(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-11-09
(45)【発行日】2022-11-17
(54)【発明の名称】協調された帯域および非協調の帯域におけるNR-SS統一動作モードのための方法および装置
(51)【国際特許分類】
H04W 16/14 20090101AFI20221110BHJP
H04W 56/00 20090101ALI20221110BHJP
【FI】
H04W16/14
H04W56/00 130
【外国語出願】
(21)【出願番号】P 2021128057
(22)【出願日】2021-08-04
(62)【分割の表示】P 2019564504の分割
【原出願日】2018-05-22
【審査請求日】2021-09-03
(32)【優先日】2017-05-24
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2018-05-21
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】595020643
【氏名又は名称】クゥアルコム・インコーポレイテッド
【氏名又は名称原語表記】QUALCOMM INCORPORATED
(74)【代理人】
【識別番号】100108855
【氏名又は名称】蔵田 昌俊
(74)【代理人】
【識別番号】100158805
【氏名又は名称】井関 守三
(74)【代理人】
【識別番号】100112807
【氏名又は名称】岡田 貴志
(72)【発明者】
【氏名】アーメド・カメル・サデク
(72)【発明者】
【氏名】イシェン・シュエ
(72)【発明者】
【氏名】シッダールタ・マリック
(72)【発明者】
【氏名】タメル・カドウス
(72)【発明者】
【氏名】シャオシャ・ジャン
(72)【発明者】
【氏名】テサン・ユ
(72)【発明者】
【氏名】マイケル・ミンシ・ファン
(72)【発明者】
【氏名】アレクサンダー・ダムンヤノビッチ
(72)【発明者】
【氏名】ヨンビン・ウェイ
(72)【発明者】
【氏名】ジン・スン
【審査官】望月 章俊
(56)【参考文献】
【文献】特許第6926237(JP,B2)
(58)【調査した分野】(Int.Cl.,DB名)
H04W4/00-H04W99/00
H04B7/24-H04B7/26
3GPP TSG RAN WG1-4
SA WG1-4
CT WG1、4
(57)【特許請求の範囲】
【請求項1】
ワイヤレス通信の
ためのユーザ機器(UE)であって、
メモリと
前記メモリに結合された1つまたは複数のプロセッサを備え、前記メモリと前記1つまたは複数のプロセッサは、
予約要求(RRQ)を受信することと、
前記RRQに応答
して、予約応答信号(RRS)を送信することと
を
行うように構成され、前記RRSは
、推定された干渉のインジケーションによって変調されたプリコード化サウンディング基準信号(SRS)を搬送する、
を行うように構成される、UE。
【請求項2】
前記干渉のインジケーションは、共分散行列の逆数(Rnn
-1/2)に対応する、
請求項1に記載の
UE。
【請求項3】
前記Rnn
-1/2は
、ワイヤレス通信への、干渉レベルの増加を示す、
請求項2に記載の
UE。
【請求項4】
前記RRQは
、ワイヤレス通信のデータ部分において使用されるランクを搬送し
、粗い干渉共分散行列(Rnn)の計算を容易にするプリコード化チャネル状態情報-基準信号(CSI-RS)を含む、
請求項1に記載の
UE。
【請求項5】
前記RRQは、ネットワーク割り振りベクトル(NAV)と、前記NAVの復号を可能にする制御基準信号(RS)をさらに含む、
請求項1に記載の
UE。
【請求項6】
前記RRSは、前記NAVによって識別された送信機会(TxOp)において
、他のRRSと多重化される、
請求項
5に記載の
UE。
【請求項7】
前記RRSは、ネットワーク割り振りベクトル(NAV)と、前記NAVの復号を可能にする制御基準信号(RS)をさらに含む、
請求項1に記載の
UE。
【請求項8】
前記メモリと前記1つまたは複数のプロセッサは、
前記RRQを受信する前
に同期信号を受信することと、
前記RRQを復号するために前記同期信号を使用することと、
前記RRSを送信する前に別の同期信号を送信することと
を
さらに行うように構成される、請求項1に記載の
UE。
【請求項9】
前記メモリと前記1つまたは複数のプロセッサは、
前記RRQが制御領域中で受信したかどうかを決定することと、
前記RRQが前記制御領域中で受信したとの前記決定に応答して
、前記制御領域中で前記RRSを送信することと、
前記RRQが前記制御領域中で受信しなかったとの前記決定に応答して
、データ領域中で前記RRSを送信することと
をさらに
行うように構成される、請求項1に記載の
UE。
【請求項10】
ワイヤレス通信の
ための次世代ノードB(gNB)であって、
メモリと
前記メモリに結合された1つまたは複数のプロセッサを備え、前記メモリと前記1つまたは複数のプロセッサは、
予約要求(RRQ)を送信することと、
前記RRQに応答
して送信された予約応答信号(RRS)を検出すること、ここにおいて、前記RRSは
、干渉のインジケーションによって変調されたプリコード化サウンディング基準信号(SRS)を含む、と、
ワイヤレス通信のための、
プリコーダ、
ランク、または
変調およびコーディングスキーム(MCS)
のうちの少なくとも1つを選択するために前記干渉のインジケーションを採用することと
を
行うように構成される、
gNB。
【請求項11】
前記干渉のインジケーションは、共分散行列の逆数(Rnn
-1/2)に対応する、
請求項
10に記載の
gNB。
【請求項12】
前記RRQは
、ワイヤレス通信のデータ部分において使用されるランクを搬送し
、粗い干渉共分散行列(Rnn)の計算を容易にするプリコード化チャネル状態情報-基準信号(CSI-RS)を含む、
請求項
10に記載の
gNB。
【請求項13】
前記メモリと前記1つまたは複数のプロセッサは、
-6デシベル(dB)信号対ノイズ比(SNR)で前記RRSを検出する
ことを、さらに行うように構成される、請求項
10に記載の
gNB。
【請求項14】
前記メモリと前記1つまたは複数のプロセッサは、
ワイヤレス通信のための前記プリコーダを選択するために前記干渉のインジケーションを採用する
ことを、さらに行うように構成される、
請求項
10に記載の
gNB。
【請求項15】
前記メモリと前記1つまたは複数のプロセッサは、
前記ワイヤレス通信のための前記ランクを選択するために前記干渉のインジケーションを採用する
ことを、さらに行うように構成される、
請求項
10に記載の
gNB。
【請求項16】
前記メモリと前記1つまたは複数のプロセッサは、
ワイヤレス通信のための前記MCSを選択するために前記干渉のインジケーションを採用する
ことを、さらに行うように構成される、
請求項
10に記載の
gNB。
【請求項17】
前記RRQは、ネットワーク割り振りベクトル(NAV)と、前記NAVの復号を可能にする制御基準信号(RS)をさらに含む、
請求項
10に記載の
gNB。
【請求項18】
前記RRSを検出することは、前記NAVによって識別された送信機会(TxOp)において
、他のRRSと多重化される前記RRSを検出することを含む、
請求項
17に記載の
gNB。
【請求項19】
前記メモリと前記1つまたは複数のプロセッサは、
アップリンクおよびダウンリンクトラフィックのための1つまたは複数の通信媒体を予約するために異なるRRQを送信することを
さらに行うように構成される、
請求項
10に記載の
gNB。
【請求項20】
前記メモリと前記1つまたは複数のプロセッサは、
前記RRQを送信する前
に同期信号を送信することと、
前記RRSを検出する前
に別の同期信号を受信することと、
前記RRSを復号する前記別の同期信号を使用することと
をさらに
行うように構成される、請求項
10に記載の
gNB。
【請求項21】
ワイヤレス通信の
ための次世代ノードB(gNB)であって、
メモリと
前記メモリに結合された1つまたは複数のプロセッサを備え、前記メモリと前記1つまたは複数のプロセッサは、
予約要求(RRQ)を送信することと、
前記RRQに応答す
る予約応答信号(RRS)を検出すること、ここにおいて、前記RRSは
、干渉のインジケーションによって変調されたプリコード化サウンディング基準信号(RRS)を含み、前記干渉のインジケーションは
、1つまたは複数のワイヤレス送信に起因する、
他のワイヤレス通信への、干渉レベルの上昇を示す、と、
前記RRSに応答
して、所定の干渉レベルしきい値を超える、前記ワイヤレス通信への干渉を引き起こすのを避ける
ように、前記ワイヤレス送信を送信することと
を
行うように構成される、
gNB。
【請求項22】
前記干渉のインジケーションは、共分散行列の逆数(Rnn
-1/2)に対応する、
請求項
21に記載の
gNB。
【請求項23】
前記RRQは
、粗い干渉共分散行列(Rnn)
が計算
されるべきトーンを搬送するプリコード化チャネル状態情報基準信号(CSI-RS)を含む、
請求項
21に記載の
gNB。
【請求項24】
前記メモリと前記1つまたは複数のプロセッサは、
-6デシベル(dB)信号対ノイズ比(SNR)で前記RRSを検出する
ことをさらに行うように構成される、
請求項
21に記載の
gNB。
【請求項25】
前記RRQは、ネットワーク割り振りベクトル(NAV)と、前記NAVの復号を可能にする制御基準信号(RS)をさらに含む、
請求項
21に記載の
gNB。
【請求項26】
前記RRSを検出することは、前記NAVによって識別された送信機会(TxOp)において
、他のRRSと多重化されるRRSを検出することを含む、
請求項
25に記載の
gNB。
【請求項27】
前記メモリと前記1つまたは複数のプロセッサは、
アップリンク送信のために通信媒体を予約するため
のRRQを検出することと、
前記RRQに応答
して、前記アップリンク送信への干渉を低減する
ように、前記ワイヤレス送信を送信することと
をさらに
行うように構成される、請求項
21に記載の
gNB。
【請求項28】
前記送信することは、前記RRSに応答
して、前記アップリンク送信への干渉をさらに低減する、
請求項
27に記載の
gNB。
【請求項29】
前記メモリと前記1つまたは複数のプロセッサは、
前記RRQを送信する
前に、同期信号を送信することと、
前記RRSを検出する前
に別の同期信号を受信することと、
前記RRSを復号する前記別の同期信号を使用することと
を
さらに行うように構成される、請求項
21に記載の
gNB。
【発明の詳細な説明】
【関連出願の相互参照】
【0001】
[0001]本出願は、2017年5月24日付で出願された、「NR-SS UNIFIED OPERATION MODE IN COORDINATED AND UNCOORDINATED BANDS」という題名の米国仮特許出願番号第62/510,534号、および2018年5月21日付で出願された、「NR-SS UNIFIED OPERATION MODE IN COORDINATED AND UNCOORDINATED BANDS」という題名の米国実用特許出願番号第15/985,048号の利益を主張し、これらが全体として明示的に本明細書に参照によって組み込まれる。
【技術分野】
【0002】
[0002]本開示の態様は概して、ワイヤレス通信システムに関し、より具体的に、免許スペクトルおよび共有スペクトルにおける協調ワイヤレスネットワークおよび非協調ワイヤレスネットワークの共存のための媒体予約フレームワークに関する。
【背景技術】
【0003】
[0003]ワイヤレス通信ネットワークは、音声、ビデオ、パケットデータ、メッセージング、ブロードキャストなどの様々な通信サービスを提供するために広く展開されている。これらワイヤレスネットワークは、利用可能なネットワークリソースを共有することによって複数のユーザをサポートする能力を有する多元接続ネットワークであり得る。そのようなネットワークは、通常、多元接続ネットワークであり、利用可能なネットワークリソースを共有することによって複数のユーザのための通信をサポートする。そのようなネットワークの一例はユニバーサル地上波無線アクセスネットワーク(UTRAN:Universal Terrestrial Radio Access Network)である。UTRANは、第3世代パートナーシッププロジェクト(3GPP(登録商標))によってサポートされる第3世代(3G)モバイル電話技術である、ユニバーサルモバイル電気通信システム(UMTS)の一部として定義された無線アクセスネットワーク(RAN)である。多元接続ネットワークフォーマットの例は、符号分割多元接続(CDMA)ネットワーク、時分割多元接続(TDMA)ネットワーク、周波数分割多元接続(FDMA)ネットワーク、直交FDMA(OFDMA)ネットワーク、およびシングルキャリアFDMA(SC-FDMA)ネットワークを含む。
【0004】
[0004]ワイヤレス通信ネットワークは、いくつかのユーザ機器(UE)のための通信をサポートすることができるいくつかの基地局またはノードBを含み得る。UEは、ダウンリンクおよびアップリンクを介して基地局と通信し得る。ダウンリンク(または順方向リンク)は基地局からUEへの通信リンクを指し、アップリンク(または逆方向リンク)はUEから基地局への通信リンクを指す。
【0005】
[0005]基地局は、UEにダウンリンク上でデータおよび制御情報を送信し得、および/またはUEからアップリンク上でデータおよび制御情報を受信し得る。ダウンリンク上では、基地局からの送信は、近隣基地局からの送信、または他のワイヤレス無線周波数(RF)送信機からの送信による干渉に遭遇することがある。アップリンク上では、UEからの送信は、近隣基地局と通信する他のUEのアップリンク送信からの干渉、または他のワイヤレスRF送信機からの干渉に遭遇することがある。この干渉は、ダウンリンクとアップリンクの両方で性能を劣化させることがある。
【0006】
[0006]モバイルブロードバンドアクセスに対する需要が高まり続けるにつれて、より多くのUEが長距離ワイヤレス通信ネットワークにアクセスし、そしてより多くの短距離ワイヤレスシステムがコミュニティにおいて展開されることに伴って、干渉および輻輳したネットワーク(congested networks)の可能性が高まる。モバイルブロードバンドアクセスに対する増大する需要を満たすためだけでなく、モバイル通信のユーザエクスペリエンスを進化および向上させるためにも、ワイヤレス技術を進化させる研究および開発が続けられている。
【発明の概要】
【0007】
[0007]本開示の1つの態様では、ワイヤレス通信の方法は、ユーザ機器(UE)で、次世代ノードB(gNB)によって送信された予約要求(RRQ)を受信することを含む。方法はさらに、RRQに応答するUEが、予約応答信号(RRS)を送信することを含む。RRSは、UEによって推定された干渉のインジケーションによって変調されたプリコード化サウンディング基準信号(SRS)を搬送する。
【0008】
[0008]別の態様では、ワイヤレス通信装置は、ユーザ機器(UE)で、次世代ノードB(gNB)によって送信された予約要求(RRQ)を受信するための手段を有する。方法はさらに、RRQに応答するUEが、予約応答信号(RRS)を送信するための手段を有する。RRSは、UEによって推定された干渉のインジケーションによって変調されたプリコード化サウンディング基準信号(SRS)を搬送する。
【0009】
[0009]別の態様では、ワイヤレス通信装置は、少なくとも1つのコンピュータプロセッサと、少なくとも1つのコンピュータプロセッサによって結合されたメモリとを有する。少なくとも1つのコンピュータプロセッサは、ユーザ機器(UE)で、次世代ノードB(gNB)によって送信された予約要求(RRQ)を受信することを行うように構成される。少なくとも1つのコンピュータプロセッサはさらに、RRQに応答するUEが、予約応答信号(RRS)を送信することを行うように構成される。RRSは、UEによって推定された干渉のインジケーションによって変調されたプリコード化サウンディング基準信号(SRS)を搬送する。
【0010】
[0010]別の態様では、コンピュータプログラム製品は、1つまたは複数のコンピュータプロセッサによって規定されると、少なくとも1つのコンピュータプロセッサにプロシージャを実行させる、命令を有するコンピュータ可読媒体を含む。プロシージャは、ユーザ機器(UE)で、次世代ノードB(gNB)によって送信された予約要求(RRQ)を受信することを含む。プロシージャはさらに、RRQに応答するUEが、予約応答信号(RRS)を送信することを含む。RRSは、UEによって推定された干渉のインジケーションによって変調されたプリコード化サウンディング基準信号(SRS)を搬送する。
【0011】
[0011]別の態様では、ワイヤレス通信の方法は、次世代ノードB(gNB)が、ユーザ機器(UE)に、予約要求(RRQ)を送信することを含む。方法はさらに、gNBが、RRQに応答するUEによって送信された予約応答信号(RRS)を検出することを含む。RRSは、UEによって推定された干渉のインジケーションによって変調されたプリコード化サウンディング基準信号(SRS)を含む。方法はまた、UEとgNBとの間のワイヤレス通信のための、プロシージャ、ランク、または変調およびコーディングスキーム(MCS)のうちの少なくとも1つを選択するために干渉のインジケーションを採用することを含む。
【0012】
[0012]別の態様では、ワイヤレス通信の方法は、ワイヤレス通信装置が、ユーザ機器(UE)に、予約要求(RRQ)を送信するための手段を有する。装置はさらに、gNBが、RRQに応答するUEによって送信された予約応答信号(RRS)を検出するための手段を有する。RRSは、UEによって推定された干渉のインジケーションによって変調されたプリコード化サウンディング基準信号(SRS)を含む。装置はまた、UEとgNBとの間のワイヤレス通信のための、プロシージャ、ランク、または変調およびコーディングスキーム(MCS)のうちの少なくとも1つを選択するために干渉のインジケーションを採用するための手段を有する。
【0013】
[0013]別の態様では、ワイヤレス通信装置は、少なくとも1つのコンピュータプロセッサと、少なくとも1つのコンピュータプロセッサによって結合された少なくとも1つのメモリとを有する。少なくとも1つのプロッサは、次世代ノードB(gNB)が、ユーザ機器(UE)に、予約要求(RRQ)を送信することを行うように構成される。少なくとも1つのコンピュータプロセッサはさらに、gNBが、RRQに応答するUEによって送信された予約応答信号(RRS)を検出することを行うように構成される。RRSは、UEによって推定された干渉のインジケーションによって変調されたプリコード化サウンディング基準信号(SRS)を含む。少なくとも1つのコンピュータプロセッサはまた、UEとgNBとの間のワイヤレス通信のための、プロシージャ、ランク、または変調およびコーディングスキーム(MCS)のうちの少なくとも1つを選択するために干渉のインジケーションを採用することを行うように構成される。
【0014】
[0014]別の態様では、コンピュータプログラム製品は、1つまたは複数のコンピュータプロセッサによって規定されると、少なくとも1つのコンピュータプロセッサにプロシージャを実行させる、命令を有するコンピュータ可読媒体を含む。プロシージャは、次世代ノードB(gNB)が、ユーザ機器(UE)に、予約要求(RRQ)を送信することを含む。プロシージャはさらに、gNBが、RRQに応答するUEによって送信された予約応答信号(RRS)を検出することを含む。RRSは、UEによって推定された干渉のインジケーションによって変調されたプリコード化サウンディング基準信号(SRS)を含む。プロシージャはまた、UEとgNBとの間のワイヤレス通信のための、プロシージャ、ランク、または変調およびコーディングスキーム(MCS)のうちの少なくとも1つを選択するために干渉のインジケーションを採用することを含む。
【0015】
[0015]別の態様では、ワイヤレス通信の方法は、次世代ノードB(gNB)が、ユーザ機器(UE)に、予約要求(RRQ)を送信することを含む。方法はさらに、gNBが、RRQに応答するUEによって送信された予約応答信号(RRS)を検出することを含む。RRSは、UEによって推定された干渉のインジケーションによって変調されたプリコード化サウンディング基準信号(SRS)を含む。干渉のインジケーションは、gNBによる1つまたは複数のワイヤレス送信に起因する、UEとサービングgNBとの間のワイヤレス通信に、干渉レベルの増加を通信する。方法はまた、RRQに応答して応答するgNBが、所定の干渉レベルしきい値を超えたワイヤレス通信への干渉を引き起こすのを避ける方法で、ワイヤレス送信を送信することを含む。
【0016】
[0016]別の態様では、ワイヤレス通信の方法は、ワイヤレス通信装置が、ユーザ機器(UE)に、予約要求(RRQ)を送信するための手段を有する。装置はさらに、gNBが、RRQに応答してUEによって送信された予約応答信号(RRS)を検出するための手段を有する。RRSは、UEによって推定された干渉のインジケーションによって変調されたプリコード化サウンディング基準信号(SRS)を搬送する。干渉のインジケーションは、gNBによる1つまたは複数のワイヤレス送信に起因する、UEとサービングgNBとの間のワイヤレス通信に、干渉レベルの増加を通信する。装置はまた、RRQに応答して応答するgNBが、所定の干渉レベルしきい値を超えたワイヤレス通信への干渉を引き起こすのを避ける方法で、ワイヤレス送信を送信することを含む。
【0017】
[0017]別の態様では、ワイヤレス通信装置は、少なくとも1つのコンピュータプロセッサと、少なくとも1つのコンピュータプロセッサによって結合された少なくとも1つのメモリとを含む。少なくとも1つのプロッサは、次世代ノードB(gNB)が、ユーザ機器(UE)に、予約要求(RRQ)を送信することを行うように構成される。少なくとも1つのコンピュータプロセッサはまた、gNBが、RRQに応答してUEによって送信された予約応答信号(RRS)を検出することを行うように構成される。RRSは、UEによって推定された干渉のインジケーションによって変調されたプリコード化サウンディング基準信号(SRS)を含む。干渉のインジケーションは、gNBによる1つまたは複数のワイヤレス送信に起因する、UEとサービングgNBとの間のワイヤレス通信に、干渉レベルの増加を通信する。少なくとも1つのコンピュータプロセッサはまた、RRQに応答するgNBが、所定の干渉レベルしきい値を超えたワイヤレス通信への干渉を引き起こすことを避ける方法で、ワイヤレス送信を送信することを行うように構成される。
【0018】
[0018]別の態様では、コンピュータプログラム製品は、1つまたは複数のコンピュータプロセッサによって規定されると、少なくとも1つのコンピュータプロセッサにプロシージャを実行させる、命令を有するコンピュータ可読媒体を含む。プロシージャは、次世代ノードB(gNB)が、ユーザ機器(UE)に予約要求(RRQ)を送信することを含む。プロシージャはさらに、gNBが、RRQに応答するUEによって送信された予約応答信号(RRS)を検出することを含む。RRSは、UEによって推定された干渉のインジケーションによって変調されたプリコード化サウンディング基準信号(SRS)を含む。干渉のインジケーションは、gNBによる1つまたは複数のワイヤレス送信に起因する、UEとサービングgNBとの間のワイヤレス通信に、干渉レベルの増加を通信する。プロシージャはまた、RRQに応答するgNBが、所定の干渉レベルしきい値を超えたワイヤレス通信への干渉を引き起こすのを避ける方法で、ワイヤレス送信を送信することを含む。
【0019】
[0019]別の態様では、ワイヤレス通信の方法は、eNBが、同期信号を送信することを含む。方法はさらに、同期信号の送信の後にgNBが、予約要求(RRQ)を送信することを含む。RRQは、ネットワーク割り振りベクトル(NAV)と、NAVを復号するための制御基準信号(RS)とを含む。同期信号は、gNBと協調しない1つまたは複数の他のノードがRRQを復号することをできるようにする。
【0020】
[0020]別の態様では、ワイヤレス通信装置は、eNBが、同期信号を送信するための手段を有する。装置はさらに、同期信号の送信の後にgNBが、予約要求(RRQ)を送信するための手段を有する。RRQは、ネットワーク割り振りベクトル(NAV)と、NAVを復号するための制御基準信号(RS)とを含む。同期信号は、gNBと協調しない1つまたは複数の他のノードがRRQを復号することをできるようにする。
【0021】
[0021]別の態様では、ワイヤレス通信装置は、少なくとも1つのコンピュータプロセッサと、少なくとも1つのコンピュータプロセッサによって結合された少なくとも1つのメモリとを含む。少なくとも1つのコンピュータプロセッサは、gNBが、同期信号を送信することを行うように構成される。少なくとも1つのコンピュータプロセッサはさらに、同期信号の送信の後にgNBが、予約要求(RRQ)を送信することを行うように構成される。RRQは、ネットワーク割り振りベクトル(NAV)と、NAVを復号するための制御基準信号(RS)とを含む。同期信号は、gNBと協調しない1つまたは複数の他のノードがRRQを復号することをできるようにする。
【0022】
[0022]別の態様では、コンピュータプログラム製品は、1つまたは複数のコンピュータプロセッサによって規定されると、少なくとも1つのコンピュータプロセッサにプロシージャを実行させる、命令を有するコンピュータ可読媒体を含む。プロシージャは、gNBが、同期信号を送信することを含む。プロシージャはさらに、同期信号の送信の後にgNBが、予約要求(RRQ)を送信することを含む。RRQは、ネットワーク割り振りベクトル(NAV)と、NAVを復号するための制御基準信号(RS)とを含む。同期信号は、gNBと協調しない1つまたは複数の他のノードがRRQを復号することをできるようにする。
【0023】
[0023]別の態様では、ワイヤレス通信の方法は、ユーザ機器(UE)が、次世代ノードB(gNB)によって送信された同期信号を検出することを含む。方法はさらに、同期信号の送信の後にUEが、gNBによって送信された予約要求(RRQ)を受信することを含む。RRQは、ネットワーク割り振りベクトル(NAV)と、NAVを復号するための制御基準信号(RS)とを含む。方法はまた、RRQを復号するために同期信号を使用することを含む。
【0024】
[0024]別の態様では、ワイヤレス通信装置は、ユーザ機器(UE)が、次世代ノードB(gNB)によって送信された同期信号を検出するための手段を有する。装置はさらに、同期信号の送信の後にEUが、gNBによって送信された予約要求(RRQ)を受信するための手段を含み、RRQは、ネットワーク割り振りベクトル(NAV)と、NAVを復号するための制御基準信号(RS)とを含む。装置はまた、RRQを復号するために同期信号を使用するための手段を含む。
【0025】
[0025]別の態様では、ワイヤレス通信装置は、少なくとも1つのコンピュータプロセッサと、少なくとも1つのコンピュータプロセッサによって結合された少なくとも1つのメモリとを含む。少なくとも1つのコンピュータプロセッサは、ユーザ機器(UE)が、次世代ノードB(gNB)によって送信された同期信号を検出することを行うように構成される。少なくとも1つのコンピュータプロセッサはさらに、同期信号の送信の後にUEが、gNBによって送信された予約要求(RRQ)を受信することを行うように構成される。RRQは、ネットワーク割り振りベクトル(NAV)と、NAVを復号するための制御基準信号(RS)とを含む。少なくとも1つのコンピュータプロセッサは、RRQを復号するために同期信号を使用することを行うように構成される。
【0026】
[0026]別の態様では、コンピュータプログラム製品は、1つまたは複数のコンピュータプロセッサによって規定されると、少なくとも1つのコンピュータプロセッサにプロシージャを実行させる、命令を有するコンピュータ可読媒体を含む。プロシージャは、ユーザ機器(UE)が、次世代ノードB(gNB)によって送信された同期信号を検出することを含む。プロシージャはさらに、同期信号の送信の後にUEが、gNBによって送信された予約要求(RRQ)を受信することを含む。RRQは、ネットワーク割り振りベクトル(NAV)と、NAVを復号するための制御基準信号(RS)を含む。プロシージャはまた、RRQを復号するために同期信号を使用することを含む。
【0027】
[0027]別の態様では、ワイヤレス通信の方法は、ワイヤレスノードが、少なくとも1つのワイヤレス通信リソース上でワイヤレスノードによって周期的に送信される必要のある1つまたは複数のワイヤレス信号を識別することを含む。方法はさらに、ワイヤレスノードが、ノードによって行われるべき周期的な送信の長さおよび周期性を識別することによって少なくとも1つのワイヤレス通信リソース上で、他のノードを周期的に沈黙させるために、ディーププリアンブルを有する予約信号を送信することを含む。
【0028】
[0028]別の態様では、ワイヤレス通信装置は、ワイヤレスノードが、少なくとも1つのワイヤレス通信リソース上でワイヤレスノードによって周期的に送信される必要のある1つまたは複数のワイヤレス信号を識別するための手段を有する。装置はさらに、ワイヤレスノードが、ノードによって行われるべき周期的な送信の長さおよび周期性を識別することによって少なくとも1つのワイヤレス通信リソース上で、他のノードを周期的に沈黙させるために、ディーププリアンブルを有する予約信号を送信するための手段を有する。
【0029】
[0029]別の態様では、ワイヤレス通信装置は、少なくとも1つのコンピュータプロセッサと、少なくとも1つのコンピュータプロセッサによって結合された少なくとも1つのメモリとを有する。別の態様では、少なくとも1つのコンピュータプロセッサは、ワイヤレスノードが、少なくとも1つのワイヤレス通信リソース上でワイヤレスノードによって周期的に送信される必要のある1つまたは複数のワイヤレス信号を識別することを行うように構成される。少なくとも1つのコンピュータプロセッサはさらに、ワイヤレスノードが、ノードによって行われるべき周期的な送信の長さおよび周期性を識別することによって少なくとも1つのワイヤレス通信リソース上で、他のノードを周期的に沈黙させるために、ディーププリアンブルを有する予約信号を送信することを行うように構成される。
【0030】
[0030]別の態様では、コンピュータプログラム製品は、1つまたは複数のコンピュータプロセッサによって規定されると、少なくとも1つのコンピュータプロセッサにプロシージャを実行させる、命令を有するコンピュータ可読媒体を含む。別の態様では、プロシージャは、ワイヤレスノードが、少なくとも1つのワイヤレス通信リソース上でワイヤレスノードによって周期的に送信される必要のある1つまたは複数のワイヤレス信号を識別することを含む。プロシージャはさらに、ワイヤレスノードが、ノードによって行われるべき周期的な送信の長さおよび周期性を識別することによって少なくとも1つのワイヤレス通信リソース上で、他のノードを周期的に沈黙させるために、ディーププリアンブルを有する予約信号を送信することを含む。
【0031】
[0031]別の態様では、ワイヤレス通信の方法は、起動時のgNBが、ディーププリアンブルを有し、ワイヤレス通信媒体上で少なくとも1つのワイヤレスノードによって送信される少なくとも1つの予約信号を検出することを含む。方法はさらに、ディーププリアンブルから暗黙的なネットワーク割り振りベクトル(NAV)を決定することを含む。NAVは、少なくとも1つのワイヤレスノードによって行われるべき周期的な送信の長さおよび周期性を識別する。方法はまた、周期的な送信の長さおよび周期性に従って、ワイヤレス通信媒体上での競合を周期的に避けることを含む。
【0032】
[0032]別の態様では、ワイヤレス通信装置は、起動時のgNBが、ディーププリアンブルを有し、ワイヤレス通信媒体上で少なくとも1つのワイヤレスノードによって送信される少なくとも1つの予約信号を検出するための手段を有する。装置はさらに、ディーププリアンブルから暗黙的なネットワーク割り振りベクトル(NAV)を決定するための手段を有する。NAVは、少なくとも1つのワイヤレスノードによって行われるべき周期的な送信の長さおよび周期性を識別する。装置はまた、周期的な送信の長さおよび周期性に従って、ワイヤレス通信媒体上での競合を周期的に避けるための手段を有する。
【0033】
[0033]別の態様では、ワイヤレス通信装置は、少なくとも1つのコンピュータプロセッサと、少なくとも1つのコンピュータプロセッサによって結合された少なくとも1つのメモリとを含む。別の態様では、少なくとも1つのコンピュータプロセッサは、起動時のgNBが、ディーププリアンブルを有し、ワイヤレス通信媒体上で少なくとも1つのワイヤレスノードによって送信される少なくとも1つの予約信号を検出することを行うように構成される。少なくとも1つのコンピュータプロセッサはさらに、ディーププリアンブルから暗黙的なネットワーク割り振りベクトル(NAV)を決定することを行うように構成される。NAVは、少なくとも1つのワイヤレスノードによって実行されるべき周期的な送信の長さおよび周期性を識別する。少なくとも1つのコンピュータプロセッサはまた、周期的な送信の長さおよび周期性に従って、ワイヤレス通信媒体上での競合を周期的に避けることを行うように構成される。
【0034】
[0034]別の態様では、コンピュータプログラム製品は、1つまたは複数のコンピュータプロセッサによって規定されると、少なくとも1つのコンピュータプロセッサにプロシージャを実行させる、命令を有するコンピュータ可読媒体を含む。プロシージャは、起動時のgNBが、ディーププリアンブルを有し、ワイヤレス通信媒体上で少なくとも1つのワイヤレスノードによって送信される少なくとも1つの予約信号を検出することを含む。プロシージャはさらに、ディーププリアンブルから暗黙的なネットワーク割り振りベクトル(NAV)を決定することを含む。NAVは、少なくとも1つのワイヤレスノードによって行われるべき周期的な送信の長さおよび周期性を識別する。プロシージャはまた、周期的な送信の長さおよび周期性に従って、ワイヤレス通信媒体上での競合を周期的に避けることを含む。
【0035】
[0035]別の態様では、ワイヤレス通信の方法は、協調マルチポイント(CoMP)クラスタのスケジューラが、動作の非協調モードにおいてCoMPクラスタとして構成される複数の次世代ノードB(gNB)をスケジュールすることを含む。CoMPクラスタの各gNBは、それ自身のネットワーク割り振りベクトル(NAV)を維持し、ワイヤレス送信リソースのために別々に競合する。
【0036】
[0036]別の態様では、ワイヤレス通信の方法は、協調マルチポイント(CoMP)クラスタのスケジューラが、動作の非協調モードにおいてCoMPクラスタとして構成される複数の次世代ノードB(gNB)をスケジュールすることを含む。CoMPクラスタの各gNBは、それ自身のネットワーク割り振りベクトル(NAV)を維持し、ワイヤレス送信リソースのために別々に競合する。
【0037】
[0037]別の態様では、ワイヤレス通信装置は、少なくとも1つのプロセッサと、少なくとも1つのコンピュータプロセッサによって結合された少なくとも1つのメモリとを含む。別の態様では、ワイヤレス通信の方法は、協調マルチポイント(CoMP)クラスタのスケジューラが、動作の非協調モードにおいてCoMPクラスタとして構成される複数の次世代ノードB(gNB)をスケジュールすることを含む。CoMPクラスタの各gNBは、それ自身のネットワーク割り振りベクトル(NAV)を維持し、ワイヤレス送信リソースのために別々に競合する。
【0038】
[0038]別の態様では、コンピュータプログラム製品は、1つまたは複数のコンピュータプロセッサによって規定されると、少なくとも1つのコンピュータプロセッサにプロシージャを実行させる、命令を有するコンピュータ可読媒体を含む。別の態様では、ワイヤレス通信の方法は、協調マルチポイント(CoMP)クラスタのスケジューラが、動作の非協調モードにおいてCoMPクラスタとして構成される複数の次世代ノードB(gNB)をスケジュールすることを含む。CoMPクラスタの各gNBは、それ自身のネットワーク割り振りベクトル(NAV)を維持し、ワイヤレス送信リソースのために別々に競合する。
【0039】
[0039]別の態様では、ワイヤレス通信の方法は、協調マルチポイント(CoMP)クラスタのスケジューラが、動作の非協調モードにおいてCoMPクラスタとして構成される複数の次世代ノードB(gNB)をスケジュールすることを含む。クラスタヘッドに指定される、CoMPクラスタのうちのちょうど1つのgNBは、ワイヤレス通信リソースのための完全な競合(full contention)を行っている。
【0040】
[0040]別の態様では、ワイヤレス通信装置は、協調マルチポイント(CoMP)クラスタのスケジューラが、動作の非協調モードにおいてCoMPクラスタとして構成される複数の次世代ノードB(gNB)をスケジュールするための手段を有する。クラスタヘッドに指定される、CoMPクラスタのうちのちょうど1つのgNBは、ワイヤレス通信リソースのための完全な競合を行っている。
【0041】
[0041]別の態様では、ワイヤレス通信装置は、少なくとも1つのコンピュータプロセッサと、少なくとも1つのコンピュータプロセッサによって結合されたメモリとを含む。別の態様では、少なくとも1つのコンピュータプロセッサは、協調マルチポイント(CoMP)クラスタのスケジューラが、動作の非協調モードにおいてCoMPクラスタとして構成される複数の次世代ノードB(gNB)をスケジュールすることを行うように構成される。クラスタヘッドに指定される、CoMPクラスタのうちのちょうど1つのgNBは、ワイヤレス通信リソースのための完全な競合を行っている。
【0042】
[0042]別の態様では、コンピュータプログラム製品は、1つまたは複数のコンピュータプロセッサによって規定されると、少なくとも1つのコンピュータプロセッサにプロシージャを実行させる、命令を有するコンピュータ可読媒体を含む。プロシージャは、協調マルチポイント(CoMP)クラスタのスケジューラが、動作の非協調モードにおいてCoMPクラスタとして構成される複数の次世代ノードB(gNB)をスケジュールすることを含む。クラスタヘッドに指定される、CoMPクラスタのうちのちょうど1つのgNBは、ワイヤレス通信リソースのための完全な競合を行っている。
【0043】
[0043]上の記載は、以下の詳細な説明がよりよく理解され得るように、本開示に従った例の特徴および技術的利点を、ある程度広く概説したものである。追加の特徴および利点が以下に説明されることになる。開示される概念および具体的な例は、本開示と同じ目的を実行するために、他の構造を修正または設計するための基礎として容易に利用され得る。このような同等の構成体(construction)は、添付の特許請求の範囲から逸脱しない。本明細書に開示される概念の特性は、関連する利点とともに、それらの構成および動作の方法の両方に関して、添付の図に関連して検討されたとき、以下の説明からより一層理解されるであろう。図の各々は、例示および説明を目的として提供されており、特許請求の範囲の限定の定義としては提供されない。
【図面の簡単な説明】
【0044】
[0044]本開示の性質および利点のさらなる理解が、以下の図面を参照することによって実現されうる。添付された図において、類似のコンポーネントまたは特徴は、同じ参照ラベルを有することができる。さらに、同じタイプの様々なコンポーネントは、参照ラベルに、ハイフンと、類似のコンポーネントを区別する第2のラベルとを後続させることによって区別され得る。本明細書中で第1の参照ラベルだけが使用される場合、その説明は、第2の参照ラベルに関係なく同じ第1の参照ラベルを有する同様のコンポーネントのうちのどの1つにも適用可能である。
【
図1】
図1は、ワイヤレス通信システムの詳細を例示するブロック図である。
【
図2】
図2は、本開示の一態様に従って構成された基地局およびUEの設計を示すブロック図である。
【
図3】
図3は、協調されたリソース区分のためのタイミング図の例を例示する。
【
図4】
図4は、本開示の一態様における媒体予約フレームワークによる、メッセージ交換を例示するブロック図である。
【
図5A】
図5Aは、本開示の一態様による非協調動作のためのタイミング図の例を例示する。
【
図5B】
図5Bは、本開示の一態様による送信機会における予約応答信号の多重化のためのタイミング図の例を例示する。
【
図5C】
図5Cは、本開示の一態様による協調された動作のためのタイミング図の例を例示する。
【
図5D】
図5Dは、本開示の一態様による送信機会の残りにおいて優先ランダムアクセスで協調された動作のタイミング図の例を例示する。
【
図6A】
図6Aは、本開示の一態様によるユーザ機器によって実行されるプロセスの例となるブロックを例示するフロー図である。
【
図6B】
図6Bは、本開示の一態様によるサービングgNBによって実行されるプロセスの例となるブロックを例示するフロー図である。
【
図6C】
図6Bは、本開示の一態様による近隣gNBによって実行されるプロセスの例となるブロックを例示するフロー図である。
【
図7A】
図7Aは、本開示の一態様によるgNBによって実行されるプロセスの例となるブロックを例示するフロー図である。
【
図7B】
図7Bは、本開示の一態様によるユーザ機器によって実行されるプロセスの例となるブロックを例示するフロー図である。
【
図8A】
図8Aは、本開示の一態様によるgNBによって実行されるプロセスの例となるブロックを例示するフロー図である。
【
図8B】
図8Bは、本開示の一態様によるユーザ機器によって実行されるプロセスの例となるブロックを例示するフロー図である。
【
図9A】
図9Aは、本開示の一態様による協調マルチポイントクラスタのスケジューラによって実行されるプロセスの例となるブロックを例示するフロー図である。
【
図9B】
図9Bは、本開示の一態様による協調マルチポイントクラスタのスケジューラによって実行されるプロセスの例となるブロックを例示するフロー図である。
【
図9C】
図9Cは、本開示の一態様による協調マルチポイントクラスタのスケジューラによって実行されるプロセスの例となるブロックを例示するフロー図である。
【
図9D】
図9Dは、本開示の一態様による協調マルチポイントクラスタのうちの1つまたは複数のgNBによって実行されるプロセスの例となるブロックを例示するフロー図である。
【
図10】
図10は、本開示の一態様によるgNBのコンポーネントを例示するブロック図である。
【
図11】
図11は、本開示の一態様によるUEのコンポーネントを例示するブロック図である。
【発明を実施するための形態】
【0045】
[0066]添付の図面に関して以下に示す発明を実施するための形態は、様々な構成を説明するものであり、本開示の範囲を限定するものではない。そうではなく、発明を実施するための形態は、本発明の主題の完全な理解を与えるための具体的な詳細を含む。これらの具体的な詳細は、あらゆる場合において必要とされるとは限らないことと、いくつかの事例では、よく知られている構造および構成要素は提示を明快にするためにブロック図の形式で示されることとが当業者には明らかであろう。
【0046】
[0067]本開示は、一般に、ワイヤレス通信ネットワークとも呼ばれる、2つ以上のワイヤレス通信システム間の認可された共有アクセスを提供することまたはそれに参加することに関する。様々な実施形態では、技法および装置は、符号分割多元接続(CDMA)ネットワーク、時分割多元接続(TDMA)ネットワーク、周波数分割多元接続(FDMA)ネットワーク、直交FDMA(OFDMA)ネットワーク、シングルキャリアFDMA(SC-FDMA)ネットワーク、LTE(登録商標)ネットワーク、GSM(登録商標)ネットワーク、第5世代(5G)または新無線(NR)ネットワークなどのワイヤレス通信ネットワークのみならず、他の通信ネットワークのためにも使用され得る。本明細書で説明される場合、「ネットワーク」および「システム」という用語は、交換可能に用いられ得る。
【0047】
[0068]OFDMAネットワークは、発展型UTRA(E-UTRA)、IEEE802.11、IEEE802.16、IEEE802.20、フラッシュ-OFDM、および同様のものなどの無線技術をインプリメントし得る。UTRA、E-UTRA、およびモバイル通信のためのグローバルシステム(GSM)は、ユニバーサルモバイルテレコミュニケーションシステム(UMTS)の一部である。特に、ロングタームエボリューション(LTE)は、E-UTRAを使用するUMTSのリリースである。UTRA、E-UTRA、GSM、UMTSおよびLTEは、「第3世代パートナーシッププロジェクト」(3GPP)という名称の団体から提供された文書に説明されており、cdma2000は、「第3世代パートナーシッププロジェクト2」(3GPP2)という名称の団体からの文書に説明されている。これらの様々な無線技術および規格は、既知であるか、開発中である。例えば、第3世代パートナーシッププロジェクト(3GPP)は、グローバルに適用可能な第3世代(3G)モバイルフォン仕様を規定することを目的とした、電気通信協会のグループ間の共同研究である。3GPPロングタームエボリューション(LTE)は、ユニバーサルモバイルテレコミュニケーションズシステム(UMTS)モバイルフォン規格を改善することを目的とした、3GPPプロジェクトである。3GPPは、次世代のモバイルネットワーク、モバイルシステム、およびモバイルデバイスのための仕様を規定し得る。本開示は、一連の新しい異なる無線アクセス技術または無線エアインターフェースを使用するネットワーク間のワイヤレススペクトルへの共有アクセスを伴う、LTEから、4G、5G、NR、およびその先へのワイヤレス技術の進化に関する。
【0048】
[0069]特に、5Gネットワークは、OFDMベースの統合されたエアインターフェースを使用してインプリメントされ得る多様な展開、多様なスペクトル、ならびに多様なサービスおよびデバイスを企図する。これらの目標を達成するために、LTEおよびLTE-Aに対するさらなる改良が、5G NRネットワークのための新無線技術の発展に加えて考慮される。5G NRは、(1)超高密度(例えば、約100万個のノード/km2)、超低複雑度(例えば、約数10ビット/秒)、超低エネルギー(例えば、約10年以上のバッテリ寿命)、および困難なロケーションに到達する能力を有するディープカバレッジ(deep coverage)を伴う、マッシブモノのインターネット(IoT)に対するカバレッジを提供するために、(2)慎重な扱いを要する個人情報、金融情報、または機密情報を保護するための強力なセキュリティ、超高信頼性(例えば、約99.9999%の信頼性)、超低レイテンシ(例えば、約1ms)、および広範囲にわたるモビリティを有するかまたはそれを欠くユーザを伴う、ミッションクリティカルな制御を含むカバレッジを提供するために、および(3)極めて高い容量(例えば、約10Tbps/km2)、極めて高いデータレート(例えば、マルチGbpsレート、100Mbps以上のユーザエクスペリエンスレート)、および高度な発見と最適化を伴うディープアウェアネス(deep awareness)を含む、拡張型モバイルブロードバンドを用いてカバレッジを提供するために、スケーリングすることが可能となる。
【0049】
[0070]5G NRは、スケーラブルなニューメロロジーおよび送信時間間隔(TTI)を有する最適化されたOFDMベースの波形を使用するためにインプリメントされ得、動的な低レイテンシ時分割複信(TDD)/周波数分割複信(FDD)設計でのサービスおよび特徴を効率的に多重化するための共通の柔軟なフレームワークを有し、マッシブ多入力多出力(MIMO)、ロバストなミリメートル波(mmWave)送信、高度なチャネルコーディング、およびデバイスセントリックモビリティ(device-centric mobility)などの、高度なワイヤレス技術を伴う。サブキャリア間隔のスケーリングを伴う、5G NRにおけるニューメロロジーのスケーラビリティは、多様なスペクトルおよび多様な展開にわたる多様なサービスの運用(operating)に効率的に対処し得る。例えば、3GHz未満のFDD/TDDインプリメンテーションの様々な屋外およびマクロカバレッジ展開では、サブキャリア間隔は、例えば、1、5、10、20MHzなどの帯域幅にわたって(over)、15kHzで生じ得る。3GHzより大きいTDDの他の様々な屋外およびスモールセルカバレッジ展開の場合、サブキャリア間隔は、80/100MHzの帯域幅にわたって、30kHzで生じ得る。5GHz帯域のアンライセンス部分にわたってTDDを使用する他の様々な屋内広帯域インプリメンテーションの場合、サブキャリア間隔は、160MHzの帯域幅にわたって、60kHzで生じ得る。最後に、28GHzのTDDにおいてmmWave成分(components)を用いて送信する様々な展開の場合、サブキャリア間隔は、500MHzの帯域幅にわたって、120kHzで生じ得る。
【0050】
[0071]5G NRのスケーラブルなニューメロロジーは、多様なレイテンシおよびサービス品質(QoS)要件に対するスケーラブルなTTIを容易にする。例えば、より短いTTIは、低レイテンシおよび高信頼性のために使用され得、一方、より長いTTIは、より高いスペクトル効率のために使用され得る。長いTTIと短いTTIの効率的な多重化は、送信がシンボル境界上で始まることを可能にする。5G NRはまた、同じサブフレーム中にアップリンク/ダウンリンクスケジューリング情報、データ、および確認応答を有する、自己完結型の統合サブフレーム設計(self-contained integrated subframe design)を企図する。自己完結型の統合サブフレームは、現在のトラフィックニーズを満たすためにアップリンクとダウンリンクの間で動的に切り替わるように、セルごとに柔軟に構成され得る適応型アップリンク/ダウンリンクである、無免許または競合ベースの共有スペクトルにおける通信をサポートする。
【0051】
[0072]本開示の様々な他の態様および特徴が、以下でさらに詳細に説明される。本明細書での教示が多種多様な形態で具現化され得ること、および本明細書で開示されている任意の特定の構造、機能、または両方は、代表的であるにすぎず、限定するものではないことが明らかであるべきである。本明細書での教示に基づいて、当業者は、本明細書で開示される態様がその他任意の態様とは独立してインプリメントされ得ること、およびこれらの態様のうちの2つ以上が様々な方法で組み合わされ得ることを理解すべきである。例えば、本明細書に記載されるいずれの数の態様を使用しても、装置が実装され得、または方法が実施され得る。さらに、他の構造、機能、あるいは、本明細書に説明される態様のうちの1つまたは複数に加えてまたはそれ以外の構造および機能を使用して、そのような装置が実装され得るか、あるいは、そのような方法が実現され得る。例えば、方法は、システム、デバイス、装置の一部として、および/またはプロセッサまたはコンピュータ上での実行のために、コンピュータ可読媒体上に記憶された命令として、インプリメントされ得る。さらに、一態様は、一請求項の少なくとも1つ要素を備え得る。
【0052】
[0073]
図1は、本開示の態様に従って構成された様々な基地局およびUEを含む、5Gネットワーク100を例示するブロック図である。5Gネットワーク100は、いくつかの基地局105と他のネットワークエンティティとを含む。基地局は、UEと通信する局であり得、発展型ノードB(eNB)、次世代eNB(gNB)、アクセスポイントなどとも呼ばれ得る。各基地局105は、特定の地理的エリアに通信カバレッジを提供し得る。3GPPでは、「セル」という用語は、この用語が使用されるコンテキストに応じて、カバレッジエリアにサービス提供する基地局および/または基地局サブシステムのこの特定の地理的カバレッジエリアを指し得る。
【0053】
[0074]基地局は、マクロセル、またはピコセルもしくはフェムトセルなどのスモールセル、および/または他のタイプのセルに通信カバレッジを提供し得る。マクロセルは、概して、比較的大きい地理的エリア(たとえば、半径数キロメートル)をカバーし、サービスに加入しているUEによるネットワークプロバイダとの無制限アクセスを可能にし得る。ピコセルなどのスモールセルは、一般に、比較的小さい地理的エリアをカバーすることになり、ネットワークプロバイダにサービスに加入しているUEによる無制限のアクセスを可能にし得る。フェムトセルなどのスモールセルもまた、一般に、比較的小さい地理的エリア(例えば、自宅)をカバーすることになり、無制限のアクセスに加えて、フェムトセルとの関連付けを有するUE(例えば、限定加入者グループ(CSG)中のUE、自宅内のユーザのためのUEなど)による制限付きアクセスも提供し得る。マクロセルのための基地局は、マクロ基地局と呼ばれ得る。スモールセルのための基地局は、スモールセル基地局、ピコ基地局、フェムト基地局またはホーム基地局と呼ばれ得る。
図1に示される例では、基地局105dおよび105eは、通常のマクロ基地局であり、一方、基地局105a~105cは、3次元(3D)、全次元(FD:Full Dimension)、またはマッシブMIMOのうちの1つに対応可能なマクロ基地局である。基地局105a~105cは、カバレッジおよび容量を増大させるために仰角と方位角の両方のビームフォーミングで3Dビームフォーミングを活用するために、それらのより高い次元のMIMO能力を利用する。基地局105fは、ホームノードまたはポータブルアクセスポイントであり得るスモールセル基地局である。基地局は、1つまたは複数(例えば、2つ、3つ、4つなど)のセルをサポートし得る。
【0054】
[0075]5Gネットワーク100は、同期または非同期動作をサポートし得る。同期動作の場合、複数の基地局は、同様のフレームタイミングを有し得、異なる基地局からの送信は、時間的にほぼアラインされ得る。非同期動作では、基地局は異なるフレームタイミングを有し得、異なる基地局からの送信が時間的にアラインされないことがある。
【0055】
[0076]UE115はワイヤレスネットワーク100全体にわたって分散され、各UEは固定またはモバイルであり得る。UEは、端末、移動局、加入者ユニット、局などと呼ばれることもある。UEは、セルラーフォン、携帯情報端末(PDA)、ワイヤレスモデム、ワイヤレス通信デバイス、ハンドヘルドデバイス、タブレットコンピュータ、ラップトップコンピュータ、コードレスフォン、ワイヤレスローカルループ(WLL)局などであり得る。一態様では、UEは、ユニバーサル集積回路カード(UICC)を含むデバイスであり得る。別の態様では、UEは、UICCを含まないデバイスであり得る。いくつかの態様では、UICCを含まないUEは、インターネットオブエブリシング(IoE)デバイスとも呼ばれ得る。UEはまた、マシンタイプ通信(MTC)、拡張型MTC(eMTC:enhanced MTC)、狭帯域IoT(NB-IoT)などを含む、特に接続された通信のために構成された機械であり得る。UE115e~115kは、5Gネットワーク100にアクセスする通信のために構成された様々な機械の例である。UEは、マクロ基地局、スモールセル、または同様のものであるかにかかわらず、任意のタイプの基地局と通信することが可能であり得る。
図1では、稲妻(例えば、通信リンク)は、UEと、ダウンリンクおよび/またはアップリンク上でUEにサービス提供するように指定された基地局であるサービング基地局との間のワイヤレス送信を示し、あるいは、基地局間の所望の送信、および基地局間のバックホール送信を示す。
【0056】
[0077]5Gネットワーク100において動作中、基地局105a~105cは、多地点協調(CoMP)またはマルチ接続などの、協調空間技法および3Dビームフォーミングを使用して、UE115aおよび115bにサービス提供する。マクロ基地局105dは、基地局105a~105c、ならびにスモールセル基地局105fとのバックホール通信を実行する。マクロ基地局105dはまた、UE115cおよび115dがそれに加入しておりかつUE115cおよび115dによって受信される、マルチキャストサービスを送信する。このようなマルチキャストサービスは、モバイルテレビジョンまたはストリームビデオを含み得、あるいは、気象緊急事態などのコミュニティ情報、またはアンバーアラートもしくはグレーアラートなどの警報を提供するための他のサービスを含み得る。
【0057】
[0078]5Gネットワーク100はまた、ドローンであるUE115eなどのミッションクリティカルなデバイスのための極めて信頼性が高く冗長なリンクでのミッションクリティカルな通信をサポートする。UE115eとの冗長な通信リンクは、マクロ基地局105dおよび105e、ならびにスモールセル基地局105fからのものを含む。UE115f(温度計)、UE115g(スマートメータ)、およびUE115h(ウェアラブルデバイス)などの他のマシンタイプデバイスは、スモールセル基地局105fおよびマクロ基地局105eなどの基地局と直接的に、または、UE115fがスマートメータであるUE115gに温度測定情報を通信し、その後、それがスモールセル基地局105fを通じてネットワークに報告されるといったように、その情報をネットワークに中継する別のユーザデバイスと通信することによるマルチホップ構成においてのいずれかで、5Gネットワーク100を通じて通信し得る。5Gネットワーク100はまた、マクロ基地局105eと通信するUE115i~115k間の車車間(V2V)メッシュネットワークでのように、動的な低レイテンシTDD/FDD通信を通じて、さらなるネットワーク効率を提供し得る。
【0058】
[0079]
図2は、
図1の基地局のうちの1つおよびUEのうちの1つであり得る、基地局105およびUE115の設計のブロック図を示す。基地局105において、送信プロセッサ220は、データソース212からデータを受信し、コントローラ/プロセッサ240から制御情報を受信し得る。制御情報は、PBCH、PCFICH、PHICH、PDCCH、EPDCCH、MPDCCH、等のためのものであり得る。データは、PDSCH、等のためのものであり得る。送信プロセッサ220は、データと制御情報とを処理(たとえば、符号化およびシンボルマッピング)し、データシンボルと制御シンボルとをそれぞれ取得することができる。送信プロセッサ220はまた、たとえば、PSS、SSS、およびセル固有基準信号のための基準シンボルを生成し得る。送信(TX)多入力多出力(MIMO)プロセッサ230は、適用可能な場合、データシンボル、制御シンボル、および/または基準シンボルに対して空間処理(たとえば、プリコーディング)を実行し得、出力シンボルストリームを変調器(MOD)232a~232tに与え得る。各変調器232は、(たとえば、OFDMなどのために)それぞれの出力シンボルストリームを処理して、出力サンプルストリームを取得し得る。各変調器232は、該出力サンプルストリームをさらに処理(たとえば、アナログへのコンバート、増幅、フィルタリング、およびアップコンバート)して、ダウンリンク信号を取得し得る。変調器232a~232tからのダウンリンク信号は、それぞれアンテナ234a~234tを介して送信され得る。
【0059】
[0080]UE115において、アンテナ252a~252rは、基地局105からダウンリンク信号を受信し得、受信された信号を、それぞれ、復調器(DEMOD)254a~254rに供給し得る。各復調器254は、入力サンプルを取得するために、該当する受信信号を調整(例えば、フィルタリング、増幅、ダウンコンバート、およびデジタル化)し得る。各復調器254は、(たとえば、OFDMなどのために)入力サンプルをさらに処理して、受信シンボルを取得し得る。MIMO検出器256は、すべての復調器254a~254rから受信シンボルを取得し、適用可能な場合は受信シンボルに対してMIMO検出を実行し、検出シンボルを与え得る。受信プロセッサ258は、検出されたシンボルを処理(例えば、復調、デインタリーブ、および復号)し、UE115についての復号されたデータをデータシンク260に提供し、復号された制御情報をコントローラ/プロセッサ280に提供し得る。
【0060】
[0081]アップリンク上では、UE115において、送信プロセッサ264は、データソース262から(たとえば、PUSCHのための)データを受信し、処理し得、コントローラ/プロセッサ280から(たとえば、PUCCHのための)制御情報を受信し、処理し得る。送信プロセッサ264はまた、基準信号のための基準シンボルを生成し得る。送信プロセッサ264からのシンボルは、適用可能な場合、TX MIMOプロセッサ266によってプリコードされ、(たとえば、SC-FDM、等のために)変調器254a~254rによってさらに処理され、基地局105に送信され得る。基地局105において、UE115からのアップリンク信号が、アンテナ234によって受信され、復調器232によって処理され、適用可能な場合にはMIMO検出器236によって検出され、受信プロセッサ238によってさらに処理されて、UE115によって送られた、復号されたデータおよび制御情報を取得し得る。プロセッサ238は、復号されたデータをデータシンク239に与え、復号された制御情報をコントローラ/プロセッサ240に与え得る。
【0061】
[0082]コントローラ/プロセッサ240および280は、それぞれ基地局105およびUE115における動作を指示し得る。基地局105におけるコントローラ/プロセッサ240および/または他のプロセッサおよびモジュールは、本明細書で説明される技法のための様々なプロセスの実行を指示または実行し得る。UE115におけるコントローラ/プロセッサ280および/または他のプロセッサおよびモジュールもまた、
図6A、
図6B、
図6C、
図7A、
図7B、
図8A、
図8B、
図9A,
図9B、
図9C、および
図9Dに例示される機能ブロック、および/または本明細書で説明される技法のための他のプロセスの実行を指示または実行し得る。メモリ242および282は、それぞれ、基地局105およびUE115のためのデータおよびプログラムコードを格納し得る。スケジューラ244は、ダウンリンクおよび/またはアップリンク上でのデータ送信のためにUEをスケジュールし得る。
【0062】
[0083]異なるネットワークオペレーティングエンティティ(例えば、ネットワーク事業者)によって動作させられるワイヤレス通信システムは、スペクトルを共有し得る。いくつかの事例では、ネットワークオペレーティングエンティティは、別のネットワークオペレーティングエンティティが異なる時間期間にわたって指定された共有スペクトル全体を使用する前に、少なくともある時間期間にわたって指定された共有スペクトル全体を使用するように構成され得る。したがって、ネットワークオペレーティングエンティティが完全に指定された共有スペクトルを使用することを可能にするために、および異なるネットワークオペレーティングエンティティ間の干渉する通信を緩和するために、ある特定のリソース(例えば、時間)が区分され、ある特定のタイプの通信のための異なるネットワークオペレーティングエンティティに割り振られ得る。
【0063】
[0084]例えば、ネットワークオペレーティングエンティティは、共有スペクトルの全体を使用するネットワークオペレーティングエンティティによる排他的な通信のために予約されたある特定の時間リソースを割り振られ得る。ネットワークオペレーティングエンティティはまた、このエンティティが、共有スペクトルを使用して通信するために、他のネットワークオペレーティングエンティティより優先される、他の時間リソースを割り振られ得る。ネットワークオペレーティングエンティティによる使用のために優先されるこれらの時間リソースは、優先されるネットワークオペレーティングエンティティがそのリソースを利用しない場合、日和見ベース(Opportunistic Basis)で他のネットワークオペレーティングエンティティによって利用され得る。追加の時間リソースは、任意のネットワーク事業者が日和見ベースで使用するために割り振られ得る。
【0064】
[0085]共有スペクトルへのアクセスおよび異なるネットワークオペレーティングエンティティ間での時間リソースの調停(arbitration)は、別個のエンティティによって中央制御されるか、所定の調停スキームによって自律的に決定されるか、またはネットワーク事業者のワイヤレスノード間のインタラクションに基づいて動的に決定され得る。
【0065】
[0086]いくつかのケースでは、UE115および基地局105は、共有無線周波数スペクトル帯域において動作し得、これは、ライセンスまたはアンライセンス(例えば、競合ベース)の周波数スペクトルを含み得る。共有無線周波数スペクトル帯域のアンライセンス周波数部分では、UE115または基地局105は、従来どおり、媒体感知プロシージャを実行して、周波数スペクトルへのアクセスを競合し得る。例えば、UE115または基地局105は、共有チャネルが利用可能であるかどうかを決定するために、通信する前に、クリアチャネルアセスメント(CCA)などのリッスンビフォアトーク(LBT)プロシージャを実行し得る。CCAは、任意の他のアクティブな送信が存在するかどうかを決定するためのエネルギー検出プロシージャを含み得る。例えば、デバイスは、電力メータの受信信号強度インジケータ(RSSI)における変化が、チャネルが占有されていることを示すと推論し得る。具体的には、ある特定の帯域幅に集中し、所定のノイズフロアを超える信号電力は、別のワイヤレス送信機を示し得る。CCAはまた、チャネルの使用を示す特定のシーケンスの検出を含み得る。例えば、別のデバイスは、データシーケンスを送信する前に、特定のプリアンブルを送信し得る。いくつかのケースでは、LBTプロシージャは、衝突用のプロキシとして、それ自体の送信されたパケットに対する肯定応答/否定応答(ACK/NACK)フィードバックおよび/またはチャネル上で検出されたエネルギー量に基づいて、それ自体のバックオフウィンドウを調整するワイヤレスノードを含み得る。
【0066】
[0087]アンライセンス共有スペクトルへのアクセスを競合するための媒体感知プロシージャの使用は、通信の非効率をもたらす場合がある。これは、複数のネットワークオペレーティングエンティティ(例えば、ネットワーク事業者)が共有リソースにアクセスしようと試みるとき、特に顕著であり得る。5Gネットワーク100では、基地局105およびUE115は、同じまたは異なるネットワークオペレーティングエンティティによって動作させられ得る。いくつかの例では、個々の基地局105またはUE115は、1つより多くのネットワークオペレーティングエンティティによって動作させられ得る。他の例では、各基地局105およびUE115は、単一のネットワークオペレーティングエンティティによって動作させられ得る。異なるネットワークオペレーティングエンティティの各基地局105およびUE115が共有リソースを競合することを必要とすることは、増大されたシグナリングオーバヘッドおよび通信レイテンシをもたらす場合がある。
【0067】
[0088]
図3は、協調されたリソース区分のためのタイミング図の例を例示する。タイミング
図300は、固定された時間期間(例えば、20ms)を表し得る、スーパーサブフレーム305を含む。スーパーサブフレーム305は、所与の通信セッションのために繰り返され得、
図1を参照して説明された5Gネットワーク100のようなワイヤレスシステムによって使用され得る。スーパーサブフレーム305は、獲得間隔(A-INT)310および調停間隔315のような間隔に分割され得る。以下でより詳細に説明されるように、A-INT310および調停間隔315は、異なるネットワーク動作エンティティの間の協調通信を容易にするために、サブ間隔にさらに分割され得、あるリソースタイプのために指定され、異なるネットワーク動作エンティティに割り振られ得る。例えば、調停間隔315は、複数のサブ間隔320のに分割され得る。さらに、スーパーサブフレーム305は、固定期間(例えば、1ms)で複数のサブフレーム325にさらに分割され得る。タイミング
図300が3つの異なるネットワーク動作エンティティ(例えば、オペレータA、オペレータB、オペレータC)を例示する一方、協調通信のためにスーパーサブフレーム305を使用するネットワーク動作エンティティの数は、タイミング
図300中で例示される数より多く、または少なくなり得る。
【0068】
[0089]A-INT310は、ネットワーク動作エンティティによる排他的な通信のために予約されるスーパーサブフレーム305の専用間隔であり得る。いくつかの例では、各ネットワーク動作エンティティは、排他的な通信のためのA-INT310内であるリソースを割り振られ得る。例えば、リソース330-aは、基地局105aを通るような、オペレータAによる排他的な通信のために予約され得、リソース330-bは、基地局105を通るような、オペレータBによる排他的な通信のために予約され得、リソース330-cは、基地局105cを通るような、オペレータCによる排他的な通信のために予約され得る。リソース330-aがオペレータAによる排他的な通信のために予約されるので、オペレータBもオペレータCもどちらも、たとえオペレータAgaそのリソースの間通信しない場合でさえも、リソース330-aの間通信することができない。すなわち、排他的なリソースへのアクセスは、専用ネットワークオペレータに限定される。同様の制限がオペレータBのためのリソース330-bおよびオペレータCのためのリソース330-cに適用される。オペレータAのワイヤレスノード(例えば、UE115または基地局105)は、制御情報またはデータのような、それらの排他的なリソース330-aの間に望まれた任意の情報を通信し得る。
【0069】
[0090]排他的案リソースにわたる通信のとき、ネットワーク動作エンティティは、ネットワーク動作エンティティが予約されたリソースを知っているので、任意の媒体センシングプロシージャ(例えば、リッスンビフォアトーク(LBT)またはクリアチャネルアセスメント(CCA))を実行する必要がない。指定されたネットワーク動作エンティティのみが排他的なリソースにわたって通信するので、媒体センシング技法だけを信頼するのと比較して、干渉する通信の可能性を低減されることがあり得る。いくつかの例では、A-INT310は、同期信号(例えば、SYNC信号)、システム情報(例えば、システム情報ブロック(SIB)、ページング情報(例えば、物理ブロードキャストチャネル(PBCH)メッセージ)、またはランダムアクセス情報(例えば、ランダムアクセスチャネル(RACH)信号)のような、制御情報を送信するために使用される。いくつかの例では、ネットワーク動作エンティティに関連付けられたすべてのワイヤレスノードは、それらの排他的なリソースの間に同時に送信し得る。
【0070】
[0091]いくつかの例では、リソースは、あるネットワーク動作エンティティのために優先されたものとして分類され得る。あるネットワーク動作エンティティのための優先権を割り当てられたリソースは、そのネットワーク動作エンティティのための保証された間隔(G-INT)と呼ばれ得る。G-INTの間にネットワーク動作エンティティによって使用されるリソースの間隔は、優先サブ間隔と呼ばれ得る。例えば、リソース335-aは、それ故、オペレータAのためのG-INT(例えば、G-INT-OpA)と呼ばれ得る。同様に、リソース335-bは、オペレータBのために優先され得、リソース335-cは、オペレータCのために優先され得、リソース335-dは、オペレータAのために優先され得、リソース335-eは、オペレータBのために優先され得、そして、リソース335-fは、オペレータCのために優先され得る。
【0071】
[0092]
図3に例示される様々なG-INTリソースは、それらそれぞれのネットワーク動作エンティティに関連付けられたそれらを例示するようにジグザグに配置されるように見えるが、それらのリソースがすべて、同じ周波数帯域幅上にあり得る。したがって、時間周波数グリッドに沿ってみられる場合、G-INTは、スーパーサブフレーム305内で連続的なラインとして見え得る。データのこの区分化は、時間分割多重(TDM)の例であり得る。また、リソースが同じサブ間隔(例えば、リソース340-aおよびリソース335-b)内に現れるとき、それらのリソースは、スーパーサブフレーム305に関して同じ時間リソース(例えば、同じサブ間隔320を占めるリソース)を表すが、リソースは、同じ時間リソースが異なる動作のために異なって分類されることができることを例示するように別々に指定される。
【0072】
[0093]リソースがあるネットワーク動作エンティティ(例えば、G-INT)のために優先権を割り当てるとき、そのネットワーク動作エンティティは、任意の媒体センシングプロシージャ(例えば、LBTまたはCCA)を待つまたは実行すること無しにそれらのリソースを使用して通信し得る。例えば、オペレータAのワイヤレスノードは、オペレータBまたはオペレータCのワイヤレスノードから干渉を受けずにリソース335-aの間に、自由に任意のデータまたは制御情報を通信することができる。
【0073】
[0094]ネットワーク動作エンティティはさらに、それが特定のG-INTを使用する意図を、別のオペレータにシグナルし得る。例えば、リソース335-aを参照すると、オペレータAは、それがリソース335-aを使用する意図を、リソースオペレータBおよびオペレータCにシグナルし得る。そのようなシグナリングは、アクティビティインジケーションと呼ばれ得る。さらに、オペレータAがリソース335-aにわたって優先権を有するので、オペレータAは、オペレータBおよびオペレータCの両方より高い優先権オペレータとみなされ得る。しかしながら、上で議論したように、オペレータAは、リソース335-aがオペレータAに優先権を割り当てられるので、リソース335-aの間の干渉の無い送信を保証するために他のネットワークオペレータにシグナリングを送る必要がない。
【0074】
[0095]同様に、ネットワーク動作エンティティは、それが特定のG-INTを使用しな意図を、別のネットワークオペレータにシグナルし得る。このシグナリングはまた、アクティビティインジケーションと呼ばれ得る。例えば、リソース335-bを参照すると、オペレータBは、たとえリソースがオペレータBに優先権を割り当てられるとしても、それが通信のためにリソース335-bを使用しない意図を、オペレータAおよびオペレータCにシグナルし得る。リソース335bを参照して、オペレータBは、オペレータAおよびオペレータCより高い優先権のネットワーク動作エンティティとみなされ得る。このようなケースでは、オペレータAおよびCは、日和見ベースでサブ間隔320のリソースの使用を試み得る。したがって、オペレータAの観点から、リソース335-bを包含するサブ間隔320は、オペレータAのための日和見間隔(O-INT)(例えば、O-INT-OpA)とみなされ得る。例示的な目的として、リソース340-aは、オペレータAのためのO-INTを表す。さらに、オペレータCの観点から、同じサブ間隔320は、対応するリソース340-bを持つオペレータCのためのO-INTを表す。リソース340-a、335-b、および340-bはすべて、同じ時間リソースを表すが、同じリソースがいくつかのネットワーク動作エンティティのためのG-INTとみなされ、なおかつ他のエンティティのためのO-INTとみなされ得ることを意味するように別々に識別される。
【0075】
[0096]日和見ベースでリソースを利用するために、オペレータAおよびオペレータCは、データを送信する前に特定のチャネル上での通信をチェックするために媒体センシングプロシージャを実行し得る。例えば、オペレータBがリソース335-b(例えば、G-INT-OpB)を使用しないと判定する場合、その後、オペレータAは、干渉のためのチャネルを第1のチェック(例えば、LBT)することと、その後、チャネルがクリアであると決定された場合、データを送信することによってそれらの同じリソース(例えば、リソース340-bによって表される)を使用し得る。同様に、オペレータCが、オペレータBがそのG-INTを使用しなかったとのインジケーションに応答して、サブ間隔320の間に日和見ベースでリソースにアクセスしたいと望む(例えば、リソース340-bによって表されるO-INTを使用したいと望む)場合、オペレータCは、媒体センシングプロシージャを実行し、利用可能な場合、リソースにアクセスする。いくつかのケースでは、2つのオペレータ(例えば、オペレータAおよびオペレータC)は、同じリソースにアクセスするよう試み得る、そのようなケースでは、オペレータは、干渉する通信をさけるように競合ベースプロシージャを採用し得る。オペレータはまた、より多くのオペレータが同時にアクセスを試みる場合、どのオペレータがリソースへのアクセスを得るかを決定するために設計されたそれらに割り振られたサブ優先権を有し得る。
【0076】
[0097]いくつかの例では、ネットワーク動作エンティティは、それに割り当てられた特定のG-INTを使用しないことを意図し得るが、リソースを使用しない意図を伝達するアクティビティインジケーションを送り得ない。このケースでは、特定のサブ間隔320について、より低い優先権の動作エンティティは、より高い優先権の動作エンティティがリソースを使用するかどうかを決定するためにチャネルをモニタするように構成され得る。より低い優先権の動作エンティティがLBT、またはより高い優先権の動作エンティティがそのG-INTを使用しないことになる類似の方法を通して決定する場合、その後、より低い優先権の動作エンティティは、上で説明したように、日和見ベースででリソースにアクセスするように試み得る。
【0077】
[0098]いくつかの例では、G-INTまたはO-INTへのアクセスは、予約信号(例えば、送信要求(RTS:request-to-send)/送信可(CTS:clear-to-send)によって処理され得、競合ウィンドウ(CW)は、動作エンティティのうちの総数と、1つとの間でランダムに選択され得る。
【0078】
[0099]いくつかの例では、動作エンティティは、協調マルチポイント(CoMP)通信を採用し得る、またはCoMPと互換性があり得る。例えば、動作エンティティは、必要に応じて、O-INTにおける日和見CoMPおよびG-INTにおけるCoMPおよび動的時分割二重(TDD)を採用し得る。
【0079】
[00100]
図3において例示される例では、各サブ間隔320は、オペレータA、B、またはCのうちの1つのためのG-INTを含む。しかしながら、いくつかのケースでは、1つまたは複数のサブ間隔320は、独占使用のために予約されず、優先使用のために予約されないリソース(例えば、割り当てられないリソース)を含み得る。このような割り当てられないリソースは、任意のネットワーク動作エンティティのためのO-INTとみなされ、上で説明したように日和見ベースでアクセスされ得る。
【0080】
[00101]いくつかの例では、各サブフレーム325は、14シンボル(例えば、60kHzトーン間隔について250-μs)を包含し得る。これらのサブフレーム325は、スタンドアローンであり、自立型の(self-contained)間隔Cs(ITCs)またはサブフレーム325は、長期ITCの一部であり得る。ITCは、ダウンリンク送信で自立型の送信で開始しアップリンクで終了し得る。いくつかの実施形態では、ITCは、媒体占有に連続的に作用する1つまたは複数のサブフレーム325を包含し得る。いくつかのケースでは、250-μs送信機会を仮定すると、(例えば、2msの持続時間を持つ)A-INT310において最大8つのネットワークオペレータがあり得る。
【0081】
[00102]3つのオペレータが
図3中に例示されるが、より少ないまたはより多いネットワーク動作エンティティが上で説明したように協調された方法において動作するように構成され得ることが理解されるべきである。いくつかのケースでは、各オペレータのためのスーパーサブフレーム305内のG-INT、O-INT、またはA-INTのロケーションは、システムにおいてアクティブなネットワーク動作エンティティの数に基づいて自立的に決定される。例えば、ただ1つのネットワーク動作エンティティがある場合、各サブ間隔320は、その単一ネットワーク動作エンティティのためのG-INTによって占有される、またはサブ間隔320は、そのネットワーク動作エンティティのためのG-INTと、他のネットワーク動作エンティティが入ることを許可するO-INTとの間で交互に入れ替わり得る。2つのネットワーク動作エンティティがある場合、サブ間隔320は、第1のネットワーク動作エンティティのためのG-INTと、第2のネットワーク動作エンティティのためのG-INTとの間で交互に入れ替わり得る。3つのネットワーク動作エンティティがある場合、各ネットワーク動作エンティティのためのG-INTおよびO-INTは、
図3に例示されるように設計され得る。4つのネットワーク動作エンティティがある場合、最初の4つのサブ間隔320は、4つのネットワーク動作エンティティのための連続したG-INTを含み、残りの2つのサブ間隔320は、O-INTを包含し得る。同様に、5つのネットワーク動作エンティティがある場合、最初の5つのサブ間隔320は、5つのネットワーク動作エンティティのための連続したG-INTを含み、残りのサブ間隔320は、O-INTを含み得る。6つのネットワーク動作エンティティがある場合、6つすべてのサブ間隔320は、各ネットワーク動作エンティティのための連続したG-INTを含み得る。これらの例は、例示の目的であり、他の自律的に決定された間隔割り振りが使用され得ることが理解されるべきである。
【0082】
[00103]
図3を参照して説明された協調フレームワークが例示の目的のみのためであることが理解されるべきである。例えば、スーパーサブフレーム305の持続時間は、20msより長い、または短くなり得る。さらに、サブ間隔320およびサブフレーム325の数、持続時間、およびロケーションは、例示された構成と異なり得る。さらに、(例えば、排他的な、優先された、割り当てられない)リソース指定のタイプは、異なる、またはより多くまたはより少ないサブ指定を含み得る。
【0083】
[00104]本開示の態様は、免許スペクトルおよび共有スペクトルにおける協調ワイヤレスネットワークおよび非協調ワイヤレスネットワークの共存のための媒体予約フレームワークに向けられる。提案された媒体予約フレームワークは、ノード毎に異なる数のTx/Rxアンテナを持つ動作レジームを有機的に考慮し、媒体競合積極性および省電力をトレードオフすることをフレキシブルに提供し、NRの固有同期性質を活用し、協調動作シナリオおよび非協調動作シナリオの両方をカバーする。この非協調動作は、同期/協調しないネットワークノードを持つ異なるNRオペレータを有するネットワークにおいて生じる。対照的に、協調動作は、ファイバーバックホールによるおよび/または無線にわたる協調メカニズムを有し、強調した異なるNRオペレータを有するネットワークにおいて生じる。開示された媒体予約フレームワークは、異なるタイプのトラフィックに異なって適用されることができることが想定される。例えば、発見信号(DRS)、ページング、類似の手続きメッセージは、省電力のためにより予測可能なタイミングおよびより高度な保護で取り扱われることができ得る。
【0084】
[00105]実験からの観測は、eNB/UEでの4×4Tx/Rxで、エネルギー検出およびRTS/CTSメカニズムが次善の結果を生じ、LBTが緩やかにされることができることを明らかにする。統計的解析は、所望の動作レジームがより低いMIMOランクおよびより高い空間再利用を好むことを示す。しかしながら、再利用1は、安定した動作モードではない。必要とされるものは、より多数のアンテナで動作することを有機的に捕獲する共存スキームである。
【0085】
[00106]
図4を参照すると、本開示の媒体予約フレームワークは、1つまたは複数の同期信号422、426、430を含む、いくつかの基本構成ブロックに重点が置かれ得、それは、異なるオペレータが、各々の他の予約メッセージを復号することを可能にする非協調動作のために使用され得る。予約フレームワークの追加の基本構成ブロックは、予約要求信号(RRQ)424、1つまたは複数の予約応答信号(RRS)428、432のような予約メッセージを含む。
【0086】
[00107]
図5Aを参照して、動作の例は、gNBによって、同期信号に続いてRRQの送信を含む。その後、UEは、別の同期信号に続いてRRSを送信することによってRRQに応答する。その後、データ送信は、例えば、ダウンリンクデータ送信504に続いてアップリンクデータ送信506が生じる。
【0087】
[00108]
図4に戻って、1つまたは複数のgNB405a、405bがRRQおよびRRSのような、メッセージの交換のための動作グリッドを採用し得ることが想定される。動作グリッドがないまたはそれらが単に動作グリッドシンボル境界でアラインされるような、RRQ/RRSが連続的にフローティングしている(floating)場合、その後、同期信号は、-6dB信号対ノイズ比(SNR)で送信されなければならない。しかしながら、RRQ/RRSが動作グリッドのスロットまたはフレーム境界でアラインされる場合、その後、同期信号は単に、ノイズフロアより上であるSNRで送信される必要がある。したがって、gNB405aは、RRQがシンボル境界、スロット境界、またはフレーム境界のような、スロット境界のサブセットとアラインするかどうかを含む、グリッド特性をUE415aに通知する、UE415aへの動作グリッド構成420を送信し得る。この情報を用いて、UEは、指定されたグリッドの境界上でRRQを探す必要があるのかどうか、さもなければスリープすることができるかどうかを決定することができる。RRQが単に、シンボル境界でアラインされる場合、その後、動作は、UEがRRQをほぼ必ず探すフローティングRRQのケースと類似する点において関係しているトレードオフがある。したがって、RRQのための潜在的なロケーションがより頻繁なほど、UE側での電力消費がより高くなるが、gNBが媒体にアクセスすることができるより高い水準の機会がさらに存在する。したがって、近隣ノードのトラフィックアクティビティ、スループット要求、および/またはトラフィック負荷に依存して、gNBは、RRQグリッドを適応させることができる。孤立したセルでは、例えば、gNBは、シンボル境界の代わりにスロットまたはフレーム境界でRRQをアラインすることによってよりまばらに割り振られるべきRRQを定義することができる。
【0088】
[00109]同期信号422、426、430は、潜在的なジャマ―/被害者になる異なるオペレータからの他のノードによる早いタイミングおよび周波数検出を提供する。このような信号は、干渉とみなされることができる最低の受信信号強度インジケータ(RSS)レベルで検出されるべきである。RRQがシンボル境界でアラインする場合、同じオペレータからのUE/gNBは、この同期信号を復号する必要がなく、それは、WiFi(登録商標)と比較して利点を提示する。RRQ424に先立つ同期信号422は、その持続時間がRRS428のための同期信号426の持続時間より長くなることができるように、次のシンボル境界まで拡張されることができる。
【0089】
[00110]同期信号検出しきい値に関して、0dB SNRは、それがノイズフロアより低い干渉を黙らせる必要がないので、同期信号を検出するために十分に保守的であるべきである。しかしながら、RRQ424が連続的にフローティングしているケースについて、同期信号422は、同じオペレータからのUE/gNBによって検出される必要がある。このケースでは、-6dB検出しきい値が必要である。同期信号が最小電力消費のための無線起動信号に類似する必要がある。gNBは、波形設計および復号器の複雑さ/タイムラインのためのPHYスコーピングの後で検出しきい値に関する決定を行うことができる。
【0090】
[00111]非協調動作について、RRQ424検出しきい値は、それが同じオペレータ/ネットワーク/gNBからのUEによって検出される必要があるので、PDCCCHと同様に、-6dB検出である。RRQは、RRS428、432を送るようにUE415a、415bをトリガするように機能する。RRQ424は、送信機会(TxOp)持続時間を提供し、16スロットまで予約する4ビットメッセージに加えて8ビットセル基準信号(CRS)およびおよびQPSK1/3→18基準信号(RS)トーンとしてインプリメントされ得るネットワーク割り振り割り振りベクトル(NAV)を搬送する。これらのRSトーンは、NAVを復号し、粗い干渉共分散行列(Rnn)を計算する際に、UE415aおよび415bによって使用され得る。いくつかの態様では、RRQがさらに、gNB405aとUE415aとの間で交換される送信のデータ部分において使用されるランクを搬送することができるプリコード化チャネル状態情報(CSI)-RSを含み得ることが描かれる。CSI-RSは、これらのRnn推定において、UE415bのような他のノードで使用され得る。例えば、UE415bは、各レイヤのための変調符号化スキーム(MCS)を決定するためにCSI-RSを使用し、gNB405aがビームフォーミング選択のためにその情報を使用し得るように、RRS432におけるフィードバックとしてこの情報を含むことができる。しかしながら、このCSI-RSは、後で説明されるように協調動作のために潜在的により必要とされる。
【0091】
[00112]さらに非協調動作に関して、RRS信号428、432の検出は、-6dBSNRで生じる必要がある。RRSは、UEによって推定された干渉のインジケーションによって変調されたプリコード化サウンディング基準信号(SRS)を搬送するように機能する。プリコード化SRSが干渉電力でのみ変調され得ることが想定される。しかしながら、目下、粗い干渉共分散行列の逆数(Rnn-1/2)によってプリコード化SRSを変調するのが好まれる。RRSはまた、NAV復号のための制御RSおよびNAVを搬送する。gNB405aは、そのサービスを提供するUE415aからRnn-1/2Hを有するRRS428を受信する。ここで、Hは、gNB405aとUE415aとの間のチャネルの推定のためのチャネル推定式である。このインプリメンテーションは、効果的な信号対干渉ノイズ比(SINR)ポスト最小平均二乗誤差(MMSE)を通信し、プリコーダ、ランク、およびMCS438の選択のために活用されることができ、それらについて、正確さが日付次第であるRnnに依存する。gNB405aはまた、Rnn-1/2Gを有するRRS432を受信する。ここで、Gは、ジャマ―としての、gNB405aと、被害受信機としての、UE415bとの間のチャネルの推定のためのチャネル推定式である。このインプリメンテーションは、UE415bでの名目上のと比較した干渉寄与をgNB405aに通信する。Rnnがホワイトノイズに対応する特別なケースでは、Rnn-1/2Gは、|G|2/σn
2に低減され、これは、UE415bとそのサービングgNB405bとの間のワイヤレス通信に、干渉レベルの追加の上昇になる、すなわち、必要とされる場合、gNB405aに送信電力を低減することを許可する、gNB405aの送信440のに起因する。概して、有色Rnnについて、gNB405aは、UE415bから、空間次元毎に|G|2/σn
2の同価値を受信し、それは、必要とされる場合、gNB405aに、送信電力に加えてランク次元を低減することを許可する。
【0092】
[00113]UE415aおよびUE415bは、RRQ424におけるRSトーンにわたってそのそれぞれのRnnを各々計算することができる。UE415aおよび/または415bは、TxOp内で干渉変動を予測することができ、その後、それぞれのRnn計算は、この予測を考慮することができる。したがって、RNNは、干渉予測のために潜在的に使用されることができる。さらに、データ(NAV)がSRSで周波数分割多重されることができない場合、その後、RRS428、432は、2つのシンボルである必要があり得る。
【0093】
[00114]開示される媒体予約フレームワークに関するコンポーネントキャリアアグリゲーション(CCA)ルールに関して、プリコード化SRS送信は、RRS信号を制御する電力であると考えられることができる。例えば、ノードが高い干渉を許容できない場合、それは、より高い電力で送信することができる(例えば、セルエッジ)。反対に、ノードが高い干渉を許容できる場合、それは、より低い電力で送信することができる(例えば、セル中心)。近隣gNBは、Rnn-1/2Gの固有値を探査し、しきい値とそれらを比較し、その送信ランクおよびレイヤごとのその送信電力を決定することができる。このようなしきい値は、ワイヤレス通信基準において定義され、許容できる干渉上昇を定義し得る。
【0094】
[00115]
図5Bを参照して、2つ以上のUEからのRRSがTxOpにおいて多重化され得ることが想定される。UEがTxOpにおいて多重化することを可能にする1つの方法は、異なるUEからのRRS502Aおよび502Bについて、周波数分割多重されるようにすることである。このインプリメンテーションは、UEのデータ504Aおよび504BのためのFDMとペアにされることができる。異なるUEは、RRQ520中に割り振られたリソースに依存する異なるNAV持続時間を有し得る。代替は、時間ドメインにおいてUEを多重化することであり、それは、リンクが媒体を過度に予約できないような、より小さなTxOpにTxOpを分割することを要求する。
【0095】
[00116]非協調動作におけるアップリンク(UL)トラフィックについて、ULのための媒体を予約するためにRRSとして働くことができる別のRRQが使用され得る。UE多重化は、gNBがULケースにおいて共通受信機であるので、TDMまたはFDMであるかどうか、このケースにおいて単純である。このようなインプリメンテーションについて、TxOP内でトラフィック方向を切り替えること(例えば、スロットベース毎に決定されるDL/UL)は、各部分のための異なるRRQ/RRSを使用することを要求し得る。保守的なアプローチは、TxOPの開始時にRRQとRRSの両方から媒体を予約し得る。このアプローチは、特に、超高信頼低遅延通信(URLLC:ultra-reliable and low latency communication)をサポートする場合、より多くのスケジューラフレキシビリティを可能にする一方、全体のネットワーク効率に影響を及ぼす。
【0096】
[00117]いくつかのインプリメンテーションでは、非協調動作について、異なる保護領域がディーププリアンブルを使用することによって採用され得ることが想定される。例えば、ページングの前の、発見信号についておよび重要なメッセージについて、gNBに関連付けられたUEのための潜在的ジャマ―を黙らせることができるディープ予約信号が送られることができる。このケースについて、同期信号はまた、-6dB SNRで検出される必要があり得る。したがって、ディーププリアンブルは、非常に低いレベル(例えば、隠されたノードから保護するためにー10dB SNR)で検出されることができる特定のプリアンブルである、より少ない頻度のメッセージのために使用され得る。NAVは、プリアンプルから暗黙的なものであり、仮説検証を低減するために、暗黙的なNAVがわずかなNAV持続時間(例えば、1スロット、2スロット)を搬送し得る。これらのより少ない頻度の信号のための単一CCA競合を許容するために、gNBは、起動時、媒体にリッスンし、これらのディーププリアンブルのロケーションを識別し、これらのロケーションにおける競合を周期的に避けることができる。
【0097】
[00118]非協調動作におけるレート制御は、RRS上のRnnフィードバックとデータ上で見られる干渉との間の不一致に起因する問題であり得る。予測された干渉と実際の干渉との間のこの不一致を軽減する1つの方法は、TxOP内で送られるプリコード化SRSと共にRnn/MCSフィードバックを更新することであり得る。代替または追加として、10%パケット誤り率(PER)目標と比較してアウターループランク制御に改善がなされ得る。
【0098】
[00119]
図5Cを参照して、協調動作は、同期信号が必要としない利益を享受する。さもなければ、媒体予約フレームワークは、非協調動作のために上で説明した同じRRQ/RRS設計を活用し得る。しかしながら、予約は主に、制御干渉にわたるデータを避け、より高いロバストネスを提供するために制御領域540A、540B中に生じ得る。制御領域は、少数のオペレータ(例えば、2)のために次元化され得る。したがって、プライマリオペレータのためのRRQ544およびRRS546と、セカンダリオペレータのためのRRQ548およびRRS550は、制御領域540Aにおいて交換され得る一方、他のオペレータは、それらが制御領域中でRRQ/RRSを検出しない場合、データ領域542中でのみ競合され得る。競合に基づく優先度(競合ウィンドウサイズ)は、プライマリオペレータおよびセカンダリオペレータのためにより高い優先度でインプリメントされ、残りのオペレータは、等しいおよびより低い優先度を与えられ得る。
【0099】
[00120]他のノードにRRQからのRnnを計算し、RRQ上で見られる干渉とデータとの間の不一致を最小化することを許可するように測定が取られ得ることが想定される。例えば、そして前に述べたように、RRQは、(これがまた、RRS/CSIにおけるUEフィードバックに基づいて調整されることができるにもかかわらず)gNBがデータ552のために使用することを意図するランクに類似するランクを有することができるプリコード化CSI-RSを搬送し得る。残りの不一致がアウターループランク制御によって取り扱われ得ることが想定される。このCSI-RSは、RRQが既に、他のノードのデータからの干渉を潜在的にみることになるので、非協調動作においてより少なく必要である。
【0100】
[00121]
図5Dを参照して、gNBがTxOpのデータ領域を満たすために十分なデータ580を有しない場合、その後、制御領域560AのRRQ/RRS572、574、576、578におけるNAVを見た他のgNBは、TxOpのデータ領域562の残り584のために競合することができる。この競合メカニズムは、衝突を低減するためにこれらのgNBの間の優先ランダムアクセスを使用し得る。しかしながら、この日和見送信は、次の制御領域560Bの開始前に終了しなければならない。さらに、同じオペレータのgNBについて、ソフト再利用は、有色間のランダム競合または同じRRQ/RRSフォーマットを使用する個別のノードによってデータ領域において達成されることができる。ここで、より高性能な自己最適化ネットワーク(SON)が有色レベルで競合する必要があるという点で、SON複雑性とトレードオフがある。また、再利用1は、特別なケースである。
【0101】
[00122]動作の非協調モードにおける協調マルチポイント(CoMP)に関して、CoMPクラスタの構成のために想定された2つのオプションがある。1つのオプションは、別個に競合し、それ自身のNAVを維持するためにクラスタにおける各ノードのためのものである。したがって、任意の時刻で、期限の切れた現在のNAVを持つノードを使用するか最も大きなNAVを使用し待機するかを選択するスケジューラである。期限の切れた現在のNAVを持つノードを優先的にスケジューリングすることは、より小さいクラスタサイズを要求するが、媒体にアクセスするためにgNBのためにより高水準な機会を提供する。しかしながら、最も大きなNAVを優先的にスケジューリングすることは、より大きなクラスタサイズを許容するが、媒体を失うgNBのリスクが増大する。これらのスケジューリング選択は、様々な方法で組合されることが想定される。別のオプションは、完全競合で動いている、クラスタにおけるただ1つのノードのためのであり、スケジューラは、クラスタヘッドとしてこのノードを指定し得る。クラスタヘッドが媒体をクリアにするとき、それがRRQを送り、クラスタにおけるノードの残りの追加の送信が、所定の干渉レベルしきい値を超えるのを避けることになると決定する場合のみ、それらがクラスタに参加することを示すために、本明細書でCoMP RRSと呼ばれる、メッセージを送ることによって、このRRQに応答し得る。クラスタのヘッドが例えば、クラスタサイズに基づくことができる公平なメカニズムを動的に使用して変更できることが想定される。このオプションの利点は、より大きなクラスタサイズであるが、より多くの干渉を潜在的に作ることを犠牲にしている。これらの損得は、キャリアセンシング適応送信(CSAT)からの概念を使用するような、媒体利用に基づいて媒体により少なくアクセスするのと等価であることができる。
【0102】
[00123]
図6Aを参照して、UEによって行われるプロセスは、ブロック600で、UEにおいて、gNBによって送信された同期信号を受信することで開始し得る。処理は、ブロック602で、同期信号を受信した後のUEにおいて、gNBによって送信されたRRQを受信することによって続行し得る。RRQは、NAVと、NAVの復号を可能にする制御RSとを含み得る。いくつかの実例では、RRQはまた、サービングセルへのUEの間のワイヤレス通信のデータ部分を使用してランクを搬送し、UEによってRnnの計算を容易にするプリコード化CSI-RSを含むことが想定される。処理はその後、ブロック604で、UEが、RRQを復号するために同期信号を使用することによって続行し得る。処理はその後、ブロック606で、UEが、別の同期信号を送信することによって続行し得る。処理はその後、ブロック608で、RRQに応答し、他の同期信号を送信した後のUEが、RRSを送信することによって続行し得る。いくつかのインプリメンテーションでは、UEは、RRQが制御領域中で受信されたかどうかを決定し、RRQが制御領域中で受信されたとの決定に応答して、UEは、制御領域中でRRSを送信し得る。さもなければ、RRQが制御領域中で受信しなかったとの決定に応答して、UEは、データ領域中でRRSを送信し得る。RRSは、NAVと、NAVの復号を可能にする制御RSとを含み得る。いくつかの実例では、RRSは、NAVによって識別されたTxOpにおいて、他のUEによって送信される他のRRSと多重化され得る。RRSは、UEによって推定された干渉のインジケーションによって変調されたプリコード化SRSを搬送する。好ましくは、干渉のインジケーションは、Rnn
-1/2に対応する。gNBがUEをサービスするサービングセルgNBであるケースでは、Rnn
-1/2は、UEとサービングgNBとの間のワイヤレス通信のための効果的なSINRポストMMSEを通信する。gNBがUEをサービスしない近隣gNBであるケースでは、Rnn
-1/2は、近隣gNBによる送信に起因する、UEとサービングgNBとの間のワイヤレス通信に、干渉レベルの増加を通信する。いくつかの実例では、有色ノイズのためのような、Rnn
-1/2は、空間次元毎に、干渉レベルの増加の等価値を含み、それによって、近隣gNBが、所定の干渉レベルしきい値を超えるのを避ける方法で、レイヤ毎に送信ランクおよび送信電力を決定できるようにする。
【0103】
[00124]
図6Bを参照して、サービングgNBによって行われるプロセスは、ブロック620で、gNBによって同期信号を送信することで開始し得る。処理はその後、ブロック622で、gNBがUEに、RRQを送信することによって続行し得る。RRQは、NAVと、NAVの復号を可能にする制御RSとを含み得る。いくつかの実例では、RRQは、UEとgNBとの間のワイヤレス通信のデータ部分において使用されるランクを搬送し、UEによるRnnの計算を容易にするプリコード化CSI-RSを含み得る。gNBが、アップリンクおよびダウンリンクトラフィックのための1つまたは複数の通信媒体を予約するために異なるRRQを送信し得ることがさらに想定される。処理はその後、ブロック624で、gNBが、UEによって送信された別の同期信号を受信することによって続行し得る。処理はその後、ブロック626で、gNBが、RRQに応答するUEによって送信されたRRSを検出することによって続行し得、RRSは、UEによって推定された干渉のインジケーションによって変調されたプリコード化SRSを含む。好ましくは、干渉のインジケーションは、Rnn
-1/2に対応する。gNBが、-6デシベル(dB)信号対ノイズ比(SNR)でRRSを検出することが想定される。いくつかの実例では、gNBは、NAVによって識別されたTxOpにおいて、他のUEによって送信された他のRRSと多重化されるRRSを検出し得る。処理はその後、ブロック628で、gNBによって、RRSを復号するために別の同期信号を使用することによって続行し得る。処理はその後、ブロック630で、UEとgNBとの間の通信について、プリコーダ、ランク、および/またはMCSを選択するために干渉のインジケーションを採用することによって続行し得る。gNBが別のgNBと同期したイベントでは、処理は、ブロック632で、gNBが、制御領域において、別のUEによってサービスされる別のUEと、別のgNBとの間で交換される別のRRQおよび別のRRSを観測することによって続行し得る。処理はその後、ブロック634で、gNBが、別のgNBが別のRRQおよび別のRRSによって識別されたTxOpを埋めるために十分なデータを有していないと決定することによって続行し得る。処理はその後、ブロック636で、gNBが、TxOpの残りにおいて送信のために競合することによって続行し得る。gNBおよび他のgNBが同じオペレータのものである場合、その後、競合は、RRQおよびRRSの交換を包含するメカニズムを採用するソフト再利用プロシージャに従って生じ得る。さもなければ、gNBおよび別のgNBが異なるオペレータのものである場合、その後、競合は、べつのオペレータの1つまたは複数のgNBで優先ランダムアクセスプロシージャに従って生じ得る。
【0104】
[00125]
図6Cを参照して、近隣gNBによって行われる処理は、ブロック660で、gNBによって同期信号を送信することによって開始し得る。処理はその後、ブロック662で、gNBがUEに、RRQを送信することによって続行し得る。RRQは、NAVと、NAVの復号を可能にする制御RSとを含み得る。いくつかのケースでは、RRQは、UEがRnnを計算すべきトーンを搬送するプリコード化CSI-RSを含み得る。処理はその後、ブロック664で、gNBが、UEによって送信された別の同期信号を受信することによって続行し得る。処理はその後、ブロック666で、gNBが、RRQに応答するUEによって送信されたRRSを検出することによって続行し得る。gNBは、-6dB SNRでRRSを検出する。gNBが、UEによって送信されたRRSを検出することは、NAVによって識別されたTxOpにおいて、別のUEによって送信された別のRRSと多重化されるRRSを検出することを含み得る。RRSは、UEによって推定された干渉のインジケーションによって変調されたプリコード化SRSを含む。干渉のインジケーションは、gNBによる1つまたは複数のワイヤレス送信に起因する、UEとサービングgNBとの間のワイヤレス通信に、干渉レベルの増加を通信する。好ましくは、干渉のインジケーションは、Rnn
-1/2に対応する。いくつかのケースでは、有色ノイズのためのような、Rnn-1/2は、空間次元毎に、干渉レベルの増加の等価値を含む。処理はその後、ブロック668で、gNBが、RRSを復号するために他の同期信号を使用することによって続行し得る。処理はその後、ブロック670で、RRSに応答するgNBが、所定の干渉レベルしきい値を超えたワイヤレス通信への干渉を引き起こすことを避ける方法で、ワイヤレス送信を送信することによって続行し得る。Rnn
-1/2が、空間次元毎に、干渉レベルの増加の等価値を含むイベントでは、gNBは、所定の干渉レベルしきい値を超えるのを避ける方法で、レイヤ毎に送信ランクおよび送信電力を決定し得る。処理はその後、ブロック672で、gNBが、サービングgNBへのUEによるアップリンク送信のために通信媒体を予約するために、UEのサービングgNBによって送信されたRRQを検出することによって続行し得る。処理はその後、ブロック674で、RRQに応答するgNBが、UEによるアップリンク送信への干渉を低減する方法で、ワイヤレス送信を送信することによって続行し得る。UEからその後に受信したRRSは、gNBによって送信電力および/またはランクのさらなる減少をトリガし得ることが想定される。gNBが別のgNBと同期したイベントでは、処理は、ブロック676で、gNBが、制御領域において、別のUEによってサービスされる別のUEと、別のgNBとの間で交換される別のRRQおよび別のRRSを観測することによって続行し得る。処理はその後、ブロック678で、gNBが、別のgNBが別のRRQおよび別のRRSによって識別されたTxOpを埋めるために十分なデータを有していないと決定することによって続行し得る。処理はその後、ブロック680で、gNBが、TxOpの残りにおいて送信のために競合することによって続行し得る。gNBおよび他のgNBが同じオペレータのものである場合、その後、競合は、RRQおよびRRSの交換を包含するメカニズムを採用するソフト再利用プロシージャに従って生じ得る。さもなければ、gNBおよび別のgNBが異なるオペレータのものである場合、その後、競合は、べつのオペレータの1つまたは複数のgNBで優先ランダムアクセスプロシージャに従って生じ得る。
【0105】
[00126]
図7Aを参照して、gNBによって行われるプロセスは、ブロック700で、1つまたは複数のUEのための動作グリッドをブロードキャストすることによって開始し得る。動作グリッドが、2つ以上のgNBの全体のネットワークに共通であることが想定される。処理はその後、ブロック702で、gNBが、同期信号を送信することによって続行し得る。処理はその後、ブロック704で、同期信号の送信後のgNBが、RRQを送信することによって続行し得る。RRQは、動作グリッドの1つまたは複数のスロット境界および/または1つまたは複数のフレーム境界でアラインされ、そのケースでは、gNBは、ブロック702で、0dB SNRで同期信号を送信し得る。さもなければ、RRQが連続的にフローティングしているまたはシンボル境界でアラインされる場合、gNBは、ブロック702で、-6dBdで同期信号を送信し得る。RRQは、NAVと、NAVを復号するための制御RSとを含み、同期信号は、gNBと協調されない1つまたは複数のノードがRRQを復号できるようにし得る。処理はその後、ブロック706で、gNBが、UEによって送信された同期信号を検出することによって続行し得る。処理はその後、ブロック708で、同期信号の送信の後のgNBが、RRQに応答するUEによって送信されたRRSを検出することによって続行し得る。処理はその後、ブロック710で、gNBが、RRSを復号するために同期信号を使用することによって続行し得る。処理はその後、ブロック712で、近隣ノードのトラフィックアクティビティ、スループット要求、またはトラフィック負荷のうちの少なくとも1つに基づいて動作グリッドを適応することによって続行し得る。
【0106】
[00127]
図7Bを参照して、UEによって行われるプロセスは、ブロック750で、gNBによってブロードキャストされた動作グリッドをUEが受信することによって開始し得る。RRQが動作グリッドのシンボル境界でアラインされる、または連続的にフローティングしている場合、その後、処理は、ブロック756にスキップし得る。さもなければ、RRQが動作グリッドの1つまたは複数のフレーム境界または1つまたは複数のスロット境界のうちの少なくとも1つでアラインされる場合、その後、処理は、ブロック752で、UEが、グリッド境界の発生に最も近くない1つまたは複数の時間でスリープすることによって続行し得る。処理はその後、ブロック754で、UEが、グリッド境界の発生に最も近い時間内でウェイクアップすることによって続行し得る。処理はその後、ブロック756で、UEが、gNBによって送信された同期信号を検出することによって続行し得る。RRQが動作グリッドのシンボル境界でアラインされるまたは連続的にフローティングしている場合、その後、UEは、-6dB SNRで同期信号を検出し得る。さもなければ、RRQが動作グリッドの1つまたは複数のフレーム境界または1つまたは複数のスロット境界のうちの少なくとも1つでアラインされる場合、その後、UEは、0dB信号対ノイズ比(SNR)で同期信号を検出する。処理はその後、ブロック758で、同期信号の送信後のUEが、gNBによって送信されたRRQを受信することによって続行し得る。RRQは、NAVと、NAVを復号するための制御RSとを含み得る。処理はその後、ブロック760で、RRQを復号するために同期信号を使用することによって続行し得る。処理はその後、ブロック762で、RRQに応答するUEが、同期信号を送信することによって続行し得る。処理はその後、ブロック764で、RRQに応答してRRSを送信することによって続行し得る。同期信号は、UEと協調しない1つまたは複数の他のノードがRRQを復号できるようにし得る。
【0107】
[00128]
図8Aを参照して、gNBによって行われる処理は、ブロック800で、ワイヤレスノードが、少なくとも1つのワイヤレス通信リソース上でワイヤレスノードによって周期的に送信される必要のある、発見信号またはページング機会のような、1つまたは複数のワイヤレス信号を識別することによって開始し得る。処理はその後、802で、ワイヤレスノードが、ノードによって行われるべき周期的な送信の長さおよび周期性を識別することによって少なくとも1つのワイヤレス通信リソース上で他のノードを周期的に沈黙させるために、ディーププリアンブルを有する予約信号を送信することによって続行し得る。プリアンブルは、-10dB SNRで送信されるおよび/または少なくとも1つのNAVがディーププリアンブルから暗示されるものであり得る。ディーププリアンブルから暗示される全てのNAVの持続時間は、2スロット未満に限定され得ることが想定される。
【0108】
[00129]
図8Bを参照して、ユーザ機器によって行われる処理は、gNBが、起動時、ディーププリアンブルを有し、ワイヤレス通信媒体上で少なくとも1つのワイヤレスノードによって送信される少なくとも1つの予約信号を検出することによって開始し得る。プリアンブルは、-10dB SNRで検出され得る。処理はその後、ブロック852で、ディーププリアンブルから暗示されたNAVを決定することによって続行し、NAVは、少なくとも1つのワイヤレスノードによって行われるべき周期送信の長さおよび周期性を識別する。ディーププリアンブルから暗示される全てのNAVの持続時間は、2スロット未満に限定されことが想定される。処理はその後、ブロック854で、ワイヤレス送信の長さおよび周期性に従って、ワイヤレス通信媒体上での競合を周期的に避けることによって続行し得る。
【0109】
[00130]
図9Aを参照して、CoMPクラスタのスケジューラによって行われる処理は、ブロック900で、CoMPクラスタのスケジューラが、動作の非協調モードにおけるCoMPクラスタとして構成される複数のgNBをスケジュールすることによって開始し得る。CoMPクラスタの各gNBは、それ自身のNAVを維持し、ワイヤレス送信リソースのために別々に競合する。処理は、ブロック902で、CoMPクラスタのスケジューラが、現在、期限の切れたNAVを有するCoMPクラスタのgNBを優先的にスケジューリングすることによって続行し得る。
【0110】
[00131]
図9Bを参照して、CoMPクラスタのスケジューラによって行われる処理は、ブロック900で、CoMPクラスタのスケジューラが、動作の非協調モードにおけるCoMPクラスタとして構成される複数のgNBをスケジューリングすることによって開始し得る。CoMPクラスタの各gNBは、それ自身のNAVを維持し、ワイヤレス送信リソースのために別々に競合する。処理は、ブロック902で、CoMPクラスタのスケジューラが、最も大きなNAVを有するCoMPクラスタのgNBを優先的にスケジューリングすることによって続行し得る。
【0111】
[00132]
図9Cを参照して、協調マルチポイントクラスタのスケジューラによって行われる処理は、ブロック950で、CoMPクラスタのスケジューラが、動作の非協調モードにおけるCoMPクラスタとして構成される複数のgNBをスケジューリングすることによって開始し得る。クラスタヘッドに指定される、CoMPクラスタのうちのちょうど1つのgNBは、ワイヤレス通信リソースのための完全な競合を行っている。クラスタヘッドは、それがワイヤレス送信リソースをクリアにするときRRQを送り、他のCoMPクラスタの他のgNBは、他のgNBによって、所定の干渉レベルしきい値を超えるのを避ける決定が行われた場合のみ、RRSで応答する。処理はその語、ブロック952で、どのCoMPクラスタのスケジューラが、CoMPクラスタのgNBがクラスタヘッドとして指定されるかを動的に変更することによって続行し得る。クラスタヘッドの指定は、クラスタサイズに基づく公平なメカニズムに基づき得る。
【0112】
[00133]
図9Dを参照して、協調マルチポイントクラスタの1つまたは複数のgNBによって行われる処理は、ブロック970で、gNBが、クラスタヘッドとして指定される、リソースをクリアにするとき、CoMPクラスタのgNBによって送信されたRRQを受信することによって続行し得る。処理はその後、ブロック972で、その送信が所定の干渉レベルしきい値を超えるのをその送信が避けることになるかどうかを決定することによって続行し得る。処理はその後、ブロック974で、所定の干渉しきい値レベルを超えるのその送信が避けることになると決定する場合、RRSを送信することによって続行し得る。
【0113】
[00134]
図10を参照して、gNB1000は、
図1および
図2中に例示されたような基地局105、および/または
図4のgNB405aおよび405bの構成と同じまたは同様の構成を有し得る。gNB1000は、メモリ242中に記憶されたプログラムコードまたは様々な処理の実行を行うまたは指示するコントローラ/プロセッサ240を含み得る。gNB1000はさらに、アンテナ234a-tから受信したアップリンクまたはダウンリンク信号を処理するワイヤレス無線1001a-tを含み得る。メモリ242は、動作グリッドモジュール1002、同期モジュール1004、競合モジュール1006、通信モジュール1008、CoMPモジュール1010、またはコントローラ/プロセッサ240による他のモジュール/アプリケーションの実行のためのプログラムコードを記憶し得る。
【0114】
[00135]コントローラ/プロセッサ240によって遂行されるとき、動作グリッドモジュール1002は、
図4、
図7A、および
図7Bを参照して上で説明したような動作グリッドをブロードキャストすることと、使用することと、適応することとに従ってプロシージャを実行するようにコントローラ/プロセッサ240を構成し得る。コントローラ/プロセッサ240によって遂行されるとき、同期モジュール1004は、
図4、
図5A、
図5B、
図5C、
図5D、
図6A、
図6B、
図6C、
図7A、
図7Bを参照して上で説明したような、同期信号の送信、検出、および使用に従ってプロシージャを実行するようにコントローラ/プロセッサ240を構成し得る。コントローラ/プロセッサ240によって遂行されるとき、競合モジュール1006は、
図4、
図5A、
図5B、
図5C、
図5D、
図6A、
図6B、
図6C、
図7A、
図7B、
図9A,
図9B、
図9C、
図9Dを参照して上で説明したような、競合メッセージの生成、送信、受信、および使用に従ってプロシージャを実行するようにコントローラ/プロセッサ240を構成し得る。コントローラ/プロセッサ240によって遂行されるとき、競合モジュール1006は、
図4、
図5A、
図5B、
図5C、
図5D、
図6B、
図6C、
図8A,
図8Bを参照して上で説明したようなプリコーダ、ランク、および/またはMCS選択、DL TX、UL RX、電力低減、ランク低減、およびディーププリアンブル生成および送信に従ってプロシージャを実行するようにコントローラ/プロセッサ240を構成し得る。コントローラ/プロセッサ240によって遂行されるとき、CoMPモジュール1010は、
図9A,
図9B、
図9C、
図9Dを参照して上で説明したような、gNBを優先的にスケジューリングすることと、クラスタヘッドを動的に指定することと、CoMP送信を実行することとに従ってプロセッサを実行するようにコントローラ/プロセッサ240を構成し得る。
【0115】
[00136]
図11を参照して、UE1100は、
図1および
図2中に例示されたようなUE115、および/または
図4のUE415aおよび415bの構成と同じまたは同様の構成を有し得る。UE1100は、メモリ282中に記憶されたプログラムコードまたは様々な処理の実行を行うまたは指示するコントローラ/プロセッサ280を含み得る。UE1100はさらに、アンテナ252a-rから受信したアップリンクまたはダウンリンク信号を処理するワイヤレス無線1101a-rを含み得る。メモリ282は、動作グリッドモジュール1102、同期モジュール1104、競合モジュール1104、通信モジュール1108、またはコントローラ/プロセッサ240による他のモジュール/アプリケーションの実行のためのプログラムコードを記憶し得る。
【0116】
[00137]コントローラ/プロセッサ280によって遂行されるとき、動作グリッドモジュール1102は、
図4、
図7A、および
図7Bを参照して上で説明したような動作グリッドを受信することと、使用することと、更新することとに従ってプロシージャを実行するようにコントローラ/プロセッサ280を構成し得る。コントローラ/プロセッサ280によって遂行されるとき、同期モジュール1104は、
図4、
図5A、
図5B、
図5C、
図5D、
図6A、
図6B、
図6C、
図7A、
図7Bを参照して上で説明したような、同期信号の送信、検出、および使用に従ってプロシージャを実行するようにコントローラ/プロセッサ280を構成し得る。コントローラ/プロセッサ280によって遂行されるとき、競合モジュール1106は、
図4、
図5A、
図5B、
図5C、
図5D、
図6A、
図6B、
図6C、
図7A、
図7Bを参照して上で説明したような、競合メッセージの生成、送信、受信、および使用に従ってプロシージャを実行するようにコントローラ/プロセッサ280を構成し得る。コントローラ/プロセッサ280によって遂行されるとき、通信モジュール1108は、
図4、
図8A、および
図8Bを参照して上で説明したようなディーププリアンブル検出および使用に従ってプロシージャを実行するようにコントローラ/プロセッサ280を構成し得る。
【0117】
[00138]情報および信号は様々な異なる技術および技法のいずれかを使用して表すことができることを、当業者は理解されよう。例えば、上記の説明全体を通じて参照されうるデータ、命令、コマンド、情報、信号、ビット、シンボル、およびチップは、電圧、電流、電磁波、磁場または磁性粒子、光場または光粒子、あるいはそれらの任意の組み合わせによって表され得る。
【0118】
[00139]
図6A、
図6B、
図6C、
図7A、
図7B、
図8A、
図8B、
図9A、
図9B、
図9C、および
図9Dにおける機能ブロックおよびモジュールは、プロセッサ、電子デバイス、ハードウェアデバイス、電子コンポーネント、論理回路、メモリ、ソフトウェアコード、ファームウェアコード、等、またはこれらの任意の組み合わせを備えることができる。
【0119】
[00140]さらに、本明細書の開示に関して説明した様々な例示的な論理ブロック、モジュール、回路、およびアルゴリズムステップは、電子ハードウェア、コンピュータソフトウェア、または両方の組合せとして実装され得ることを、当業者は了解されよう。ハードウェアとソフトウェアとのこの互換性を明確に例示するために、様々な例示的なコンポーネント、ブロック、モジュール、回路、およびステップが、それらの機能の観点から概して上で説明されてきた。このような機能性がハードウェアとして実施されるかソフトウェアとして実施されるかは、特定のアプリケーション及びシステム全体に課せられる設計制約に依存する。当業者は、記述した機能性を特定のアプリケーションごとに様々な方法で実施し得るが、このような実施の決定は、本開示の範囲からの逸脱をさせるものとして解釈されるべきでない。当業者はまた、ここに説明されたコンポーネント、方法、またはインタラクションの順序または組合せが単なる例であること、そして本開示の様々な態様のコンポーネント、方法、またはインタラクションは、ここに例示および説明されたもの以外の方法で組み合わせられ得るまたは実施され得ることも容易に認識することになる。
【0120】
[00141]本明細書の開示に関して説明した様々な例示的な論理ブロック、モジュール、および回路は、汎用プロセッサ、デジタル信号プロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)または他のプログラマブル論理デバイス、個別ゲートまたはトランジスタ論理、個別ハードウェア構成要素、あるいは本明細書で説明した機能を実行するように設計されたそれらの任意の組合せを用いて実装または実行され得る。汎用プロセッサは、マイクロプロセッサであり得るが、代わりとして、該プロセッサは、いずれの従来のプロセッサ、コントローラ、マイクロコントローラ、またはステートマシンでもあり得る。プロセッサはまた、コンピューティングデバイスの組合せ、例えば、DSPとマイクロプロセッサの組合せ、複数のマイクロプロセッサ、DSPコアに連結した1つまたは複数のマイクロプロセッサ、または他の任意のそのような構成として実施され得る。
【0121】
[00142]本明細書の開示に関して説明した方法またはアルゴリズムのステップは、直接ハードウェアで実施するか、プロセッサによって実行されるソフトウェアモジュールで実施するか、またはその2つの組合せで実施することができる。ソフトウェアモジュールは、RAMメモリ、フラッシュメモリ、ROMメモリ、EPROMメモリ、EEPROM(登録商標)メモリ、レジスタ、ハードディスク、リムーバブルディスク、CD-ROM、あるいは当該技術で周知の任意の他の形態の記憶媒体内に存在し得る。例示的な記憶媒体は、プロセッサが記憶媒体から情報を読み取り、記憶媒体に情報を書き込むことができるように、プロセッサに結合される。代わりとして、記憶媒体は、プロセッサに不可欠であり得る。プロセッサおよび記憶媒体は、ASIC内に存在することができる。ASICは、ユーザ端末に存在し得る。代わりとして、プロセッサと記憶媒体は、ユーザ端末においてディスクリートコンポーネントとして存在し得る。
【0122】
[00143]1つまたは複数の例示的な設計では、説明した機能は、ハードウェア、ソフトウェア、ファームウェア、またはそれらの任意の組合せで実装され得る。ソフトウェアで実装される場合、機能は、コンピュータ可読媒体上で、1つまたは複数の命令またはコードとして記憶または送信され得る。コンピュータ可読媒体は、1つの場所から別の場所へのコンピュータプログラムの転送を容易にする何らかの媒体を含む通信媒体とコンピュータ記憶媒体との両方を含む。コンピュータ読み取り可能な記憶媒体は、汎用または専用コンピュータによってアクセスされることができる任意の利用可能な媒体であり得る。限定ではなく例として、このようなコンピュータ可読媒体は、RAM、ROM、EEPROM、CD-ROMまたは他の光学ディスクストレージ、磁気ディスクストレージまたは他の磁気記憶デバイス、あるいは命令またはデータ構造の形態で所望のプログラムコード手段を搬送または記憶するために使用され得る、かつ汎用もしくは専用コンピュータまたは汎用もしくは専用プロセッサによってアクセスされうるいずれの他の媒体も備え得る。また、接続は、コンピュータ読み取り可能な媒体と適正に名付けられ得る。例えば、ソフトウェアが、同軸ケーブル、光ファイバーケーブル、ツイストペアまたはデジタル加入者回線(DSL)を使用してウェブサイト、サーバまたは他の遠隔ソースから送信される場合には、同軸ケーブル、光ファイバーケーブル、ツイストペアまたはDSLは、媒体の定義に含まれる。本明細書で使用される場合、ディスク(disk)およびディスク(disc)は、コンパクトディスク(disc)(CD)、レーザーディスク(登録商標)(disc)、光学ディスク(disc)、デジタル多目的ディスク(disc)(DVD)、フロッピー(登録商標)ディスク(disk)およびブルーレイディスク(disc)を含み、ここにおいて、ディスク(disk)は、大抵磁気的にデータを再生し、一方ディスク(disc)は、レーザを用いて光学的にデータを再生する。上記の組合せもまた、コンピュータ可読媒体の範囲内に含まれるべきである。
【0123】
[00144]請求項を含め、ここで使用される場合、「および/または」という用語は、2つ以上の項目のリストに使用されるとき、リストされた項目のうちのいずれの1つも、それだけで採用されることができること、あるいは、リストされた項目の2つ以上のいかなる組合せも採用されることができること、を意味する。例えば、ある構成(composition)がコンポーネントA、Bおよび/またはCを含むとして説明される場合、その構成は、A単体、B単体、C単体、AとBとの組合せ、AとCとの組合せ、BとCとの組合せ、あるいは、AとBとCとの組合せを含むことができる。また、請求項を含め、ここで使用される場合、「のうちの少なくとも1つ」で終わる項目のリストで使用される「または(or)」は、例えば、「A、BまたはCのうちの少なくとも1つ」というリストが、AまたはBまたはCまたはABまたはACまたはBCまたはABC(すなわち、AおよびBおよびC)あるいはそれらの任意の組合せにおけるそれらのいずれのものをも意味するような、選言的なリスト(a disjunctive list)を示す。
【0124】
[00145]本開示の前述の説明は、いかなる当業者でも本開示を作成または使用することができるように提供される。本開示への様々な修正は、当業者には容易に明らかとなり、本明細書で定義されている包括的な原理は、本開示の範囲または趣旨から逸脱することなく、他のバリエーションに適用され得る。従って、本開示は、本明細書で説明された例および設計に限定されるように意図されたものではなく、本明細書で開示された原理および新規の特徴と一致する最大範囲を与えられるものとする。
以下に、本願出願の当初の特許請求の範囲に記載された発明を付記する。
[C1]
ワイヤレス通信の方法であって、
ユーザ機器(UE)で、次世代ノードB(gNB)によって送信された予約要求(RRQ)を受信することと、
前記RRQに応答する前記UEが、予約応答信号(RRS)を送信することと
を備え、前記RRSは、UEによって推定された干渉のインジケーションによって変調されたプリコード化サウンディング基準信号(SRS)を搬送する、
方法。
[C2]
前記干渉のインジケーションは、共分散行列の逆数(Rnn
-1/2
)に対応する、
[C1]に記載の方法。
[C3]
前記gNBは、前記UEをサービスするサービングセルgNBであり、前記Rnn
-1/2
は、前記UEと前記サービングgNBとの間のワイヤレス通信のために、効果的な信号対干渉ノイズ比(SINR)ポスト最小平均二乗誤差(MMSE)を通信する、
[C2]に記載の方法。
[C4]
前記gNBが前記UEをサービスしない近隣gNBであり、前記Rnn
-1/2
は、前記近隣gNBによる送信に起因する、前記UEとサービングgNBとの間のワイヤレス通信に、干渉レベルの増加を通信する、
[C2]に記載の方法。
[C5]
前記Rnn
-1/2
は、空間次元毎に、干渉レベルの増加の等価値を含み、それによって、前記近隣gNBが、所定の干渉レベルしきい値を超えるのを避ける方法で、レイヤ毎に送信ランクおよび送信電力を決定できるようにする、
[C4]に記載の方法。
[C6]
前記RRQは、サービングgNBへの前記UEの間のワイヤレス通信のデータ部分において使用されるランクを搬送し、前記UEによる粗い干渉共分散行列(Rnn)の計算を容易にするプリコード化チャネル状態情報-基準信号(CSI-RS)を含む、
[C1]に記載の方法。
[C7]
前記RRQは、ネットワーク割り振りベクトル(NAV)と、前記NAVの復号を可能にする制御基準信号(RS)をさらに含む、
[C1]に記載の方法。
[C8]
前記RRSは、前記NAVによって識別された送信機会(TxOp)において、他のUEによって送信された他のRRSと多重化される、
[C7]に記載の方法。
[C9]
前記RRSは、ネットワーク割り振りベクトル(NAV)と、前記NAVの復号を可能にする制御基準信号(RS)をさらに含む、
[C1]に記載の方法。
[C10]
前記RRQを受信する前に前記UEが、前記gNBによって送信された同期信号を受信することと、
前記UEが、前記RRQを復号するために前記同期信号を使用することと、
前記UEが、前記RRSを送信する前に別の同期信号を送信することと
をさらに備える、[C1]に記載の方法。
[C11]
前記UEは、前記gNBと同期され、前記方法は、
前記UEが、前記RRQが制御領域中で受信したかどうかを決定することと、
前記RRQが前記制御領域中で受信したとの前記決定に応答して、前記UEが、前記制御領域中で前記RRSを送信することと、
前記RRQが前記制御領域中で受信しなかったとの前記決定に応答して、前記UEが、データ領域中で前記RRSを送信することと
をさらに備える、[C1]に記載の方法。
[C12]
ワイヤレス通信の方法であって、
次世代ノードB(gNB)が、ユーザ機器(UE)に、予約要求(RRQ)を送信することと、
前記gNBが、前記RRQに応答する前記UEによって送信された予約応答信号(RRS)を検出すること、ここにおいて、前記RRSは、UEによって推定された干渉のインジケーションによって変調されたプリコード化サウンディング基準信号(SRS)を含む、と、
前記UEと前記gNBとの間のワイヤレス通信のための、
プロシージャ、
ランク、または
変調およびコーディングスキーム(MCS)
のうちの少なくとも1つを選択するために前記干渉のインジケーションを採用することと
を備える、方法。
[C13]
前記干渉のインジケーションは、共分散行列の逆数(Rnn
-1/2
)に対応する、
[C12]に記載の方法。
[C14]
前記RRQは、前記UEと前記gNBとの間のワイヤレス通信のデータ部分において使用されるランクを搬送し、前記UEによる粗い干渉共分散行列(Rnn)の計算を容易にするプリコード化チャネル状態情報-基準信号(CSI-RS)を含む、
[C12]に記載の方法。
[C15]
前記gNBは、-6デシベル(dB)信号対ノイズ比(SNR)で前記RRSを検出する、
[C12]に記載の方法。
[C16]
前記gNBは、前記UEと前記gNBとの間のワイヤレス通信のための前記プリコーダを選択するために前記干渉のインジケーションを採用する、
[C12]に記載の方法。
[C17]
前記gNBは、前記UEと前記gNBとの間のワイヤレス通信のための前記ランクを選択するために前記干渉のインジケーションを採用する、
[C12]に記載の方法。
[C18]
前記gNBは、前記UEと前記gNBとの間のワイヤレス通信のための前記MCSを選択するために前記干渉のインジケーションを採用する、
[C12]に記載の方法。
[C19]
前記RRQは、ネットワーク割り振りベクトル(NAV)と、前記NAVの復号を可能にする制御基準信号(RS)をさらに含む、
[C12]に記載の方法。
[C20]
前記gNBが、前記UEによって送信された前記RRSを検出することは、前記NAVによって識別された送信機会(TxOp)において、他のUEによって送信された他のRRSと多重化される前記RRSを検出することを含む、
[C12]に記載の方法。
[C21]
前記gNBが、アップリンクおよびダウンリンクトラフィックのための1つまたは複数の通信媒体を予約するために異なるRRQを送信することをさらに備える、
[C1]に記載の方法。
[C22]
前記RRQを送信する前に前記gNBが、同期信号を送信することと、
前記RRSを検出する前に前記gNBが、前記UEによって送信された別の同期信号を受信することと、
前記gNBが、前記RRSを復号する前記別の同期信号を使用することと
をさらに備える、[C12]に記載の方法。
[C23]
前記gNBは、別のgNBと同期され、前記方法は、
前記gNBが、制御領域において別のUEによってサービスされる前記別のUEと前記別のgNBとの間で交換される別のRRQと別のRRSを観測することと、
前記gNBが、前記別のgNBが前記別のRRQおよび前記別のRRSによって識別される送信機会(TxOp)を埋める十分なデータを有していないと決定すること、
前記gNBが、前記TxOpの残りにおいて送信のために競合することと
をさらに備える、[C12]に記載の方法。
[C24]
前記gNBおよび前記別のgNBは、同じオペレータのものであり、前記競合することは、RRQおよびRRSの交換を包含するメカニズムを採用するソフト再利用プロシージャに従って生じる、
[C23]に記載の方法。
[C25]
前記gNBおよび前記別のgNBは、異なるオペレータのものであり、前記競合することは、他のオペレータの1つまたは複数のgNBでの優先ランダムアクセスプロシージャに従って生じる、
[C23]に記載の方法。
[C26]
ワイヤレス通信の方法であって、
次世代ノードB(gNB)が、ユーザ機器(UE)に、予約要求(RRQ)を送信することと、
前記gNBが、前記RRQに応答する前記UEによって送信された予約応答信号(RRS)を検出すること、ここにおいて、前記RRSは、前記UEによって推定された干渉のインジケーションによって変調されたプリコード化サウンディング基準信号(RRS)を含み、前記干渉のインジケーションは、、前記gNBによる1つまたは複数のワイヤレス送信に起因する、前記UEとそれについてのサービングgNBとの間のワイヤレス通信に、干渉レベルの上昇を通信する、と、
前記RRSに応答する前記gNBが、所定の干渉レベルしきい値を超える、前記ワイヤレス通信への干渉を引き起こすのを避ける方法で、前記ワイヤレス送信を送信することと
を備える、方法。
[C27]
前記干渉のインジケーションは、共分散行列の逆数(Rnn
-1/2
)に対応する、
[C26]に記載の方法。
[C28]
前記Rnn
-1/2
は、空間次元毎に、干渉レベルの増加の等価値を含み、前記gNBは、所定の干渉レベルしきい値を超えるのを避ける方法で、レイヤ毎に送信ランクおよび送信電力を決定する、
[C27]に記載の方法。
[C29]
前記RRQは、前記UEが粗い干渉共分散行列(Rnn)を計算すべきトーンを搬送するプリコード化チャネル状態情報基準信号(CSI-RS)を含む、
[C26]に記載の方法。
[C30]
前記gNBは、-6デシベル(dB)信号対ノイズ比(SNR)で前記RRSを検出する、
[C26]に記載の方法。
[C31]
前記RRQは、ネットワーク割り振りベクトル(NAV)と、前記NAVの復号を可能にする制御基準信号(RS)をさらに含む、
[C26]に記載の方法。
[C32]
前記gNBが、前記UEによって送信された前記RRSを検出することは、前記NAVによって識別された送信機会(TxOp)において、他のUEによって送信された他のRRSと多重化されるRRSを検出することを含む、
[C31]に記載の方法。
[C33]
前記gNBが、前記サービングgNBへの前記UEによるアップリンク送信のために通信媒体を予約するために、前記UEのサービングgNBによって送信されたRRQを検出することと、
前記RRQに応答する前記gNBが、前記UEによる前記アップリンク送信への干渉を低減する方法で、前記ワイヤレス送信を送信することと
をさらに備える、[C26]に記載の方法。
[C34]
前記送信することは、前記RRSに応答する前記gNBが、前記UEによる前記アップリンク送信への干渉をさらに低減する、
[C33]に記載の方法。
[C35]
前記RRQを送信するまえに前記gNBが、同期信号を送信することと、
前記RRSを検出する前に前記gNBが、前記UEによって送信された別の同期信号を受信することと、
前記gNBが、前記RRSを復号する前記別の同期信号を使用することとをさらに備える、[C26]に記載の方法。
[C36]
前記gNBは、別のgNBと同期され、前記方法は、
前記gNBが、制御領域において、別のUEによってサービスされる前記別のUEと、前記別のeNBとの間で交換される別のRRQと別のRRSを観測することと、
前記gNBが、前記別のgNBが前記別のRRQおよび前記別のRRSによって識別される送信機会(TxOp)を埋める十分なデータを有していないと決定すること、
前記gNBが、前記TxOpの残りにおいて送信のために競合することと
をさらに備える、[C26]に記載の方法。
[C37]
前記gNBおよび前記別のgNBは、同じオペレータのものであり、前記競合することは、RRQおよびRRSの交換を包含するメカニズムを採用するソフト再利用プロシージャに従って生じる、
[C36]に記載の方法。
[C38]
前記gNBおよび前記別のgNBは、異なるオペレータのものであり、前記競合することは、他のオペレータの1つまたは複数のgNBでの優先ランダムアクセスプロシージャに従って生じる、
[C36]に記載の方法。