IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 三星電子株式会社の特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-11-08
(45)【発行日】2022-11-16
(54)【発明の名称】音方向探知センサー
(51)【国際特許分類】
   G01S 3/803 20060101AFI20221109BHJP
   G01H 3/00 20060101ALI20221109BHJP
   H04R 1/40 20060101ALI20221109BHJP
【FI】
G01S3/803
G01H3/00 A
H04R1/40 320A
【請求項の数】 8
(21)【出願番号】P 2018150145
(22)【出願日】2018-08-09
(65)【公開番号】P2019045481
(43)【公開日】2019-03-22
【審査請求日】2021-07-21
(31)【優先権主張番号】10-2017-0111921
(32)【優先日】2017-09-01
(33)【優先権主張国・地域又は機関】KR
(73)【特許権者】
【識別番号】390019839
【氏名又は名称】三星電子株式会社
【氏名又は名称原語表記】Samsung Electronics Co.,Ltd.
【住所又は居所原語表記】129,Samsung-ro,Yeongtong-gu,Suwon-si,Gyeonggi-do,Republic of Korea
(74)【代理人】
【識別番号】110000671
【氏名又は名称】八田国際特許業務法人
(72)【発明者】
【氏名】姜 誠 贊
(72)【発明者】
【氏名】金 載 興
(72)【発明者】
【氏名】朴 相 河
(72)【発明者】
【氏名】尹 容 燮
(72)【発明者】
【氏名】李 忠 鎬
(72)【発明者】
【氏名】洪 赫 基
【審査官】渡辺 慶人
(56)【参考文献】
【文献】実開昭50-049459(JP,U)
【文献】米国特許出願公開第2004/0060358(US,A1)
【文献】国際公開第2008/010269(WO,A1)
【文献】特開2005-210172(JP,A)
【文献】特開平10-104329(JP,A)
【文献】栗原 徹 ほか,生物模倣型音源定位MEMSセンサの設計,平成21年 電気学会全国大会講演論文集 [CD-ROM],日本,一般社団法人電気学会,2009年03月17日,Page: 207
(58)【調査した分野】(Int.Cl.,DB名)
G01S 1/72 - 1/82
3/80 - 3/86
5/18 - 5/30
7/52 - 7/64
15/00 - 15/96
G01H 1/00 - 17/00
H04R 1/20 - 1/40
(57)【特許請求の範囲】
【請求項1】
複数の第1共振器を有する第1共振器アレイと、
複数の第2共振器を有する第2共振器アレイと、
互いに対して傾くように配置された第1基板及び第2基板と、
前記第1基板を貫通した開口として形成された第1音引込み口と、
前記第2基板を貫通した開口として形成された第2音引込み口と、を含み、
前記第1共振器アレイは、前記第1音引込み口に対向し、前記第1基板に固定され、前記第2共振器アレイは、前記第2音引込み口に対向し、前記第2基板に固定されて、前記第1共振器アレイと第2共振器アレイは、互いに異なる指向性を有するように配置され
前記第1共振器アレイの出力及び前記第2共振器アレイの出力を基に、音方向を計算する計算機をさらに含み、
前記計算機は、前記第1共振器アレイの出力と、前記第2共振器アレイの出力とを比較して、音方向を探知するように構成され、
前記計算機は、時間ドメインにおいて、前記第1共振器アレイの前記複数の第1共振器の出力の二乗平均平方根の平均を計算することで前記第1共振器アレイの出力を計算するとともに、前記時間ドメインにおいて、第2共振器アレイの前記複数の第2共振器の出力の二乗平均平方根の平均を計算することで前記第2共振器アレイの出力を計算するように構成された音方向探知センサー。
【請求項2】
前記第1共振器アレイと前記第2共振器アレイは、同一の周波数応答特性を有する、請求項1に記載の音方向探知センサー。
【請求項3】
前記第1共振器アレイの前記複数の第1共振器と、前記第2共振器アレイの前記複数の第2共振器の共振周波数は、可聴周波数帯域内にある、請求項1または2に記載の音方向探知センサー。
【請求項4】
前記第1共振器アレイと前記第2共振器アレイは、指向性が90°差があるように配置された、請求項1~3のいずれか一項に記載の音方向探知センサー。
【請求項5】
前記複数の第1共振器のそれぞれは、前記第1基板に固定される固定部と、音響信号に応答して動く可動部と、前記可動部の動きを検知する検知部と、を含み、
前記複数の第2共振器それぞれは、前記第2基板に固定される固定部と、音響信号に応答して動く可動部と、前記可動部の動きを検知する検知部と、を含む請求項1~のいずれか一項に記載の音方向探知センサー。
【請求項6】
前記第1基板の一辺と、前記第2基板の一辺とが互いに連結されており、前記第1基板と、第2基板との角度が90°である、請求項1~のいずれか一項に記載の音方向探知センサー。
【請求項7】
第3音引込み口を有する第3基板と、
第4音引込み口を有する第4基板と、
前記第3音引込み口に対向し、前記第3基板に固定された第3共振器アレイと、
前記第4音引込み口に対向し、前記第4基板に固定された第4共振器アレイと、をさらに有し、
前記第1基板~前記第4基板は、四角筒状に配列されている、請求項1~のいずれか一項に記載の音方向探知センサー。
【請求項8】
第3音引込み口を有する第3基板と、
第4音引込み口を有する第4基板と、
第5音引込み口を有する第5基板と、
第6音引込み口を有する第6基板と、
前記第3音引込み口に対向し、前記第3基板に固定された第3共振器アレイと、
前記第4音引込み口に対向し、前記第4基板に固定された第4共振器アレイと、
前記第5音引込み口に対向し、前記第5基板に固定された第5共振器アレイと、
前記第6音引込み口に対向し、前記第6基板に固定された第6共振器アレイと、をさらに含み、
前記第1基板~前記第6基板は、六面体状に配列された、請求項1~のいずれか一項に記載の音方向探知センサー。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、音方向探知センサーに係り、さらに詳細には、複数の共振器アレイを利用し、音が来る方向を探知することができる音方向探知センサーに関する。
【背景技術】
【0002】
生活家電製品、映像ディスプレイ装置、仮想現実装置、拡張現実装置、人工知能スピーカーなどに装着され、音が来る方向を探知し、音声を認識することができるセンサーの活用性が増大している。音の方向を探知するセンサーは、一般的に、多数の無指向性音響センサー(omnidirectional acoustic sensor)に到逹する音の時間差を利用して、音が来る方向を計算する。多数の無指向性音響センサーを使用する場合、時間差を検知するためには、多数の無指向性音響センサー間の距離が十分に離れていなければならない。音方向探知センサーの角度分解能は、無指向性音響センサー間の距離と、サンプリング周波数とによって決定されるが、当該距離が長く、サンプリング周波数が大きいほど、分解能が低くなってしまう。
【先行技術文献】
【特許文献】
【0003】
【文献】特許第3353728号明細書
【文献】米国特許第6901802号明細書
【文献】韓国特許第1509342号明細書
【発明の概要】
【発明が解決しようとする課題】
【0004】
本発明は、音が来る方向を正確に探知することができる音方向探知センサーを提供することを目的とする。
【課題を解決するための手段】
【0005】
上記課題は、以下の手段により解決される。
【0006】
複数の第1共振器を有する第1共振器アレイと、複数の第2共振器を有する第2共振器アレイと、を含み、前記第1共振器アレイと第2共振器アレイは、互いに異なる指向性を有するように配置された音方向探知センサー。
【0007】
前記第1共振器アレイと前記第2共振器アレイは、同一の周波数応答特性を有し得る。
【0008】
前記第1共振器アレイの前記複数の第1共振器と、前記第2共振器アレイの前記複数の第2共振器の共振周波数は、可聴周波数帯域内にあり得る。
【0009】
前記第1共振器アレイと前記第2共振器アレイは、指向性が90°差があるように配置され得る。
【0010】
前記第1共振器アレイの出力及び前記第2共振器アレイの出力を基に、音方向を計算する計算機をさらに含み得る。
【0011】
前記計算機は、前記第1共振器アレイの出力と、前記第2共振器アレイの出力とを比較して、音方向を探知するように構成され得る。
【0012】
前記計算機は、時間ドメインにおいて、前記第1共振器アレイの前記複数の第1共振器の二乗平均平方根の平均を計算することで前記第1共振器アレイの出力を計算するとともに、前記時間ドメインにおいて、第2共振器アレイの前記複数の第2共振器の二乗平均平方根の平均を計算することで前記第2共振器アレイの出力を計算するように構成され得る。
【0013】
前記計算機は、前記複数の第1共振器のうちから選択された少なくとも1つの共振器の出力と、前記複数の第2共振器のうちから選択された選択された少なくとも1つの共振器の出力と、を比較し、音方向を探知するように構成され得る。
【0014】
前記計算機は、前記複数の第1共振器のうちから選択された少なくとも1つの共振器の出力と、前記複数の第2共振器のうちから選択された選択された少なくとも1つの共振器の出力と、から誘導された時間ドメインデータまたは周波数ドメインデータを比較し、音方向を探知するように構成され得る。
【0015】
互いに対して傾くように配置された第1基板及び第2基板と、前記第1基板を貫通した開口として形成された第1音引込み口と、前記第2基板を貫通した開口として形成された第2音引込み口と、をさらに含み得る。
【0016】
前記第1共振器アレイは、前記第1音引込み口に対向し、前記第1基板に固定され、前記第2共振器アレイは、前記第2音引込み口に対向し、前記第2基板に固定され得る。
【0017】
前記複数の第1共振器のそれぞれは、前記第1基板に固定される固定部と、音響信号に応答して動く可動部と、前記可動部の動きを検知する検知部と、を含み、前記複数の第2共振器それぞれは、前記第2基板に固定される固定部と、音響信号に応答して動く可動部と、前記可動部の動きを検知する検知部と、を含み得る。
【0018】
前記第1基板の一辺と、前記第2基板の一辺とが互いに連結されており、前記第1基板と、第2基板との角度が90°であり得る。
【0019】
第3音引込み口を有する第3基板と、第4音引込み口を有する第4基板と、前記第3音引込み口に対向し、前記第3基板に固定された第3共振器アレイと、前記第4音引込み口に対向し、前記第4基板に固定された第4共振器アレイと、をさらに有し、前記第1基板~前記第4基板は、四角筒状に配列され得る。
【0020】
第3音引込み口を有する第3基板と、第4音引込み口を有する第4基板と、第5音引込み口を有する第5基板と、第6音引込み口を有する第6基板と、前記第3音引込み口に対向し、前記第3基板に固定された第3共振器アレイと、前記第4音引込み口に対向し、前記第4基板に固定された第4共振器アレイと、前記第5音引込み口に対向し、前記第5基板に固定された第5共振器アレイと、前記第6音引込み口に対向し、前記第6基板に固定された第6共振器アレイと、をさらに含み、前記第1基板~前記第6基板は、六面体状に配列され得る。
【0021】
第1基板と、前記第1基板を貫通する開口としてそれぞれ形成された第1音引込み口及び第2音引込み口と、前記第1基板と間隔をおいて配置された第2基板と、前記第2基板を貫通する開口として形成された音排出口と、前記第1音引込み口に対向し、前記第1基板に固定された第1共振器と、前記第2音引込み口に対向し、前記第1基板に固定された第2共振器と、を含む音方向探知センサー。
【0022】
前記第1基板及び前記第2基板は互いに平行に配置され、前記第1基板のエッジと、前記第2基板のエッジとの間に配置されたスペーサーをさらに含み得る。
【0023】
前記第1音引込み口と前記第2音引込み口は、互いに離して配置されており、前記第1音引込み口と前記音排出口とが、第1方向の音経路を形成し、前記第2音引込み口と前記音排出口とが、第1方向と異なる第2方向の音経路を形成し得る。
【0024】
前記第1共振器と前記第2共振器は、互いに平行に配置され得る。
【0025】
前記第1共振器は、複数の第1共振器を含み、前記第2共振器は、複数の第2共振器を含み得る。
【0026】
前記複数の第1共振器、及び前記複数の第2共振器のそれぞれは、前記第1基板に固定される固定部と、音響信号に応答して動く可動部と、前記可動部の動きを検知し得る。
【0027】
前記複数の第1共振器の前記可動部は、前記第1音引込み口を介して、入射音波に露出されるように配置され、前記複数の第2共振器の前記可動部は、前記第2音引込み口を介して、入射音波に露出されるように配置され得る。
【0028】
前記複数の第1共振器の前記固定部は、前記第1音引込み口の一辺に沿って、互いに重なることがないように配列され、前記複数の第2共振器の前記固定部は、前記第2音引込み口の一辺に沿って、互いに重なることがないように配列され得る。
【図面の簡単な説明】
【0029】
図1】実施形態による音方向探知センサーの構造を示す概略的な平面図である。
図2図1に図示された音方向探知センサーの概略的な断面図である。
図3A】実施形態による音方向探知センサーの概略的な背面図である。
図3B】実施形態による音方向探知センサーの概略的な背面図である。
図3C】実施形態による音方向探知センサーの概略的な背面図である。
図4図1に図示された音方向探知センサーの1つの共振器の構造を概略的に示す断面図である。
図5図1に図示された音方向探知センサーの動作原理を示す概略的な断面図である。
図6図1に図示された音方向探知センサーのそれぞれの共振器アレイの指向性を例示的に示す図面である。
図7図1に図示された音方向探知センサーのそれぞれの共振器アレイの指向性を例示的に示す図面である。
図8図1に図示された音方向探知センサーの2個の共振器アレイの指向性特性を測定した結果を示すグラフである。
図9】2個の共振器アレイの出力を基に、音方向を計算する計算機を示すブロック図である。
図10】2個の共振器アレイで測定された音を利用し、音が来る方向を計算する過程を概略的に示すフローチャートである。
図11】測定された音方向と、実際音の方向とを比較して示すグラフである。
図12】ノイズがある環境において、第1共振器アレイの出力を周波数ドメインで平均化することを例示的に示ス図面である
図13】ノイズがある環境において、第2共振器アレイの出力を周波数ドメインで平均化することを例示的に示す図面である。
図14】実施形態による音方向探知センサーの構造を示す概略的な斜視図である。
図15図14に図示された音方向探知センサーの動作原理を示す概略的な断面図である。
図16図14に図示された音方向探知センサーのそれぞれの共振器アレイの方向性特性を測定した結果を示すグラフである。
図17】実施形態による音方向探知センサーの構造を示す概略的な斜視図である。
図18】実施形態による音方向探知センサーの構造を示す概略的な斜視図である。
図19】実施形態による音方向探知センサーの構造を示す概略的な斜視図である。
【発明を実施するための形態】
【0030】
以下、添付された図面を参照し、複数の共振器アレイを含む音方向探知センサーについて詳細に説明する。以下の図面において、同一の符号は、同一の構成要素を指し、図面において、各構成要素の大きさは、説明の明瞭性及び便宜のために、誇張されている。また、以下で説明する実施形態は、例示的なものに過ぎず、実施形態から多様な変形が可能である。また、以下で説明する層構造において、「上部」や「上」と記載された表現は、接触して真上にあるものだけではなく、非接触で上にあるものも含み得る。
【0031】
本明細書で考慮される音方向探知センサーは、2以上の共振構造が互いに異なる指向性を有するように配置される。それぞれの共振構造は、1つの共振器、または複数の共振器を有することができる。なお、たとえ以下の説明と図面が複数の共振器を含む共振構造を示している場合であっても、複数の共振器が必要でなければ、1つの共振器のみ有する共振構造により代替され得る。例えば、以下の説明においては、音方向探知センサーが、複数の共振器をそれぞれ含む2個の共振器アレイを使用すると記述されているが、それは、単に例示であり、2個の共振器アレイの代わりに、2個の共振器を使用することも可能である。
【0032】
図1は、実施形態による音方向探知センサーの構造を示す概略的な平面図である。図1を参照すれば、実施形態による音方向探知センサー100は、互いに異なる共振周波数を有する複数の共振器を有する第1共振器アレイ110、及び互いに異なる共振周波数を有する複数の共振器を有する第2共振器アレイ120を含んでもよい。第1共振器アレイ110と第2共振器アレイ120の共振器は、同一であってもよい。言い換えれば、第1共振器アレイ110と第2共振器アレイ120の共振器が、同一の周波数応答特性を有することができる。しかし、必ずしもそれに限定されず、第1共振器アレイ110の複数共振器と、第2共振器アレイ120の複数共振器とが互いに異なる周波数応答特性を有してもよい。
【0033】
このような第1共振器アレイ110と第2共振器アレイ120は、音を検知することができる音響センサーの役割を担う。そのために、第1共振器アレイ110の複数の共振器と、第2共振器アレイ120の複数の共振器の共振周波数は、例えば、可聴周波数帯域内とし得る。例えば、第1共振器アレイ110及び第2共振器アレイ120は、500Hzから始まり、共振周波数の増加分が75Hzである48個の共振器を含むことができる。また、第1共振器アレイ110と、第2共振器アレイ120の複数の共振器のうちの一部は、可聴周波数より低い共振周波数を有するか、あるいは可聴周波数より高い共振周波数を有することもできる。
【0034】
また、第1共振器アレイ110と第2共振器アレイ120は、実質的に平らな上部基板101上で、隣接して配置される。例えば、第1共振器アレイ110と第2共振器アレイ120は、互いに平行に一列に配置される。第1共振器アレイ110及び第2共振器アレイ120に音が到逹するように、上部基板101を貫通した開口として、第1音引込み口130及び第2音引込み口140が設けられる。第1音引込み口130と第2音引込み口140は、間隔をおいて一列に配置される。第1共振器アレイ110は、第1音引込み口130に対向して配置され、第1音引込み口130を介して、入射音波に露出される。また、第2共振器アレイ120は、第2音引込み口140に対向して配置され、第2音引込み口140を介して、入射音波に露出される。
【0035】
図2は、図1に図示された音方向探知センサー100の概略的な断面図である。図2を参照すれば、音方向探知センサー100は、上部基板101に対向し、上部基板101と間隔をおいて配置された下部基板102、及び上部基板101と下部基板102との間隔を一定に維持するために、上部基板101のエッジと、下部基板102のエッジとの間に、各基板101、102に垂直に配置されたスペーサー103をさらに含んでもよい。下部基板102は、実質的に平らな平板形態を有し、上部基板101と平行に配置されるが、必ずしもそれに限定されない。例えば、下部基板102は、湾曲された曲面の形態を有することもできる。
【0036】
また、下部基板102を貫通した開口として、1つの音排出口150が設けられる。外部から、第1音引込み口130及び第2音引込み口140を通過した音は、音排出口150を介して、音方向探知センサー100の下部に抜け出す。従って、第1音引込み口130と音排出口150とにより、第1方向の音経路(acoustic path)が形成され、第2音引込み口140と音排出口150とにより、第2方向の音経路が形成される。第1音引込み口130と第2音引込み口140とが、上部基板101上で互いに離れて配置されているために、第1方向と第2方向は、互いに異なる方向になる。
【0037】
図3A図3Cは、多様な実施形態による音方向探知センサー100の概略的な背面図であり、音排出口150の多様な位置及び形態を例示的に示している。例えば、図3Aを参照すれば、長方形の形態を有する音排出口150が、下部基板102の中心部に配置され得る。また、図3Bに図示されているように、長方形状の音排出口150が、下部基板102の左側に偏って配置され得る。また、図3Cに図示されているように、円形態を有する音排出口150が、下部基板102の中心部に配置され得る。それ以外にも、音排出口150は、多様な他の形態、大きさ及び位置を有することができる。そのような音排出口150の位置は、第1方向と第2方向とを決定し、音排出口150の形態及び大きさは、音方向探知センサー100の特性に影響を与える。従って、音方向探知センサー100の用途により、音排出口150の形態、大きさ、及び位置を適切に選択することができる。
【0038】
再び図2を参照すれば、第1共振器アレイ110は、第1音引込み口130に対向し、上部基板101の下部面に固定され、第2共振器アレイ120は、第2音引込み口140に対向し、上部基板101の下部面に固定される。従って、第1共振器アレイ110は、第1音引込み口130から音排出口150に、第1方向に沿って進む音に応答し、第2共振器アレイ120は、第2音引込み口140から音排出口150に、第2方向に沿って進む音に応答することができる。多様なスペクトルを有する音に対して、均一な精度を維持するために、第1共振器アレイ110及び第2共振器アレイ120は、共振周波数が互いに異なる複数の共振器を含んでもよい。第1共振器アレイ110及び第2共振器アレイ120のそれぞれの共振器が、それに対応する周波数を有する音に応答して振動するように、それぞれの共振器の一端は、上部基板101に固定され、第1音引込み口130または第2音引込み口140を介して、入射音波に露出された他端は、自由端になる。
【0039】
例えば、図4は、図1に図示された音方向探知センサー100の1つの共振器の構造を概略的に示す断面図である。図4を参照すれば、方向探知センサー100の共振器Rは、上部基板101に固定される固定部10、音響信号に反応して動く可動部30、及び可動部30の動きをセンシングする検知部20を含む。また、共振器Rは、可動部30に、所定の質量mを提供するための質量体40をさらに含んでもよい。
【0040】
第1共振器アレイ110及び第2共振器アレイ120の複数の共振器Rは、音響信号の入力経路に、全体的に同時に露出されるように、互いに重なることがないように、単一平面に配列される。例えば、第1共振器アレイ110の複数の共振器Rの固定部10は、第1音引込み口130の一辺に沿って、互いに重なることがないように配列され、第2共振器アレイ120の複数の共振器Rの固定部10も、第2音引込み口140の一辺に沿って、互いに重なることがないように配列される。そして、第1共振器アレイ110の複数の共振器Rの可動部30は、第1音引込み口130を介して、入射音波に露出されるように配置され、第2共振器アレイ120の複数の共振器Rの可動部30も、第2音引込み口140を介して、入射音波に露出されるように配置される。
【0041】
可動部30は、音響信号(入射音波)によって弾性振動が可能になるように、弾性フィルムからなる。例えば、弾性フィルムとして、シリコン、金属、ポリマーなどの材質が使用される。弾性フィルムの長さは、質量体40の質量mと共に、共振器Rの共振特性を決める要素になる。言い換えれば、弾性フィルムの長さにより、共振器Rの共振周波数が異なる。例えば、長さが短いほど、可動部30は、相対的に高周波数の音響によって振動し、長さが長いほど、可動部30は、相対的に低周波数の音響により、振動することができる。従って、可動部30の長さが短い共振器Rの共振周波数は、相対的に高く、可動部30の長さが長い共振器Rの共振周波数は、相対的に低い。
【0042】
感知部20は、可動部30の動きをセンシングするセンサー層を含んでもよい。検知部20は、例えば、圧電素子を含んでもよい。その場合、検知部20は、電極層、圧電物質層及び電極層が順に積層された構造を有することができる。圧電物質としては、例えば、ZnO、SnO、PZT、ZnSnO、ポリフッ化ビニリデン(PVDF)、ポリ(フッ化ビニリデン-トリフルオロエチレン)(P(VDF-TrFE))、AlNまたはPMN-PTなどが使用される。また、電極層としては、金属の他、多様な導電性材料が使用される。
【0043】
共振器Rは、例えば、およそ数μm以下の幅、およそ数μm以下の厚み、及びおよそ数mm以下の長さを有することができる。このように微細な大きさを有する共振器Rは、MEMS(micro electro mechanical system)工程によって製作され得る。そのような共振器Rは、それ自体の共振周波数と一致する外部の音響信号に反応し、上下に振動することができる。また、共振器Rが振動する振動振幅は、音響信号の圧力勾配(pressure gradient)に比例することができる。そのように共振器Rが上下に振動するために、第1共振器アレイ110及び第2共振器アレイ120は、双指向性(bi-directional)を有することになる。
【0044】
図5は、図1に図示された音方向探知センサー100の動作原理を示す概略的な断面図である。前述のように、第1音引込み口130及び音排出口150により、第1方向の音経路が形成され、第2音引込み口140及び音排出口150により、第2方向の音経路が形成される。それにより、第1共振器アレイ110は、第1方向に沿う双指向性を有し、第2共振器アレイ120は、第2方向に沿う双指向性を有し、同一平面上で平行に配置されたにもかかわらず、互いに異なる指向性を有することができる。
【0045】
例えば、図5に図示されているように、第1音引込み口130と第2音引込み口140との間の下部基板102の真中に、音排出口150が配置され、第1方向と第2方向とが上部基板101の平面の法線方向に対し、角度θだけ傾く。図6及び図7は、図5に図示された実施形態において、音方向探知センサー100の第1共振器アレイ110及び第2共振器アレイ120の指向性を例示的に示す。図6に図示されているように、第1共振器アレイ110は、正面に対して反時計回り方向に、θだけ傾いた双指向性を有する。一方、図7に図示されているように、第2共振器アレイ120は、正面に対し、時計回り方向にθだけ傾いた双指向性を有することができる。言い換えれば、第1共振器アレイ110と第2共振器アレイ120とが、互いに異なる方向に傾いた指向性を有するということが分かる。図6及び図7において、音方向探知センサー100の上部基板101の平面の法線方向は0°と定義され、最外側の円は、0dBを示し、最内側の円は、-40dBを示す。
【0046】
従って、音方向探知センサー100に入射する入射音(incident sound)の方向により、第1共振器アレイ110の共振器が振動する振動振幅と、第2共振器アレイ120の共振器が振動する振動振幅とが異なる。例えば、図5において、音方向探知センサー100の左側から、音方向探知センサー100の上部基板101の平面の法線方向に対して角度θsだけ傾いた角度で音が入射する場合、第1共振器アレイ110には、その固有指向性に対して、θ-θsの角度で音が入射し、第2共振器アレイ120には、その固有指向性に対して、θ+θsの角度で音が入射する。音方向探知センサー100の上部基板101の平面の法線方向を0゜と定義し、θが45゜であるならば、θsが0゜であるとき、第1共振器アレイ110と第2共振器アレイ120との共振器の振動振幅が同一であり、-45゜<θs<0゜であるとき、第1共振器アレイ110の共振器の振動振幅が、第2共振器アレイ120の共振器の振動振幅より大きく、0゜<θs<45゜であるとき、第2共振器アレイ120の共振器の振動振幅が、第1共振器アレイ110の共振器の振動振幅より大きくなる。
【0047】
図8は、音方向探知センサー100の第1共振器アレイ110及び第2共振器アレイ120の、前述の指向性特性を測定した結果を示すグラフである。図8において、横軸は、音方向探知センサー100の上部基板101の平面の法線方向に対し、音方向探知センサー100に音が入射する角度を示し、縦軸は、第1共振器アレイ110及び第2共振器アレイ120の共振器の振動振幅を示す。図8のグラフは、音方向探知センサー100の上部基板101の平面の法線方向に対し、0°~360°の角度で、それぞれ1kHzの周波数を有する音を発生させ、第1共振器アレイ110及び第2共振器アレイ120の平均振動振幅をノーマライズして得たものである。図8に図示されているように、音が入射する角度により、第1共振器アレイ110の平均振動振幅と、第2共振器アレイ120の平均振動振幅が異なり得る。
【0048】
従って、第1共振器アレイ110の出力と、第2共振器アレイ120の出力とを比較することにより、音が入射する方向を探知することが可能である。例えば、図9は、第1共振器アレイ110及び第2共振器アレイ120の出力を基に、音方向を計算する計算機を示すブロック図である。図9を参照すれば、音方向探知センサー100は、第1共振器アレイ110及び第2共振器アレイ120と連結され、第1共振器アレイ110及び第2共振器アレイ120から受信した出力を基に、音が入射する方向を計算する計算機160をさらに含み得る。計算機160は、第1共振器アレイ110の出力と、第2共振器アレイ120の出力とを比較し、その結果を利用して、音方向を計算することができる。第1共振器アレイ110の出力と、第2共振器アレイ120の出力とを比較し、音方向を決定するアルゴリズムは多様に具現される。
【0049】
例えば、図10は、第1共振器アレイ110及び第2共振器アレイ120で測定された音を利用し、音が来る方向を計算する過程を概略的に示すフローチャートである。まず、計算機160は、一定時間の間、第1共振器アレイ110から出力を受信する(S10)。計算機160は、同時に、同じ一定時間の間、第2共振器アレイ120から出力を受信する(S11)。その後、計算機160は、第1共振器アレイ110からの出力を平均化する(S12)。例えば、計算機160は、時間ドメイン(time domain)において、第1共振器アレイ110の複数の共振器の二乗平均平方根(RMS:root-mean-square)の平均を計算することができる。同様に、計算機160は、時間ドメインにおいて、第2共振器アレイ120の複数の共振器の二乗平均平方根の平均を計算することができる(S13)。その後、計算機160は、第1共振器アレイ110の出力と、第2共振器アレイ120の出力とを比較するために、第1共振器アレイ110の出力の平均(第1RMSの平均)を第2共振器アレイ120の出力の平均(第2RMSの平均)で除算することができる(S14)。
【0050】
そのように得られた比較値は、第1共振器アレイ110及び第2共振器アレイ120に、音が入射する方向が同一であるとしても、第1共振器アレイ110及び第2共振器アレイ120の特性によって異なり得る。従って、第1共振器アレイ110及び第2共振器アレイ120の特性を考慮し、計算機160は、段階(S14)で得られた比較値を補償する補償段階を実行する(S15)。例えば、第1共振器アレイ110及び第2共振器アレイ120の指向性、配置方向、周波数応答特性などに基づく補償パラメータは、計算機160に前もって保存されている。計算機160は、前もって保存された補償パラメータを利用し、段階(S14)で得られた比較値を補正することができる。最後に、計算機160は、段階(S15)で得られた補正された比較値を利用し、音方向を計算することができる。例えば、計算機160には、補正された比較値及び角度で示した音の方向間の関係に係わるデータが、ルックアップテーブルの形態で、前もって保存されている。それにより、計算機160は、別途の演算を行わず、ルックアップテーブルを参照し、補正された比較値に対応する音方向を求めることができる。
【0051】
前述の段階(S10~S13)は、多様な他の方法でも実行される。例えば、計算機160は、第1共振器アレイ110の複数の共振器のうちから選択された一つ、または複数の共振器の出力を基に、出力の平均を得て、第2共振器アレイ120の複数の共振器のうちから選択された一つ、または複数の共振器の出力を基に、出力の平均を得ることができる。ここで、第1共振器アレイ110で選択された共振器と、第2共振器アレイ120で選択された共振器は、互いに同一の共振周波数を有することができる。出力の平均を計算する段階(S12、S13)において、計算機160は、第1共振器アレイ110で選択された共振器によって得られた出力から誘導された時間ドメインデータと、第2共振器アレイ120で選択された共振器によって得られた出力から誘導された時間ドメインデータとを比較することができる。言い換えれば、計算機160は、選択された共振器のRMSの平均を、時間ドメインに対して計算し、第1共振器アレイ110と、第2共振器アレイ120との比較値を求めることができる。
【0052】
一方、計算機160は、第1共振器アレイ110で選択された共振器によって得られた出力から誘導された周波数ドメインデータと、第2共振器アレイ120で選択された共振器によって得られた出力から誘導された周波数ドメインデータとを比較することができる。言い換えれば、計算機160は、選択された共振器のRMSの平均を、周波数ドメインに対して計算し、第1共振器アレイ110と、第2共振器アレイ120との比較値を求めることができる。周波数ドメインを基に比較値を計算する場合、第1共振器アレイ110及び第2共振器アレイ120から、一定時間の間出力を受ける必要がなく、第1共振器アレイ110で受信した音のスペクトル、及び第2共振器アレイ120で受信した音のスペクトルのみを利用することができる。
【0053】
図11は、そのように測定された音方向と、実際の音方向とを比較して示すグラフである。図11において、横軸は、実際の音方向を角度で表示したものであり、縦軸は、測定された音方向を角度で表示したものである。図11を参照すれば、実際の音方向と、測定された音方向とが線形的な関係を有することから、本実施形態による音方向探知センサー100は、比較的高い精度で、音方向を探知することができるということが分かる。
【0054】
そのような音方向探知センサー100は、互いに異なる指向性を有している第1共振器アレイ110と、第2共振器アレイ120とを利用し、音方向を探知するために、第1共振器アレイ110と第2共振器アレイ120との距離に関する制約がない。その結果、第1共振器アレイ110と第2共振器アレイ120との距離が近いとしても、比較的良好な角度分解能で、音方向を探知することができる。従って、本実施形態による音方向探知センサー100は、小型化が可能であり、小型電子製品に搭載することができる。また、本実施形態による音方向探知センサー100は、時間の経過に伴い、連続的に音方向を測定することも可能である。
【0055】
音方向探知センサー100は、共振周波数が異なる複数の共振器を使用するために、広帯域測定が可能であり、ノイズがある環境でも、音方向を正確に探知することができる。また、周波数帯域情報を有しているので、音の復元も可能である。例えば、図12は、ノイズがある環境において、第1共振器アレイ110の出力を、周波数ドメインにおいて平均化することを例示的に示し、図13は、ノイズがある環境において、第2共振器アレイ120の出力を周波数ドメインにおいて平均化することを例示的に示す。図12及び図13に図示されているように、第1共振器アレイ110及び第2共振器アレイ120の出力を、周波数ドメインで平均化し、第1共振器アレイ110及び第2共振器アレイ120の平均化された出力を互いに比較するために、例えば、自動車ノイズのように、特定周波数帯域のノイズによる影響を減らすことができる。従って、特定周波数帯域のノイズがある環境においては、音方向探知センサー100がロバストな特性を維持することができる。
【0056】
また、音方向探知センサー100は、複数の共振器を利用し、入射音のスペクトルを分析することができるので、持続的にノイズが発生する特定周波数領域を除去し、第1共振器アレイ110及び第2共振器アレイ120の出力を平均化することも可能である。従って、第1共振器アレイ110及び第2共振器アレイ120の出力を平均化するとき、ノイズ成分を除去することができ、測定精度をさらに向上させることができる。また、入射音のうち、特定周波数成分のみを選択し、当該周波数成分を有する音の方向を選択的に探知することもできる。また、多くの周波数成分の音に対し、それぞれの音方向を同時に探知することも可能である。そのように、複数の周波数成分の音方向を同時に探知することにより、立体的な音響情報を得ることができる。
【0057】
図14は、他の実施形態による音方向探知センサーの構造を示す概略的な斜視図である。図14を参照すれば、実施形態による音方向探知センサー200は、互いに対して傾くように配置された第1基板201及び第2基板202、第1基板201を貫通した開口として形成された第1音引込み口210、第2基板202を貫通した開口として形成された第2音引込み口220、第1音引込み口210に対向し、第1基板201に固定される第1共振器アレイ110、及び第2音引込み口220に対向し、第2基板202に固定される第2共振器アレイ120を含んでもよい。
【0058】
図14には、第1基板201と第2基板202とが互いに連結されているように図示されている。例えば、第1基板201の一辺と、第2基板202の一辺とが互いに接して連結されている。その場合、第1基板201と第2基板202とを一体に形成することができる。しかし、第1基板201と第2基板202とが互いに分離させてもよく、その場合、第1基板201と第2基板202とが個別的に製作され得る。第1共振器アレイ110及び第2共振器アレイ120に、互いに異なる指向性を与えるために、第1基板201と第2基板202は、互いに対して傾くように配置され得る。それにより、第1共振器アレイ110と第2共振器アレイ120とが互いに異なる方向に向かって配置され、互いに異なる指向性を有することができる。例えば、第1基板201と第2基板202との内角が90°とする。それにより、第1共振器アレイ110と第2共振器アレイ120は、指向性に90°の差があるように配置される。
【0059】
第1共振器アレイ110及び第2共振器アレイ120は、前述の構造と同一構造を有することができる。例えば、第1共振器アレイ110及び第2共振器アレイ120は、それぞれ共振周波数が互いに異なる複数の共振器を含んでもよい。また、第1共振器アレイ110及び第2共振器アレイ120のそれぞれの共振器は、図4に図示された固定部10、可動部30、感知部20及び質量体40を含んでもよい。第1共振器アレイ110の固定部10は、第1基板201に固定され、第2共振器アレイ120の固定部10は、第2基板202に固定される。また、第1共振器アレイ110の複数共振器の固定部10は、第1音引込み口210の一辺に沿って、互いに重なることがないように配列され、第2共振器アレイ120の複数共振器の固定部10も、第2音引込み口220の一辺に沿って、互いに重なることがないように配列される。また、第1共振器アレイ110の複数共振器の可動部30は、第1音引込み口210を介して、入射音波に露出されるように配置され、第2共振器アレイ120の複数共振器の可動部30は、第2音引込み口220を介して、入射音波に露出されるように配置される。それにより、第1共振器アレイ110及び第2共振器アレイ120の可動部30が、外部から第1音引込み口210及び第2音引込み口220を通過する音に反応して振動することができる。
【0060】
図15は、図14に図示された音方向探知センサー200の動作原理を示す概略的な断面図である。前述のように、第1共振器アレイ110と第2共振器アレイ120は、互いに異なる方向に向けて配置されており、互いに異なる指向性を有する。例えば、図15に図示されているように、第1基板201と第2基板202とが互いに接する尖った部分が正面に向けて配置され、第1基板201と水平面との角度、及び第2基板202と水平面との角度がθであると仮定すれば(第1基板201と第2基板202との角度+2θが180°になるように、第1基板201、第2基板202及び水平面が三角形をなす)、第1共振器アレイ110の法線は、正面に対して反時計回り方向にθだけ傾いた双指向性を有し、第2共振器アレイ120の法線は、正面に対して時計回り方向にθだけ傾いた双指向性を有することができる。
【0061】
従って、音方向探知センサー200に入射する入射音(incident sound)の方向により、第1共振器アレイ110の共振器が振動する振動振幅と、第2共振器アレイ120の共振器が振動する振動振幅とが異なり得る。例えば、図15において、音方向探知センサー200の左側から、音方向探知センサー200の正面方向に対して、角度θsだけ傾いた角度で音方向探知センサー200に音が入射する場合、第1共振器アレイ110の法線に対して、θ-θsの角度で、第1共振器アレイ110に音が入射し、第2共振器アレイ120の法線に対して、θ+θsの角度で、音が第2共振器アレイ120に入射することになる。音方向探知センサー200の正面方向を0゜と定義し、θが45゜であるならば、第1共振器アレイ110と第2共振器アレイ120は、90゜の指向性差を有する。それにより、θsが0゜であるとき、第1共振器アレイ110と第2共振器アレイ120との共振器の振動振幅が同一であり、-45゜<θs<0゜であるとき、第1共振器アレイ110の共振器の振動振幅が、第2共振器アレイ120の共振器の振動振幅より大きく、0゜<θs<45゜であるとき、第2共振器アレイ120の共振器の振動振幅が、第1共振器アレイ110の共振器の振動振幅より大きくなる。
【0062】
図16は、音方向探知センサー200の第1共振器アレイ110及び第2共振器アレイ120の前述の指向性特性を測定した結果を示すグラフである。図16において、横軸は、正面方向に対して、音方向探知センサー200に音が入射する角度を示し、縦軸は、第1共振器アレイ110及び第2共振器アレイ120の共振器の振動振幅を示す。図16のグラフは、音方向探知センサー200に対して、0°~360°の角度でそれぞれ1kHzの周波数を有する音を発生させ、第1共振器アレイ110及び第2共振器アレイ120の平均振動振幅をノーマライズして得たものである。図16に図示されているように、音が入射する角度により、第1共振器アレイ110の平均振動振幅と、第2共振器アレイ120との平均振動振幅とが異なり得る。また、入射音の方向が、0゜、90゜、180゜、270゜に近接するとき、第1共振器アレイ110及び第2共振器アレイ120の平均振動振幅が同一になるということが分かる。従って、第1共振器アレイ110の出力と、第2共振器アレイ120の出力とを比較することにより、音が入射する方向を探知することが可能である。
【0063】
一方、図14に図示された音方向探知センサー200は、単に2個の共振器アレイ110,120のみを有するように図示されたが、これに限定されない。例えば、図17図19は、多様な他の実施形態による音方向探知センサーの構造を示す概略的な斜視図である。
【0064】
図17を参照すれば、実施形態による音方向探知センサー200aは、第1音引込み口210を有する第1基板201、第2音引込み口220を有する第2基板202、第3音引込み口230を有する第3基板203、第4音引込み口240を有する第4基板204、第1音引込み口210に対向し、第1基板201に固定された第1共振器アレイ110、第2音引込み口220に対向し、第2基板202に固定された第2共振器アレイ120、第3音引込み口230に対向し、第3基板203に固定された第3共振器アレイ130、及び第4音引込み口240に対向し、第4基板204に固定された第4共振器アレイ140を含み得る。例えば、第1基板201~第4基板204は、正四角形または長方形の筒を形成するように配置され得る。それにより、第1共振器アレイ110~第4共振器アレイ140は、水平面に対して、4個の互いに異なる指向性を有することができる。
【0065】
図18を参照すれば、図17に図示された音方向探知センサー200aの構成に追加し、実施形態による音方向探知センサー200bは、第5音引込み口250を有する第5基板205、第6音引込み口260を有する第6基板206、第5音引込み口250に対向し、第5基板205に固定された第5共振器アレイ150、及び第6音引込み口260に対向し、第6基板206に固定された第6共振器アレイ160をさらに含んでもよい。例えば、第5基板205と第6基板206は、互いに対向して配置され、第1基板201~第4基板204に対して垂直に配置される。従って、第1基板201~第6基板206は、正六面体または直方体を形成することができる。それにより、第1共振器アレイ110~第6共振器アレイ160は、6個の互いに異なる指向性を有することができる。
【0066】
図19を参照すれば、実施形態による音方向探知センサー200cは、円形の第1音引込み口270を有する第1基板201、円形の第2音引込み口280を有する第2基板202、第1音引込み口270に対向し、第1基板201に固定された第1共振器アレイ210、及び第2音引込み口280に対向し、第2基板202に固定された第2共振器アレイ220を含み得る。前述の実施形態において、音引込み口130,140,210,220,230,240,250,260は、いずれも長方形の形態を有しているが、図19に図示されているように、円形態の音引込み口270,280とすることも可能である。また、前述の実施形態において、共振器アレイ110,120,130,140,150,160の共振器は、音引込み口130,140,210,220,230,240,250,260の一辺に沿って一列に配置されたが、図19に図示されているように、第1共振器アレイ210及び第2共振器アレイ220の複数の共振器が、それぞれ第1音引込み口270及び第2音引込み口280の円弧に沿って円形に配列され得る。
【0067】
前述した複数の共振器アレイを含む音方向探知センサーは、図面に示された実施形態を参照して説明されたが、前述したように、1つの共振器のみを有する共振構造でも代替し得る。また、前述の実施形態は、例示的なものに過ぎず、当該分野において、当業者でならば、それらから多様な変形が可能であるということを理解するであろう。従って、開示された実施形態は、限定的な観点ではなく、説明的な観点から考慮されなければならない。本明細書の権利範囲は、前述の実施形態ではなく、特許請求の範囲に示されており、それと同等な範囲内にある全ての差異は、権利範囲に含まれるものであると解釈されなければならない。
【符号の説明】
【0068】
10 固定部、
20 感知部、
30 可動部、
40 質量体、
100,200,200a,200b,200c 音方向探知センサー、
101,102,201,202,203,204,205,206 基板、
103 スペーサー、
110,120,130,140,150,160,210,220 共振器アレイ、
130,140,210,220,230,240,250,260,270,280 音引込み口、
150 音排出口、
160 計算機。
図1
図2
図3A
図3B
図3C
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19