(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-11-10
(45)【発行日】2022-11-18
(54)【発明の名称】混雑予測システム、混雑予測方法及び混雑予測プログラム
(51)【国際特許分類】
G06Q 50/10 20120101AFI20221111BHJP
【FI】
G06Q50/10
(21)【出願番号】P 2020138115
(22)【出願日】2020-08-18
【審査請求日】2021-06-18
【新規性喪失の例外の表示】特許法第30条第2項適用 http://www.jreast.co.jp/chiba/news/pdf/pre1908_ekikara1908.pdf、https://www.ctc-g.co.jp/news/press/20190924a.html、https://www.sas.com/ja_jp/news/press-releases/2019/september/2019-09-26-jr-east-real-time-analytics.html、https://www.nttcom.co.jp/news/pr20062601.html、http://www.jreast.co.jp/press/2020/20200716_ho03.pdf、https://www.nttcom.co.jp/news/pr20071601.html、https://www.bemap.co.jp/library_file/cms_file/20072000922.pdf、https://www.ctc-g.co.jp/news/press/20200722a.html、https://www.sas.com/ja_jp/news/press-releases/2020/july/2020-07-22-jr-east-sas-event-stream-processing.html、ビジネス戦略発表会 SAS Institute Japan株式会社、第三回 地方創生EXPO 幕張メッセ、JRガゼット 2020年8月号第5~9頁 株式会社交通新聞社
【早期審査対象出願】
【前置審査】
(73)【特許権者】
【識別番号】000221616
【氏名又は名称】東日本旅客鉄道株式会社
(74)【代理人】
【識別番号】110001254
【氏名又は名称】弁理士法人光陽国際特許事務所
(72)【発明者】
【氏名】入江 洋
(72)【発明者】
【氏名】廣瀬 巧大
【審査官】樋口 龍弥
(56)【参考文献】
【文献】特開2004-178358(JP,A)
【文献】特開2019-074986(JP,A)
【文献】国際公開第2017/149720(WO,A1)
【文献】特開2010-231605(JP,A)
【文献】特開2017-152964(JP,A)
【文献】米国特許出願公開第2018/0189669(US,A1)
【文献】特開2020-001860(JP,A)
【文献】特開2019-177760(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G06Q 10/00 - 99/00
(57)【特許請求の範囲】
【請求項1】
駅の第1計測地点で計測された対象日における予測時点以前の人流に係る情報を取得する第1取得手段と、
前記
駅の近傍の施設の第2計測地点で計測された前記対象日における前記予測時点以前の人流に係る情報を取得する第2取得手段と、
少なくとも前記
駅の前記第1計測地点で計測された人流に係る情報及び前記
駅の近傍の施設の前記第2計測地点で計測された人流に係る情報の両者を用いて前記
駅の前記第1計測地点における人流を予測する予測モデルに、少なくとも前記
駅の前記第1計測地点で計測された前記対象日における前記予測時点以前の人流に係る情報及び前記
駅の近傍の施設の前記第2計測地点で計測された前記対象日における前記予測時点以前の人流に係る情報の両者を入力することで、前記予測時点から所定時間後の予測対象時点における前記
駅の前記第1計測地点における人流を予測する
人流予測手段と、
を備え
る混雑予測装置
と、
前記駅のホームの入場可能人数の超過につき予測する超過予測手段と、
を備え
、
前記超過予測手段は、前記駅のホームの入場可能人数を算出した上で、当該入場可能人数と前記混雑予測装置が予測した前記駅の前記第1計測地点における人流との関係が所定の関係を満たす場合に、前記駅への入場者数が、前記入場可能人数を超過するものと予測し、
前記所定の関係は、
所定の第1の時間の間の前記駅への入場者数の予測の合計が前記駅のホームの入場可能人数を超え、
前記第1の時間に続く所定の第2の時間の間の前記駅への入場者数の予測の合計が前記駅のホームの入場可能人数を超え、
前記第1の時間及び前記第2の時間が、前記駅に所定の時間の間列車が到着しない時間帯と重なり、
前記駅に所定の時間の間列車が到着しない時間帯の次に到着する列車の乗車可能人数が所定の人数以下であるという関係であることを特徴とする混雑予測
システム。
【請求項2】
前記混雑予測装置は、前記対象日の曜日及び/又は前記対象日が休日に該当するか否かに係る情報を取得する第3取得手段をさらに備え、
前記
人流予測手段は、前記対象日の曜日及び/又は前記対象日が休日に該当するか否かに係る情報をさらに用いて、前記予測対象時点における前記
駅の前記第1計測地点における人流を予測することを特徴とする請求項1に記載の混雑予測
システム。
【請求項3】
前記混雑予測装置は、前記対象日の前記
駅の近傍の所定の施設におけるイベント開催の有無に係る情報を取得する第4取得手段をさらに備え、
前記
人流予測手段は、前記対象日の前記
駅の近傍の所定の施設におけるイベント開催の有無に係る情報をさらに用いて、前記予測対象時点における前記
駅の前記第1計測地点における人流を予測することを特徴とする請求項1又は2に記載の混雑予測
システム。
【請求項4】
前記混雑予測装置は、前記予測時点の時刻に係る情報を取得する第5取得手段をさらに備え、
前記
人流予測手段は、前記予測時点の時刻に係る情報をさらに用いて、前記予測対象時点における前記
駅の前記第1計測地点における人流を予測することを特徴とする請求項1から3のいずれか一項に記載の混雑予測
システム。
【請求項5】
前記
人流予測手段は、少なくとも前記
駅の人流に係る情報及び前記
駅の近傍の施設の人流に係る情報を用いた機械学習により生成された予測モデルに基づいて、前記予測対象時点における前記
駅の前記第1計測地点における人流を予測することを特徴とする請求項1から4のいずれか一項に記載の混雑予測
システム。
【請求項6】
前記予測モデルを生成する予測モデル生成手
段を備えることを特徴とする
請求項1から5のいずれか一項に記載の混雑予測システム。
【請求項7】
前記超過予測手段は、前記
駅のホームの衛星写真から前記
駅のホームの面積を推定し、推定した面積に基づき前記
駅のホームの入場可能人数を算出することを特徴とする請求項
1から6のいずれか一項に記載の混雑予測システム。
【請求項8】
駅の第1計測地点で計測された対象日における予測時点以前の人流に係る情報を取得する第1取得ステップと、
前記
駅の近傍の施設の第2計測地点で計測された前記対象日における前記予測時点以前の人流に係る情報を取得する第2取得ステップと、
少なくとも前記
駅の前記第1計測地点で計測された人流に係る情報及び前記
駅の近傍の施設の前記第2計測地点で計測された人流に係る情報の両者を用いて前記
駅の前記第1計測地点における人流を予測する予測モデルに、少なくとも前記
駅の前記第1計測地点で計測された前記対象日における前記予測時点以前の人流に係る情報及び前記
駅の近傍の施設の前記第2計測地点で計測された前記対象日における前記予測時点以前の人流に係る情報の両者を入力することで、前記予測時点から所定時間後の予測対象時点における前記
駅の前記第1計測地点における人流を予測する
人流予測ステップと、
前記駅のホームの入場可能人数の超過につき予測する超過予測ステップと、
を含
み、
前記超過予測ステップにおいては、前記駅のホームの入場可能人数を算出した上で、当該入場可能人数と前記人流予測ステップにおいて予測した前記駅の前記第1計測地点における人流との関係が所定の関係を満たす場合に、前記駅への入場者数が、前記入場可能人数を超過するものと予測し、
前記所定の関係は、
所定の第1の時間の間の前記駅への入場者数の予測の合計が前記駅のホームの入場可能人数を超え、
前記第1の時間に続く所定の第2の時間の間の前記駅への入場者数の予測の合計が前記駅のホームの入場可能人数を超え、
前記第1の時間及び前記第2の時間が、前記駅に所定の時間の間列車が到着しない時間帯と重なり、
前記駅に所定の時間の間列車が到着しない時間帯の次に到着する列車の乗車可能人数が所定の人数以下であるという関係であることを特徴とする混雑予測方法。
【請求項9】
コンピュータを、
駅の第1計測地点で計測された対象日における予測時点以前の人流に係る情報を取得する第1取得手段、
前記
駅の近傍の施設の第2計測地点で計測された前記対象日における前記予測時点以前の人流に係る情報を取得する第2取得手段、
少なくとも前記
駅の前記第1計測地点で計測された人流に係る情報及び前記
駅の近傍の施設の前記第2計測地点で計測された人流に係る情報の両者を用いて前記
駅の前記第1計測地点における人流を予測する予測モデルに、少なくとも前記
駅の前記第1計測地点で計測された前記対象日における前記予測時点以前の人流に係る情報及び前記
駅の近傍の施設の前記第2計測地点で計測された前記対象日における前記予測時点以前の人流に係る情報の両者を入力することで、前記予測時点から所定時間後の予測対象時点における前記
駅の前記第1計測地点における人流を予測する
人流予測手段、
前記駅のホームの入場可能人数の超過につき予測する超過予測手段、
として機能させ
、
前記超過予測手段は、前記駅のホームの入場可能人数を算出した上で、当該入場可能人数と前記人流予測手段が予測した前記駅の前記第1計測地点における人流との関係が所定の関係を満たす場合に、前記駅への入場者数が、前記入場可能人数を超過するものと予測し、
前記所定の関係は、
所定の第1の時間の間の前記駅への入場者数の予測の合計が前記駅のホームの入場可能人数を超え、
前記第1の時間に続く所定の第2の時間の間の前記駅への入場者数の予測の合計が前記駅のホームの入場可能人数を超え、
前記第1の時間及び前記第2の時間が、前記駅に所定の時間の間列車が到着しない時間帯と重なり、
前記駅に所定の時間の間列車が到着しない時間帯の次に到着する列車の乗車可能人数が所定の人数以下であるという関係であることを特徴とする混雑予測プログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、混雑予測システム、混雑予測方法及び混雑予測プログラムに関する。
【背景技術】
【0002】
例えば、その周辺に競技場やホール等、大規模なイベントが開催される施設が存在する駅等の施設においては、特定の時刻に人が集中して大変な混雑が生じる場合があり、問題となっている。
【0003】
したがって、このような混雑を緩和するための施策をとることが求められるが、そのためには、前提として、混雑状況につき事前に予測することが必要となる。そこで、所定の対象エリアの現在の人流に係る情報を用いて、当該対象エリアの将来の人流につき予測するシステムが知られている(例えば、特許文献1参照)。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
このように対象エリアの人流に係る情報のみから当該対象エリアの将来の人流につき予測する場合も、例えば徐々に対象エリアへの入場者数が増加していくような漸次的な推移の場合であれば、ある程度の精度で予測することが可能である。
しかしながら、混雑状況の予測が特に重要となるのは、例えばイベント終了直後にイベントが開催された施設の近傍の駅に人が集中し、駅への入場者数が急増する場合等、人の流れが大きく変化する場合であるところ、このような場合については、対象エリアの人流の変化に事前の兆候が見られない場合が多いことから、上記のような対象エリアの人流に係る情報のみからの予測では、十分な精度で当該対象エリアの将来の人流につき予測することは困難であった。この点は、例えば野球の試合など、終了時間が定まっていないイベントが開催される場合に、イベントの終了時刻に基づき予め将来の人流を予測することも困難であることから、特に顕著であった。
【0006】
本発明の課題は、人の流れが大きく変化する時間帯における予測精度を向上することができる混雑予測システム、混雑予測方法及び混雑予測プログラムを提供することである。
【課題を解決するための手段】
【0007】
上記課題を解決するために、請求項1に記載の発明は、混雑予測システムにおいて、
駅の第1計測地点で計測された対象日における予測時点以前の人流に係る情報を取得する第1取得手段と、
前記駅の近傍の施設の第2計測地点で計測された前記対象日における前記予測時点以前の人流に係る情報を取得する第2取得手段と、
少なくとも前記駅の前記第1計測地点で計測された人流に係る情報及び前記駅の近傍の施設の前記第2計測地点で計測された人流に係る情報の両者を用いて前記駅の前記第1計測地点における人流を予測する予測モデルに、少なくとも前記駅の前記第1計測地点で計測された前記対象日における前記予測時点以前の人流に係る情報及び前記駅の近傍の施設の前記第2計測地点で計測された前記対象日における前記予測時点以前の人流に係る情報の両者を入力することで、前記予測時点から所定時間後の予測対象時点における前記駅の前記第1計測地点における人流を予測する人流予測手段と、
を備える混雑予測装置と、
前記駅のホームの入場可能人数の超過につき予測する超過予測手段と、
を備え、
前記超過予測手段は、前記駅のホームの入場可能人数を算出した上で、当該入場可能人数と前記混雑予測装置が予測した前記駅の前記第1計測地点における人流との関係が所定の関係を満たす場合に、前記駅への入場者数が、前記入場可能人数を超過するものと予測し、
前記所定の関係は、
所定の第1の時間の間の前記駅への入場者数の予測の合計が前記駅のホームの入場可能人数を超え、
前記第1の時間に続く所定の第2の時間の間の前記駅への入場者数の予測の合計が前記駅のホームの入場可能人数を超え、
前記第1の時間及び前記第2の時間が、前記駅に所定の時間の間列車が到着しない時間帯と重なり、
前記駅に所定の時間の間列車が到着しない時間帯の次に到着する列車の乗車可能人数が所定の人数以下であるという関係であることを特徴とする。
【0008】
請求項2に記載の発明は、請求項1に記載の混雑予測システムにおいて、
前記混雑予測装置は、前記対象日の曜日及び/又は前記対象日が休日に該当するか否かに係る情報を取得する第3取得手段をさらに備え、
前記人流予測手段は、前記対象日の曜日及び/又は前記対象日が休日に該当するか否かに係る情報をさらに用いて、前記予測対象時点における前記駅の前記第1計測地点における人流を予測することを特徴とする。
【0009】
請求項3に記載の発明は、請求項1又は2に記載の混雑予測システムにおいて、
前記混雑予測装置は、前記対象日の前記駅の近傍の所定の施設におけるイベント開催の有無に係る情報を取得する第4取得手段をさらに備え、
前記人流予測手段は、前記対象日の前記駅の近傍の所定の施設におけるイベント開催の有無に係る情報をさらに用いて、前記予測対象時点における前記駅の前記第1計測地点における人流を予測することを特徴とする。
【0010】
請求項4に記載の発明は、請求項1から3のいずれか一項に記載の混雑予測システムにおいて、
前記混雑予測装置は、前記予測時点の時刻に係る情報を取得する第5取得手段をさらに備え、
前記人流予測手段は、前記予測時点の時刻に係る情報をさらに用いて、前記予測対象時点における前記駅の前記第1計測地点における人流を予測することを特徴とする。
【0011】
請求項5に記載の発明は、請求項1から4のいずれか一項に記載の混雑予測システムにおいて、
前記人流予測手段は、少なくとも前記駅の人流に係る情報及び前記駅の近傍の施設の人流に係る情報を用いた機械学習により生成された予測モデルに基づいて、前記予測対象時点における前記駅の前記第1計測地点における人流を予測することを特徴とする。
【0012】
請求項6に記載の発明は、請求項1から5のいずれか一項に記載の混雑予測システムにおいて、
前記予測モデルを生成する予測モデル生成手段を備えることを特徴とする。
【0014】
請求項7に記載の発明は、請求項1から6のいずれか一項に記載の混雑予測システムにおいて、
前記超過予測手段は、前記駅のホームの衛星写真から前記駅のホームの面積を推定し、推定した面積に基づき前記駅のホームの入場可能人数を算出することを特徴とする。
【0015】
請求項8に記載の発明は、混雑予測方法において、
駅の第1計測地点で計測された対象日における予測時点以前の人流に係る情報を取得する第1取得ステップと、
前記駅の近傍の施設の第2計測地点で計測された前記対象日における前記予測時点以前の人流に係る情報を取得する第2取得ステップと、
少なくとも前記駅の前記第1計測地点で計測された人流に係る情報及び前記駅の近傍の施設の前記第2計測地点で計測された人流に係る情報の両者を用いて前記駅の前記第1計測地点における人流を予測する予測モデルに、少なくとも前記駅の前記第1計測地点で計測された前記対象日における前記予測時点以前の人流に係る情報及び前記駅の近傍の施設の前記第2計測地点で計測された前記対象日における前記予測時点以前の人流に係る情報の両者を入力することで、前記予測時点から所定時間後の予測対象時点における前記駅の前記第1計測地点における人流を予測する人流予測ステップと、
前記駅のホームの入場可能人数の超過につき予測する超過予測ステップと、
を含み、
前記超過予測ステップにおいては、前記駅のホームの入場可能人数を算出した上で、当該入場可能人数と前記人流予測ステップにおいて予測した前記駅の前記第1計測地点における人流との関係が所定の関係を満たす場合に、前記駅への入場者数が、前記入場可能人数を超過するものと予測し、
前記所定の関係は、
所定の第1の時間の間の前記駅への入場者数の予測の合計が前記駅のホームの入場可能人数を超え、
前記第1の時間に続く所定の第2の時間の間の前記駅への入場者数の予測の合計が前記駅のホームの入場可能人数を超え、
前記第1の時間及び前記第2の時間が、前記駅に所定の時間の間列車が到着しない時間帯と重なり、
前記駅に所定の時間の間列車が到着しない時間帯の次に到着する列車の乗車可能人数が所定の人数以下であるという関係であることを特徴とする。
【0016】
請求項9に記載の発明は、混雑予測プログラムにおいて、
コンピュータを、
駅の第1計測地点で計測された対象日における予測時点以前の人流に係る情報を取得する第1取得手段、
前記駅の近傍の施設の第2計測地点で計測された前記対象日における前記予測時点以前の人流に係る情報を取得する第2取得手段、
少なくとも前記駅の前記第1計測地点で計測された人流に係る情報及び前記駅の近傍の施設の前記第2計測地点で計測された人流に係る情報の両者を用いて前記駅の前記第1計測地点における人流を予測する予測モデルに、少なくとも前記駅の前記第1計測地点で計測された前記対象日における前記予測時点以前の人流に係る情報及び前記駅の近傍の施設の前記第2計測地点で計測された前記対象日における前記予測時点以前の人流に係る情報の両者を入力することで、前記予測時点から所定時間後の予測対象時点における前記駅の前記第1計測地点における人流を予測する人流予測手段、
前記駅のホームの入場可能人数の超過につき予測する超過予測手段、
として機能させ、
前記超過予測手段は、前記駅のホームの入場可能人数を算出した上で、当該入場可能人数と前記人流予測手段が予測した前記駅の前記第1計測地点における人流との関係が所定の関係を満たす場合に、前記駅への入場者数が、前記入場可能人数を超過するものと予測し、
前記所定の関係は、
所定の第1の時間の間の前記駅への入場者数の予測の合計が前記駅のホームの入場可能人数を超え、
前記第1の時間に続く所定の第2の時間の間の前記駅への入場者数の予測の合計が前記駅のホームの入場可能人数を超え、
前記第1の時間及び前記第2の時間が、前記駅に所定の時間の間列車が到着しない時間帯と重なり、
前記駅に所定の時間の間列車が到着しない時間帯の次に到着する列車の乗車可能人数が所定の人数以下であるという関係であることを特徴とする。
【発明の効果】
【0017】
本発明によれば、人の流れが大きく変化する時間帯における予測精度を向上することができる混雑予測システム、混雑予測方法及び混雑予測プログラムを提供することができる
【図面の簡単な説明】
【0018】
【
図1】実施形態に係る混雑予測システムの構成を示すブロック図である。
【
図2】実施形態に係る混雑予測システムの予測モデルの生成時の動作を示すフローチャートである。
【
図3】実施形態に係る混雑予測システムの混雑予測時の動作を示すフローチャートである。
【
図4】実施形態に係る混雑予測システムの入場可能人数超過の予測時の動作を示すフローチャートである。
【
図5】実施形態に係る混雑予測システムにおける予測モデルの生成時及び混雑予測時のデータの流れの概略を示す図である。
【
図6】2019年9月22日に第1センサ及び第2センサによって取得された、海浜幕張駅及びZOZOマリンスタジアムの入出場者数に係るデータを示すグラフである。なお、第1センサ、第2センサ共に、実線のグラフが入場者数を示し、破線のグラフが出場者数を示す。
【
図7】2019年9月22日の海浜幕張駅への入場者数の実施例及び比較例による予測結果並びに第1センサによって取得された実測値を示すグラフである。なお、実線のグラフが実施例による予測結果を示し、粗い破線のグラフが比較例による予測結果を示し、細かい破線のグラフが第1センサによって取得された実測値を示す。
【
図8】実施例及び比較例による2019年9月22日の17時台から21時台の海浜幕張駅への入場者数の予測結果と第1センサによって取得された実測値との乖離を示す表である。
【発明を実施するための形態】
【0019】
以下、
図1から
図5に基づいて、本発明の実施形態である混雑予測システム100について説明する。ただし、本発明の技術的範囲は、図示例に限定されるものではない。
【0020】
[第1 構成の説明]
混雑予測システム100は、対象エリアにおける将来の人流を予測することで、その混雑状況を予測するためのシステムであり、
図1に示すように、予測モデルを生成するための予測モデル生成サーバ1と、予測モデルを用いて対象エリアの人流につき予測するための混雑予測サーバ2と、対象エリアへの入場可能人数の超過につき予測するための超過予測サーバ3と、対象エリアに設置された第1センサ4と、対象エリア近傍の所定の施設に設置された第2センサ5と、を備えて構成され、各装置の間は、通信ネットワークNを介して接続されている。
なお、以下においては、第1センサ4が設置され、混雑状況を予測する対象エリアが駅であり、対象エリア近傍の第2センサ5が設置される施設がスタジアムである場合を一例として説明する。
【0021】
なお、予測モデル生成サーバ1、混雑予測サーバ2及び超過予測サーバ3は、必ずしも単一のPC(Personal Computer)、WS(Work Station)等の情報機器によって実現されることを要せず、例えば、複数台のPC、WS等の情報機器が通信ネットワークNを介して接続されることで、複数台の情報機器により、予測モデル生成サーバ1、混雑予測サーバ2及び超過予測サーバ3としての機能が実現されていてもよい。この場合、このような複数台の情報機器の集合体が、本発明における混雑予測装置、予測モデル生成手段及び超過予測手段に該当することとなる。
【0022】
また、例えば、単一のPC、WS等の情報機器が、予測モデル生成サーバ1、混雑予測サーバ2及び超過予測サーバ3としての機能を兼ねていてもよい。この場合、このような単一の情報機器が、本発明における混雑予測装置、予測モデル生成手段及び超過予測手段に該当し、混雑予測システムを構成することとなる。
【0023】
[1 予測モデル生成サーバ]
予測モデル生成サーバ1は、例えば、混雑予測システム100を管理・運営する企業等が保有するPC、WS等の情報機器であり、後述のように、第1センサ4及び第2センサ5が取得した人流に係る情報等に基づき、第1センサ4が設置された対象エリアの将来の人流を予測するための予測モデルを生成する。
予測モデル生成サーバ1は、
図1に示すように、例えば、制御部11と、記憶部12と、通信部13と、を備えて構成されている。
【0024】
[(1) 制御部]
制御部11は、予測モデル生成サーバ1の動作を制御する部分であり、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)等を備えて構成され、記憶部12に記憶されたプログラムデータとCPUとの協働により、予測モデル生成サーバ1の各部を統括制御する。
【0025】
[(2) 記憶部]
記憶部12は、予測モデル生成サーバ1の運用に必要となる各種情報が記憶される部分であり、例えば、HDD(Hard Disk Drive)、半導体メモリ等により構成され、プログラムデータ等の予測モデル生成サーバ1の運用に必要となるデータを、制御部11から読み書き可能に記憶する。
【0026】
記憶部12には、予測モデル生成プログラム121が記憶されている。
予測モデル生成プログラム121は、後述のように予測モデル生成時に予測モデル生成サーバ1を動作させるための制御部11への各種命令を含むプログラムであり、後述の動作の説明において述べる予測モデル生成サーバ1の動作は、予測モデル生成プログラム121に従ってなされることとなる。
【0027】
[(3) 通信部]
通信部13は、予測モデル生成サーバ1と混雑予測システム100を構成する他の装置との間の通信に用いられる部分であり、例えば、通信用IC(Integrated Circuit)及び通信コネクタなどを有する通信インターフェイスであり、制御部11の制御の元、所定の通信プロトコルを用いて、通信ネットワークNを介したデータ通信を行う。
【0028】
[2 混雑予測サーバ]
混雑予測サーバ2は、例えば、混雑予測システム100を管理・運営する企業等が保有するPC、WS等の情報機器であり、後述のように、予測モデル生成サーバ1が生成した予測モデルに第1センサ4及び第2センサ5が取得した人流に係る情報等を入力し、第1センサ4が設置された対象エリアの将来の人流を予測する。
混雑予測サーバ2は、
図1に示すように、予測モデル生成サーバ1と同様、例えば、制御部21と、記憶部22と、通信部23と、を備えて構成されている。
【0029】
制御部21及び通信部23の構成は、それぞれ予測モデル生成サーバ1における制御部11及び通信部13と変わるところはない。
記憶部22は、予測モデル生成サーバ1における記憶部12と同様に、例えば、HDD、半導体メモリ等により構成され、混雑予測プログラム221と、予測モデル222と、が記憶されている。
【0030】
混雑予測プログラム221は、後述のように対象エリアの人流の予測時に混雑予測サーバ2を動作させるための制御部21への各種命令を含むプログラムであり、後述の動作の説明において述べる混雑予測サーバ2の動作は、混雑予測プログラム221に従ってなされることとなる。
【0031】
予測モデル222は、後述のように予測モデル生成サーバ1において生成され、混雑予測サーバ2へと送信された、第1センサ4が設置された対象エリアの将来の人流を予測する際に用いられるプログラム、パラメータ等を含むデータである。なお、予測モデル222については、動作の説明において別途詳細に説明する。
【0032】
[3 超過予測サーバ]
超過予測サーバ3は、例えば、混雑予測システム100を管理・運営する企業等が保有するPC、WS等の情報機器であり、後述のように、混雑予測サーバ2による人流予測に係る情報を用いて、第1センサ4が設置された対象エリアの入場可能人数の超過につき予測する。
超過予測サーバ3は、
図1に示すように、予測モデル生成サーバ1と同様、例えば、制御部31と、記憶部32と、通信部33と、を備えて構成されている。
【0033】
制御部31及び通信部33の構成は、それぞれ予測モデル生成サーバ1における制御部11及び通信部13と変わるところはない。
記憶部32は、予測モデル生成サーバ1における記憶部12と同様に、例えば、HDD、半導体メモリ等により構成され、超過予測プログラム321が記憶されている。
【0034】
超過予測プログラム321は、後述のように第1センサ4が設置された対象エリアの入場可能人数の超過につき予測する際に超過予測サーバ3を動作させるための制御部31への各種命令を含むプログラムであり、後述の動作の説明において述べる超過予測サーバ3の動作は、超過予測プログラム321に従ってなされることとなる。
【0035】
[4 第1センサ]
第1センサ4は、混雑状況を予測する対象エリアの人流に係る情報を取得するためのセンサであり、本実施形態においては、対象エリアとなる駅の改札に設置され、当該駅への入場者数及び出場者数に係る情報を、所定の間隔毎(例えば1分毎)に取得し、通信ネットワークNを介して、混雑予測サーバ2へと送信する。
第1センサ4としては、上記情報を取得できるものであれば任意のセンサを使用することができるが、例えば赤外線センサを用いればよい。
【0036】
なお、第1センサ4の設置場所は駅の改札に限定されず、例えば駅構内のその他の場所に設置し、当該場所における人流を予測するように構成することも可能である。
また、上記のように、本実施形態においては混雑状況を予測する対象エリアが駅である場合を一例として説明しているが、例えば、対象エリアを駅ビル等の所定の建造物として、その入り口に第1センサ4を設置することも可能である。
【0037】
[5 第2センサ]
第2センサ5は、対象エリアの近傍の所定の施設の人流に係る情報を取得するためのセンサであり、本実施形態においては、第1センサ4が設置された駅の近傍のスタジアムの入出場のためのゲートに設置され、当該スタジアムへの入場者数及び出場者数に係る情報を、所定の間隔毎(例えば1分毎)に取得し、通信ネットワークNを介して、混雑予測サーバ2へと送信する。
第2センサ5としては、上記情報を取得できるものであれば任意のセンサを使用することができるが、例えば、第1センサ4と同様に赤外線センサを用いればよい。
【0038】
なお、第2センサ5の設置場所は、スタジアム等の施設のゲートには限られず、大人数の人流が発生する場所であれば、その他の場所に設置することも可能である。
例えば、スタジアム等の施設のゲートに替えて、又はスタジアム等の施設のゲートに加えて、スタジアム等の施設と駅との間の、駅への人流が集中する道路上に設置することで、道路という対象エリアの近傍の施設の人流に係る情報を取得するようにしてもよい。この場合、駅に近い地点の人流に係る情報を取得できることから、さらに予測精度を向上することが可能となる。
【0039】
[6 通信ネットワーク]
通信ネットワークNは、例えば、インターネット、電話回線網、携帯電話通信網、無線LAN通信網等であり、
図1に示すように、混雑予測システム100を構成する各装置間を接続する。
通信ネットワークNとしては、上記のように各装置間を繋ぎ、これらの間でデータの送受信を行うことが可能なものであれば特に限定されない。
【0040】
[第2 動作の説明]
以下、本実施形態に係る混雑予測システム100の動作について説明する。
混雑予測システム100の動作は、大きく分けて、予測モデルの生成(ステップS1)と、混雑予測(ステップS2)と、入場可能人数超過の予測(ステップS3)と、の3つの工程からなる。
【0041】
[1 ステップS1 予測モデルの生成]
まず、予測モデル生成サーバ1において、予測モデル222を生成する際の流れについて、
図2のフローチャートに従って説明する。
【0042】
対象エリアにおけるある時点までの人流と、それから一定の時間後の人流との間には、一定の相関関係があることが推定される。すなわち、例えば、対象エリアにおいて徐々に人流が増加していれば、それから一定時間後にはさらに増加していることが推定されるし、反対に人流が徐々に減少していれば、それから一定時間後にはさらに減少していることが推定される。
しかしながら、漸次的な推移の場合であれば対象エリアの人流に係る情報のみからでも上記のような予測が可能であるが、人の流れが急激に変化するような場合には、対象エリアの人流に係る情報のみでは、将来の人流につき正確に予測することは困難である。
【0043】
そこで、本実施形態においては、混雑予測の対象エリアである駅の将来の人流を予測するための予測モデル222を、
図5に示すように、混雑予測の対象エリアである駅に設置された第1センサ4の情報(第1センサ情報D11)に加え、第1センサ4が設置された駅の近傍の施設(スタジアム)に設置された第2センサ5の情報(第2センサ情報D12)、第1センサ情報D11及び第2センサ情報D12の取得日の曜日及び/又は当該取得日が休日(土日及び祝日)に該当するか否かに係る情報(カレンダー情報D13)、並びに第1センサ情報D11及び第2センサ情報D12の取得日の第2センサ5が設置されたスタジアムにおけるイベントの有無に係る情報(イベント情報D14)が紐づけられたデータを教師データD1として予測モデル生成プログラム121に入力して、所定の機械学習のアルゴリズムを用いて学習させることにより生成する。
【0044】
具体的には、第1センサ情報D11としては、所定の期間(50日分程度の情報を含むことが好ましい。)において、第1センサ4によって取得された混雑予測の対象となる駅の人流に係る情報、具体的には、第1センサ4が設置された改札における駅への1分毎の入場者数及び出場者数に係る情報(人数/分)とその取得時刻に係る情報とが紐付けられたデータを用いる。
【0045】
第2センサ情報D12としては、第1センサ情報D11と同様の所定の期間において、第2センサ5によって取得された、第1センサ4が設置された駅の近傍の施設(スタジアム)の人流に係る情報、具体的には、スタジアムの第2センサ5が設置されたゲートにおける1分毎の入場者数及び出場者数に係る情報(人数/分)とその取得時刻に係る情報とが紐付けられたデータを用いる。なお、第2センサ5は、スタジアムの全てのゲートに設置する必要はなく、スタジアムの人流に係る情報を取得できれば、一部のゲートに設置するのみでよい。
【0046】
カレンダー情報D13としては、第1センサ情報D11及び第2センサ情報D12が取得された上記所定の期間に含まれる各日の曜日及び/又は各日が休日に該当するか否かに係るデータを用いる。
カレンダー情報D13としては、上記所定の期間に含まれる各日の曜日に係るデータ(日、月、火、水、木、金、土のいずれに該当するかに係るデータ)並びに各日が休日(土日及び祝日)に該当するか否かに係るデータの両者を用いることが好ましいが、これに限られず、例えば、各日の曜日に係るデータ又は各日が休日に該当するか否かに係るデータのいずれかを用いるようにすることも可能である。
なお、各日の曜日に係るデータには、各日が土日に該当するか否かに係るデータが含まれていることから、各日の曜日に係るデータに加え、各日が祝日に該当するか否かに係るデータを入力した場合、各日の曜日及び各日が休日に該当するか否かに係るデータを入力したこととなる。
【0047】
イベント情報D14としては、第1センサ情報D11及び第2センサ情報D12が取得された上記所定の期間に含まれる各日における第2センサ5が設置された施設(スタジアム)におけるイベント開催の有無に係る情報を用いる。すなわち、イベント情報D14としては、イベントがあればイベント有り/イベントがなければイベント無しとなる2択のフラグに係る情報が入力されることとなる。
なお、第2センサ5が設置された施設に加え、第1センサ4が設置された駅の近傍に位置するその他の所定の施設におけるイベントの有無に係る情報も含むようにしてもよい。この場合、それぞれの施設につき、イベントがあればイベント有り/イベントがなければイベント無しとなる2択のフラグに係る情報が入力されることとなる。
【0048】
すなわち、これらの情報を含む教師データD1には、第1センサ情報D11及び第2センサ情報D12を取得した上記所定の期間に含まれる任意の日の任意の時点に予測時点を設定し、上記の予測時点から任意の時間後に予測対象時点を設定した場合につき、入力データとしての当該日における予測時点の直前までの第1センサ4の情報及びその取得時刻、当該日における予測時点の直前までの第2センサ5の情報及びその取得時刻、当該日の曜日及び/又は当該日が休日に該当するか否かに係る情報並びに当該日の第2センサ5が設置された施設(及びその他の施設)におけるイベント開催の有無に係る情報と、出力データとしての予測対象時点における第1センサ4が設置された駅への入場者数に係る情報と、の相関関係に係る情報が含まれることとなる。
【0049】
学習モデルの生成に用いる機械学習のアルゴリズムとしては、特に限定されないが、例えば、アンサンブル学習等の公知のアルゴリズムを利用することができる。
【0050】
本実施形態においては、
図2に示すように、例えば、混雑予測システム100を管理する管理者により、所定の端末から通信ネットワークNを介して予測モデル生成サーバ1に教師データD1が送信・入力されると(ステップS1-1)、通信部13によって教師データD1を受信した予測モデル生成サーバ1においては、制御部11が、受信したデータを基に機械学習を行うことにより、予測を実施する対象日における予測時点の直前までの第1センサ4によって取得された毎分の入場者数及び出場者数に係る情報、当該対象日における予測時点の直前までの第2センサ5によって取得された毎分の入場者数及び出場者数に係る情報、当該対象日の曜日及び/又は当該対象日が休日に該当するか否かに係る情報、当該対象日における第2センサ5が設置された施設(及びその他の施設)におけるイベントの有無に係る情報並びに予測時点の時刻に係る情報が入力された場合に、第1センサ4が設置された駅への予測時点から所定時間後の予測対象時点、具体的には5分後、10分後、15分後、20分後、25分後及び30分後における入場者数を出力する予測モデル222を生成する(ステップS1-2)。
【0051】
なお、教師データD1のうち第1センサ情報D11及び第2センサ情報D12については、混雑予測システム100を管理する管理者による入力を待つことなく、予測モデル生成サーバ1が、通信ネットワークNを介して通信部13により、第1センサ4及び第2センサ5から直接取得するようにしてもよい。
【0052】
また、予測モデル222の更新のタイミングは、例えば、混雑予測システム100を管理する管理者が任意に設定することができる。
ただし、第1センサ4及び第2センサ5において最新の第1センサ情報D11及び第2センサ情報D12が取得される度に、予測モデル生成サーバ1が、通信ネットワークNを介して通信部13により自動的にこれらデータを取得した上で、最新の第1センサ情報D11及び第2センサ情報D12を教師データD1に加えて機械学習を行うことにより、常に最新のデータに基づいて予測モデル222が更新されるようにすることが最も好ましい。
【0053】
予測モデル222を生成すると、予測モデル生成サーバ1の制御部11は、生成した予測モデル222を通信部13から通信ネットワークNを介して混雑予測サーバ2へと送信し(ステップS1-3)、通信部23によってこれを受信した混雑予測サーバ2においては、制御部21が、予測モデル222を記憶部22に記憶させる(ステップS1-4)。
【0054】
[2 ステップS2 混雑予測]
続いて、混雑予測サーバ2において、予測モデル222を用いて混雑予測、具体的には、第1センサ4が設置された駅の人流の予測を行う際の流れについて、
図3のフローチャートに従って説明する。
【0055】
まず、混雑予測サーバ2は、予測時に予測モデル222に入力する入力データD2を取得する。入力データD2は、
図5に示すように、第1センサ情報D21、第2センサ情報D22、カレンダー情報D23、イベント情報D24及び時刻情報D25からなる。
【0056】
これらの情報のうち、まず、カレンダー情報D23は、混雑予測を行う対象日について、当該対象日の曜日及び/又は当該対象日が休日に該当するか否かに係る情報である。カレンダー情報D23としては、予測モデル222の生成時に用いた教師データD1に含まれるカレンダー情報D13と合致するように、例えば、カレンダー情報D13として各日の曜日に係る情報を用いた場合には対象日の曜日に係る情報を入力し、カレンダー情報D13として各日が休日に該当するか否かに係る情報を用いた場合には対象日が休日に該当するか否かに係る情報を入力し、カレンダー情報D13として各日の曜日及び各日が休日に該当するか否かに係る情報を用いた場合には、対象日の曜日及び対象日が休日に該当するか否かに係る情報を入力する。
混雑予測サーバ2は、例えば、混雑予測システム100を管理する管理者が所定の端末において入力した情報を、通信ネットワークNを介して通信部23により取得した上で、記憶部22に記憶するようにすればよい(ステップS2-1)。
【0057】
また、イベント情報D24は、混雑予測を行う対象日についての、第2センサ5が設置された施設(スタジアム)におけるイベントの有無(イベント有り/イベント無しの2択)に係る情報である。なお、予測モデル222の生成時に用いた教師データD1に含まれるイベント情報D14と合致するように、イベント情報D14がその他の所定の施設におけるイベントの有無に係る情報も含む場合には、入力データD2のイベント情報D24も同様の施設におけるイベントの有無に係る情報を含むようにする。
イベント情報D24についても、カレンダー情報D23と同様、混雑予測サーバ2は、例えば、混雑予測システム100を管理する管理者が所定の端末において入力した情報を、通信ネットワークNを介して通信部23により取得した上で、記憶部22に記憶するようにすればよい(ステップS2-2)。
【0058】
カレンダー情報D23及びイベント情報D24を取得した混雑予測サーバ2においては、混雑予測を行う対象日において、第1センサ4から、通信ネットワークNを介して通信部23により、第1センサ4によって取得された駅の人流に係る情報、具体的には、駅の第1センサ4が設置された改札における1分毎の入場者数及び出場者数に係る情報(第1センサ情報D21)を、毎分リアルタイムに取得する(ステップS2-3)。
【0059】
また、同時に、混雑予測サーバ2においては、混雑予測を行う対象日において、第2センサ5から、通信ネットワークNを介して通信部23により、第2センサ5によって取得されたスタジアムの人流に係る情報、具体的には、スタジアムの第2センサ5が設置されたゲートにおける1分毎の入場者数及び出場者数に係る情報(第2センサ情報D22)を毎分リアルタイムに取得する(ステップS2-4)。
【0060】
混雑予測サーバ2においては、混雑予測を行う対象日において、制御部11が、1分毎に、ステップS2-1において取得したカレンダー情報D23と、ステップS2-2において取得したイベント情報D24と、当該対象日において予測時点までに取得した第1センサ情報D21及び第2センサ情報D22と、を当該予測時点の時刻に係る情報(時刻情報D25)と共に、入力データD2として、記憶部22に記憶された予測モデル222に入力することで、予測時点から所定時間後、具体的には、5分後、10分後、15分後、20分後、25分後及び30分後における第1センサ4が備えられた駅の人流、具体的には、駅の第1センサ4が設置された改札における入場者数の予測に係る情報(出力データD3)を取得する(ステップS2-5)。
【0061】
なお、時刻情報D25については、混雑予測サーバ2自体が時計としての機能を有し、当該機能を用いて制御部21が取得するようにしてもよいし、通信部23により通信ネットワークNを介して外部から取得するようにしてもよい。
【0062】
混雑予測サーバ2においては、毎分、第1センサ4及び第2センサ5から直近の1分間の入場者数及び出場者数に係る情報(第1センサ情報D21及び第2センサ情報D22)を取得する度に、当該対象日において当該時点までに取得した第1センサ情報D21及び第2センサ情報D22を用いて、ステップS2-5の処理を繰り返すこととなる。
【0063】
混雑予測サーバ2においては、毎分、入場者数の予測に係る情報である出力データD3を取得する度に、取得した出力データD3を、通信部23から通信ネットワークNを介して予測モデル生成サーバ1へと送信し(ステップS2-6)、通信部13によってこれを受信した予測モデル生成サーバ1においては、制御部11が、通信部13から通信ネットワークNを介して、出力データD3を、超過予測サーバ3へと送信する(ステップS2-7)。
【0064】
[3 ステップS3:入場可能人数超過の予測]
続いて、ステップS2において生成された入場者数の予測に係る情報の利用例の一つとして、混雑予測を行う対象エリアである駅のホームへの入場可能人数の超過についての予測を行う場合につき、
図4のフローチャートに従って説明する。
【0065】
超過予測サーバ3においては、制御部31が、通信部33から通信ネットワークNを介して、所定のウェブサイト等から、第1センサ4が設置された駅の衛星写真を取得する(ステップS3-1)。
【0066】
続いて、超過予測サーバ3においては、制御部31が、ステップS3-1において取得した衛星写真から、駅のホームの有効面積(利用者が待機することができる面積)を簡易計算により推定する(ステップS3-2)。
【0067】
具体的には、衛星写真から分かる駅のホームの形状を長方形に近似して当該長方形の面積を算出した上で、その面積のうち所定の割合を有効面積と推定すればよい。有効面積は、駅のホームのうち、列車との接触の可能性の高い線路際の部分や、前後端部付近の部分は、通常乗客が待機するのに利用されないことから、当該部分を除外したものである。
例えば、上り線の駅のホームの形状を長さ215m、幅9mの長方形に近似できる場合であれば、215m×9m×70%≒1355m2といった形で、有効面積を算出する。
【0068】
続いて制御部31は、駅のホームの入場可能人数につき算出する(ステップS3-3)。
【0069】
具体的には、ステップS3-2において算出した有効面積を、乗客一人当たりに要する面積として定めた所定の面積で割ることで、駅のホームの入場可能人数を算出する。
例えば、上記のように有効面積が1355m2と算出された場合において、一人当たりに要する面積が1m2であれば、1355人が駅のホームの入場可能人数として算出されることとなる。
【0070】
続いて、制御部31は、ステップS2で取得した駅への入場者数の予測に係る情報のうち、5分後、10分後、15分後、20分後、25分後又は30分後のいずれかの情報と、ステップS3-3において算出した駅のホームの入場可能人数とを対比し、これらが所定の関係を満たす場合に、駅への入場者数が、駅への入場可能人数を超過するものと予測する(ステップS3-4)。
【0071】
具体的には、例えば、以下の条件が揃った場合に、駅への入場者数が、駅のホームの入場可能人数を超過するものと予測する。なお、条件は以下のものに限られず、各駅の特性に応じて適宜設定することができる。
(1) 5分間の駅への入場者数の予測の合計が駅のホームの入場可能人数(上記の場合1355人)を超える。
(2) (1)の次の5分間においても、駅への入場者数の予測の合計が駅のホームの入場可能人数(上記の場合1355人)を超える。
(3) 上記(1)及び(2)の時間(10分間)が、駅に5分間以上電車が到着しない時間帯と重なる。
(4) (3)の時間帯の次に到着する列車の乗車可能人数が所定の人数(この場合1680名)以下である。
【0072】
(4)における1680名という人数は、以下のようにして算出したものである。
まず、列車の一車両あたり、混雑率100%の場合に140名乗車可能と仮定する。また、単純化のため、列車は全て10両編成と仮定する。
この場合、混雑率100%分の乗客が対象エリアである駅に到着した列車に乗車できるとすれば、1400名(140名×10両)が乗車できることとなるところ、当該列車に対象エリアである駅において追加で乗車できる乗客を、混雑率120%分と仮定し、140名×10両×120%=1680名とした。
なお、追加で乗車できる乗客を混雑率120%分と仮定した点は、到着した列車に既に乗客が一定数いると想定し、このような乗客を多くとも混雑率60%とした上で、60%+120%=180%が、列車に乗車できる実質的な限界と想定したものである。
【0073】
制御部31は、ステップS3-4において駅への入場者数が駅のホームの入場可能人数を超過するものと予測した場合、例えば、通信部33から通信ネットワークNを介して、駅係員が所持する所定の端末に駅への入場者数が駅のホームの入場可能人数を超えることが予測される旨を知らせる所定の通知を送信し、警告する(ステップS3-5)。
【0074】
なお、本実施形態においては、一例として混雑予測を行う対象エリアが駅である場合において、駅のホームへの入場可能人数の超過についての予測を行う場合につき説明したが、入場可能人数の超過の予測を行う対象は駅のホームに限られない。例えば、駅前の広場等につき衛星写真から有効面積を推定の上、その入場可能人数の超過について予測することも可能である。
また、対象エリアの有効面積の推定方法は、上記のように衛星写真から行う方法に限られず、例えば、駅のホームの設計図面等から、予めホームの有効面積を算出するようにしてもよい。この際には、例えば、駅の改良工事等により、利用者が待機することができない部分が一時的に増加している場合には、当該部分の面積を有効面積から除外すればよい。
【0075】
[第3 効果の説明]
次に、本実施形態に係る混雑予測システム100の効果について説明する。
【0076】
まず、本実施形態に係る混雑予測システム100によれば、予測モデル生成サーバ1において、予測の対象エリアとなる駅に設置された第1センサ4によって取得された駅の人流に係る情報(第1センサ情報D11)のみならず、駅の近傍に位置する施設であるスタジアムに設置された第2センサ5によって取得された当該スタジアムの人流に係る情報(第2センサ情報D12)も用いて予測モデル222を生成の上、混雑予測サーバ2において、予測モデル222に、予測時点までに第1センサ4によって取得された駅の人流に係る情報(第1センサ情報D21)のみならず、予測時点までに第2センサ5によって取得されたスタジアムの人流に係る情報(第2センサ情報D22)も入力して、予測時点から所定時間後の予測対象時点(5分後、10分後、15分後、20分後、25分後及び30分後)における駅の人流(この場合入場者数)につき予測する。
これによって、予測対象となる駅において人流に変化が生じる前に、駅への入場者数に大きな影響を与える近傍の施設の出場者数に係る情報を取得の上、これを予測に反映させることが可能となる。したがって、例えば、当該施設におけるイベントの終了時等において、駅に突然人が集中するような人の流れが大きく変わる場合においても、このような変化の予兆を事前に把握でき、人の流れが大きく変化する時間帯における予測精度を向上することができる。
また、本実施形態によれば、予め混雑予測を行う対象日において実施されるイベントの終了時刻についての情報等を入力することを要しないことから、例えば野球の試合等、終了時間が定まっておらず、イベントの終了時刻に基づいて予め将来の人流を予測することが困難なイベントが開催される場合においても、予測精度の向上が可能となる。したがって、本実施形態は、このような終了時刻が定まっていないイベントが開催されることが予想される施設の近傍に位置する駅等の施設を混雑予測の対象エリアとする場合において、特に有効なものである。
【0077】
また、本実施形態に係る混雑予測システム100によれば、予測モデル生成サーバ1において、第1センサ情報D11及び第2センサ情報D12が取得された各日の曜日及び/又は各日が休日に該当するか否かに係る情報(カレンダー情報D13)も用いて予測モデル222を生成の上、混雑予測サーバ2において、予測モデル222に、混雑予測を行う対象日の曜日及び/又は当該対象日が休日に該当するか否かに係る情報(カレンダー情報D23)も入力して、予測時点から所定時間後の予測対象時点における駅の人流につき予測する。
これによって、曜日や、休日に該当するか否かによって生じる人の流れの相違、例えば、平日であれば、通勤・通学ラッシュが存在するが、休日であればこれがないといった点を、予測に反映させることが可能となることから、さらに予測精度を向上することができる。
【0078】
また、本実施形態に係る混雑予測システム100によれば、予測モデル生成サーバ1において、第1センサ情報D11及び第2センサ情報D12が取得された各日における第1センサ4が設置された駅近傍の施設におけるイベント開催の有無に係る情報(イベント情報D14)も用いて予測モデル222を生成の上、混雑予測サーバ2において、予測モデル222に、混雑予測を行う対象日の第1センサ4が設置された駅近傍の施設におけるイベント開催の有無に係る情報(イベント情報D24)も入力して、予測時点から所定時間後の予測対象時点における駅の人流につき予測する。
これによって、当該施設におけるイベントの有無によって生じる人の流れの相違、例えば、イベントが開催される場合にはイベントの終了時において駅への入場者数の波に山ができるが、イベントが開催されない場合にはこれがないといった点を、予測に反映させることが可能となることから、さらに予測精度を向上することができる。
【0079】
また、本実施形態に係る混雑予測システム100によれば、予測モデル生成サーバ1において、予測モデル222の生成時に用いる第1センサ情報D11及び第2センサ情報D12が、入場者数及び出場者数に係る情報の取得時刻に係る情報を含み、混雑予測サーバ2において、予測モデル222に、予測時点の時刻に係る情報(時刻情報D25)も入力して、将来の駅の人流につき予測する。
これによって、時刻による人の流れの相違、例えば、朝晩の通勤・通学時のラッシュや、スポーツの試合等夕方にイベントが開催される場合にはイベントの終了時刻において駅への入場者数の波に山ができる点等を、予測に反映させることが可能となることから、さらに予測精度を向上することができる。
【0080】
また、本実施形態に係る混雑予測システム100によれば、超過予測サーバ3において、予測の対象エリアとなる駅のホームへの入場可能人数を算出した上で、算出した入場可能人数と、混雑予測サーバ2による駅の入場者数の予測との関係が所定の関係を満たす場合に、駅への入場者数が入場可能人数を超過するものと予測することで、事前に駅のホームへの入場者数が入場可能人数が超えることを予測し、駅係員等に通知して警告することが可能となる。
【0081】
この際に、駅のホームへの入場可能人数を、駅の衛星写真から駅のホームの有効面積を推定し、推定した有効面積を乗客一人当たりに要する面積として定めた所定の面積で割ることで算出することによって、ウェブサイト等から容易に入手できる駅の衛星写真を利用して、容易に駅のホームの入場可能人数を算出することが可能となる。
【実施例】
【0082】
次に、本発明の実施例及び比較例に係る混雑予測システムにより、駅への入場者数を予測した結果について説明する。
【0083】
[1 予測モデルの生成]
以下のようにして、実施例及び比較例に係る2つの予測モデルを生成した。
【0084】
[(1) センサ設置場所]
第1センサ:海浜幕張駅改札
第2センサ:ZOZOマリンスタジアムCゲート
【0085】
[(2) データ取得期間)
2019年8月6日~2019年10月3日
【0086】
[(3) 予測モデルの生成方法]
(実施例)
上記期間(2019年9月22日を除く。)において第1センサによって取得された入場及び出場の通過人数の計測データ(人数/分)と各データの取得時刻、上記期間(2019年9月22日を除く。)において第2センサによって取得された入場及び出場の通過人数の計測データ(人数/分)と各データの取得時刻、上記期間(2019年9月22日を除く。)の各日の曜日及び祝日に該当するか否かに係る情報、上記期間(2019年9月22日を除く。)の各日のZOZOマリンスタジアム及び幕張メッセにおけるイベントの有無に係る情報(ZOZOマリンスタジアム及び幕張メッセのウェブサイトの情報を基にして、それぞれについて、日毎にイベントがあればイベント有り/イベントがなければイベント無しとなる2択の情報)を入力し、アンサンブル学習により、対象日において予測時点までに第1センサによって取得された毎分の入場者数及び出場者数に係る情報、対象日において第2センサによって取得された毎分の入場者数及び出場者数に係る情報、対象日の曜日及び祝日に該当するか否かに係る情報、対象日のZOZOマリンスタジアム及び幕張メッセにおけるイベントの有無に係る情報並びに予測時点の時刻に係る情報が入力された場合に、海浜幕張駅への予測時点から15分後の入場者数を出力するように生成した。
【0087】
(比較例)
上記期間(2019年9月22日を除く。)において第1センサによって取得された入場及び出場の通過人数の計測データ(人数/分)と各データの取得時刻のみを入力し、アンサンブル学習により、対象日において予測時点までに第1センサによって取得された毎分の入場者数及び出場者数に係る情報が入力された場合に、海浜幕張駅への予測時点から15分後の入場者数を出力するように生成した。
【0088】
[2 予測内容]
(実施例)
上記実施例に係る予測モデルに、2019年9月22日(深夜0時を過ぎた部分については23日)の第1センサによって取得された海浜幕張駅の改札における毎分の入場及び出場の通過人数の計測データ(
図6参照)、2019年9月22日(深夜0時を過ぎた部分については23日)の第2センサによって取得されたZOZOマリンスタジアムのCゲートにおける毎分の入場及び出場の通過人数の計測データ(
図6参照)、2019年9月22日の曜日及び祝日に該当するか否かに係る情報(日曜日)、2019年9月22日のZOZOマリンスタジアム及び幕張メッセにおけるイベントの有無に係る情報(いずれもイベント有り)及び予測時点の時刻に係る情報を入力し、予測時点から15分後の海浜幕張駅への入場者数(人数/分)を予測させた。
具体的には、2019年9月22日の午前3時49分から翌23日の午前2時29分まで1分刻みで予測時点を設定し、当該予測時点までに第1センサ及び第2センサによって取得された入場及び出場の通過人数の計測データを実施例の予測モデルに入力し、各予測時点から15分後の入場者数を出力させることで予測させた。
【0089】
(比較例)
上記比較例に係る予測モデルに、2019年9月22日(深夜0時を過ぎた部分については23日)の第1センサによって取得された海浜幕張駅の改札における毎分の入場及び出場の通過人数の計測データ(
図6参照)を入力し、予測時点から15分後の海浜幕張駅への入場者数(人数/分)を予測させた。
具体的には、2019年9月22日の午前3時49分から翌23日の午前2時29分まで1分刻みで予測時点を設定し、当該予測時点までに第1センサによって取得された入場及び出場の通過人数の計測データを比較例の予測モデルに入力し、各予測時点から15分後の入場者数を出力させることで予測させた。
【0090】
[3 予測結果と実測値との対比]
予測結果と実測値との対比を、
図7及び
図8に示す。
なお、
図7は、2019年9月22日の午前3時49分から翌23日の午前2時29分までの1分刻みでの海浜幕張駅への入場者数を示すグラフであり、実線のグラフが実施例による予測結果を示し、粗い破線のグラフが比較例による予測結果を示し、細かい破線のグラフが第1センサによって取得された実測値を示す。
また、
図8は、2019年9月22日の17時台から21時台までの1時間単位の海浜幕張駅への入場者数に係る、実施例による予測値と実測値との乖離及び比較例による予測値と実測値との乖離を示す表である。
【0091】
[4 評価]
図7の実測値のグラフを見ると、2019年9月22日の中で、海浜幕張駅への入場者数は、17時台から21時台までの5時間において、大きく変動していることが分かる。
そして、この5時間における実施例による予測のグラフと実測値のグラフとの乖離と、比較例による予測のグラフと実測値のグラフとの乖離と、を比較すると、実施例による予測のグラフの方が、実測値のグラフに近い予測結果となっていることが分かる。この点は、実測値のグラフにおける19時台の入場者数の急増に、実施例のグラフの方が明らかに追従できている点に明確に表れている。
【0092】
また、この点は、
図8の表を見ると、より明確となる。すなわち、上記の5時間全体における実測値と予測値との乖離の平均値を見ると、実施例においては、0.4%という非常に低い値となっているのに対し、比較例においては、7.1%という高い値となっている。
【0093】
以上の結果から、予測モデルの生成時に、予測の対象エリアとなる駅の入出場者数に係る情報のみならず、対象エリアの近傍の施設における入出場者数に係る情報、曜日及び祝日に該当するか否かに係る情報並びに対象エリアの近傍の施設におけるイベントの有無に係る情報を入力して予測モデルを生成した上で、当該予測モデルに、予測対象となる対象日の予測時点までの対象エリアにおける人流に係る情報、対象日の予測時点までの対象エリアの近傍の施設における人流に係る情報、対象日の曜日及び祝日に該当するか否かに係る情報、対象日の対象エリアの近傍の施設におけるイベントの有無に係る情報並びに予測時点の時刻に係る情報を入力して、所定時間後の対象エリアとなる駅の入場者数を予測させた方が、予測モデルの生成時に、予測の対象エリアとなる駅の入出場者数に係る情報のみを入力して予測モデルを生成した上で、当該予測モデルに、対象日の予測時点までの対象エリアにおける人流に係る情報のみを入力して、所定時間後の対象エリアとなる駅の入場者数を予測させるよりも、予測の対象エリアとなる駅における、人の流れが大きく変動する時間帯における予測精度を向上できることが分かる。
【符号の説明】
【0094】
100 混雑予測システム
1 予測モデル生成サーバ(予測モデル生成手段)
2 混雑予測サーバ(混雑予測装置)
21 制御部(予測手段、第5取得手段)
22 記憶部
221 混雑予測プログラム
222 予測モデル
23 通信部(第1取得手段、第2取得手段、第3取得手段、第4取得手段、第5取得手段)
3 超過予測サーバ(超過予測手段)
4 第1センサ
5 第2センサ
N 通信ネットワーク