(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-11-10
(45)【発行日】2022-11-18
(54)【発明の名称】付着物検出装置および付着物検出方法
(51)【国際特許分類】
G01W 1/14 20060101AFI20221111BHJP
G06T 7/00 20170101ALI20221111BHJP
B60S 1/56 20060101ALN20221111BHJP
【FI】
G01W1/14 B
G06T7/00 300F
B60S1/56 100
(21)【出願番号】P 2018247678
(22)【出願日】2018-12-28
【審査請求日】2021-09-30
(73)【特許権者】
【識別番号】000237592
【氏名又は名称】株式会社デンソーテン
(74)【代理人】
【識別番号】110002147
【氏名又は名称】弁理士法人酒井国際特許事務所
(72)【発明者】
【氏名】池田 修久
(72)【発明者】
【氏名】朝山 信徳
(72)【発明者】
【氏名】河野 貴
(72)【発明者】
【氏名】谷 泰司
(72)【発明者】
【氏名】山本 大輔
(72)【発明者】
【氏名】沖 朋和
(72)【発明者】
【氏名】上林 輝彦
【審査官】佐野 浩樹
(56)【参考文献】
【文献】特開2018-072312(JP,A)
【文献】特開2017-138736(JP,A)
【文献】特開2015-028427(JP,A)
【文献】特表2014-528064(JP,A)
【文献】特開2015-231136(JP,A)
【文献】特開2018-071994(JP,A)
【文献】特開2001-141838(JP,A)
【文献】特開2013-190416(JP,A)
【文献】特開2013-108830(JP,A)
【文献】特開2018-049568(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B60S 1/00 - 1/68 、
G01W 1/00 - 1/18 、
G06T 7/00 - 7/90 、
G06V10/00 -20/90 、30/418、40/16 、
40/20
(57)【特許請求の範囲】
【請求項1】
撮像装置によって撮像された撮像画像に
つき、複数のピクセルからなるセルを1つの画素単位として各画素のエッジ情報を抽出する抽出部と、
前記抽出部によって抽出された前記エッジ情報に基づく所定の検出アルゴリズムを用いて、前記撮像画像中において水滴が存在すると推定される候補領域を検出する検出部と
を備え、
前記検出部は、
検出した前記候補領域のうちから、該候補領域の位置、輝度および大きさに基づく所定の
雲の該当条件に該当する前記候補領域を除外する
ことを特徴とする付着物検出装置。
【請求項2】
前記検出部は、
前記候補領域の位置が所定の位置より高く、該候補領域の平均輝度が所定の閾値より大きく、かつ、該候補領域の大きさが所定の閾値より小さい場合に、当該候補領域を
前記雲に該当するとして除外する
ことを特徴とする請求項1に記載の付着物検出装置。
【請求項3】
撮像装置によって撮像された撮像画像に
つき、複数のピクセルからなるセルを1つの画素単位として各画素のエッジ情報を抽出する抽出工程と、
前記抽出工程において抽出された前記エッジ情報に基づく所定の検出アルゴリズムを用いて、前記撮像画像中において水滴が存在すると推定される候補領域を検出する検出工程と
を含み、
前記検出工程は、
検出した前記候補領域のうちから、該候補領域の位置、輝度および大きさに基づく所定の
雲の該当条件に該当する前記候補領域を除外する
ことを特徴とする付着物検出方法。
【発明の詳細な説明】
【技術分野】
【0001】
開示の実施形態は、付着物検出装置および付着物検出方法に関する。
【背景技術】
【0002】
従来、車両に搭載され、かかる車両周辺を撮像する車載カメラが知られている。車載カメラが撮像した映像は、たとえば運転者の視界補助のためにモニタ表示されたり、道路上の白線や車両への接近物などを検出するセンシングのために用いられたりする。
【0003】
なお、車載カメラのレンズには、たとえば雨滴や雪片、埃、泥などの付着物が付着し、前述の視界補助やセンシングの妨げとなることがある。そこで、たとえば車載カメラの撮像画像からいわゆるエッジを抽出し、これに基づいてレンズへの付着物を検出して、レンズへ向けて洗浄水や圧縮空気を噴射することで付着物を除去する技術が提案されている。(たとえば、特許文献1参照)。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、上述した従来技術には、野外シーンにおいて雲が映り込む場合に、かかる雲を水滴として誤検出してしまうのを抑制し、検出精度を高めるという点で、さらなる改善の余地がある。
【0006】
実施形態の一態様は、上記に鑑みてなされたものであって、雲を水滴として誤検出してしまうのを抑制し、検出精度を高めることができる付着物検出装置および付着物検出方法を提供することを目的とする。
【課題を解決するための手段】
【0007】
実施形態の一態様に係る付着物検出装置は、抽出部と、検出部とを備える。前記抽出部は、撮像装置によって撮像された撮像画像につき、複数のピクセルからなるセルを1つの画素単位として各画素のエッジ情報を抽出する。前記検出部は、前記抽出部によって抽出された前記エッジ情報に基づく所定の検出アルゴリズムを用いて、前記撮像画像中において水滴が存在すると推定される候補領域を検出する。また、前記検出部は、検出した前記候補領域のうちから、該候補領域の位置、輝度および大きさに基づく所定の雲の該当条件に該当する前記候補領域を除外する。
【発明の効果】
【0008】
実施形態の一態様によれば、雲を水滴として誤検出してしまうのを抑制し、検出精度を高めることができる。
【図面の簡単な説明】
【0009】
【
図1A】
図1Aは、実施形態に係る付着物検出方法の概要説明図(その1)である。
【
図1B】
図1Bは、実施形態に係る付着物検出方法の概要説明図(その2)である。
【
図1C】
図1Cは、実施形態に係る付着物検出方法の概要説明図(その3)である。
【
図2】
図2は、実施形態に係る付着物検出装置のブロック図である。
【
図3】
図3は、ベクトルの算出方法を示す図である。
【
図4A】
図4Aは、代表値の算出方法の説明図(その1)である。
【
図4B】
図4Bは、代表値の算出方法の説明図(その2)である。
【
図7C】
図7Cは、検出情報に含まれる候補エリアに関するデータ内容の一例を示す図である。
【
図8】
図8は、除外情報に含まれる除外条件の説明図である。
【
図9】
図9は、実施形態に係る付着物検出装置が実行する処理手順を示すフローチャートである。
【発明を実施するための形態】
【0010】
以下、添付図面を参照して、本願の開示する付着物検出装置および付着物検出方法の実施形態を詳細に説明する。なお、以下に示す実施形態によりこの発明が限定されるものではない。
【0011】
また、以下では、自車の周囲を撮像するために車両に搭載された車載カメラに付着した水滴を、付着物として検出する場合を例に挙げて説明する。
【0012】
また、以下では、実施形態に係る付着物検出方法の概要について
図1A~
図1Cを用いて説明した後に、実施形態に係る付着物検出方法を適用した付着物検出装置10について、
図2~
図9を用いて説明する。
【0013】
まず、実施形態に係る付着物検出方法の概要について
図1A~
図1Cを用いて説明する。
図1A~
図1Cは、実施形態に係る付着物検出方法の概要説明図(その1)~(その3)である。
【0014】
車両には、自車の周辺を撮像するために、たとえばフロントカメラ、バックカメラ、右サイドカメラ、左サイドカメラなどの車載カメラが搭載される。なお、以下では、かかる車載カメラを「カメラ2」と記載する。
【0015】
カメラ2は、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)などの撮像素子を備え、かかる撮像素子によって車両周辺を撮像する。なお、カメラ2のレンズには魚眼レンズなどの広角レンズが採用され、カメラ2はそれぞれ180度以上の画角を有し、これらを利用することで車両の全周囲を撮像することが可能である。
【0016】
そして、カメラ2によって撮像された画像は、車両に搭載された図示略の付着物検出装置へ出力される。
【0017】
付着物検出装置は、カメラ2から取得した画像を1フレームごとに画像解析し、たとえば各画素のエッジ情報(輝度の勾配など)によるテンプレートマッチングなどの手法を用いることによって、画像中における付着物の存在エリアを検出する。
【0018】
たとえば
図1Aに示すように、付着物検出装置は、撮像画像I中において水滴が存在すると推定されるエリアである候補エリアDaを検出する。なお、
図1A~
図1Cでは、2つの候補エリアDaにのみ符号を付しているが、図中の白線枠はすべて候補エリアDaである。
【0019】
しかしながら、かかる水滴の検出に際し、従来技術に係る付着物検出装置は、たとえば
図1Bに示すように、撮像画像I中において雲が映り込む場合に、かかる雲が存在するエリアを、水滴が存在する候補エリアDaとして誤検出してしまう場合があった。これは、雲は不定形ではあるものの、水滴と同様に丸みを帯びた輪郭を有する場合があるためである。
【0020】
そこで、実施形態に係る付着物検出方法では、かかる雲が水滴と誤検出される場合の候補エリアDaについて、その特徴を複数のサンプルデータなどから予め抽出し、これを条件化することとした(ステップS1)。
【0021】
そのうえで、実施形態に係る付着物検出方法では、当該条件を除外条件とし、かかる除外条件に該当する候補エリアDaを、水滴が存在すると推定されるエリアからは除外することとした(ステップS2)。これにより、雲を水滴として誤検出してしまうのを抑制することができる。したがって、実施形態に係る付着物検出方法によれば、検出精度を高めることができる。
【0022】
なお、雲を水滴として誤検出する場合の特徴、および、これに基づく除外条件の詳細については、
図8を用いた説明で後述する。
【0023】
以下、上述した実施形態に係る付着物検出方法を適用した付着物検出装置10の実施形態について、さらに具体的に説明する。
【0024】
図2は、実施形態に係る付着物検出装置10のブロック図である。なお、
図2では、本実施形態の特徴を説明するために必要な構成要素のみを機能ブロックで表しており、一般的な構成要素についての記載を省略している。
【0025】
換言すれば、
図2に図示される各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。たとえば、各機能ブロックの分散・統合の具体的形態は図示のものに限られず、その全部または一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的または物理的に分散・統合して構成することが可能である。
【0026】
図2に示すように、実施形態に係る付着物検出装置10は、記憶部11と、制御部12とを備える。また、付着物検出装置10は、カメラ2と、各種機器50とに接続される。
【0027】
なお、
図2では、付着物検出装置10が、カメラ2および各種機器50とは別体で構成される場合を示したが、これに限らず、カメラ2および各種機器50の少なくとも一方と一体に構成されてもよい。
【0028】
カメラ2については既に述べたため、ここでの説明を省略する。各種機器50は、付着物検出装置10の検出結果を取得して、車両の各種制御を行う機器である。各種機器50は、たとえば、カメラ2のレンズに付着物が付着していることやユーザへの付着物の拭き取り指示を通知する表示装置、流体や気体等をレンズへ向けて噴射して付着物を除去する除去装置、および、自動運転等を制御する車両制御装置などを含む。
【0029】
記憶部11は、たとえば、RAM(Random Access Memory)、フラッシュメモリ(Flash Memory)等の半導体メモリ素子、または、ハードディスク、光ディスク等の記憶装置によって実現され、
図2の例では、テンプレート情報11aと、検出情報11bと、除外情報11cとを記憶する。
【0030】
テンプレート情報11aは、後述するマッチング部12dが実行するマッチング処理において用いられるテンプレートに関する情報である。検出情報11bは、候補エリアDaの検出条件や、検出された候補エリアDaに関するデータを含む情報である。除外情報11cは、上述した除外条件を含む情報である。
【0031】
制御部12は、コントローラ(controller)であり、たとえば、CPU(Central Processing Unit)やMPU(Micro Processing Unit)等によって、付着物検出装置10内部の記憶デバイスに記憶されている各種プログラムがRAMを作業領域として実行されることにより実現される。また、制御部12は、たとえば、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)等の集積回路により実現することができる。
【0032】
制御部12は、取得部12aと、抽出部12bと、変換部12cと、マッチング部12dと、検出部11eとを有し、以下に説明する情報処理の機能や作用を実現または実行する。
【0033】
取得部12aは、カメラ2から1フレーム分ずつカメラ画像を取得するとともに、画像解析に必要となる前処理を実行する。
【0034】
取得部12aは、前処理として、たとえばカメラ画像をグレースケール化する。なお、グレースケール化とは、カメラ画像における各画素を輝度に応じて白から黒までの各階調で表現するように変換する処理である。かかるグレースケール化は、省略されてもよい。
【0035】
また、取得部12aは、他の前処理として、たとえばカメラ画像を所定のサイズへ変更する。また、取得部12aは、前処理されたカメラ画像を抽出部12bへ出力する。
【0036】
抽出部12bは、取得部12aから入力されるカメラ画像にたとえばソベルフィルタを用いることで、カメラ画像における各画素のエッジ情報を抽出する。ここで、エッジ情報とは、各画素のX軸方向およびY軸方向におけるエッジ強度を指す。
【0037】
また、抽出部12bは、抽出したエッジ情報をグレースケール画像に対応付けて変換部12cへ出力する。なお、抽出部12bは、ソベルフィルタに代えて、たとえばラプラシアンフィルタなどの他のエッジ抽出法を用いることにしてもよい。
【0038】
変換部12cは、抽出部12bから入力される各画素のX軸方向およびY軸方向のエッジ強度に基づいて各画素のエッジのベクトルを算出し、エッジ向きをそれぞれ符号化する。なお、実施形態に係る付着物検出装置10では、たとえば、複数の画素におけるエッジの代表値を求め、かかる代表値を符号化することにしている。この点の詳細については、
図4Aおよび
図4Bを用いて後述する。
【0039】
また、変換部12cは、エッジ向きを符号化したグレースケール画像をマッチング部12dへ出力する。マッチング部12dは、変換部12cから入力される符号化されたグレースケール画像と水滴の特徴を示す符号パターンとの正規表現を用いたマッチング処理を行う。ここに言う正規表現とは、符号列の集合を一つの符号で表したものである。
【0040】
なお、水滴の特徴を示す符号パターンは、テンプレート情報11aに記憶される。かかる符号パターンの具体例については、
図5Aを用いて後述する。また、マッチング部12dによるマッチング処理の詳細については、
図5Bを用いて後述する。
【0041】
検出部12eは、抽出部12bによって抽出されたエッジ情報に基づく所定の検出アルゴリズムを用いて、撮像画像I中において水滴が存在すると推定される候補エリアDaを検出する。
【0042】
具体的には、検出部12eは、マッチング部12dが抽出した符号パターンに基づいて、水滴の存在が推定される候補エリアDaを検出する。また、検出部12eは、検出した候補エリアDaのそれぞれにつき、雲を水滴として誤検出した場合に該当していないか否かを判定する。
【0043】
また、検出部12eは、その判定結果により水滴であると判定される候補エリアDaについては、かかる候補エリアDaを各種機器50へ通知する。一方、検出部12eは、その判定結果により誤検出に該当すると判定される候補エリアDaについては、各種機器50への通知を行わず、後段の処理対象から除外する。
【0044】
すなわち、検出部12eは、信頼度の低い候補エリアDaを除外する。このように、無用の画像領域を除外することにより、付着物の検出の精度を高められるとともに、後段の処理負荷を軽減することができる。なお、検出部12eによる検出処理の詳細については、
図6~
図8を用いて後述する。
【0045】
ここで、変換部12c、マッチング部12dおよび検出部12eが実行する各アルゴリズムの一例について、
図3~
図8を用いて具体的に説明する。
図3は、ベクトルの算出方法を示す図である。また、
図4Aおよび
図4Bは、代表値の算出方法の説明図(その1)および(その2)である。
【0046】
また、
図5Aは、テンプレートの一例を示す図である。また、
図5Bは、マッチング処理の一例を示す図である。また、
図6は、検出処理の一例を示す図である。
【0047】
また、
図7Aは、候補エリアDaの説明図である。また、
図7Bは、候補エリアDaのxy座標の説明図である。また、
図7Cは、検出情報11bに含まれる候補エリアDaに関するデータ内容の一例を示す図である。また、
図8は、除外情報11cに含まれる除外条件の説明図である。
【0048】
まず、変換部12cは、具体的には、
図3に示すように、X軸方向およびY軸方向のエッジ強度に基づき、三角関数を用いることで、各画素のベクトルを算出する。なお、以下では、
図3に示す算出したベクトルと、正方向側のX軸とのなす角度θを「エッジ向き」と言い、ベクトルの長さLを各画素の「エッジ強度」と言う。
【0049】
なお、変換部12cは、全ての画素についてエッジ向きを算出する必要はなく、優先度の低い領域については、所定間隔の画素ごとにエッジ向きを算出するなど、処理を簡略化することとしてもよい。
【0050】
また、変換部12cは、算出したエッジ向きをそれぞれ符号化する。たとえば、変換部12cは、複数の画素におけるエッジの代表値を求め、かかる代表値を符号化する。具体的には、
図4Aに示すように、変換部12cは、たとえば8×8ピクセルの画素単位を1つの「セル」として取り扱い、3×3セルの画素単位を1つの「ブロック」として取り扱う。また、1つのブロックの中央のセルを「注目セル」として取り扱う。
【0051】
変換部12cは、かかるブロックごとに各画素のエッジ向きおよびエッジ強度を示すヒストグラムを作成する。かかるヒストグラムについては、
図4Bを用いて説明する。ここで、変換部12cは、注目セルにおける中央の座標のエッジ向きをブロックにおけるヒストグラムから導出する。
【0052】
そして、変換部12cは、1つのブロックにおいて注目セルの代表値を導出すると、ブロックを1つのセル分ずらしてヒストグラムを作成し、かかるブロックにおける注目セルの代表値を算出していく。
【0053】
つまり、変換部12cは、複数の画素ごとに代表値を算出することで、データ量を削減することができる。なお、
図4Aに示す例では、セルが8×8ピクセルであるため、データ量は1/64に削減されることとなる。
【0054】
なお、
図4Aに示したブロックおよびセルのピクセル数は一例であって、セルおよびブロックのピクセル数は、任意に設定することができる。この際、検出したい水滴の大きさに応じて各セルのピクセル数を変更することもできる。
【0055】
たとえば、小さい水滴を検出したい場合、セルのピクセル数を少なく設定し、大きい水滴を検出したい場合は、セルのピクセル数を多く設定する。これにより、検出したい大きさの水滴を効率よく検出することができる。
【0056】
また、変換部12cは、単にセルごとにヒストグラムを作成し、かかるヒストグラムに基づいて各セルの代表値を算出することにしてもよい。なお、変換部12cは、代表値を算出せず、全ての画素を符号化することにしてもよい。
【0057】
次に、
図4Bを用いてヒストグラムについて説明する。なお、
図4Bでは、縦軸にエッジ強度を示し、横軸にエッジ向きの階級を示す。
図4Bに示すように、変換部12cは、たとえば、エッジ向きを20°ごとに18段階の各階級に割り当ててヒストグラムを作成する。
【0058】
具体的には、変換部12cは、ブロック内の各画素のエッジ強度をエッジ向きに対応する階級に加算していくことで、ブロックにおけるヒストグラムを作成する。つづいて、変換部12cは、作成したヒストグラムからエッジ強度の和が最大となる階級を求める。
【0059】
図4Bに示す例では、80~100°の階級が最大の値をとる場合を示している。このとき、変換部12cは、かかる階級においてエッジ強度の和が閾値以上である場合に、かかる階級を代表値とする。
【0060】
図4Bに示す例では、80~100°の階級においてエッジ強度の和が閾値を超えているため、上記の条件を満たす。このため、かかるブロックにおける注目セルの階級は、80~100°となる。
【0061】
つづいて、変換部12cは、注目セルを階級に応じて割り当てられた符号に変換する。ここで、各階級には、たとえば0~9およびA~Hの18種類の符号がそれぞれ割り当てられる。なお、0~9およびA~Hは、0°から360°まで20度刻みの各階級に割り当てられる符号である。また、代表値が閾値を超えなかった場合、すなわち、エッジ強度が低いセルには、たとえばZの符号が割り当てられる。
【0062】
このようにして、変換部12cは、全てのセルについて符号化を行う。これにより、符号化されたカメラ画像において、各符号が格子状に配列されることとなる。なお、変換部12cは、上記した代表値を算出する以外に、他の統計学的な算出方法を用いて代表値を算出することにしてもよい。
【0063】
また、
図4Bでは、エッジ向きを18段階に分類する場合について説明したが、これに限られず、18段階より少なくする、あるいは、多くすることにしてもよい。また、
図4Bでは、符号がA~HおよびZである場合を示したが、符号として、平仮名や数字など、他の文字、または図形等を用いることにしてもよい。
【0064】
つづいて、マッチング部12dは、上述したように、符号化されたカメラ画像と、テンプレート情報11aとして記憶されたテンプレートとのマッチング処理を行う。かかるテンプレートの一例を
図5Aに示す。なお、
図5Aでは、視覚的に分かりやすくするために、テンプレートを上記した符号ではなく、ピン状の記号を用いて実際のエッジ向きを模式的に図示している。
【0065】
図5Aに示すように、テンプレート情報11aは、テンプレートとして水滴の特徴を示す符号列である符号パターンを有する。具体的には、たとえば、上辺パターン、下辺パターン、左辺パターン、右辺パターンを有する。
【0066】
ここで、
図5Aに示す各辺のパターンは、水滴を内側に含むまたは水滴の内側に含まれる矩形の各辺に対応する。ここで、「水滴を内側に含む」とは、矩形に水滴が内接する場合を含む。また、「水滴の内側に含まれる」とは、矩形が水滴に内接する場合を含む。なお、本実施形態では、「矩形」は正方形を含む。また、
図5Aでは、各辺のパターンのエッジ向きが、それぞれ中央に向かう場合について示している。この場合、水滴の輝度が端部から中央に向けて大きくなる、すなわち、中央が明るく端部が暗い水滴の特徴を示す。
【0067】
なお、テンプレート情報11aは、これとは逆に、水滴の輝度が中央から端部に向けて大きくなる、すなわち、中央が暗く端部が明るい水滴の特徴を示す各辺のパターンを備えていてもよい。このようにすることで、多様な水滴を検出することが可能となる。
【0068】
なお、同図では、上下左右の4方のパターンを例示したが、斜め方向を含むパターンを用いることもできる。このようにすることで、水滴の検出精度を向上させることができる。
【0069】
つづいて、かかる各辺のパターンを用いたマッチング処理の一例を
図5Bに示す。なお、ここでは、説明の便宜上、
図5Aに示した上辺パターンをそれぞれA~Fの符号を用いて示している。また、同図のaおよびbには、符号化されたカメラ画像の一部を模式的に示している。
【0070】
図5Bのaに示すように、マッチング部12dは、符号パターンがA~Fの順に順序良く並んでいれば、かかる符号パターンを上辺パターンと一致すると判定する。
【0071】
具体的には、マッチング部12dは、
図5Bのaに示すように、たとえば、Aが3回、B、C、DおよびEがそれぞれ2回、そして、Fが3回、のように繰り返される配列を上辺パターンの各符号の配列順序を満たせば、上辺パターンとして抽出することにしている。
【0072】
これは、水滴の大きさに応じて符号の繰り返し回数が異なるためである。すなわち、水滴が大きいほど、各符号列の長さが長くなるためである。このように、かかる符号の繰り返しを許容することで、1回のマッチング処理で、大きさが異なる複数の水滴を示す符号列を抽出することができる。
【0073】
したがって、処理負荷を軽減しつつ、水滴を検出することができる。なお、マッチング部12dは、水滴の大きさに応じて符号列の長さが異なる複数の各辺のパターンを用意し、全てのかかるパターンを用いて符号列を抽出することにしてもよい。
【0074】
また、水滴は一般的に球状となるため、各符号の繰り返しの回数は、中心から線対称状となるはずである。このため、マッチング部12dは、抽出した符号列の中で、バランスが悪い符号列を除外することにしている。
【0075】
具体的には、
図5Bのbに示すように、マッチング部12dは、たとえば、両端に位置するAとFとのバランスを精査する。ここで、同図では、Aが3回繰り返され、Fが10回繰り返される場合を示している。
【0076】
このとき、マッチング部12dは、AおよびFの個数が2倍以上異なる場合に、配列順序を満たす場合であっても、かかる符号列パターンを除外することにしている。このようにすることで、水滴以外の不要な符号パターンの誤抽出を防ぐことができ、水滴の誤検出を抑制することができる。
【0077】
また、マッチング部12dでは、たとえば、抽出した符号列が閾値より長い場合、かかる符号列をマッチングから除外することもできる。これは、符号列が長い場合、水滴である可能性が低いためである。これにより、水滴の誤検出を抑制することができる。なお、かかる閾値は、統計等によって最適な値を予め導出しておくものとする。
【0078】
次に、マッチング処理を経ての、検出部12eによる候補エリアDaの検出処理の一例を
図6に示す。なお、
図6では、
図5Aと同様に、符号に代えて実際のエッジ向きを模式的に図示している。
【0079】
また、ここでは、マッチング処理によって最初に上辺パターンが抽出された場合について説明する。検出部12eは、まず抽出された上辺パターンの幅に基づき、略正方形状の候補エリアDa1を設定する。
【0080】
つづいて、候補エリアDa1から逸脱した位置に右辺パターンが抽出されたものとする。このとき、検出部12eは、右辺パターンの候補エリアDa2の中心座標が候補エリアDa1内にあれば、双方の候補エリアDa1,Da2を統合する処理を行う。
【0081】
その後、検出部12eは、たとえば、統合した候補エリアDa3において、下辺パターンまたは左辺パターンが抽出された場合、水滴が存在すると推定されるエリアとして、候補エリアDa3を抽出する。換言すると、検出部12eは、異なる3方向以上の各辺を示すパターンが抽出されることを検出条件(以下、「方向条件」と言う)として、水滴が存在すると推定される候補エリアDaを検出する。
【0082】
なお、検出部12eは、かかる方向条件以外に、たとえば、統合した候補エリアDa3において、各辺を示すパターンが所定回数(たとえば、上下左右を含めて4回)以上抽出されることを検出条件(以下、「回数条件」と言う)としてもよい。
【0083】
このように、検出条件として、3方向以上の方向条件や回数条件とすることで、上下左右の全ての辺のパターンが抽出されなくとも、水滴が存在すると推定される候補エリアDaを抽出することができる。すなわち、カメラ画像から見切れる、たとえば半円状の水滴を検出することが可能となる。なお、これら検出条件は、たとえば検出情報11bに含まれて記憶される。
【0084】
なお、
図6では、上辺パターンの候補エリアDa1内に候補エリアDa2の中心座標が収まる場合に、候補エリアDaを統合する場合について示したが、これに限定されるものではない。すなわち、候補エリアDa1および候補エリアDa2の少なくとも一部が重なっていれば双方を統合することにしてもよい。
【0085】
また、統合した候補エリアDa3を、候補エリアDa1および候補エリアDa2の論理積とすることにしてもよいし、論理和とすることにしてもよい。また、
図6では、候補エリアDa1および候補エリアDa2が矩形状である場合を示したが、これに限られず、円形状など他の形状とすることにしてもよい。
【0086】
そして、検出部12eは、検出した候補エリアDaに関するデータを検出情報11bへ格納する。具体的には、検出部12eは、
図7Aに示すように、たとえば矩形の候補エリアDaを、左上座標(x,y)と、幅wと、高さhとで規定する。
【0087】
なお、ここで、以下の説明の便宜のために、本実施形態では、xy座標系は、たとえば
図7Bに示すように、撮像画像Iの左上隅を原点とし、水平方向右向きをx軸正方向、垂直方向下向きをy軸正方向とするものとする。また、撮像画像Iの解像度は、同図に示すように、たとえば640×480であるものとする。
【0088】
そして、検出情報11bには、
図7Cに示すように、たとえば「エリアID」項目と、「エリア情報」項目と、「輝度平均」項目とが含まれる。「エリアID」項目には、候補エリアDaの識別情報が格納され、検出情報11bは、かかるエリアIDごとに管理される。
【0089】
「エリア情報」項目には、
図7Aに示した候補エリアDaの左上座標(x,y)や、幅w、高さhなどが格納される。「輝度平均」項目には、検出された候補エリアDaごとの輝度平均値が格納される。すなわち、検出部12eは、検出した候補エリアDaごとに輝度平均値を算出し、かかる「輝度平均」項目へ格納する。
【0090】
そして、検出部12eは、かかる検出情報11bと、除外情報11cとに基づいて、候補エリアDaのそれぞれにつき、雲を水滴として誤検出した場合に該当していないか否かを判定する。
【0091】
具体的には、除外情報11cには、予め除外条件が設定されている。より具体的には、
図8に示すように、除外情報11cには、水滴を水滴として検出した「正検出時の候補エリアDaの特徴」と、雲を水滴として検出した「誤検出時の候補エリアDaの特徴」とに基づいて、「雲の該当条件」が予め設定されている。
【0092】
「正検出時の候補エリアDaの特徴」および「誤検出時の候補エリアDaの特徴」は、たとえば付着物検出装置10の開発中の実験時などにおいて収集された複数のサンプルデータに基づいて抽出される。
【0093】
たとえば本実施形態では、複数のサンプルデータから、「正検出時の候補エリアDaの特徴」は、分布が全面にわたっており、サイズが相対的に大きく(93%が一辺の長さ≧40)、明るさが相対的に暗い(76%が輝度平均<150)との結果を得ている。なお、一辺の長さは、上述した幅wおよび高さhのうちの大きな方でよい。
【0094】
また、同じく、「誤検出時の候補エリアDaの特徴」は、分布が画面上部に偏っており(100%がy<200)、サイズが相対的に小さく(81%が一辺の長さ<60)、明るさが相対的に明るい(85%が輝度平均≧150)との結果を得ている。なお、ここでのyは、たとえば候補エリアDaの左下隅のy座標または右下隅のy座標である。
【0095】
この結果、本実施形態では、
図8に示すように、「雲の該当条件」である除外条件を、たとえば「(y<200)AND(一辺の長さ<60)AND(輝度平均≧150)」としている。検出部12eは、検出情報11bに格納された候補エリアDaのそれぞれにつき、かかる除外条件に該当するか否かを判定し、該当する場合には誤検出と、該当しない場合には正検出と、それぞれ判定することとなる。
【0096】
なお、除外条件のうち、「y<200」は、上述した解像度である640×480に応じたものであるので、無論縦方向の解像度「480」が異なれば、これに応じたものとなるように変更することができる。たとえば縦「960」であれば、「y<400」としてもよい。あるいは、縦方向の解像度に関わらず、画像上部何%(本実施形態に沿えば約42%)内にあるといった条件の指定の仕方でもよい。
【0097】
次に、実施形態に係る付着物検出装置10が実行する処理手順について、
図9を用いて説明する。
図9は、実施形態に係る付着物検出装置10が実行する処理手順を示すフローチャートである。なお、
図9では、1フレーム分のカメラ画像についての処理手順を示している。
【0098】
まず、取得部12aが、カメラ画像を取得する(ステップS101)。そして、抽出部12bが、各画素のエッジ情報を抽出する(ステップS102)。
【0099】
つづいて、変換部12c、マッチング部12dおよび検出部12eが、抽出部12bによって抽出されたエッジ情報に基づく所定の検出アルゴリズムを実行する(ステップS103)。そして、検出部12eが、かかるアルゴリズムの実行結果に基づいて、水滴の存在が推定される候補エリアDaを抽出する(ステップS104)。
【0100】
すなわち、変換部12cおよびマッチング部12dは、一例として
図3~
図5Bを用いて説明した各処理を実行し、検出部12eは、
図6を用いて説明した検出処理によって候補エリアDaを検出する。
【0101】
なお、かかる候補エリアDaを検出させる検出アルゴリズムは説明した例に限らず、たとえば変換部12cが、抽出部12bによって抽出されたエッジ情報に基づいて各画素のエッジ強度を算出し、カメラ2の周囲環境に応じて異なる値をとる2値化閾値と当該エッジ強度とを比較することで各画素を2値化してもよい。
【0102】
また、変換部12cが、抽出部12bによって抽出されたエッジ情報に基づいて各画素のエッジの向きを算出し、反対向きのエッジの向き同士が変換後に1の補数の関係となるパラメータを用いて各画素を変換するようにしてもよい。
【0103】
かかる場合、マッチング部12dは、変換部12cによって変換されたこれらデータ形式に応じて、水滴を示す当該データ形式のテンプレートとのマッチング処理を行えばよい。
【0104】
ステップS104につづいては、検出部12eが、検出情報11bおよび除外情報11cに基づいて、検出された候補エリアDaのうち、雲に該当するエリアがあるか否かを判定する(ステップS105)。
【0105】
ここで、雲に該当するエリアがある場合(ステップS105,Yes)、検出部12eは、該当するエリアを除外する(ステップS106)。雲に該当するエリアがない場合(ステップS105,No)、ステップS107へ制御を移す。
【0106】
そして、ステップS107では、検出部12eが、各種機器50へ候補エリアDaを通知し、処理を終了する。
【0107】
上述してきたように、実施形態に係る付着物検出装置10は、抽出部12bと、検出部12eとを備える。抽出部12bは、カメラ2(「撮像装置」の一例に相当)によって撮像された撮像画像Iに含まれる各画素のエッジ情報を抽出する。検出部12eは、抽出部12bによって抽出されたエッジ情報に基づく所定の検出アルゴリズムを用いて、撮像画像I中において水滴が存在すると推定される候補エリアDa(「候補領域」の一例に相当)を検出する。また、検出部12eは、検出した候補エリアDaのうちから、候補エリアDaの位置、輝度および大きさに基づく所定の除外条件に該当する候補エリアDaを除外する。
【0108】
したがって、実施形態に係る付着物検出装置10によれば、たとえば雲を水滴として誤検出してしまうのを抑制し、検出精度を高めることができる。
【0109】
また、検出部12eは、候補エリアDaの位置が所定の位置より高く、候補エリアDaの平均輝度が所定の閾値より大きく、かつ、候補エリアDaの大きさが所定の閾値より小さい場合に、当該候補エリアDaを除外する。
【0110】
したがって、実施形態に係る付着物検出装置10によれば、雲を水滴として誤検出してしまうのを抑制することができる。
【0111】
なお、上述した実施形態では、除外条件における各種閾値が車両の走行状況などに対しては固定値である例を挙げて説明したが、これらは車両の走行状況などに応じて、動的に変化するものであってもよい。
【0112】
たとえば車両が坂道などを走行中である場合、撮像画像I中において空の領域は狭くなったり広くなったりするので、かかる場合、車両に搭載された各種センサのうちの加速度センサやジャイロセンサなどのセンサ値に基づき、除外条件のうちの候補エリアDaのy座標に関する閾値を変化させてもよい。
【0113】
また、上述した実施形態では、除外条件を、除外したい候補エリアDaのために用いる例を挙げたが、検出したい候補エリアDaのために用いてもよい。すなわち、雲に該当する候補エリアDaを検出したい場合に用いてもよい。
【0114】
さらなる効果や変形例は、当業者によって容易に導き出すことができる。このため、本発明のより広範な態様は、以上のように表しかつ記述した特定の詳細および代表的な実施形態に限定されるものではない。したがって、添付の特許請求の範囲およびその均等物によって定義される総括的な発明の概念の精神または範囲から逸脱することなく、様々な変更が可能である。
【符号の説明】
【0115】
2 カメラ
10 付着物検出装置
11 記憶部
11a テンプレート情報
11b 検出情報
11c 除外情報
12 制御部
12a 取得部
12b 抽出部
12c 変換部
12d マッチング部
12e 検出部
50 各種機器
Da 候補エリア
I 撮像画像