、共振装置1の製造工程において、例えば第2金属層61を利用して共振子10の導通検査を行うことができる。
【0058】
以下の説明において、特に明記する場合を除き、第2金属層61の第2金属はアルミニウム(Al)であり、第3金属層62の第3金属はゲルマニウム(Ge)であり、共晶層65は、アルミニウム-ゲルマニウムを主成分とするものとする。この場合、共晶層65には、アルミニウム-ゲルマニウム以外に、アルミニウム(Al)、ゲルマニウム(Ge)を含み得る。
【0059】
第2金属層61の第2金属は、アルミニウム(Al)、アルミニウム-銅合金(AlCu合金)、又は、アルミニウム-シリコン-銅合金(AlSiCu合金)であることが好ましい。アルミニウム又はアルミニウム合金は、共振装置等において、例えば配線等によく用いられる金属であるため、第2金属層61の第2金属にアルミニウム(Al)、アルミニウム-銅合金(AlCu合金)、又は、アルミニウム-シリコン-銅合金(AlSiCu合金)を用いることにより、第3金属層62のゲルマニウム(Ge)と容易に共晶接合させることができるとともに、共振装置1の製造工程を簡素化することができ、共振子10の振動空間を封止する接合部60を容易に形成することができる。
【0060】
酸化ケイ素膜L31は、Si基板L3の下面(
図5においてZ軸の負方向側の面)まで貫通する貫通孔TH1を含んでいる。貫通孔TH1には、その開口の一部を覆うように第1金属層80が形成されている。なお、第1金属層80は、貫通孔TH1の開口の全部を覆うように形成されていてもよい。
【0061】
また、
図5に示す例では、第1金属層80は、接合部60の第3金属層62と一体に形成されている。すなわち、第1金属層80の材料は、第3金属層62の材料と同じであり、一例ではゲルマニウム(Ge)である。これにより、第1金属層80を第3金属層62と同一工程で形成することが可能になり、共振装置1の製造工程を簡素化することができる。
【0062】
ここで、
図6を参照しつつ、本発明の一実施形態に係る貫通孔TH1及び第1金属層80について説明する。
図6は、
図1から
図4に示した上蓋30の裏面を平面視したときの構成を概略的に示す平面図である。
【0063】
図6に示すように、貫通孔TH1は、振動空間を形成する凹部31の底面32の周りを囲むように、上蓋30の裏面を平面視したときに環状の形状を有している。第3金属層62も、凹部31の底面32の周りを囲むように形成されており、貫通孔TH1の内周IP1を超え、当該内周IP1と貫通孔TH1の外周OP1との間まで延在している。なお、貫通孔TH1の外側には、酸化ケイ素膜L31が形成されている。
【0064】
このように、上蓋30のMEMS基板50に対向する面に形成された酸化ケイ素膜L31が、上蓋30の裏面を平面視したときに共振子10の振動空間の周囲の少なくとも一部に形成され、Si基板L3の下面まで貫通する貫通孔TH1を含み、当該貫通孔TH1が第1金属層80を含むことにより、酸化ケイ素膜L31を透過して振動空間に侵入し得る、原子半径の小さいヘリウム(He)等のガスを、第1金属層80で遮断することができる。従って、ガス侵入による振動空間の真空度の低下を抑制することができる。
【0065】
また、
図6に示すように、貫通孔TH1が上蓋30の裏面を平面視したときに環状の形状を有することにより、貫通孔TH1に形成された第1金属層80がヘリウム(He)等のガスの侵入をさらに抑制することができる。
【0066】
本実施形態では、
図5において、貫通孔TH1が接合部60のY軸正方向側(外側)に配置される例を示したが、これに限定されるものでものではない。貫通孔TH1は、例えば接合部60のY軸負方向側(内側)に配置されていてもよい。また、
図6において、貫通孔TH1が共振子10の振動空間の周囲に、環状に形成される例を示したが、これに限定されるものではない。貫通孔TH1は、共振子10の振動空間の周囲の少なくとも一部に形成されていればよく、例えば、連続した溝状の形状ではなく、離散的な切欠き等を含む形状であってもよい。
【0067】
次に、
図7から
図13を参照しつつ、本発明の一実施形態に係る共振装置の製造方法について説明する。
図7は、本発明の一実施形態に係る共振装置1の製造方法を示すフローチャートである。
図8は、
図7に示した工程S301を説明するための断面図である。
図9は、
図7に示した工程S302を説明するための断面図である。
図10は、
図7に示した工程S303を説明するための断面図である。
図11は、
図7に示した工程S303を説明するための平面図である。
図12は、
図7に示した工程S304を説明するための断面図である。
図13は、
図7に示した工程S304を説明するための断面図である。なお、
図8から
図13では、便宜上、製造方法によって製造される複数の共振装置1のうち1つの共振装置1を示して説明する。
【0068】
図7に示すように、最初に、MEMS基板50及び上蓋30を用意する(S301)。具体的には、
図8に示すように、前述した、共振子10を含むMEMS基板50と、共振子10に対向する面に酸化ケイ素膜L31を含む上蓋30と、を用意する。但し、貫通電極V3と共振子10とを接続するための、
図4に示した接続配線70は、未だ形成されていない。また、接合部60及び第1金属層80も未だ形成されていない。
【0069】
なお、工程S301において、MEMS基板50及び上蓋30を用意する例を示したが、これに限定されるものではない。例えば、MEMS基板50を用意する工程と、上蓋30を用意する工程とを分けて行ってもよい。
【0070】
図7に戻り、次に、工程S301で用意したMEMS基板50において、共振子10の振動部120の周囲に第2金属層61を形成する(S302)。
【0071】
具体的には、
図9に示すように、用意したMEMS基板50(共振子10)において、圧電薄膜F3上に形成された寄生容量低減膜240の上に、例えばアルミニウム(Al)を積層する。次に、エッチング等によって、積層されたアルミニウム(Al)を所望の形状にすることで、MEMS基板50において、振動部120の外側に第2金属層61を形成する。第2金属層61は、MEMS基板50を平面視したときに、共振子10の
振動空間の周囲に形成される。
【0072】
第2金属層61を形成した後、MEMS基板50に対して脱ガスのための加熱処理を高温、例えば435℃程度で行ってもよい。第2金属層61は、高温で加熱処理を行っても熱拡散による影響が少ない。
【0073】
なお、工程S302は、例えば、MEMS基板50を用意する工程の一部として行ってもよい。
【0074】
図7に戻り、次に、工程S301で用意した上蓋30において、酸化ケイ素膜L31に貫通孔TH1を形成する(S303)。
【0075】
具体的には、
図10に示すように、酸化ケイ素膜L31の所定の位置において、エッチング等によって酸化ケイ素膜L31が除去され、上蓋30の裏面まで貫通する貫通孔TH1が形成される。また、
図11に示すように、酸化ケイ素膜L31において、共振子10の振動空間を形成する凹部31の周囲に、貫通孔TH1が形成される。貫通孔TH1の内周IP1及び外周OP1は、底面32の外側に配置される。
【0076】
図7に戻り、次に、工程S303で貫通孔TH1を形成した上蓋30において、第1金属層80及び第3金属層62を形成する(S304)。
【0077】
具体的には、
図12に示すように、上蓋30の裏面における酸化ケイ素膜L31の表面に、ゲルマニウム(Ge)を積層して所定の位置に第3金属層62を形成する。第3金属層62が形成される所定の位置は、例えば、MEMS基板50の表面と上蓋30の裏面とを対向させたときに、上蓋30の裏面において、MEMS基板50に形成された第2金属層61に対向又は略対向する位置である。また、第3金属層62をY軸の正方向に貫通孔TH1まで延在させて設けることで、貫通孔TH1の開口の一部を覆う第1金属層80を形成する。これにより、第1金属層80及び第3金属層62が同一プロセスで形成される。
【0078】
第1金属層80及び第3金属層62を形成した後、上蓋30に対して脱ガスのための加熱処理を高温、例えば435℃程度で行う。これにより、上蓋30、第1金属層80、及び第3金属層62に含まれるガスを十分に放出(蒸発)させることができ、アウトガスの発生を低減することができる。
【0079】
なお、工程S303及び工程S304は、例えば、上蓋30を用意する工程の一部として行ってもよい。
【0080】
図7に戻り、次に、共振子10の振動空間を封止するように、工程S302において第2金属層61が形成されたMEMS基板50と、工程S304において第1金属層80及び第3金属層62が形成された上蓋30とを接合する(S305)。この工程S305は、アルミニウム(Al)を主成分とする第2金属とゲルマニウム(Ge)の
第3金属との共晶合金を主成分とする共晶層65を含む接合部60を形成することを含む。
【0081】
具体的には、第2金属層61と第3金属層62とが一致するように、MEMS基板50と上蓋30との位置を合わせる。位置合わせをした後、ヒータ等によってMEMS基板50と上蓋30とが挟み込まれ、共晶反応のための加熱処理が行われる。このとき、上蓋30は、MEMS基板50に向かって移動させられる。この結果、
図13に示すように、第3金属層62は第2金属層61に接触する。
【0082】
共晶接合のための加熱処理における温度は、共晶点の温度以上アルミニウム(Al)単体の場合の融点未満、すなわち、424℃以上620℃未満程度であることが好ましい。また、加熱時間は、10分以上20分以下程度であることが好ましい。本実施形態では、430℃以上500℃以下の温度で15分程度の加熱処理が行われる。
【0083】
加熱時には、上蓋30及びMEMS基板50は、
図13において黒矢印で示すように、上蓋30からMEMS基板50へと押圧される。押圧される圧力は、5MPa以上25MPa以下程度であることが好ましい。
【0084】
また、共晶接合のための加熱処理後は、例えば自然放冷によって冷却処理が行われる。なお、冷却処理は自然放冷に限らず、接合部60において共晶層65を形成できればよく、その冷却温度や冷却スピードは種々選択可能である。
【0085】
図7に示す工程S305を行った結果、
図5に示したように、第2金属と第3金属との共晶合金を主成分とする共晶層65を含む接合部60が形成される。
【0086】
また、第2金属層61を形成する際にMEMS基板50にアルミニウム(Al)膜を形成し、第3金属層62を形成する際に上蓋30にゲルマニウム(Ge)膜を形成し、これらを共晶接合させることで、貫通電極V3と共振子10とを接続するための、
図4に示した接続配線70を設けるようにしてもよい。
【0087】
本実施形態では、接合部60及び貫通孔TH1として
図5に示す例を示したが、これに限定されるものではない。例えば、接合部60は共晶層65以外の層を含んでいてもよいし、貫通孔TH1は第1金属層80以外の金属を含んでいてもよい。
【0088】
(第1変形例)
図14は、
図5に示した接合部60の周辺の第1変形例を示す要部拡大断面図である。なお、第1変形例において、
図5に示した接合部60の周辺と同一の構成については、同一の符号を付し、その説明を適宜省略する。また、同様の構成による同様の作用効果については、逐次言及しない。
【0089】
図14に示すように、接合部60Aは、共晶層65に加え、チタン(Ti)層66を含んで構成される。チタン(Ti)層66は、上蓋30側から第3金属層62にかけて連続して設けられている。
【0090】
チタン(Ti)層66の材料は、チタン(Ti)である。チタン(Ti)は、シリコン(Si)や二酸化シリコン(SiO2)との密着性が高い為、チタン(Ti)層66は、共晶層65を密着させるための密着層として機能する。よって、接合部60Aが、共晶層65と上蓋30との間にチタン(Ti)層66を含むことにより、接合部60AとMEMS基板50との密着性を向上させる。従って、接合部60Aの接合強度及び共振装置1の気密性をさらに高めることができる。
【0091】
また、貫通孔TH1に形成される第1金属層80Aは、第3金属層62の材料と同じゲルマニウム(Ge)に加え、チタン(Ti)層66のチタンを含んでいる。
【0092】
第1変形例の製造方法では、
図12に示した工程S304において、貫通孔TH1を形成した上蓋30に、第1金属層80及び第3金属層62に加え、チタン(Ti)層66を形成する。
【0093】
具体的には、上蓋30の裏面における酸化ケイ素膜L31の表面に、チタン(Ti)を積層して所定の位置にチタン(Ti)層66を設ける。次に、チタン(Ti)層66の上にゲルマニウム(Ge)を積層して第3金属層62を形成する。また、チタン(Ti)層66及び第3金属層62をY軸の正方向に貫通孔TH1まで延在させて設けることで、貫通孔TH1の開口の一部を覆う第1金属層80Aを形成する。これにより、第1金属層80A、第3金属層62、及びチタン(Ti)層66が同一プロセスで形成される。
【0094】
(第2変形例)
図15は、
図5に示した接合部60の周辺の第2変形例を示す要部拡大断面図である。なお、第2変形例において、
図5に示した接合部60の周辺と同一の構成については、同一の符号を付し、その説明を適宜省略する。また、同様の構成による同様の作用効果については、逐次言及しない。
【0095】
図15に示すように、接合部60Bの端部(
図15における右端部)は、貫通孔TH1の側面から距離D1を空けて配置されている。より詳細には、
図5に示した接合部60では、第2金属層61の端部は、貫通孔TH1の側面との距離がゼロ又は略ゼロであるのに対し、接合部60Bでは、第2金属層61の端部は、貫通孔TH1の側面との間に距離D1を有している。距離D1は、例えば第3金属層62及び第1金属層80のY軸に沿った長さ(幅)が40μmから50μmであるときに、5μm程度である。このとき、第2金属層61の厚さは700nm程度、第3金属層62の厚さは380nm程度、酸化ケイ素膜L31の厚さは1μm程度である。
【0096】
このように、接合部60Bの端部(
図15における右端部)は、貫通孔TH1の側面から距離D1を空けて配置されることにより、距離D1を空けずに配置した場合と比較して、共晶接合時に、Si基板L3のシリコン(Si)が共晶層65へ拡散するのを抑制することができる。従って、接合部60Bの接合強度及び共振装置1の気密性をさらに高めることができる。
【0097】
(第3変形例)
図16は、
図5に示した接合部60の周辺の第3変形例を示す要部拡大断面図である。
図17は、第3変形例におけるMEMS基板50の表面を平面視したときの構成を概略的に示す平面図である。なお、第3変形例において、
図5に示した接合部60の周辺と同一の構成については、同一の符号を付し、その説明を適宜省略する。また、同様の構成による同様の作用効果については、逐次言及しない。
【0098】
図16に示すように、接合部60Cは、
図5に示した接合部60と同様に、第2金属層61の第2金属と第3金属層62の第3金属との共晶合金を主成分とする共晶層65を含む。一方、共振子10の圧電薄膜F3の上に、寄生容量低減膜240に代えて酸化ケイ素膜F22が形成されている。すなわち、図示しないSi基板F2の上面に積層される圧電薄膜F3及び酸化ケイ素膜F22が形成されている。酸化ケイ素膜F22は、例えば二酸化シリコン(SiO
2)である。このように、MEMS基板50において、圧電薄膜F3の上に比誘電率の小さい酸化ケイ素膜F22を含むことにより、圧電薄膜F3に含まれる金属層E1、E2とSi基板F2との間に発生し得る寄生容量を低減することができる。
【0099】
酸化ケイ素膜F22は、圧電薄膜F3まで貫通する貫通孔TH2を含んでいる。貫通孔TH2には、その開口の一部を覆うように第4金属層90が形成されている。なお、第4金属層90は、貫通孔TH2の開口の全部を覆うように形成されていてもよい。
【0100】
また、
図16に示す例では、第4金属層90は、接合部60Cの第2金属層61と一体に形成されている。すなわち、第4金属層90の材料は、第2金属層61の材料と同じであり、一例ではアルミニウム(Al)を主成分とする金属である。これにより、第4金属層90を第2金属層61と同一工程で形成することが可能になり、共振装置1の製造工程を簡素化することができる。
【0101】
図17に示すように、貫通孔TH2は、例えば保持部140上に、共振子10の振動部120を囲むように、MEMS基板50の表面を平面視したときに環状の形状を有している。第2金属層61も、保持部140上に振動部120の周囲に形成されており、貫通孔TH2の内周IP2を超え、当該内周IP2と貫通孔TH2の外周OP2との間まで延在している。なお、貫通孔TH2の外側には、酸化ケイ素膜F22が形成されている。
【0102】
このように、MEMS基板50において、上蓋30に対向する面に積層された酸化ケイ素膜F22が、共振子10の振動空間の周囲の少なくとも一部に形成され、圧電薄膜F3まで貫通する貫通孔TH2を含み、当該貫通孔TH2が第4金属層90を含むことにより、酸化ケイ素膜F22を透過して振動空間に侵入し得る、原子半径の小さいヘリウム(He)等のガスを、第4金属層90で遮断することができる。従って、寄生容量を低減しつつ、ガス侵入による振動空間の真空度の低下を抑制することができる。
【0103】
また、
図17に示すように、貫通孔TH2がMEMS基板50の表面を平面視したときに環状の形状を有することにより、貫通孔TH2の第4金属層90によって、ヘリウム(He)等のガスの侵入をさらに抑制することができる。
【0104】
第3変形例の製造方法では、
図9に示した工程S302において、まず、用意したMEMS基板50の酸化ケイ素膜F22に貫通孔TH2を形成する。そして、貫通孔TH2を形成したMEMS基板50において、第2金属層61及び第4金属層90を形成する。
【0105】
具体的には、酸化ケイ素膜F22の所定の位置において、エッチング等によって酸化ケイ素膜F22が除去され、圧電薄膜F3まで貫通する貫通孔TH2が形成される。また、
図17に示すように、貫通孔TH2は、酸化ケイ素膜F22において、保持部140上、つまり、共振子10の振動部120の周囲に形成される。貫通孔TH2の内周IP2及び外周OP2は、振動部120の外側に配置される。
【0106】
次に、MEMS基板50(共振子10)において、酸化ケイ素膜F22の表面に、例えばアルミニウム(Al)を積層し、エッチング等によって、積層されたアルミニウム(Al)を所望の形状にすることで、第2金属層61を形成する。第2金属層61は、MEMS基板50を平面視したときに、共振子10の
振動空間の周囲に形成される。また、
図16に示すように、第2金属層61をY軸の正方向に貫通孔TH2まで延在させて設けることで、貫通孔TH2の開口の一部を覆う第4金属層90を形成する。これにより、第4金属層90及び第2金属層61が同一プロセスで形成される。
【0107】
以上、本発明の例示的な実施形態について説明した。本発明の一実施形態に係る共振装置は、上蓋のMEMS基板に対向する面に形成された酸化ケイ素膜が、上蓋の裏面を平面視したときに共振子の振動空間の周囲の少なくとも一部に形成され、Si基板の下面まで貫通する貫通孔を含み、当該貫通孔が第1金属層を含む。これにより、酸化ケイ素膜を透過して振動空間に侵入し得る、原子半径の小さいヘリウム(He)等のガスを、第1金属層で遮断することができる。従って、ガス侵入による振動空間の真空度の低下を抑制することができる。
【0108】
また、前述した共振装置において、第1金属層の材料は、第3金属層の材料と同じである。これにより、第1金属層を第3金属層と同一工程で形成することが可能になり、共振装置の製造工程を簡素化することができる。
【0109】
また、前述した共振装置において、第2金属層の第2金属がアルミニウム(Al)を主成分とする金属であり、第3金属層の第3金属がゲルマニウム(Ge)である。これにより、上蓋とMEMS基板とを共晶接合させる接合部を、容易に実現することができる。また、MEMS基板にアルミニウム(Al)を主成分とする第2金属層が形成されるので、共振装置の製造工程において、例えば第2金属層を利用して共振子の導通検査を行うことができる。
【0110】
また、前述した共振装置において、第2金属層の第2金属がゲルマニウム(Ge)であり、第3金属層の第3金属がアルミニウム(Al)を主成分とする金属である。この場合も同様に、上蓋とMEMS基板とを共晶接合させる接合部を、容易に実現することができる。
【0111】
また、前述した共振装置において、第2金属層の第2金属がアルミニウム(Al)、アルミニウム-銅合金(AlCu合金)、又は、アルミニウム-シリコン-銅合金(AlSiCu合金)である。これにより、第3金属層のゲルマニウム(Ge)と容易に共晶接合させることができるとともに、共振装置の製造工程を簡素化することができ、共振子の振動空間を封止する接合部を容易に形成することができる。
【0112】
また、前述した共振装置において、MEMS基板が、圧電薄膜の上に比誘電率の小さい酸化ケイ素膜を含む。これにより、圧電薄膜に含まれる金属層とSi基板との間に発生し得る寄生容量を低減することができる。また、MEMS基板において、上蓋に対向する面に積層された酸化ケイ素膜が、共振子の振動空間の周囲の少なくとも一部に形成され、圧電薄膜まで貫通する貫通孔を含み、当該貫通孔が第4金属層を含む。これにより、酸化ケイ素膜を透過して振動空間に侵入し得る、原子半径の小さいヘリウム(He)等のガスを、第4金属層で遮断することができる。従って、寄生容量を低減しつつ、ガス侵入による振動空間の真空度の低下を抑制することができる。
【0113】
また、前述した共振装置において、第4金属層の材料は、第2金属層の材料と同じである。これにより、第4金属層を第2金属層61と同一工程で形成することが可能になり、共振装置の製造工程を簡素化することができる。
【0114】
また、前述した共振装置において、貫通孔がMEMS基板の表面を平面視したときに環状の形状を有する。これにより、貫通孔の第4金属層によって、ヘリウム(He)等のガスの侵入をさらに抑制することができる。
【0115】
また、前述した共振装置において、上蓋の材料は、シリコン(Si)であり、酸化ケイ素膜の材料は、二酸化シリコン(SiO2)である。これにより、振動空間の真空度の低下を抑制する共振装置を容易に実現することができる。
【0116】
また、前述した共振装置において、接合部が、共晶層と上蓋との間にチタン(Ti)層66を含む。これにより、接合部とMEMS基板との密着性を向上させる。従って、接合部の接合強度及び共振装置の気密性をさらに高めることができる。
【0117】
また、前述した共振装置において、貫通孔が上蓋の裏面を平面視したときに環状の形状を有する。これにより、貫通孔に形成された第1金属層がヘリウム(He)等のガスの侵入をさらに抑制することができる。
【0118】
また、前述した共振装置において、接合部の端部が、貫通孔の側面から距離を空けて配置される。これにより、距離を空けずに配置した場合と比較して、共晶接合時に、Si基板のシリコン(Si)が共晶層へ拡散するのを抑制することができる。従って、接合部の接合強度及び共振装置1の気密性をさらに高めることができる。
【0119】
本発明の一実施形態に係る共振装置製造方法は、上蓋を用意する工程は、MEMS基板を平面視したときに、酸化ケイ素膜における共振子の振動空間の周囲の少なくとも一部に、Si基板の下面まで貫通する貫通孔を形成することと、当該貫通孔に第1金属層を形成することとを含む。これにより、酸化ケイ素膜を透過して振動空間に侵入し得る、原子半径の小さいヘリウム(He)等のガスを、第1金属層で遮断することができる。従って、ガス侵入による振動空間の真空度の低下を抑制することができる。
【0120】
なお、以上説明した実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更/改良され得るとともに、本発明にはその等価物も含まれる。すなわち、各実施形態に当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。例えば、実施形態が備える各要素及びその配置、材料、条件、形状、サイズなどは、例示したものに限定されるわけではなく適宜変更することができる。また、実施形態は例示であり、異なる実施形態で示した構成の部分的な置換又は組み合わせが可能であることは言うまでもなく、これらも本発明の特徴を含む限り本発明の範囲に包含される。
【符号の説明】
【0121】
1…共振装置、10…共振子、20…下蓋、21…凹部、22…底板、23…側壁、30…上蓋、31…凹部、32…底面、33…側壁、34…ゲッター層、50…MEMS基板、60,60A,60B,60C…接合部、61…第2金属層、62…第3金属層、65…共晶層、66…チタン(Ti)層、70…接続配線、76A,76B…コンタクト電極、80,80A…第1金属層、90…第4金属層、110…保持腕、120…振動部、130…基部、131a…長辺、131A…前端、131b…長辺、131B…後端、131c…短辺、131d…短辺、135,135A135B,135C,135D…振動腕、140…保持部、141…電圧印加部、235…保護膜、236…周波数調整膜、240…寄生容量低減膜、D1…距離、E1,E2…金属層、F2…Si基板、F3…圧電薄膜、F21…酸化ケイ素層、F22…酸化ケイ素膜、G…錘部、IP1,IP2…内周、L1…Siウエハ、L3…Si基板、L22…酸化ケイ素膜、L31…酸化ケイ素膜、OP1,OP2…外周、P…仮想平面、T4…端子、TH1…貫通孔、TH2…貫通孔、V1,V2…ビア、V3…貫通電極。