(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-11-08
(45)【発行日】2022-11-16
(54)【発明の名称】三次元造形装置、および、三次元造形物の製造方法
(51)【国際特許分類】
B29C 64/245 20170101AFI20221109BHJP
B29C 64/112 20170101ALI20221109BHJP
B33Y 10/00 20150101ALI20221109BHJP
B33Y 30/00 20150101ALI20221109BHJP
【FI】
B29C64/245
B29C64/112
B33Y10/00
B33Y30/00
(21)【出願番号】P 2018181461
(22)【出願日】2018-09-27
【審査請求日】2021-07-02
(73)【特許権者】
【識別番号】000002369
【氏名又は名称】セイコーエプソン株式会社
(74)【代理人】
【識別番号】110000028
【氏名又は名称】弁理士法人明成国際特許事務所
(72)【発明者】
【氏名】渡邉 裕輔
(72)【発明者】
【氏名】山本 雄樹
(72)【発明者】
【氏名】姉川 賢太
【審査官】神田 和輝
(56)【参考文献】
【文献】特開2017-200727(JP,A)
【文献】特開2016-104555(JP,A)
【文献】特開2017-121719(JP,A)
【文献】国際公開第2007/013240(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
B29C 64/00-64/40
B33Y 10/00-99/00
(57)【特許請求の範囲】
【請求項1】
三次元造形装置であって、
造形材料を吐出する吐出部と、
前記吐出部から吐出された前記造形材料が堆積される造形ステージと、
前記吐出部と前記造形ステージとの相対的な位置を変更する移動部と、
前記造形ステージに設けられ、前記造形ステージの温度を調整する温度調整部と、
前記吐出部、前記移動部、および、前記温度調整部を制御する制御部と、
を備え、
前記制御部は、前記吐出部と前記造形ステージとの相対的な位置を変えながら前記造形ステージの上に前記造形材料を堆積させて三次元造形物を造形し、硬化させた後、前記温度調整部を制御して前記造形ステージの温度を調整することによって、硬化した前記三次元造形物の前記造形ステージに接している部位を、加熱、または、冷却
し、
前記造形ステージは、前記造形材料が堆積される領域内に、複数の穴部または複数の溝部を有し、
前記造形ステージは、前記造形材料が堆積される領域の少なくとも一部を被覆し、前記造形ステージの他の部位よりも熱伝導率が高い被覆層を有し、
前記被覆層は、前記穴部の内壁面または前記溝部の内壁面を被覆している、三次元造形装置。
【請求項2】
三次元造形装置であって、
造形材料を吐出する吐出部と、
前記吐出部から吐出された前記造形材料が堆積される造形ステージと、
前記吐出部と前記造形ステージとの相対的な位置を変更する移動部と、
前記造形ステージに設けられ、前記造形ステージの温度を調整する温度調整部と、
前記吐出部、前記移動部、および、前記温度調整部を制御する制御部と、
を備え、
前記制御部は、前記吐出部と前記造形ステージとの相対的な位置を変えながら前記造形ステージの上に前記造形材料を堆積させて三次元造形物を造形し、硬化させた後、前記温度調整部を制御して前記造形ステージの温度を調整することによって、硬化した前記三次元造形物の前記造形ステージに接している部位を、加熱、または、冷却し、
前記造形ステージは、前記造形材料が堆積される領域内に、複数の穴部または複数の溝部を有
し、
前記温度調整部は、前記穴部または前記溝部の外周に沿って配置されている、三次元造形装置。
【請求項3】
請求項2記載の三次元造形装置であって、
前記造形ステージは、前記造形材料が堆積される領域の少なくとも一部を被覆し、前記造形ステージの他の部位よりも熱伝導率が高い被覆層を有する、三次元造形装置。
【請求項4】
請求項1
から請求項3のいずれか一項に記載の三次元造形装置であって、
前記造形材料は、熱可塑性樹脂を含み、
前記制御部は、前記温度調整部を制御して、前記三次元造形物の前記造形ステージに接している部位を、前記熱可塑性樹脂のガラス転移点より高く、前記熱可塑性樹脂の融点より低い温度に加熱する、三次元造形装置。
【請求項5】
請求項1から請求項
4のいずれか一項に記載の三次元造形装置であって、さらに、
前記造形ステージ上に造形された前記三次元造形物を冷却する冷却部を備え、
前記制御部は、硬化した前記三次元造形物の前記造形ステージに接している部位を、前記温度調整部によって加熱しながら、硬化した前記三次元造形物の他の部位を前記冷却部によって冷却する、三次元造形装置。
【請求項6】
三次元造形物の製造方法であって、
吐出部と造形ステージとの相対的な位置を変えながら、前記吐出部から前記造形ステージに向かって造形材料を吐出させて堆積させることによって、前記造形ステージの上に三次元造形物を造形し、硬化させる工程と、
硬化した前記三次元造形物の前記造形ステージに接している部位を加熱または冷却して、前記三次元造形物を前記造形ステージから分離する工程と、
を備え
、
前記造形ステージは、前記造形材料が堆積される領域内に、複数の穴部または複数の溝部を有し、
前記造形ステージは、前記造形材料が堆積される領域の少なくとも一部を被覆し、前記造形ステージの他の部位よりも熱伝導率が高い被覆層を有し、
前記被覆層は、前記穴部の内壁面または前記溝部の内壁面を被覆している、製造方法。
【請求項7】
三次元造形物の製造方法であって、
吐出部と造形ステージとの相対的な位置を変えながら、前記吐出部から前記造形ステージに向かって造形材料を吐出させて堆積させることによって、前記造形ステージの上に三次元造形物を造形し、硬化させる工程と、
硬化した前記三次元造形物の前記造形ステージに接している部位を加熱または冷却して、前記三次元造形物を前記造形ステージから分離する分離工程と、
を備え、
前記造形ステージは、前記造形材料が堆積される領域内に、複数の穴部または複数の溝部を有し、
前記分離工程では、前記穴部または前記溝部の外周に沿って配置された温度調整部によって、前記三次元造形物の前記造形ステージに接している部位を加熱または冷却する、製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、三次元造形装置に関する。
【背景技術】
【0002】
例えば、特許文献1には、造形ステージの上に押出ノズルから押し出した造形材料を堆積させることによって三次元造形物を造形する三次元造形装置が開示されている。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
そうした三次元造形装置においては、三次元造形物の造形の完了後に、三次元造形物を構成する造形材料と造形ステージとの密着性が高いと、造形ステージから三次元造形物を分離させる際に、三次元造形物に、変形や破損が生じる場合があった。本願は、三次元造形装置において、造形後の三次元造形物の造形ステージからの分離を容易化できる技術を提供することを課題とする。
【課題を解決するための手段】
【0005】
本開示の技術の一形態は、三次元造形装置として提供される。この三次元造形装置は、造形材料を吐出する吐出部と、前記吐出部から吐出された前記造形材料が堆積される造形ステージと、前記吐出部と前記造形ステージとの相対的な位置を変更する移動部と、前記造形ステージに設けられ、前記造形ステージの温度を調整する温度調整部と、前記吐出部、前記移動部、および、前記温度調整部を制御する制御部と、を備え、前記制御部は、前記吐出部と前記造形ステージとの相対的な位置を変えながら前記造形ステージの上に前記造形材料を堆積させて三次元造形物を造形し、硬化させた後、前記温度調整部によって硬化した前記三次元造形物の前記造形ステージに接している部位を、加熱、または、冷却する。
【図面の簡単な説明】
【0006】
【
図2】フラットスクリューの構成を示す概略斜視図。
【
図5】第1実施形態の造形工程のフローを示す説明図。
【
図6】第2実施形態の造形工程のフローを示す説明図。
【
図8A】第3実施形態の造形ステージを示す概略断面図。
【
図8B】第3実施形態の造形ステージからの三次元造形物の分離工程を示す概略図。
【
図10A】第4実施形態の造形ステージを示す概略断面。
【
図10B】第4実施形態の造形ステージからの三次元造形物の分離工程を示す概略図。
【
図11】第5実施形態の造形ステージを示す概略断面図。
【
図12】第6実施形態の造形ステージを示す概略断面図。
【
図13】第7実施形態の造形ステージを示す概略断面図。
【
図14】第8実施形態の造形ステージを示す概略断面図。
【
図15】第9実施形態の三次元造形装置が備える冷却部を示す概略図。
【
図16】第10実施形態の三次元造形装置が備える溶解部を示す概略図。
【
図17】第10実施形態の造形工程のフローを示す説明図。
【
図18】第11実施形態の三次元造形装置が備える溶解部を示す概略図。
【
図19】他の実施形態における温度調整部の構成を示す概略断面図。
【
図20】他の実施形態における温度調整部の構成を示す概略断面図。
【発明を実施するための形態】
【0007】
1.第1実施形態:
図1は、第1実施形態における三次元造形装置100の構成を示す概略図である。
図1には、互いに直交するX,Y,Z方向を示す矢印が示されている。矢印Xが示すX方向および矢印Yが示すY方向は、水平面に平行な方向である。矢印Zが示すZ方向は、鉛直方向とは反対の方向である。鉛直方向は、重力方向と言い換えてもよい。X,Y,Z方向を示す矢印は、他の参照図においても、
図1と対応するように適宜、図示してある。
【0008】
三次元造形装置100は、造形ステージ110の造形面111に造形材料を堆積させることによって三次元造形物を造形する。以下では、「三次元造形装置」を単に「造形装置」とも呼び、三次元造形物を単に「造形物」とも呼ぶ。本明細書において、造形面111の「面」は、平面として構成された面だけではなく、全体として見たときに一定の領域を占める面として把握されるものを含む概念であり、例えば、その表面に凹凸が形成されていてもよい。
【0009】
造形装置100は、造形ステージ110の他に、造形装置100の全体を制御する制御部101と、造形材料を生成して吐出する造形部105と、造形ステージ110上での造形材料の堆積位置を制御する移動部130と、を備える。
【0010】
制御部101は、造形装置100全体の動作を制御する。第1実施形態では、制御部101は、少なくとも1つのプロセッサーと、主記憶装置と、を備えるコンピューターによって構成される。制御部101は、主記憶装置上に読み込んだプログラムや命令をプロセッサーが実行することによって、種々の機能を発揮する。なお、制御部101の機能の少なくとも一部をハードウェア回路により実現するようにしてもよい。
【0011】
制御部101は、後述する造形工程において、造形物を表す造形データに従って、造形部105と移動部130とを制御して、造形ステージ110の造形面111上に造形材料を堆積させて造形物を造形する造形処理を実行する。また、後述するように、制御部101は、造形工程において、造形ステージ110からの造形物の分離を容易にするために、造形ステージ110の温度を変化させる処理を実行する。
【0012】
造形部105は、造形材料の原料となる材料MRの供給源である材料供給部20と、材料MRの少なくとも一部を可塑化させた造形材料を生成する生成部30と、造形材料を吐出する吐出部60と、を備える。本明細書において「可塑化」とは、熱可塑性を有する材料に熱が加わり溶融することを意味する。以下の説明において、「材料MRを可塑化する」、または、「材料MRを溶融する」と言うときは、材料MRが全体として流動性を有するように、材料MRに含まれている熱可塑性の材料を可塑化させて溶融させることを意味する。
【0013】
材料供給部20は、例えば、材料MRを収容するホッパーによって構成される。材料供給部20は、下方に排出口を有している。当該排出口は、連通路22を介して、生成部30に接続されている。第1実施形態では、材料MRとして、加熱したときに、含有成分のうちの少なくとも一部が可塑化して軟化するものが用いられる。第1実施形態では、材料MRには、そうした加熱により軟化する成分として、ABS樹脂などの熱可塑性樹脂が含まれている。材料MRは、例えばペレットなどの状態でホッパーに収容される。材料MRの具体例については後述する。
【0014】
生成部30は、材料供給部20から供給された材料MRを溶融させて流動性を発現させたペースト状の造形材料を生成し、吐出部60へと導く。生成部30は、ケース31と、駆動モーター32と、フラットスクリュー40と、スクリュー対面部50と、を有する。
【0015】
フラットスクリュー40は、ローターの一種であり、その中心軸に沿った方向である軸線方向における寸法が直径よりも小さい略円柱状を有する。フラットスクリュー40は、その軸線方向がZ方向に平行になるように配置され、円周方向に沿って回転する。第1実施形態では、フラットスクリュー40の中心軸は、その回転軸RXと一致する。
図1には、フラットスクリュー40の回転軸RXを一点鎖線で図示してある。
【0016】
フラットスクリュー40は、Z方向とは反対の方向に開口している中空のケース31内に収納されている。フラットスクリュー40の上面47側はケース31の天面部を介して駆動モーター32に連結されており、フラットスクリュー40は、駆動モーター32が発生させる回転駆動力によって、ケース31内において回転する。駆動モーター32は、制御部101の制御下において駆動する。
【0017】
フラットスクリュー40は、回転軸RXと交差する面である下面48に、スクロール溝42が形成されている。以下では、フラットスクリュー40の下面48を「溝形成面48」とも呼ぶ。後に参照する
図2において図示されているように、スクロール溝42は、フラットスクリュー40の外周側面41において開口する材料流入口44に接続されている。スクロール溝42は、材料流入口44からフラットスクリュー40の回転軸RXが通り、Z方向に窪んでいる中央部46に向かって渦巻き状に延びている。
【0018】
フラットスクリュー40の溝形成面48は、スクリュー対面部50の上面52に面しており、溝形成面48のスクロール溝42と、スクリュー対面部50の上面52との間には空間が形成される。上述した材料供給部20の連通路22は、材料流入口44を通じてスクロール溝42に接続されている。造形部105では、スクロール溝42とスクリュー対面部50との間の前述の空間に、材料供給部20から連通路22を通じて材料MRが供給される。フラットスクリュー40およびそのスクロール溝42の具体的な構成については後述する。
【0019】
スクリュー対面部50には、回転しているフラットスクリュー40のスクロール溝42内に供給された材料MRを加熱するためのヒーター58が埋め込まれている。フラットスクリュー40のスクロール溝42内に供給された材料MRは、スクロール溝42内において溶融されながら、フラットスクリュー40の回転によってスクロール溝42に沿って中央部46に向かって流動しつつ、造形材料へと転化される。中央部46へと導かれた流動性を発現しているペースト状の造形材料は、スクリュー対面部50の中心に設けられた連通孔56を介して吐出部60に供給される。なお、造形材料では、造形材料を構成する全ての種類の物質が溶融していなくてもよい。造形材料は、造形材料を構成する物質のうちの少なくとも一部の種類の物質が溶融することによって、全体として流動性を有する状態に転化されていればよい。
【0020】
吐出部60は、造形材料を吐出するノズル61と、生成部30で生成された造形材料をノズル61に導く流路65と、を備える。ノズル61は、Z方向に沿って設けられた流路65を通じて、スクリュー対面部50の連通孔56に接続されている。流路65には、造形材料の流れを制御する弁機構などが設けられていてもよい。ノズル61は、生成部30において生成された造形材料を、先端の吐出口62から造形ステージ110に向かって吐出する。
【0021】
造形ステージ110は、例えば、金属板などの基材によって構成される。造形ステージ110は、造形面111がノズル61の吐出口62に対向するように、吐出部60の下方に配置されている。第1実施形態では、造形ステージ110は、造形面111がほぼ水平になるように、つまり、X,Y方向に平行になるように配置される。
【0022】
造形ステージ110の内部には、制御部101の制御下において、造形面111の温度を調整する温度調整部115が設けられている。第1実施形態では、温度調整部115は造形面111を下方から加熱する加熱部によって構成されている。温度調整部115は、例えば、ヒーターによって構成される。温度調整部115による造形ステージ110の温度制御については後述する。
【0023】
移動部130は、制御部101の制御下において、造形ステージ110とノズル61との相対的な位置関係を変化させる。第1実施形態では、ノズル61の位置が固定されており、移動部130は、造形ステージ110を移動させる。移動部130は、3つのモーターMの駆動力によって、造形ステージ110をX,Y,Z方向の3方向に移動させる3軸ポジショナーによって構成される。造形ステージ110は、移動部130に対して着脱可能に構成されている。
【0024】
他の実施形態では、移動部130によって造形ステージ110を移動させる構成の代わりに、造形ステージ110の位置が固定された状態で、移動部130が造形ステージ110に対してノズル61を移動させる構成が採用されてもよい。こうした構成であっても、造形ステージ110に対するノズル61の相対的な位置を変化させることができる。また、他の実施形態では、2つの移動部130が、造形ステージ110とノズル61とをそれぞれ移動させて、造形ステージ110とノズル61との相対的な位置を変化させる構成が採用されてもよい。
【0025】
図2は、フラットスクリュー40の溝形成面48側の構成を示す概略斜視図である。
図2には、生成部30でのフラットスクリュー40の回転軸RXの位置が一点鎖線で図示されている。
【0026】
フラットスクリュー40の溝形成面48の中央部46は、スクロール溝42の一端が接続されている凹部として構成されている。第1実施形態では、中央部46は、回転軸RXと交差し、
図1に図示されているスクリュー対面部50の連通孔56に対向する。スクロール溝42は、中央部46から、フラットスクリュー40の外周側面の材料流入口44に向かって弧を描くように渦状に形成されている。スクロール溝42は、螺旋状に形成されているとしてもよい。溝形成面48には、各スクロール溝42に沿った凸条部43が設けられている。凸条部43は、スクロール溝42の側壁部を構成する。なお、スクロール溝42は、その流路断面積が、材料流入口44から中央部46に向かうにつれて小さくなるように構成されていることが望ましい。これにより、材料MRを可塑化する際の中央部46の圧力をより高めることができる。
【0027】
第1実施形態では、フラットスクリュー40は、3つのスクロール溝42と、3つの凸条部43と、を有している。他の実施形態では、フラットスクリュー40に設けられるスクロール溝42や凸条部43の数は、3つには限定されない。フラットスクリュー40には、1つのスクロール溝42のみが設けられていてもよいし、2以上の複数のスクロール溝42が設けられていてもよい。また、スクロール溝42の数に合わせて任意の数の凸条部43が設けられてもよい。
【0028】
第1実施形態では、フラットスクリュー40には、材料流入口44が3箇所に形成されている。他の実施形態では、フラットスクリュー40に設けられる材料流入口44の数は、3箇所に限定されない。フラットスクリュー40には、材料流入口44が1箇所にのみ設けられていてもよいし、2箇所以上の複数の箇所に設けられていてもよい。
【0029】
図3は、スクリュー対面部50の上面52側を示す概略平面図である。スクリュー対面部50の上面52は、上述したように、フラットスクリュー40の溝形成面48に対向する。以下、この上面52を、「対向面52」とも呼ぶ。対向面52の中心には、造形材料をノズル61に供給するための上述した連通孔56が形成されている。対向面52には、外周から連通孔56に向かって弧を描きながら集合する渦状の複数の案内溝54が形成されている。複数の案内溝54は、フラットスクリュー40の中央部46に流入した造形材料を連通孔56に導く機能を有する。
図1を参照して説明したように、スクリュー対面部50には、ヒーター58が埋め込まれている。生成部30における材料MRの溶融は、ヒーター58による加熱と、フラットスクリュー40の回転と、によって実現される。
【0030】
図1および
図2を参照する。フラットスクリュー40が回転すると、材料流入口44から供給された材料MRが、スクロール溝42内において加熱されながら、スクロール溝42に誘導されて中央部46に向かって移動する。材料MRは、中央部46に近づくほど溶融して流動性が高まっていき、造形材料へと転化する。中央部46に集められた造形材料は、中央部46で生じる内圧により、連通孔56を通じてノズル61の流路65へと導かれ、吐出口62から吐出される。
【0031】
フラットスクリュー40を用いている生成部30によれば、材料MRの可塑化の際に、スクロール溝42内の圧力が中央部46に近づくほど高くなるため、最終的に生成される造形材料の混練度が高められる。また、材料MRの空隙に存在する空気が、スクロール溝42内に生じる圧力によって材料流入口44側へと押し出されるため、造形材料の脱気が促進される。
【0032】
生成部30では、Z方向のサイズが小型なフラットスクリュー40の採用によって、材料MRを溶融してノズル61まで導くための経路が占める範囲がZ方向において小さくなっている。このように、造形装置100では、フラットスクリュー40を利用していることによって、造形材料の生成機構が小型化されている。
【0033】
造形装置100では、フラットスクリュー40を利用していることによって、流動性を有する造形材料を生成し、ノズル61へと圧送する構成が簡易に実現されている。この構成によれば、ノズル61からの造形材料の吐出量の制御がフラットスクリュー40の回転数の制御によって可能であり、ノズル61からの造形材料の吐出量の制御を容易化することができる。
【0034】
図4は、造形装置100において造形物が造形されていく様子を模式的に示す概略図である。制御部101は、造形ステージ110の造形面111に沿った方向に、造形ステージ110に対するノズル61の位置を変えながら、ノズル61から造形材料MMを吐出させて造形材料MMを堆積させる走査を繰り返して材料層MLを形成する。制御部101は、材料層MLをZ方向に積み重ねることによって造形物を造形していく。
【0035】
材料層MLを形成する際には、ノズル61の先端の吐出口62と、造形材料MMが堆積される予定部位MLtとの間には、ノズル61の孔径Dnより大きいギャップGが形成される。これにより、ノズル61の吐出口62から吐出される造形材料MMが、予定部位MLtに押しつけられない状態で堆積され、ノズル61から吐出された造形材料MMの横断面形状が潰れてしまうことが抑制されるため、造形物の面粗さを低減できる。また、ノズル61の周囲にヒーターが設けられている構成では、ギャップGを形成することにより、当該ヒーターによる造形材料MMの過熱を防止でき、そうした過熱による堆積後の造形材料MMの変色や劣化を抑制できる。
【0036】
図5は、第1実施形態における造形工程のフローを示す説明図である。第1実施形態では、上述の三次元造形装置100を用いて、以下の工程によって造形物が製造される。
【0037】
工程P1では、三次元造形装置100によって、造形ステージ110上に造形物が造形される。より具体的には、
図4を参照して説明したように、吐出部60のノズル61と造形ステージ110との相対的な位置が変えられながら、造形ステージ110の造形面111上に造形材料を堆積されて造形物が造形される。
【0038】
吐出部60が造形材料を造形面111に堆積させる工程の間、制御部101は、温度調整部115を制御して、造形ステージ110の造形面111を加熱してもよい。この場合には、制御部101は、温度調整部115を制御して、造形面111の温度を、造形材料に含まれる熱可塑性を有する材料のガラス転移点より高く、融点より低い温度に調整することが望ましい。これによって、造形面111に接している造形材料の降温による収縮が抑制され、造形物が変形することが抑制される。
【0039】
工程P1では、吐出部60が造形材料を造形ステージ110に堆積させて造形物を造形する工程が完了した後、造形ステージ110の造形物を硬化させる。具体的には、造形物全体の温度が、造形材料に含まれる熱可塑性を有する材料のガラス転移点より低い温度まで低下し、造形物全体の硬度が高まるまで待機する。この硬化工程では、造形物の温度が室温とほぼ等しくなるまで待機するものとしてもよい。
【0040】
工程P2は、造形物を造形ステージ110から分離させるために、造形物を硬化させた後に実行される準備工程である。工程P2では、三次元造形装置100の制御部101は、
図1に示す温度調整部115を制御して、造形ステージ110の造形面111を瞬間的に加熱する。これによって、硬化した造形物の造形ステージ110に接している部位が瞬間的に加熱され、当該部位の温度が、造形物が硬化した後の温度から局所的に高められる。温度調整部115による加熱時間は、例えば、10秒程度としてよい。第1実施形態では、制御部101は、硬化した造形物の造形ステージ110に接している部位が、造形材料に含まれる可塑性樹脂のガラス転移点より高く、融点より低い温度になるように、温度調整部115によって加熱する。
【0041】
工程P3では、造形物が造形ステージ110から分離される。前述の工程P2での温度調整部115による加熱により、造形物の造形ステージ110に接している部位が軟化しているため、造形ステージ110から造形物を、小さい外力で容易に分離することができる。また、造形物の造形ステージ110に接している部位は局所的に軟化しているため、造形ステージ110から造形物を分離する際に造形物に加えられる外力によって、造形物が変形したり破損したりすることが抑制される。特に、第1実施形態では、上述したように、工程P2において、造形物の造形ステージ110に接している部位が、造形材料に含まれる可塑性樹脂のガラス転移点より高く、融点より低い温度になるように加熱されており、より軟化した状態にされている。よって、造形ステージ110からの造形物の分離がより一層、容易化されている。
【0042】
工程P4では、造形ステージ110の造形面111に面していた造形物の底面に対して、例えば、切削加工や研磨加工などの仕上げ加工が施される。これにより、造形物の底面の荒れが抑制される。他の実施形態では、工程P4は省略されてもよい。
【0043】
以上のように、第1実施形態における造形装置100および造形物の造形方法によれば、造形ステージ110から硬化後の造形物を分離する際に、温度調整部115による加熱によって、造形物の造形ステージ110に接している部位が軟化される。そのため、造形ステージ110からの造形物の分離が容易化され、造形ステージ110から造形物を分離させるための外力によって、造形物が変形・破損することが抑制される。その他に、第1実施形態における造形装置100および造形物の造形方法によれば、第1実施形態中で説明した種々の作用効果を奏することができる。
【0044】
2.第2実施形態:
図6は、第2実施形態における造形工程のフローを示す説明図である。第2実施形態の造形工程で用いられる造形装置の構成は、温度調整部115が、造形面111を加熱および冷却するように構成されている点以外は、
図1に示した第1実施形態の造形装置100の構成とほぼ同じである。第2実施形態では、温度調整部115は、例えば、加熱のための熱流体や、冷却のための液体窒素などの冷媒が流れる熱交換チューブによって構成される。他の実施形態では、温度調整部115は、ペルチェ素子によって構成されてもよい。なお、第2実施形態では、材料MRは、熱可塑性樹脂を含むものには限定されない。ただし、造形物を構成したときに、冷却により熱収縮しやすい材料であることが望ましい。
【0045】
第2実施形態の造形工程のフローは、第1実施形態で説明した工程P2に代えて、工程P2aが実行される点以外は、
図5に示した第1実施形態の造形工程とほぼ同じであるため、工程P2a以外の工程P1,P3,P4の説明は省略する。なお、第2実施形態の工程P1では、第1実施形態でも説明したように、温度調整部115によって、造形面111が加熱された状態で造形物が造形されてもよい。工程P1において温度調整部115による加熱をおこなわない場合には、温度調整部115は、冷却部としての機能のみを発揮できるように構成されてよい。
【0046】
第2実施形態の工程P2aでは、制御部101は、硬化した造形物の造形ステージ110に接している部位を温度調整部115によって瞬間的に冷却し、当該部位の温度を、造形物の硬化が完了した後の温度よりさらに低下させる。制御部101は、化した造形物の造形ステージ110に接している部位の温度を、例えば、室温より低い温度まで低下させるものとしてもよい。これによって、造形ステージ110に接している造形物の部位が収縮し、造形ステージ110に対する造形物の底面の密着性を低下させることができる。よって、工程P3での造形ステージ110からの造形物の分離が容易化される。第2実施形態における造形装置および造形物の造形方法によれば、本第2実施形態中で説明した作用効果に加えて、第1実施形態中で説明したのと同様な種々の作用効果を奏することができる。
【0047】
3.第3実施形態:
図7は、第3実施形態の造形装置が備える造形ステージ110aの造形面111側を示す概略図である。第3実施形態の造形装置の構成は、造形ステージ110の代わりに第3実施形態の造形ステージ110aを備えている点以外は、
図1に示した第1実施形態の造形装置100の構成とほぼ同じである。
【0048】
造形ステージ110aには、造形面111側に、造形工程において造形材料が堆積される領域内に複数の穴部112が設けられている。第1実施形態では、各穴部112は、例えば、正円形状の開口形状を有している。第1実施形態では、各穴部112は、造形面111内の全体にわたって、ほぼ均一に分布している。各穴部112の開口径は、例えば、1~10μm程度としてよく、その深さは、例えば、1~10μm程度としてよい。また、隣り合う穴部112同士の間隔は、例えば、0.1~1mm程度としてよい。各穴部112は、例えば、フォトリソグラフィー法によって形成することができる。なお、他の実施形態では、各穴部112の開口形状や寸法は特に限定されない。また、各穴部112は、造形面111上の一部の領域にのみ設けられていてもよいし、造形面111面内において不均一に分布していてもよい。
【0049】
図8Aおよび
図8Bは、造形ステージ110aの
図7に示す8-8切断における概略断面図である。
図8Aは、造形物OBが造形された直後の状態を示しており、
図8Bは、造形物OBが分離されるときの様子を模式的に示している。第3実施形態では、造形物OBは、第1実施形態と同様に、
図5に示す造形工程のフローによって造形される。
【0050】
図8Aを参照する。工程P1では、造形ステージ110a上に造形物OBが造形される際に、造形物OBの最下層の材料層を構成する造形材料MMの一部が造形ステージ110aの穴部112に入り込むことによるアンカー効果が得られる。よって、造形面111に対する造形材料MMの固定性が高められ、造形面111上で造形材料MMが、予定位置からずれた位置に流動することが抑制される。また、造形材料MMが硬化するときに、造形物OBの最下層の材料層が造形面111に沿った方向に収縮することが抑制され、造形物OBの底面に反りが生じることが抑制される。このように、第3実施形態の造形工程では、造形ステージ110aに穴部112が設けられていることによって、造形物の造形精度が高められている。
【0051】
図8Aおよび
図8Bを参照する。工程P2では、第1実施形態で説明したように、造形ステージ110aに設けられている温度調整部115によって、造形物OBの造形ステージ110aに接している部位が加熱される。これによって、造形物OBのうち、造形ステージ110aの穴部112に入り込んでいる部位と、その周囲において造形面111に接している部位と、が軟化する。
図8Bでは、造形物OBにおいて軟化している部位に、斜線ハッチングを付してある。そうした造形物OBの下端部での部分的な軟化により、造形ステージ110aに対して働いていた造形物OBのアンカー効果が低減される。よって、工程P3において、造形ステージ110aから造形物OBを分離させやすくなり、造形物OBに変形や破損が生じることを抑制できる。
【0052】
以上のように、第3実施形態の造形装置および造形物の製造方法によれば、造形途中での造形物OBの変形を抑制できるとともに、造形完了後に造形ステージ110aから造形物OBを分離させる際の造形物OBの変形や破損を抑制することができる。その他に、第3実施形態の造形装置および造形物の製造方法によれば、本第3実施形態中において説明した種々の作用効果に加えて、第1実施形態中において説明したのと同様な種々の作用効果を奏することができる。
【0053】
4.第4実施形態:
図9は、第4実施形態の造形装置が備える造形ステージ110bの造形面111側を示す概略図である。第4実施形態の造形装置の構成は、造形ステージ110の代わりに第4実施形態の造形ステージ110bを備えている点以外は、
図1に示した第1実施形態の造形装置100の構成とほぼ同じである。第4実施形態の造形ステージ110bの構成は、造形材料が堆積される領域に、複数の穴部112の代わりに、複数の溝部113が設けられている点以外は、第3実施形態の造形ステージ110aの構成とほぼ同じである。
【0054】
第4実施形態の造形ステージ110bでは、複数の直線状の溝部113が、造形ステージ110bの中央において交差するように放射状に配列されている。溝部113は、造形面111全体にわたって形成されている。隣り合う溝部113同士が交差する角度は均一であることが望ましい。各溝部113の溝幅は、例えば、1~10μm程度としてよい。各溝部113は、例えば、フォトリソグラフィー法によって形成することができる。なお、他の実施形態では、各溝部113の形状や、溝幅、配列パターン、形成範囲は特に限定されない。溝部113は直線状ではなく、例えば、曲線状や波状に形成されていてもよい。溝部113は、部位ごとに幅が異なっていてもよい。溝部113は、放射状に配列されていなくてもよく、例えば、格子状に配列されていてもよい。溝部113は、造形面111内の一部にのみ設けられていてもよい。
【0055】
図10Aおよび
図10Bは、造形ステージ110bの
図9に示す10-10切断における概略断面図である。
図10Aは、造形物OBが造形された直後の状態を示しており、
図10Bは、造形物OBが分離されるときの様子を模式的に示している。第4実施形態では、造形物OBは、第1実施形態と同様に、
図5に示す造形工程のフローによって造形される。
【0056】
図10Aを参照する。工程P1では、造形物OBの最下層の材料層を構成する造形材料MMの一部が溝部113に入り込むことによるアンカー効果によって、造形面111に対する造形材料MMの固定性が高められるため、造形物OBの造形精度が高められる。第4実施形態では、各溝部113は、底部から溝開口に近づくにつれて溝幅が小さくなるように構成されている。そのため、各溝部113の溝幅がZ方向に一定である場合よりも高いアンカー効果を得ることができ、造形面111に対する造形材料MMの固定性がより一層、高められている。
【0057】
図10Aおよび
図10Bを参照する。工程P2では、造形ステージ110bに設けられている温度調整部115による加熱よって、造形物OBのうち、溝部113に入り込んでいる部位と、その周囲において造形面111に接している部位と、が軟化する。
図10Bでは、造形物OBにおいて軟化している部位に、斜線ハッチングを付してある。工程P2では、第3実施形態と同様に、そうした造形物OBの下端部における部分的な軟化により、造形ステージ110bからの造形物OBの分離が容易化される。また、上記のように、Z方向に溝幅が縮小している構成であっても、溝部113内に入り込んでいる部位を軟化されるため、造形ステージ110bからの造形物OBの分離が容易である。
【0058】
以上のように、第4実施形態の造形装置および造形物の製造方法によれば、造形途中での造形物OBの変形を抑制できるとともに、造形完了後に造形ステージ110bから造形物OBを分離させる際の造形物OBの変形や破損を抑制することができる。その他に、第4実施形態の造形装置および造形物の製造方法によれば、本第4実施形態中において説明した種々の作用効果に加えて、第1実施形態や第3実施形態中において説明したのと同様な種々の作用効果を奏することができる。
【0059】
5.第5実施形態:
図11は、第5実施形態の造形装置が備える造形ステージ110cを示す概略断面図である。第5実施形態の造形装置の構成は、造形ステージ110の代わりに第5実施形態の造形ステージ110cを備えている点以外は、
図1に示した第1実施形態の造形装置100の構成とほぼ同じである。第5実施形態の造形ステージ110cの構成は、造形面111に、被覆層117が設けられている点以外は、第3実施形態の造形ステージ110aの構成とほぼ同じである。
【0060】
第5実施形態の造形ステージ110cでは、各穴部112の周縁部における造形ステージ110cの表面を、造形ステージ110cの他の部位よりも熱伝導率が相対的に高い材料で被覆した被覆層117が形成されている。被覆層117は、各穴部112の間の平面領域、つまり、造形面111内の穴部112以外の領域を覆っている。第5実施形態では、被覆層117は、造形ステージ110cの基材よりも熱伝導率が高い材料によって構成されている。被覆層117は、造形ステージ110cの基材に対するめっき処理によって形成される。造形ステージ110cの基材が、例えば、ステンレス鋼やニッケルである場合、被覆層117は銅や銀などを採用することができる。造形ステージ110cでは、被覆層117を有していることによって、温度調整部115と被覆層117との間に熱伝導率の勾配が形成されている。そのため、温度調整部115による加熱をおこなう場合には、温度調整部115から被覆層117へと熱が伝わりやすくなっている。よって、造形物の被覆層117に接している部位の温度調整部115による温度制御を効率よく短時間でおこなうことができる。
【0061】
第5実施形態では、第1実施形態と同様に、
図5に示す造形工程のフローによって造形物が造形される。第5実施形態の造形工程では、造形ステージ110cを用いていることによって、工程P2において、温度調整部115によって、造形物のうちで、熱伝導率が高い被覆層117に接している部位を、他の部位よりも効率よく短時間で昇温させることができる。よって、造形物において、造形ステージ110に対する密着性が相対的に高くなっている穴部112の周縁部に接している部位を、より軟化した状態にすることができ、造形ステージ110からの造形物の分離が容易化される。その他に、第5実施形態の造形装置および造形物の製造方法によれば、本第5実施形態中で説明した作用効果に加えて、第1実施形態や第3実施形態で説明したのと同様な種々の作用効果を奏することができる。
【0062】
6.第6実施形態:
図12は、第6実施形態の造形装置が備える造形ステージ110dを示す概略断面図である。第6実施形態の造形装置の構成は、造形ステージ110の代わりに第6実施形態の造形ステージ110dを備えている点以外は、
図1に示した第1実施形態の造形装置100の構成とほぼ同じである。第6実施形態の造形ステージ110dの構成は、造形面111に、第5実施形態で説明したのと同様な被覆層117が設けられている点以外は、第4実施形態の造形ステージ110bの構成とほぼ同じである。
【0063】
第6実施形態では、被覆層117は、造形ステージ110dの溝部113周縁の平面領域、つまり、造形面111内の溝部113以外の領域を覆っている。第6実施形態では、第1実施形態と同様に、
図5に示す造形工程のフローによって造形物が造形される。第6実施形態の造形工程においても、第5実施形態で説明したのと同様に、工程P2において、温度調整部115によって、造形物のうちで、熱伝導率が高い被覆層117に接している部位を他の部位よりも効率よく短時間で昇温させることができる。よって、続く工程P3において、造形ステージ110からの造形物の分離がより一層、容易化される。その他に、第6実施形態の造形装置および造形物の製造方法によれば、本第6実施形態中で説明した作用効果に加えて、第1実施形態や第4実施形態、第5実施形態で説明したのと同様な種々の作用効果を奏することができる。
【0064】
7.第7実施形態:
図13は、第7実施形態の造形装置が備える造形ステージ110eを示す概略断面図である。第7実施形態の造形装置の構成は、造形ステージ110の代わりに第7実施形態の造形ステージ110eを備えている点以外は、
図1に示した第1実施形態の造形装置100の構成とほぼ同じである。第7実施形態の造形ステージ110eの構成は、被覆層117が設けられている領域が異なっている点以外は、
図11に示した第5実施形態の造形ステージ110cの構成とほぼ同じである。第7実施形態では、第1実施形態と同様に、
図5に示す造形工程のフローによって造形物が造形される。
【0065】
第7実施形態の造形ステージ110eでは、被覆層117は、穴部112の周縁部ではなく、各穴部112内の側壁面を覆っている。被覆層117は、各穴部112の底面も覆っていてもよい。各穴部112内に被覆層117が設けられていることによって、工程P2での温度調整部115の加熱によって、造形物のうちの各穴部112内に入り込んでいる部位を他の部位よりも効率よく短時間で昇温させて軟化させることができる。よって、工程P3の前に造形物に対して働いているアンカー効果を効率よく緩和させることができ、工程P3での造形ステージ110eからの造形物の分離がより一層、容易化される。その他に、第7実施形態の造形装置および造形物の製造方法によれば、本第7実施形態中で説明した作用効果に加えて、第1実施形態や第3実施形態、第5実施形態で説明したのと同様な種々の作用効果を奏することができる。
【0066】
8.第8実施形態:
図14は、第8実施形態の造形装置が備える造形ステージ110fを示す概略断面図である。第8実施形態の造形装置の構成は、造形ステージ110の代わりに第8実施形態の造形ステージ110fを備えている点以外は、
図1に示した第1実施形態の造形装置100の構成とほぼ同じである。第8実施形態の造形ステージ110fの構成は、被覆層117が設けられている領域が異なっている点以外は、
図12に示した溝部113を有する第6実施形態の造形ステージ110dの構成とほぼ同じである。第8実施形態では、第1実施形態と同様に、
図5に示す造形工程のフローによって造形物が造形される。
【0067】
第8実施形態の造形ステージ110fでは、被覆層117が各溝部113の側壁面および底面を含む内壁面を覆っている。これによって、工程P2での温度調整部115の加熱によって、造形物のうちの各溝部113内に入り込んでいる部位を他の部位よりも効率よく短時間で昇温させて軟化させることができる。よって、各溝部113が、底部から溝開口に近づくにつれて溝幅が小さくなるように構成されている構成においても、工程P3での造形ステージ110fからの造形物の分離を、より一層、容易におこなえる。その他に、第8実施形態の造形装置および造形物の製造方法によれば、本第8実施形態中で説明した作用効果に加えて、第1実施形態や第4実施形態、第5実施形態、第6実施形態、第7実施形態で説明したのと同様な種々の作用効果を奏することができる。
【0068】
9.第9実施形態:
図15は、第9実施形態の造形装置100gが備える冷却部70を示す概略図である。第9実施形態の造形装置100gの構成は、冷却部70が追加されている点以外は、第1実施形態の造形装置100とほぼ同じである。冷却部70は、造形ステージ110より上方に設けられており、制御部101の制御下において、造形ステージ110上に造形された造形物OBを冷却する。冷却部70は、例えば、送風ファンによって構成される。
【0069】
第9実施形態での造形物を造形する造形工程は、工程P2が冷却部70による冷却工程を含んでいる点以外は、第1実施形態で説明した
図5の造形工程とほぼ同じである。工程P2では、制御部101は、硬化後の造形物OBを、冷却部70からの送風によって冷却しながら、造形ステージ110の温度調整部115によって、造形物OBの造形ステージ110に接している下端部を加熱する。
図15では、便宜上、造形物OBの下端部を、斜線ハッチングを付して示してある。冷却部70による冷却によって、造形物OBの下端部より上方の部位が温度調整部115の加熱の影響によって軟化してしまうが抑制される。よって、造形物OBの熱変形による造形精度の低下を抑制することができる。第9実施形態の造形装置および造形物の製造方法によれば、第9実施形態中で説明した種々の作用効果に加えて、上記第1実施形態で説明したのと同様な種々の作用効果を奏することができる。
【0070】
10.第10実施形態:
図16は、第10実施形態の造形装置100hを示す概略図である。第10実施形態の造形装置100hの構成は、造形ステージ110aの代わりに、造形ステージ110hを備えている点と、溶解部75が追加されている点以外は、
図1に示す第1実施形態の造形装置100とほぼ同じである。ただし、
図16では、第10実施形態の造形装置100hが備える溶解部75と造形ステージ110h以外の構成部の図示は、便宜上、省略されている。第10実施形態の造形ステージ110hは、温度調整部115が省略されている点と、穴部112が貫通穴として構成されている点以外は、第3実施形態の造形ステージ110cの構成とほぼ同じである。
【0071】
溶解部75は、造形材料を溶解する溶剤SVが貯留された溶剤貯留部76と、造形ステージ110hを搬送する搬送部77と、を備える。溶剤貯留部76の溶剤SVとしては、例えば、アセトンなどの有機溶剤を採用してよい。その他に、溶剤SVとしては、以下のように、造形材料に含まれる樹脂材料の種類に応じて適宜選択したものを採用してもよい。例えば、造形材料にABS樹脂が含まれる場合には、溶剤SVとしてメチルエチルケトンを採用することができる。造形材料にスチロール樹脂が含まれる場合には、溶剤SVとしてトリクロルエタンを採用することができる。造形材料にポリ塩化ビニル樹脂が含まれる場合には、溶剤SVとしてテトラヒドルフランを採用することができる。造形材料にセルロール樹脂が含まれる場合には、溶剤SVとして酢酸イソアミルを採用することができる。
【0072】
搬送部77は、例えば、チャック部を備えるロボットアームなどによって構成される。搬送部77は、制御部101の制御下において、造形ステージ110hを移動部130から分離させて、溶剤貯留部76へと搬送し、造形ステージ110hを溶剤SVに浸漬させる。
【0073】
図16に加えて、
図17を参照して、第10実施形態の造形工程を説明する。
図17は、第10実施形態における造形工程のフローを示す説明図である。第10実施形態での造形工程は、工程P2の代わりに、溶解部75を利用する工程P2hを備えている点以外は、第1実施形態で説明した
図5の造形工程とほぼ同じである。
【0074】
工程P1において、造形ステージ110h上に造形物OBが造形された後、制御部101は、工程P2hにおいて、溶解部75によって、造形物OBの造形ステージ110hに接している部位に溶剤SVを接触させる。制御部101は、溶解部75の搬送部77に、造形面111上に造形物OBが配置されている造形ステージ110hを溶剤貯留部76へと搬送させる。搬送部77は、造形ステージ110hを溶剤貯留部76の溶剤SVの中に浸漬させて、造形物OBの造形ステージ110hに接している部位に溶剤SVを接触させる。造形ステージ110hでは、穴部112が貫通穴として構成されているため、造形物OBによって造形面111側の開口が閉塞されている穴部112内にも、造形面111とは反対側の面の開口から、溶剤SVを入り込ませることができる。
【0075】
溶剤SVの接触によって、造形物OBの造形ステージ110hに接している部位が溶解されて軟化するため、造形ステージ110hに対する造形物OBの密着性を低下させることができる。よって、工程P3において、造形物OBを造形ステージ110hから容易に分離することができる。その他に、第10実施形態の造形装置および造形物の製造方法によれば、第10実施形態中で説明した種々の作用効果に加えて、上記の各実施形態で説明したのと同様な種々の作用効果を奏することができる。
【0076】
11.第11実施形態:
図18は、第11実施形態の造形装置100iを示す概略図である。第10実施形態の造形装置100iの構成は、造形ステージ110hの代わりに、第11実施形態の造形ステージ110iを備えている点以外は、第10実施形態の造形装置100hとほぼ同じである。第11実施形態の造形ステージ110iの構成は、穴部112の代わりに第4実施形態で説明したのと同様な溝部113が設けられている点以外は、第10実施形態の造形ステージ110hとほぼ同じである。
【0077】
第11実施形態での造形工程は、第10実施形態で説明したフローとほぼ同じであり、溶解部75によって造形物OBの造形ステージ110iと接している部位を溶解させた後に、造形ステージ110iから造形物OBが分離される。第11実施形態の造形ステージ110iであれば、溶解部75の溶剤SVを、造形ステージ110iの溝部113を伝わせて、造形物OBの溝部113内に入り込んでいる部位に接触させることができる。その他に、第11実施形態の造形装置および造形物の製造方法によれば、第11実施形態中で説明した種々の作用効果に加えて、上記の各実施形態で説明したのと同様な種々の作用効果を奏することができる。
【0078】
12.他の実施形態:
上記の各実施形態で説明した種々の構成は、例えば、以下のように変更することが可能である。以下に説明する他の実施形態はいずれも、上記の各実施形態や上記の各実施形態中で他の実施形態として説明した構成と同様、本開示の技術を実施するための形態の一例として位置づけられる。
【0079】
(1)他の実施形態1:
上記第3実施形態、第4実施形態、第5実施形態、第6実施形態、第7実施形態、および、第8実施形態の造形装置において、温度調整部115は、第2実施形態で説明したように造形物を冷却してもよい。このようにしても、造形物の造形ステージ110a,110b,110c,110d,110e,110fに接している部位の熱収縮によって、造形面111に対する造形物の密着性を低下させることができる。よって、造形ステージ110a,110b,110c,110d,110e,110fからの造形物の分離を容易におこなうことができる。特に、第5実施形態、第6実施形態、第7実施形態、および、第8実施形態の造形ステージ110c,110d,110e,110fであれば、温度調整部115によって、造形物の被覆層117に接している部位を効率よく短時間で冷却することができる。
【0080】
(2)他の実施形態2:
図19および
図20はそれぞれ、他の実施形態としての温度調整部115jを有する造形ステージ110a,110bを示す概略断面図である。上記第3実施形態、第4実施形態において、造形ステージ110a,110bには、温度調整部115の代わりに、穴部112や溝部113の外周に沿って配置され、加熱部と冷却部の少なくとも一方の機能を発揮する温度調整部115jによって構成されてもよい。温度調整部115jは、例えば、電熱線や、熱流体や冷媒が流れる熱交換チューブ、ペルチェ素子などによって構成される。温度調整部115jを用いることによって、穴部112や溝部113の内壁面を、造形ステージ110a,110bの他の部位よりも温度が高くなるように加熱、または、造形ステージ110a,110bの他の部位よりも温度が低くなるように冷却することができる。上記の第5実施形態、第6実施形態、第7実施形態、および、第8実施形態の造形装置に、本実施形態での温度調整部115jの構成が適用されてもよい。
【0081】
(3)他の実施形態3:
第5実施形態で説明した被覆層117を、第1実施形態の造形ステージ110に適用してもよい。この場合には、被覆層117は、造形ステージ110の造形面111の一部または全部の領域を覆うものとしてもよい。上記の第5実施形態および第6実施形態の造形ステージ110c,110dにおいて、被覆層117は、穴部112の周縁部、または、溝部113の周縁部に加えて、穴部112の内壁面、または、溝部113の内壁面を覆ってもよい。
【0082】
(4)他の実施形態4:
上記の第9実施形態で説明した冷却部70は、上記第3実施形態、第4実施形態、第5実施形態、第6実施形態、第7実施形態、および、第8実施形態の造形装置に適用されてもよい。これにより、温度調整部115の加熱によって造形物OBの下端部以外の部位が変形してしまうことを抑制できる。冷却部70は、工程P1において、造形物を硬化させるために用いられてもよい。
【0083】
(5)他の実施形態5:
上記第10実施形態および第11実施形態において、造形ステージ110h,110iの穴部112や溝部113は省略されてもよい。この場合でも、造形ステージ110h,110iと造形物OBとの境界に、溶剤SVが、造形物の下端部の外周端から進入していくことにより、造形ステージ110h,110iに対する造形物OBの密着性を低下させることができる。上記第10実施形態および第11実施形態において、溶解部75は、造形面111上に溶剤SVを供給し、溶剤SVを造形面111上に伝わせることによって、造形物OBの造形ステージ110h,110iと接触している部位に溶剤SVを接触させる構成を有していてもよい。上記第10実施形態および第11実施形態において、造形ステージ110h,110iの表面は、溶剤SVによる造形ステージ110h,110iの溶解を抑制するための保護層によって被覆されてもよい。
【0084】
(6)他の実施形態6:
上記の各実施形態において、生成部30は、フラットスクリュー40を利用している構成の代わりに、例えば、Z方向の長さが直径よりも長いインラインスクリューを回転させてノズル61から造形材料を押し出す構成を有していてもよい。また、造形装置100は、フラットスクリュー40や上述したインラインスクリューを用いる構成ではなく、通常のFDM方式(熱融解積層方式)を採用していてもよい。造形装置100では、熱可塑性樹脂からなるフィラメントが巻き回されたボビンから、ノズルへと、フィラメントを繰り出し、ノズル内に設けられたヒーターによって、そのフィラメントを溶解させ、造形材料としてノズルから吐出させる構成が採用されてもよい。
【0085】
(7)他の実施形態7:
上記の各実施形態において、材料供給部20は、複数のホッパーを備える構成を有していてもよい。この場合には、各ホッパーからフラットスクリュー40へと異なる材料が供給され、フラットスクリュー40のスクロール溝42内において混合されて、造形材料が生成されてもよい。例えば、上記実施形態で説明した主材料となる粉末材料と、それに添加される溶媒やバインダーなどが別々のホッパーから並行してフラットスクリュー40に供給されてもよい。
【0086】
(8)他の実施形態8:
上記各実施形態の造形装置においては、以下に説明する材料から適宜選択したものを、材料MRとして用いてもよい。ただし、温度調整部115によって造形物OBの下端部が加熱または冷却される構成においては、温度調整部115による加熱または冷却によって熱変形するものが選択されることが望ましい。また、溶解部75の溶剤SVによって、造形物OBの下端部を溶解させる構成においては、溶剤SVによる溶解が可能な材料が選択されることが望ましい。
【0087】
上記各実施形態の造形装置において造形される造形物は、例えば、熱可塑性を有する材料や、金属材料、セラミック材料等の種々の材料を主材料として造形することができる。ここで、「主材料」とは、造形物の形状を形作っている中心となる材料を意味し、造形物において50重量%以上の含有率を占める材料を意味する。上述した造形材料には、それらの主材料を単体で溶融したものや、主材料とともに含有される一部の成分が溶融してペースト状にされたものが含まれる。
【0088】
主材料として熱可塑性を有する材料を用いる場合には、生成部30において、当該材料が可塑化することによって造形材料が生成される。熱可塑性を有する材料としては、例えば、下記の熱可塑性樹脂材料を用いることができる。
<熱可塑性樹脂材料の例>
ポリプロピレン樹脂(PP)、ポリエチレン樹脂(PE)、ポリアセタール樹脂(POM)、ポリ塩化ビニル樹脂(PVC)、ポリアミド樹脂(PA)、アクリロニトリル・ブタジエン・スチレン樹脂(ABS)、ポリ乳酸樹脂(PLA)、ポリフェニレンサルファイド樹脂(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリカーボネート(PC)、変性ポリフェニレンエーテル、ポリブチレンテレフタレート、ポリエチレンテレフタレートなどの汎用エンジニアリングプラスチック、ポリサルフォン、ポリエーテルサルフォン、ポリフェニレンサルファイド、ポリアリレート、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリエーテルエーテルケトンなどのエンジニアリングプラスチック。
【0089】
熱可塑性を有する材料には、顔料や、金属、セラミック、その他に、ワックス、難燃剤、酸化防止剤、熱安定剤などの添加剤等が混入されていてもよい。熱可塑性を有する材料は、生成部30において、フラットスクリュー40の回転とヒーター58の加熱によって可塑化されて溶融した状態に転化される。熱可塑性を有する材料の溶融によって生成された造形材料は、ノズル61から吐出された後、温度の低下によって硬化する。
【0090】
熱可塑性を有する材料は、そのガラス転移点以上に加熱されて完全に溶融した状態でノズル61から射出されることが望ましい。例えば、ABS樹脂は、ガラス転移点が約120℃であり、ノズル61からの吐出時には約200℃であることが望ましい。このように高温の状態で造形材料を吐出するために、ノズル61の周囲にはヒーターが設けられてもよい。
【0091】
造形装置100では、上述した熱可塑性を有する材料に、例えば、以下の金属材料を粉末状にした粉末材料が混入されてもよい。
<混入される金属材料の例>
マグネシウム(Mg)、鉄(Fe)、コバルト(Co)やクロム(Cr)、アルミニウム(Al)、チタン(Ti)、銅(Cu)、ニッケル(Ni)の単一の金属、もしくはこれらの金属を1つ以上含む合金。
<前記合金の例>
マルエージング鋼、ステンレス、コバルトクロムモリブデン、チタニウム合金、ニッケル合金、アルミニウム合金、コバルト合金、コバルトクロム合金。
【0092】
造形装置100においては、上記の金属材料の代わりに、セラミック材料の粉末を混入させることが可能である。セラミック材料としては、例えば、二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化ジルコニウムなどの酸化物セラミックスや、窒化アルミニウムなどの非酸化物セラミックスなどが使用可能である。
【0093】
金属材料やセラミック材料の粉末材料は、単一の金属の粉末や合金の粉末、セラミック材料の粉末を、複数種類、混合した混合材料であってもよい。また、金属材料やセラミック材料の粉末材料は、例えば、上で例示したような熱可塑性樹脂、あるいは、それ以外の熱可塑性樹脂によってコーティングされていてもよい。この場合には、生成部30において、その熱可塑性樹脂が溶融して流動性が発現されるものとしてもよい。
【0094】
金属材料やセラミック材料の粉末材料には、例えば、以下のような溶剤を添加することもできる。溶剤は、下記の中から選択される1種または2種以上を組み合わせて用いることができる。
<溶剤の例>
水、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等の(ポリ)アルキレングリコールモノアルキルエーテル類、酢酸エチル、酢酸n-プロピル、酢酸iso-プロピル、酢酸n-ブチル、酢酸iso-ブチル等の酢酸エステル類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、メチルエチルケトン、アセトン、メチルイソブチルケトン、エチル-n-ブチルケトン、ジイソプロピルケトン、アセチルアセトン等のケトン類、エタノール、プロパノール、ブタノール等のアルコール類、テトラアルキルアンモニウムアセテート類、ジメチルスルホキシド、ジエチルスルホキシド等のスルホキシド系溶剤、ピリジン、γ-ピコリン、2,6-ルチジン等のピリジン系溶剤、テトラアルキルアンモニウムアセテート(例えば、テトラブチルアンモニウムアセテート等)、ブチルカルビトールアセテート等のイオン液体等。
【0095】
その他に、材料供給部20に材料MRとして投入される金属材料やセラミック材料の粉末材料には、例えば、以下のようなバインダーを添加することもできる。
<バインダーの例>
アクリル樹脂、エポキシ樹脂、シリコーン樹脂、セルロース系樹脂或いはその他の合成樹脂又はPLA(ポリ乳酸)、PA(ポリアミド)、PPS(ポリフェニレンサルファイド)、PEEK(ポリエーテルエーテルケトン)或いはその他の熱可塑性樹脂。
【0096】
13.他の形態:
本開示の技術は、上述の各実施形態や実施例に限られるものではなく、その趣旨を逸脱しない範囲において種々の形態によって実現することができる。例えば、本開示の技術は以下の形態として実現可能である。以下に記載する各形態中の技術的特徴に対応する上記の各実施形態中の技術的特徴は、本開示の技術が有する課題の一部又は全部を解決するために、あるいは、本開示の技術が奏する効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中において必須であると説明されていなければ、適宜、削除することが可能である。
【0097】
(1)第1の形態は、三次元造形装置として提供される。この形態の三次元造形装置は、造形材料を吐出する吐出部と、前記吐出部から吐出された前記造形材料が堆積される造形ステージと、前記吐出部と前記造形ステージとの相対的な位置を変更する移動部と、前記造形ステージに設けられ、前記造形ステージの温度を調整する温度調整部と、前記吐出部、前記移動部、および、前記温度調整部を制御する制御部と、を備え、前記制御部は、前記吐出部と前記造形ステージとの相対的な位置を変えながら前記造形ステージの上に前記造形材料を堆積させて三次元造形物を造形し、硬化させた後、前記温度調整部を制御して前記造形ステージの温度を調整することによって、硬化した前記三次元造形物の前記造形ステージに接している部位を、加熱、または、冷却する。
この形態の三次元造形装置によれば、三次元造形物の造形ステージに接している部位を加熱して軟化させ、あるいは、冷却して熱収縮させることによって、造形ステージに対する三次元造形物の密着性を低下させることができる。よって、造形ステージからの三次元造形物の分離を容易に行うことができ、三次元造形物の変形や破損の発生を抑制することができる。
【0098】
(2)上記形態の三次元造形装置において、前記造形材料は、熱可塑性樹脂を含み、前記制御部は、前記温度調整部を制御して、前記三次元造形物の前記造形ステージに接している部位を、前記熱可塑性樹脂のガラス転移点より高く、前記熱可塑性樹脂の融点より低い温度に加熱してよい。
この形態の三次元造形装置によれば、温度調整部による加熱によって、三次元造形物の造形ステージに接している部位をより一層、軟化させることができる。よって、造形ステージからの三次元造形物の分離を、より容易に行うことができる。
【0099】
(3)上記形態の三次元造形装置において、前記造形ステージは、前記造形材料が堆積される領域内に、複数の穴部または複数の溝部を有してよい。
この形態の三次元造形装置によれば、造形物の造形中に、造形ステージの穴部または溝部に造形材料の一部が入り込むことによって、造形ステージに対する造形材料の固定性を高めることができるため、造形物の造形精度を高めることができる。
【0100】
(4)上記形態の三次元造形装置において、前記造形ステージは、前記造形材料が堆積される領域の少なくとも一部を被覆し、前記造形ステージの他の部位よりも熱伝導率が相対的に高い被覆層を有してよい。
この形態の三次元造形装置によれば、造形物の被覆部に接している部位を、温度調整部によって効率よく加熱、または、冷却することができる。
【0101】
(5)上記形態の三次元造形装置において、前記被覆層は、前記穴部の内壁面または前記溝部の内壁面を被覆してよい。
この形態の三次元造形装置によれば、穴部または溝部に入り込んでいる造形物の部位を、温度調整部によって効率よく、加熱、または、冷却することができる。そのため、加熱によって軟化、または、冷却によって収縮した当該部位を、溝部または穴部から離間させやすくできる。
【0102】
(6)上記形態の三次元造形装置において、前記温度調整部は、前記穴部または前記溝部の外周に沿って配置されてよい。
この形態の三次元造形装置によれば、造形ステージの穴部または溝部に入り込んでいる造形物の部位を、温度調整部によって、加熱、または、冷却しやすいため、造形ステージからの造形物の分離を容易におこなえるようにできる。
【0103】
(7)上記形態の三次元造形装置は、さらに、前記造形ステージ上に造形された前記三次元造形物を冷却する冷却部を備え、前記制御部は、硬化した前記三次元造形物の前記造形ステージに接している部位を前記温度調整部によって加熱しながら、硬化した前記三次元造形物を前記冷却部によって冷却してよい。
この形態の三次元造形装置によれば、温度調整部の加熱によって、造形物の造形ステージに接している部位以外の部位が軟化して変形してしまうことを抑制できる。
【0104】
(8)第2の形態は、三次元造形物の製造方法として提供される。この形態の製造方法は、吐出部と造形ステージとの相対的な位置を変えながら、前記吐出部から前記造形ステージに向かって造形材料を吐出させて堆積させることによって、前記造形ステージの上に三次元造形物を造形し、硬化させる工程と、硬化した前記三次元造形物の前記造形ステージに接している部位を加熱または冷却して、前記三次元造形物を前記造形ステージから分離する工程と、を備える。
この形態の三次元造形物の製造方法によれば、三次元造形物の造形ステージに接している部位を加熱して軟化させ、あるいは、冷却して熱収縮させることによって、造形ステージに対する三次元造形物の密着性を低下させることができる。よって、造形ステージからの三次元造形物の分離を容易に行うことができ、三次元造形物の変形や破損の発生を抑制することができる。
【0105】
(9)第3の形態は、三次元造形装置として提供される。この形態の三次元造形装置は、造形材料を吐出する吐出部と、前記吐出部から吐出された前記造形材料が堆積される造形ステージと、前記吐出部と前記造形ステージとの相対的な位置を変更する移動部と、前記造形材料を溶解する溶剤が貯留された溶剤貯留部と、前記造形ステージを前記溶剤貯留部に搬送する搬送部と、前記吐出部、前記移動部、および、前記搬送部を制御する制御部と、を備え、前記制御部は、前記吐出部と前記造形ステージとの相対的な位置を変えながら、前記造形ステージの上に前記造形材料を堆積させて三次元造形物を造形し、硬化させた後、前記搬送部によって、硬化した前記三次元造形物が配置されている前記造形ステージを前記溶剤貯留部へと搬送して、前記三次元造形物の前記造形ステージに接している部位に前記溶剤を接触させる。
この形態の三次元造形装置によれば、三次元造形物の造形ステージに接している部位を溶解させることによって、造形ステージに対する三次元造形物の密着性を低下させることができる。よって、造形ステージからの三次元造形物の分離を容易に行うことができ、三次元造形物の変形や破損の発生を抑制することができる。
【0106】
(10)第4の形態は、三次元造形物の製造方法であって、吐出部と造形ステージとの相対的な位置を変えながら、前記吐出部から前記造形ステージに向かって造形材料を吐出させて堆積させることによって、前記造形ステージ上に三次元造形物を造形し、硬化させる工程と、前記三次元造形物が硬化した後に、前記造形材料を溶解させる溶剤によって、硬化した前記三次元造形物の前記造形ステージに接している部位を溶解させて、前記三次元造形物を前記造形ステージから分離する工程と、を備える。
この形態の三次元造形物の製造方法によれば、三次元造形物の造形ステージに接している部位を溶解させることによって、造形ステージに対する三次元造形物の密着性を低下させることができる。よって、造形ステージからの三次元造形物の分離を容易に行うことができ、三次元造形物の変形や破損の発生を抑制することができる。
【0107】
(11)上記形態の三次元造形物の製造方法は、さらに、前記三次元造形物を前記造形ステージから分離させた後、前記三次元造形物の前記造形ステージに接していた底面を切削または研磨する工程を備えてよい。
この形態の製造方法によれば、三次元造形物の造形精度を高めることができる。
【符号の説明】
【0108】
20…材料供給部、22…連通路、30…生成部、31…ケース、32…駆動モーター、40…フラットスクリュー、41…外周側面、42…スクロール溝、43…凸条部、44…材料流入口、46…中央部、48…溝形成面、50…スクリュー対面部、52…対向面、54…案内溝、56…連通孔、58…ヒーター、60…吐出部、61…ノズル、62…吐出口、65…流路、70…冷却部、75…溶解部、76…溶剤貯留部、77…搬送部、100…三次元造形装置、100g…三次元造形装置、100h…三次元造形装置、100i…三次元造形装置、101…制御部、105…造形部、110…造形ステージ、110a…造形ステージ、110b…造形ステージ、110c…造形ステージ、110d…造形ステージ、110e…造形ステージ、110f…造形ステージ、110h…造形ステージ、110i…造形ステージ、111…造形面、112…穴部、113…溝部、115…温度調整部、115j…温度調整部、117…被覆層、130…移動部、M…モーター、ML…材料層、MLt…予定部位、MM…造形材料、MR…材料、OB…造形物、RX…回転軸、SV…溶剤