IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 積水化学工業株式会社の特許一覧

<>
  • 特許-積層体、電子部品、及びインバータ 図1
  • 特許-積層体、電子部品、及びインバータ 図2
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-11-14
(45)【発行日】2022-11-22
(54)【発明の名称】積層体、電子部品、及びインバータ
(51)【国際特許分類】
   H01L 23/36 20060101AFI20221115BHJP
   H01L 23/373 20060101ALI20221115BHJP
   B32B 7/027 20190101ALI20221115BHJP
   B32B 27/20 20060101ALI20221115BHJP
【FI】
H01L23/36 D
H01L23/36 M
B32B7/027
B32B27/20 Z
【請求項の数】 14
(21)【出願番号】P 2018240343
(22)【出願日】2018-12-21
(65)【公開番号】P2020102556
(43)【公開日】2020-07-02
【審査請求日】2021-11-17
(73)【特許権者】
【識別番号】000002174
【氏名又は名称】積水化学工業株式会社
(74)【代理人】
【識別番号】100207756
【弁理士】
【氏名又は名称】田口 昌浩
(74)【代理人】
【識別番号】100129746
【弁理士】
【氏名又は名称】虎山 滋郎
(72)【発明者】
【氏名】乾 靖
(72)【発明者】
【氏名】大鷲 圭吾
(72)【発明者】
【氏名】足羽 剛児
【審査官】正山 旭
(56)【参考文献】
【文献】国際公開第2018/016534(WO,A1)
【文献】特開2017-098379(JP,A)
【文献】国際公開第2018/207821(WO,A1)
【文献】特開2013-098217(JP,A)
【文献】国際公開第2018/207819(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 23/36
H01L 23/373
B32B 7/027
B32B 27/20
(57)【特許請求の範囲】
【請求項1】
熱伝導率が10W/m・K以上である熱伝導体と、前記熱伝導体の表面上に設けられ、かつ熱伝導性フィラーを含有する絶縁樹脂層とを備える積層体であって、
前記絶縁樹脂層は、50℃以上175℃以下で溶融する領域と、50℃以上175℃以下で溶融しない領域とを有し、
画像解析から求めた、前記絶縁樹脂層の断面における空隙率が面積割合で0.09%以下である積層体。
【請求項2】
前記絶縁樹脂層の前記熱伝導体が設けられる面とは反対の面側の領域が50℃以上175℃以下で溶融する領域である請求項に記載の積層体。
【請求項3】
前記絶縁樹脂層の熱伝導体が設けられる面側の比誘電率が、前記絶縁樹脂層の熱伝導体が設けられる面とは反対の面側の比誘電率よりも低い、請求項1又は2に記載の積層体。
【請求項4】
前記絶縁樹脂層は、前記熱伝導体が設けられる面とは反対の面側の領域が少なくとも未硬化物又は半硬化物である請求項1~のいずれか1項に記載の積層体。
【請求項5】
前記絶縁樹脂層は、前記熱伝導体が設けられる面側の領域が少なくとも半硬化物又は硬化物である請求項1~のいずれか1項に記載の積層体。
【請求項6】
前記熱伝導体が設けられる面側の領域の硬化率が50%以上であり、
前記熱伝導体が設けられる面とは反対の面側の領域の硬化率が80%未満であり、
前記熱伝導体が設けられる面側の領域の硬化率が、前記熱伝導体が設けられる面とは反対の面側の領域の硬化率よりも大きい請求項1~のいずれか1項に記載の積層体。
【請求項7】
前記熱伝導性フィラーが、窒化ホウ素を含み、
前記窒化ホウ素は、少なくとも前記絶縁樹脂層の熱伝導体が設けられる面側の領域に含有される請求項1~のいずれか1項に記載の積層体。
【請求項8】
前記熱伝導性フィラーが、アルミナを含み、
前記アルミナが、前記絶縁樹脂層の熱伝導体が設けられる面とは反対の面側の領域に含有される請求項1~のいずれか1項に記載の積層体。
【請求項9】
前記アルミナのアスペクト比が、2以下である請求項に記載の積層体。
【請求項10】
前記熱伝導性フィラーが、窒化ホウ素を含み、
前記絶縁樹脂層の熱伝導体が設けられる面とは反対の面側の領域には、さらに窒化ホウ素が含有される請求項8又は9に記載の積層体。
【請求項11】
前記熱伝導性フィラーが、窒化ホウ素を含み、
前記熱伝導体が設けられる面側の領域、及び前記熱伝導体が設けられる面とは反対の面側の領域がいずれも窒化ホウ素を含み、
前記絶縁樹脂層において、熱伝導体が設けられる面側の領域における窒化ホウ素の含有率が、前記熱伝導体が設けられる面とは反対の面側の領域における窒化ホウ素の含有率よりも高い請求項1~10のいずれか1項に記載の積層体。
【請求項12】
前記熱伝導体の厚さが0.03mm以上3mm以下である請求項1~11のいずれか1項に記載の積層体。
【請求項13】
請求項1~12のいずれか1項に記載の積層体を備える電子部品。
【請求項14】
請求項13に記載の電子部品を備えるインバータ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電子部品、例えば、パワー半導体モジュールに使用される積層体に関する。
【背景技術】
【0002】
従来、インバータ、エレベータ、無停電電源装置(UPS)等の産業用機器には、パワー半導体モジュールが用いられている。パワー半導体モジュールに使用される基板は、一般的にセラミック基板と銅板が積層されて構成されるが、これらはそれぞれの熱膨張率が異なることから経時により剥離及び反りが生じる問題がある。そのため、近年、セラミック基板を、樹脂シートに置き換える開発が進められている。
【0003】
そのような樹脂シートとしては、例えば、特許文献1に示されるように、銅板などの熱伝導体の上に、半硬化物又は硬化物である第1の絶縁層と、未硬化物又は半硬化物である第2の絶縁層とをこの順に設けた積層体が知られている。一般的に基板の上には、リードフレームなどの導電層が取り付けられるが、特許文献1の積層体では、表面側の第2の絶縁層が未硬化物又は半硬化物であるので、導電層が取り付けられた積層体をさらに硬化することで導電層との密着性を高めることができる。
【0004】
特許文献1の積層体においては、第1の絶縁層が、無機フィラーを86重量%以上97重量%未満で含み、かつ第2の絶縁層が、無機フィラーを67重量%以上95重量%未満で含み、第1の絶縁層の無機フィラーの含有割合が、第2の絶縁層の無機フィラーの含有割合より高くされている。特許文献1では、このように含有割合が調整されることで、導電層との密着性を確保しつつ、高い放熱性が確保されている。
【先行技術文献】
【特許文献】
【0005】
【文献】特許第5346363号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
パワー半導体モジュール用途においては、半導体回路の高密度化が進み、基板用樹脂シートの絶縁性を担保しつつ、放熱性をさらに高めることが求められている。放熱性を高めるためには、無機フィラーに熱伝導性の高いものを使用したり、無機フィラーの含有量をさらに高めたりすることが考えられる。しかし、絶縁性と放熱性とを高い水準で兼ね備える積層体は実現されていないことから改良が求められている。
そこで、本発明は、絶縁性及び放熱性に優れた積層体を提供することを課題とする。
【課題を解決するための手段】
【0007】
本発明者らは、鋭意検討の結果、積層体の絶縁樹脂層における空隙率を調整することで上記課題を解決できることを見出し、以下の本発明を完成させた。すなわち、本発明は、以下の[1]~[15]を提供する。
[1]熱伝導率が10W/m・K以上である熱伝導体と、前記熱伝導体の表面上に設けられ、かつ熱伝導性フィラーを含有する絶縁樹脂層とを備える積層体であって、
画像解析から求めた、前記絶縁樹脂層の断面における空隙率が面積割合で0.09%以下である積層体。
[2]前記絶縁樹脂層は、50℃以上175℃以下で溶融する領域と、50℃以上175℃以下で溶融しない領域とを有する上記[1]に記載の積層体。
[3]前記絶縁樹脂層の前記熱伝導体が設けられる面とは反対の面側の領域が50℃以上175℃以下で溶融する領域である上記[2]に記載の積層体。
[4]前記絶縁樹脂層の熱伝導体が設けられる面側の比誘電率が、前記絶縁樹脂層の熱伝導体が設けられる面とは反対の面側の比誘電率よりも低い、上記[1]~[3]のいずれか1項に記載の積層体。
[5]前記絶縁樹脂層は、前記熱伝導体が設けられる面とは反対の面側の領域が少なくとも未硬化物又は半硬化物である上記[1]~[4]のいずれか1項に記載の積層体。
[6]前記絶縁樹脂層は、前記熱伝導体が設けられる面側の領域が少なくとも半硬化物又は硬化物である上記[1]~[5]のいずれか1項に記載の積層体。
[7]前記熱伝導体が設けられる面側の領域の硬化率が50%以上であり、
前記熱伝導体が設けられる面とは反対の面側の領域の硬化率が80%未満であり、
前記熱伝導体が設けられる面側の領域の硬化率が、前記熱伝導体が設けられる面とは反対の面側の領域の硬化率よりも大きい上記[1]~[6]のいずれか1項に記載の積層体。
[8]前記熱伝導性フィラーが、窒化ホウ素を含み、
前記窒化ホウ素は、少なくとも前記絶縁樹脂層の熱伝導体が設けられる面側の領域に含有される上記[1]~[7]のいずれか1項に記載の積層体。
[9]前記熱伝導性フィラーが、アルミナを含み、
前記アルミナが、前記絶縁樹脂層の熱伝導体が設けられる面とは反対の面側の領域に含有される上記[1]~[8]のいずれか1項に記載の積層体。
[10]前記アルミナのアスペクト比が、2以下である上記[9]に記載の積層体。
[11]前記熱伝導性フィラーが、窒化ホウ素を含み、
前記絶縁樹脂層の熱伝導体が設けられる面とは反対の面側の領域には、さらに窒化ホウ素が含有される上記[9]又は[10]に記載の積層体。
[12]前記熱伝導性フィラーが、窒化ホウ素を含み、
前記熱伝導体が設けられる面側の領域、及び前記熱伝導体が設けられる面とは反対の面側の領域がいずれも窒化ホウ素を含み、
前記絶縁樹脂層において、熱伝導体が設けられる面側の領域における窒化ホウ素の含有率が、前記熱伝導体が設けられる面とは反対の面側の領域における窒化ホウ素の含有率よりも高い上記[1]~[11]のいずれか1項に記載の積層体。
[13]前記熱伝導体の厚さが0.03mm以上3mm以下である上記[1]~[12]のいずれか1項に記載の積層体。
[14]上記[1]~[13]のいずれか1項に記載の積層体を備える電子部品。
[15]上記[14]に記載の電子部品を備えるインバータ。
【発明の効果】
【0008】
本発明によれば、絶縁性及び放熱性に優れた積層体を提供することができる。
【図面の簡単な説明】
【0009】
図1】本発明の積層体を示す模式的な断面図である。
図2】本発明の一実施形態に係る積層体を示す模式的な断面図である。
【発明を実施するための形態】
【0010】
以下、本発明について、実施形態を用いて説明する。
<積層体>
本発明の積層体10は、熱伝導率が10W/m・K以上である熱伝導体11と、熱伝導体11の表面上に設けられ、かつ熱伝導性フィラーを含有する絶縁樹脂層12とを備えるものであり、画像解析から求めた、前記絶縁樹脂層12の断面における空隙率が面積割合で0.09%以下となるものである。
絶縁樹脂層12は熱伝導性フィラーを含有するため熱伝導性を高くすることが可能であるが、一方で絶縁樹脂層の空隙率を面積割合で0.09%以下に調整しているため、熱伝導性と絶縁性とを兼ね備える積層体とすることが可能になる。
【0011】
[絶縁樹脂層]
(空隙率)
絶縁樹脂層12は、画像解析から求めた、前記絶縁樹脂層の断面における空隙率が面積割合で0.09%以下である。空隙率が0.09%を超えると絶縁樹脂層中の空気の割合が高くなるため絶縁性が悪化する。また、絶縁樹脂層12が脆くなりやすくなるためシート強度が低下する。
絶縁性及びシート性を向上させる観点から、絶縁樹脂層12の空隙率は、0.07%以下が好ましく、0.06%以下がより好ましく、0.04%以下が更に好ましい。
なお、絶縁樹脂層12の空隙率は、後述する実施例に記載する方法により測定できる。
【0012】
絶縁樹脂層12は、後述する製造方法で述べるように、溶剤で希釈した樹脂組成物を塗布し、その後、希釈剤として使用した溶剤を乾燥することにより形成する。次いで、得られた絶縁樹脂層12を加熱しながら真空プレスすることにより積層体を得る。したがって、特に限定されるわけではないが、これら乾燥条件、硬化条件、及び真空プレス条件などを適宜変更することで、絶縁樹脂層12の空隙率を調整するとよい。
【0013】
(比誘電率)
絶縁樹脂層12においては、熱伝導体11が設けられる面(一方の面12X)側の比誘電率が、熱伝導体11が設けられる面とは反対の面(他方の面12Y)側の比誘電率よりも低いことが好ましい。積層体10は、半導体基板などに使用されものであり、他方の面12Y上には、後工程などにおいて、リードフレームなどの導電層(図示しない)が形成される。導電層が形成された積層体10に電圧を印加した場合、絶縁樹脂層12の他方の面12Y側の比誘電率が高いと、一般的に導電層と絶縁樹脂層12の界面の端部に電界が集中することによって絶縁破壊が起こることあるが、絶縁樹脂層12の一方の面12X側の比誘電率を低くすると電界集中が緩和される。それにより、絶縁破壊が生じにくくなり、積層体10の絶縁性を向上させることができる。
【0014】
絶縁樹脂層12において、一方の面12X側の比誘電率を、他方の面12Y側の比誘電率より低くする場合、これらの比誘電率の差は、2以上であることが好ましく、3以上であることがより好ましい。比誘電率の差をこれら下限値以上とすることで、電界集中を緩和させて積層体10の絶縁性を確保しやすくなる。
比誘電率の差は、特に限定されないが、実用性の観点から、例えば10以下、好ましくは7以下である。
【0015】
また、絶縁性を高める観点から、一方の面12X側の比誘電率は、例えば、2以上10以下、好ましくは3以上7以下、さらに好ましくは3以上5以下である。絶縁樹脂層12は、絶縁樹脂層12の全厚みに対して、一方の面12Xから一定の厚さの領域の比誘電率が上記範囲内であればよいが、具体的には少なくとも10%の厚さの領域の比誘電率が上記範囲内であればよく、少なくとも20%の厚さの領域の比誘電率が上記範囲内であることが好ましい。
他方の面12Y側の比誘電率は、絶縁性を高める観点から、例えば、4以上11以下、好ましくは5以上9以下、さらに好ましくは6以上8以下である。絶縁樹脂層12は、絶縁樹脂層12の全厚みに対して、他方の面12Yから一定の厚さの領域の比誘電率が上記範囲内であればよいが、具体的には少なくとも10%の厚さの領域の比誘電率が上記範囲内であればよく、少なくとも20%の厚さの領域の比誘電率が上記範囲内であることが好ましい。
なお、本明細書において比誘電率は、周波数1MHzにおける比誘電率をいう。比誘電率は、後述の実施例に記載の方法にて測定することができる。
【0016】
(溶融特性)
絶縁樹脂層12においては、50℃以上175℃以下で溶融する領域と、50℃以上175℃以下で溶融しない領域とを有することが好ましく、熱伝導体11が設けられる面とは反対の面(他方の面12Y)側の領域が50℃以上175℃以下で溶融する領域であることが好ましい。積層体10は、前述のとおり半導体基板などに使用されものであり、他方の面12Y上には、後工程などにおいて、リードフレームなどの導電層が形成される。したがって、熱伝導体11が設けられる面とは反対の面側の領域が50℃以上175℃以下で溶融する領域であると、絶縁樹脂層12と導電層との密着性が良好になる。
なお、本明細書において50℃以上175℃以下で溶融するとは、50℃以上175℃以下の範囲で流動性を有すること、すなわち、溶融温度が50℃以上175℃以下の範囲であることをいう。したがって、絶縁樹脂層12は、絶縁樹脂層12の全厚みに対して、他方の面12Yから一定の厚さの領域が50℃以上175℃以下の範囲に溶融温度が存在すればよい。具体的には他方の面12Yから少なくとも10%の厚さの領域の溶融温度が上記範囲内であればよく、少なくとも20%の厚さの領域の溶融温度が上記範囲内であることが好ましい。なお、溶融温度は実施例に記載の方法で測定することができる。
【0017】
絶縁樹脂層12と導電層との密着性を良好にする観点から、熱伝導体11が設けられる面とは反対の面(他方の面12Y)側の領域の溶融温度は、好ましくは85℃以上170℃以下、より好ましくは100℃以上170℃以下、更に好ましくは120℃以上160℃以下である。
また、熱伝導体11が設けられる面とは反対の面(他方の面12Y)側の領域の50℃以上175℃以下℃における溶融粘度は、好ましくは150Pa・s以下、より好ましくは120Pa・s以下、更に好ましくは70Pa・s以下、より更に好ましくは50Pa・s以下である。溶融粘度が前記上限値以下であれば、絶縁樹脂層12と導電層との密着性を良好になる。一方、50℃以上175℃以下における溶融粘度の下限値は、通常、1Pa・s以上である。
なお、溶融粘度は実施例に記載の方法により測定することができる。
【0018】
(硬化特性)
絶縁樹脂層12は、他方の面12Y側の領域が少なくとも未硬化物又は半硬化物であることが好ましい。上記のように、絶縁樹脂層12の他方の面12Yには、後工程において、導電層などが積層されるが、絶縁樹脂層12の他方の面12Y側の領域を未硬化物又は半硬化物とし、かつ、導電層を積層した後に絶縁樹脂層12の他方の面12Y側を硬化すると、導電層と絶縁樹脂層12との接着性が高められる。
【0019】
また、絶縁樹脂層12は、他方の面12Y側の領域が少なくとも未硬化物又は半硬化物であるとともに、一方の面12X側の領域が半硬化物又は硬化物であることがより好ましい。一方の面12X側の領域が半硬化物又は硬化物であると、積層体10の熱伝導性、絶縁性などの各種性能を安定して確保できる。
【0020】
ここで、他方の面12Y側の領域が少なくとも未硬化物又は半硬化物であるとは、他方の面12Yから一定の厚さの領域が未硬化物又は半硬化物であることを意味し、具体的には、その一定の厚さの領域の硬化率が80%未満であればよい。硬化率を80%未満とすることで、導電層との接着性を高めやすくなる。また、該硬化率は、70%未満であることが好ましく、60%未満がより好ましく、50%未満がさらに好ましい。
また、他方の面12Yから一定の厚さの領域の硬化率は、1%以上であることが好ましく、5%以上であることがより好ましく、10%以上であることがさらに好ましい。
なお、絶縁樹脂層12は、絶縁樹脂層12の全厚みに対して、他方の面12Yから一定の厚さの領域の硬化率が上記範囲内であればよいが、具体的には少なくとも10%の厚さの領域の硬化率が上記範囲内であればよく、少なくとも20%の厚さの領域の硬化率が上記範囲内であることが好ましい。
【0021】
また、一方の面12X側の領域が半硬化物又は硬化物であるとは、一方の面12Xから一定の厚さの領域が半硬化物又は硬化物であることを意味し、具体的には、その一定の厚さの領域の硬化率が例えば50%以上であればよい。硬化率を50%以上とすることで、熱伝導体11との密着性を高めやすくなる。また、積層体10の絶縁性、熱伝導性なども良好にしやすくなる。該硬化率は、これら観点から、65%以上であることが好ましく、75%以上がより好ましく、85%以上がさらに好ましい。
また、一方の面12Xから一定の厚さの領域の硬化率は、100%以下であればよいが、例えば、95%以下であってもよい。
なお、絶縁樹脂層12は、絶縁樹脂層12の全厚みに対して、一方の面12Xから一定の厚さの領域の硬化率が上記範囲内であればよいが、具体的には少なくとも10%の厚さの領域の硬化率が上記範囲内であればよく、少なくとも20%の厚さの硬化率が上記範囲内であることが好ましい。
【0022】
上記した一方の面12X側の領域の硬化率は、典型的には、他方の面12Y側の領域の硬化率よりも大きくなる。ここで、一方の面12X側の領域の硬化率は、他方の面12Y側の領域の硬化率よりも5%以上大きくなることが好ましく、10%以上大きくなることがより好ましく、30%以上大きくなることが更に好ましい。また、一方の面12X側の領域の硬化率は、他方の面12Y側の領域の硬化率よりも、100%以下の差で大きくなるとよく、90%以下の差で大きくなることが好ましく、85%以下の差で大きくなることがより好ましい。硬化率の差をこれら範囲内とすることで、絶縁性、熱伝導性、熱伝導体11との密着性、導電層との接着性などをバランスよく良好にしやすくなる。
上記した硬化率は、後述するように、例えば、第1の絶縁層12Aと第2の絶縁層12Bの硬化温度、硬化時間などの硬化条件を適宜設定することで調整できる。また、第1の絶縁層12Aの熱硬化剤の含有量を、第2の絶縁層12Bの熱硬化剤の含有量より多くすることでも調整できる。
【0023】
絶縁樹脂層12は、好ましい一実施形態において、図2に示すように、第1の絶縁層12Aと、第2の絶縁層12Bとを備える。第1の絶縁層12A及び第2の絶縁層12Bは、図2に示すように、熱伝導体11の表面上にこの順に設けられる。この場合、比誘電率及び硬化率の説明において述べた、一方の面12X側から一定の厚さの領域とは、第1の絶縁層12Aにより構成される領域である。また、他方の面12Y側から一定の厚さの領域とは、第2の絶縁層12Bより構成される領域である。
したがって、第1の絶縁層12Aの比誘電率は、第2の絶縁層12Bの比誘電率よりも低くなり、第1の絶縁層12Aの比誘電率、及び第2の絶縁層12Bの比誘電率の具体的な値は、上記で述べた一方の面12X側の領域の比誘電率、他方の面12Y側の領域の比誘電率の通りである。
【0024】
さらに、絶縁樹脂層12は、第2の絶縁層12Bが未硬化物又は半硬化物であることが好ましく、より好ましくは第2の絶縁層12Bが未硬化物又は半硬化物で、かつ第1の絶縁層12Aが半硬化物又は硬化物である。
そして、第1の絶縁層12Aの硬化率、第2の絶縁層12Bの硬化率、及びこれら硬化率の差の具体的な値は、上記で述べた一方の面12X側の領域の硬化率、他方の面12Y側の領域の硬化率、及びこれら硬化率の差の通りである。
本発明では、2つの絶縁層12A,12Bを設けることで、絶縁樹脂層12の比誘電率、及び硬化特性を上記した所定の範囲内に容易に調整することが可能になる。
【0025】
(熱伝導性フィラー)
絶縁樹脂層12は、熱伝導性フィラーを含む。絶縁樹脂層12は、熱伝導性フィラーを含有することで熱伝導性が高くなり、積層体10の放熱性が良好となる。熱伝導性フィラーは無機フィラーであり、その熱伝導率が10W/m・K以上のものである。熱伝導性フィラーは1種のみが用いられてもよいが、2種以上が併用されることが好ましい。
積層体10の熱伝導性をより一層高める観点から、熱伝導性フィラーの熱伝導率は好ましくは15W/m・K以上、より好ましくは20W/m・K以上である。熱伝導性フィラーの熱伝導率の上限は特に限定されないが、熱伝導率が300W/m・K程度である無機フィラーは広く知られており、また熱伝導率が200W/m・K程度である無機フィラーは容易に入手できる。
【0026】
熱伝導性フィラーは、例えば、アルミナ、合成マグネサイト、シリカ、窒化ホウ素、窒化アルミニウム、窒化ケイ素、炭化ケイ素、酸化亜鉛、酸化マグネシウム、タルク、マイカ、及びハイドロタルサイトから選択された少なくとも1種である。熱伝導性フィラーは、アルミナ、シリカ、窒化ホウ素及び窒化アルミニウムから選択された少なくとも1種であることがより好ましい。これら無機フィラーを使用することで、積層体の熱伝導性高くなる。
【0027】
熱伝導性フィラーは、アルミナ及び窒化ホウ素から選択された少なくとも1種であることがさらに好ましく、これら両方を使用することがよりさらに好ましい。窒化ホウ素は比誘電率が低い材質であるので、後述するように、窒化ホウ素を第1の絶縁層12A(一方の面12X側の領域)に含有させると、一方の面12X側の領域の比誘電率を低くしやすくなる。一方で、アルミナを第2の絶縁層12B(他方の面12Y側の領域)に含有させることで、一方の面12X側の比誘電率を、他方の面12Y側の比誘電率よりも低くしやすくなる。
なお、窒化ホウ素は、第1の絶縁層12A(一方の面12X側の領域)、及び第2の絶縁層12B(他方の面12Y側の領域)のいずれにも含有させてもよい。その場合には、以下でも詳細に述べるように、一方の面12X側の領域の比誘電率を低くするために、一方の面12X側の領域における窒化ホウ素の含有率が、他方の面12Y側の領域における窒化ホウ素の含有率よりも高いほうが好ましい。
なお、窒化ホウ素及びアルミナの形状などは、より詳細には、後述する第1のフィラー、第2のフィラーで説明するとおりである。
【0028】
熱伝導性フィラーの形状は、特に限定されず、板状、球形、不定形、破砕形状、多角形形状などのいずれでもよい。また、熱伝導性フィラーは、板状フィラーなどの一次粒子が凝集した凝集粒子であってもよい。
【0029】
(第1のフィラー)
本発明の熱伝導性フィラーは、板状フィラー(「第1のフィラー」ともいう)を含有することが好ましい。板状フィラーを含有することで、熱伝導性が良好となりやすい。第1のフィラーは、その材質を上記したものから適宜選択すればよいが、好ましくは窒化ホウ素である。窒化ホウ素を使用することで、熱伝導性、絶縁性を良好にしやすくなり、比誘電率も低くしやすくなる。また、第1のフィラーは、好ましくは、後述する第2のフィラーよりも比誘電率が低くなるものである。また、第1のフィラーは凝集粒子を構成することが好ましい。
【0030】
第1のフィラーとして使用される窒化ホウ素は、六方晶窒化ホウ素、立方晶窒化ホウ素、ホウ素化合物とアンモニアとの還元窒化法により作製された窒化ホウ素、ホウ素化合物とメラミン等の含窒素化合物とから作製された窒化ホウ素、及び、ホウ水素ナトリウムと塩化アンモニウムとから作製された窒化ホウ素等が挙げられる。熱伝導性をより一層効果的に高める観点からは、上記窒化ホウ素は、六方晶窒化ホウ素であることが好ましい。
【0031】
板状フィラー(第1のフィラー)のアスペクト比は2より大きいことが好ましく、3以上であることがより好ましく、4以上であることがさらに好ましい。また、25以下であることが好ましく、22以下であることがより好ましく、20以下であることがさらに好ましい。4以上であることで、板状フィラーの一次粒子の長径(最大長)が長くなり、積層体の熱伝導性を高くしやすくなる。また、20以下とすることで、シート性が向上しやすくなる。
本発明において、アスペクト比は、各フィラー(一次粒子)における最大長/最小長を意味する。最小長は、板状フィラーにおいては厚さとなる。本明細書において、アスペクト比は平均アスペクト比であり、具体的には、任意に選択された50個の粒子を電子顕微鏡又は光学顕微鏡にて観察し、各粒子の最大長/最小長の平均値を算出することにより求められる。
【0032】
また、板状フィラーの一次粒子において、その長径(各粒子における最大長)の平均である平均長径は、熱伝導率を好適に高めるという観点から、好ましくは1μm以上、より好ましくは2μm以上、また、好ましくは40μm以下、より好ましくは38μm以下である。なお、平均長径は、既述のアスペクト比の測定において求められる長径100個の平均をいう。
【0033】
上記のように第1のフィラーは、凝集粒子としてもよい。凝集粒子は、上記した板状フィラーからなる一次粒子を凝集させた二次粒子である。第1のフィラーを凝集粒子とすることで、絶縁性を確保しつつ、熱伝導性をより一層効果的に高めることができる。板状フィラーは、上記したように窒化ホウ素であることが好ましく、すなわち、凝集粒子は窒化ホウ素凝集粒子であることが好ましい。
【0034】
凝集粒子の製造方法としては特に限定されず、噴霧乾燥方法及び流動層造粒方法等が挙げられる。凝集粒子の製造方法は、噴霧乾燥(スプレードライとも呼ばれる)方法であることが好ましい。噴霧乾燥方法は、スプレー方式によって、二流体ノズル方式、ディスク方式(ロータリ方式とも呼ばれる)、及び超音波ノズル方式等に分類でき、これらのどの方式でも適用できる。全細孔容積をより一層容易に制御できる観点から、超音波ノズル方式が好ましい。
【0035】
凝集粒子は、上記のように窒化ホウ素凝集粒子が好ましいが、窒化ホウ素凝集粒子は、窒化ホウ素の一次粒子を原料として製造されることが好ましい。窒化ホウ素凝集粒子の原料となる窒化ホウ素としては特に限定されず、六方晶窒化ホウ素、立方晶窒化ホウ素、ホウ素化合物とアンモニアとの還元窒化法により作製された窒化ホウ素、ホウ素化合物とメラミン等の含窒素化合物とから作製された窒化ホウ素、及び、ホウ水素ナトリウムと塩化アンモニウムとから作製された窒化ホウ素等が挙げられる。窒化ホウ素凝集粒子の熱伝導性をより一層効果的に高める観点からは、窒化ホウ素凝集粒子の材料となる窒化ホウ素は、六方晶窒化ホウ素であることが好ましい。
【0036】
また、凝集粒子の製造方法としては、必ずしも造粒工程は必要ではない。例えば、窒化ホウ素凝集粒子においては、窒化ホウ素の結晶の成長に伴い、窒化ホウ素の一次粒子が自然に集結することで形成された窒化ホウ素凝集粒子であってもよい。また、凝集粒子は、凝集粒子の粒子径をそろえるために、粉砕した凝集粒子であってもよい。
【0037】
絶縁性と熱伝導性とを効果的に高める観点からは、凝集粒子の平均粒子径は、12μm以上であることが好ましく、15μm以上であることが好ましく、また、200μm以下であることが好ましく、150μm以下であることがより好ましい。
平均粒子径は、堀場製作所社製「レーザー回折式粒度分布測定装置」を用いて測定することができる。平均粒子径の算出方法については、累積体積が50%であるときの熱伝導性フィラーの粒子径(d50)を平均粒子径として採用する。
【0038】
凝集粒子の20%圧縮時における圧縮強度は、0.8~2.5N/mmであることが好ましく、1.0~2.0N/mmであることがより好ましい。0.8~2.5N/mmであることで、プレス時に容易に解砕させることができ形状が変形することによりフィラー界面に存在する空気を押し出すことができるため、凝集粒子を用いた場合であっても絶縁樹脂層12の空隙率を調整しやすくなる。すなわち、凝集粒子の圧縮強度は比較的小さいため、絶縁樹脂層12の製造時のプレス処理によって解砕されるが、プレス処理時に圧力を調整することで空隙率を低く保ち、熱伝導性及び絶縁性を良好にすることができる。
【0039】
本発明において圧縮強度は、以下のようにして測定できる。
まず、微小圧縮試験機を用いて、ダイヤモンド製の角柱を圧縮部材として、該圧縮部材の平滑端面を凝集粒子に向かって降下させ、凝集粒子を圧縮する。測定結果として圧縮荷重値と圧縮変位の関係が得られるが、圧縮荷重値を凝集粒子の粒子径を用いて算出した平均断面積を用いて単位面積当たりの圧縮荷重値を算出し、これを圧縮強度とする。また、圧縮変位と凝集粒子の粒子径とから、圧縮率を算出し、圧縮強度と圧縮率との関係を得る。測定する凝集粒子は顕微鏡を用いて観察し、粒子径±10%の粒子径を有する凝集粒子を選出して測定する。また、それぞれの圧縮率における圧縮強度は、20回の測定結果を平均した平均圧縮強度として算出する。上記微小圧縮試験機として、例えば、フィッシャー・インストルメンツ社製「微小圧縮試験機 HM2000」等が用いられる。また、圧縮率は(圧縮率=圧縮変位÷平均粒子径×100)で算出できる。
【0040】
(第2のフィラー)
本発明の熱伝導性フィラーは、上記した板状フィラー以外の熱伝導性フィラーを含有していてもよい。そのようなフィラーとしては、アスペクト比が2以下である熱伝導性フィラー(以下、「第2のフィラー」ともいう)が挙げられる。
第2のフィラーのアスペクト比は、好ましくは1.8以下、より好ましくは1.5以下である。このようにアスペクト比が低い熱伝導性フィラーを使用することで、シート性や絶縁性などを低下させることなく、熱伝導性を高めることが可能になる。第2のフィラーのアスペクト比は、1以上であればよい。
第2のフィラーの形状は、特に限定されないが、球形、破砕形状などが挙げられる。また、第2のフィラーの材質は、上記したものから適宜選択すればよいが、第2のフィラーは、好ましくはアルミナである。
【0041】
第2のフィラーの平均粒子径は、0.1μm以上であることが好ましく、0.5μm以上であることがより好ましく、1μm以上であることが好ましい。また、20μm以下であることが好ましく、15μm以下であることが好ましく、10μm以下であることがより好ましい。平均粒子径をこれら下限値以上とすると、第2のフィラーを高充填で絶縁樹脂層に含有させることができる。また、上限値以下とすると、絶縁性を高めやすくなる。さらに、これら範囲内の平均粒子径を有する第2のフィラーは、上記した第1のフィラーと同じ領域(例えば、第1の絶縁層12A)内で併用される場合には、第1のフィラー間の隙間に容易に入り込んで、積層体の熱伝導性を効果的に高めることができる。
【0042】
本発明では、絶縁樹脂層12の比誘電率は、絶縁樹脂層12に含有される熱伝導性フィラーによって調整される。具体的には、使用する熱伝導性フィラーの種類によって、比誘電率を調整するとよい。例えば、一方の面12X側の領域(すなわち、第1の絶縁層12A)に含有される熱伝導性フィラーに、比誘電率の低いフィラー(「低誘電率フィラー」ともいう)を含有させ、他方の面12Y側の領域(すなわち、第2の絶縁層12B)に含有される熱伝導性フィラーに比誘電率の高いフィラー(「高誘電率フィラー」ともいう)を使用してもよい。
さらに、一方の面12X側の領域(すなわち、第1の絶縁層12A)及び他方の面12Y側の領域(すなわち、第2の絶縁層12B)のいずれにも、低誘電率フィラーを含有させ、一方の面12X側の領域における低誘電率フィラーの含有率を、他方の面12Y側の領域における低誘電率フィラーの含有率より高くしてもよい。なお、ここでいう低誘電率フィラーの含有率とは、各フィラーが含有される領域(例えば、各絶縁層)の質量に対する、低誘電率フィラーの含有量の割合を意味する。
なお、低誘電率フィラーは、例えば上記した第1のフィラーであり、例えば窒化ホウ素である。また、高誘電率フィラーは、例えば上記した第2のフィラーであり、低誘電率フィラーよりも比誘電率が高いフィラーであればよいが、例えばアルミナが挙げられる。
【0043】
絶縁樹脂層12において、熱伝導性フィラーの含有量は、絶縁樹脂層全量基準で、40質量%以上96質量%以下が好ましく、55質量%以上95質量%以下がより好ましく、65質量%以上93質量%以下がより好ましい。これら範囲内とすることで、シート性、絶縁性、熱伝導性のいずれも良好にしやすくなる。
【0044】
上記したように、絶縁樹脂層12は、第1及び第2の絶縁層12A,12Bを有することが好ましい。この場合、第1及び第2の絶縁層12A、12Bはいずれも熱伝導性フィラーを含有することが好ましい。すなわち、第1及び第2の絶縁層12A、12B(すなわち、一方の面12X側の領域、他方の面12Y側の領域)は、後述するとおり、それぞれ熱伝導性フィラーを含有する第1及び第2の硬化性組成物により形成されることが好ましい。
第1の絶縁層12A(すなわち、第1の硬化性組成物)において、熱伝導性フィラーの含有量は、40質量%以上94質量%以下が好ましく、55質量%以上90質量%以下がより好ましく、65質量%上87質量%以下がさらに好ましい。これら範囲内とすることで、絶縁性を確保しつつ、第1の絶縁層12Aの熱伝導性を良好にしやすくなる。
【0045】
第1の絶縁層12Aに含有される熱伝導性フィラーとしては、第1のフィラー単独で使用してもよいし、第1のフィラーと、第2のフィラーを併用してもよい。また、第1のフィラーとしては、上記のとおり、比誘電率が低い窒化ホウ素などを使用するとよい。特に凝集した窒化ホウ素を用いることにより、絶縁樹脂層12の空隙率を調整しやすくなる点でも好ましい。一方で、第2のフィラーは、第1のフィラーよりも比誘電率が高いフィラーであり、好ましくはアルミナである。
第1の絶縁層12Aにおいて、第1のフィラーを単独で使用すると、一方の面12X側の比誘電率を低くしやすくなり、絶縁性を向上しやすくなる。また、第1及び第2のフィラーを併用すると、絶縁性、熱伝導性、及び、熱伝導体11への密着性などをバランスよく向上させやすくなる。
【0046】
第1の絶縁層12A(すなわち、第1の硬化性組成物)における第1のフィラーの含有量は、20質量%以上84質量%以下が好ましく、30質量%以上80質量%以下がより好ましく、45質量%以上75質量%以下がさらに好ましい。これら範囲内とすることで、熱伝導体11との密着性、及び絶縁性を確保しつつ、第1の絶縁層12Aの熱伝導性を良好にしやすくなる。また、これら範囲内とし、かつ第1のフィラーとして上記のとおり比誘電率が低いフィラー(例えば、窒化ホウ素)を使用することで、絶縁樹脂層12の一方の面12X側の領域の比誘電率を低くできる。また、例えば凝集した窒化ホウ素等を前記含有量で用いることにより絶縁樹脂層12の空隙率を調整しやすくなる。
【0047】
また、第1の絶縁層12A(すなわち、第1の硬化性組成物)における第2のフィラーの含有量は、例えば、70質量%以下である。70質量%以下とすることで、第1の絶縁層12Aに第1のフィラーを一定量以上含有させることが可能になり、絶縁樹脂層12の一方の面12X側の領域の比誘電率を低くして絶縁性を向上させやすくなる。比誘電率を低くしつつ、絶縁性、熱伝導性、及び熱伝導体11への密着性などをバランスよく向上させる観点から、第1の絶縁層12A(すなわち、一方の面12X側の領域)に第2のフィラーを含有させる場合、上記第2のフィラーの含有量は、10質量%以上60質量%以下がより好ましく、20質量%上50質量%以下がさらに好ましい。
【0048】
第1の絶縁層12A(すなわち、第1の硬化性組成物)における、第1のフィラーの含有量(A1)に対する、第2のフィラーの含有量(A2)の質量比(A2/A1)は、2以下が好ましく、1.5以下がより好ましく、1.2以下がさらに好ましく、0.8以下がよりさらに好ましい。質量比(A2/A1)を一定値以下とすると、第1の絶縁層12Aに第1のフィラーを一定量以上含有させることが可能になり、絶縁樹脂層12の一方の面12X側の領域の比誘電率を低くして、絶縁性を向上しやすくなる。
また、比誘電率を低くしつつ、絶縁性、放熱性、及び熱伝導体11への密着性などをバランスよく向上させる観点から、第1の絶縁層12A(すなわち、一方の面12X側の領域)に第2のフィラーを含有させない方が好ましいが、第2のフィラーを含有させる場合、上記質量比(A2/A1)は、0.2以上が好ましく、0.3以上がより好ましく、0.5以上がさらに好ましい。
【0049】
第2の絶縁層12B(すなわち、第2の硬化性組成物)において、熱伝導性フィラーの含有量は、40質量%以上96質量%以下が好ましく、55質量%以上95質量%以下がより好ましく、70質量%上94質量%以下がさらに好ましい。これら範囲内とすることで、絶縁性を確保しつつ、第1の絶縁層12Aの熱伝導性を良好にしやすくなる。
【0050】
第2の絶縁層12B(すなわち、第2の硬化性組成物)に含有される熱伝導性フィラーとしては、第2のフィラーを使用することが好ましい。第2のフィラーとしては、上記したように、アルミナなどの第1のフィラーよりも比誘電率が高いフィラーを使用するとよく、それにより、第2のフィラーを第2の絶縁層12Bに含有させることで、絶縁樹脂層12の他方の面12Y側の領域の比誘電率を、一方の面12X側の領域の比誘電率よりも高くしやすくなり、絶縁性が良好となる。
第2の絶縁層12Bにおいては、第2のフィラーを単独で使用してもよいし、第2のフィラーと、第1のフィラーを併用してもよい。第1のフィラーとしては、上記のとおり、比誘電率が低い窒化ホウ素などを使用するとよい。
【0051】
第2の絶縁層12B(すなわち、第2の硬化性組成物)における第2のフィラーの含有量は、25質量%以上96質量%以下が好ましく、40質量%以上95質量%以下がより好ましく、50質量%上94質量%以下がさらに好ましい。これら範囲内とすることで、絶縁性を確保しつつ、積層体10の熱伝導性を良好にしやすくなる。
【0052】
第2の絶縁層12B(すなわち、第2の硬化性組成物)における第1のフィラーの含有量は、例えば、50質量%未満である。50質量%未満とすることで、第2の絶縁層12Bの比誘電率が第1の絶縁層12Bよりも高くしやすくなり、また、シート性が悪化したりすることも防止する。
これら観点から、第2の絶縁層12B(すなわち、第2の硬化性組成物)に第1のフィラーを含有させる場合、上記第1のフィラーの含有量は、10質量%以上45質量%以下がより好ましく、20質量%上40質量%以下がさらに好ましい。
【0053】
第2の絶縁層12B(すなわち、第2の硬化性組成物)における、第2のフィラーの含有量(A2)に対する、第1のフィラーの含有量(A1)の質量比(A1/A2)は、1.5未満が好ましく、1未満がより好ましく、0.8未満がさらに好ましい。質量比(A1/A2)を一定値以下とすると、第2の絶縁層12Bに第1のフィラーが必要以上に含有されなくなり、シート性などを良好にしつつ、一方の面12X側の領域の比誘電率を低くしやすくなる。また、導電層との接着性なども低下しにくくなる。
また、絶縁性、熱伝導性などの観点から、第2の絶縁層12B(すなわち、第2の硬化性組成物)に第1のフィラーが含有させなくてもよいが、第2の絶縁層12B(すなわち、第2の硬化性組成物)に第1のフィラーを含有させる場合、上記質量比(A1/A2)は、0.1以上が好ましく、0.3以上がより好ましく、0.4以上がさらに好ましい。
【0054】
(硬化性化合物)
絶縁樹脂層12は、硬化性化合物と熱伝導性フィラーが含まれる硬化性組成物から形成されるものである。硬化性化合物は、熱硬化されることで絶縁樹脂層12のマトリックス樹脂を構成するものである。また、硬化性化合物は、熱硬化剤により硬化されることが好ましい。すなわち、硬化性組成物は、硬化性化合物と熱伝導性フィラーに加えて熱硬化剤を含有することが好ましい。
絶縁樹脂層12は、上記のとおり、第1及び第2の硬化性組成物それぞれから形成される第1及び第2の絶縁層12A、12Bを有することが好ましいが、第1及び第2の硬化性組成物は、それぞれ、硬化性化合物と熱伝導性フィラーを含み、好ましくは硬化性化合物と熱伝導性フィラーに加えて熱硬化剤も含有する。
【0055】
本発明において、硬化性化合物としては、エポキシ基を有する硬化性化合物が好ましく、具体的には、エポキシ樹脂、フェノキシ樹脂、又はこれらの両方を使用することが好ましい。エポキシ樹脂、フェノキシ樹脂、又はこれらの両方を使用することで、耐熱性、シート性、熱伝導体11への密着性、導電層への接着性などが良好になる。
【0056】
<エポキシ樹脂>
エポキシ樹脂としては、例えば、分子中にエポキシ基を2つ以上含有する化合物が挙げられる。エポキシ樹脂は、重量平均分子量が5000未満となるものである。
エポキシ樹脂としては、具体的には、スチレン骨格含有エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビフェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、フルオレン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、アントラセン型エポキシ樹脂、アダマンタン骨格を有するエポキシ樹脂、トリシクロデカン骨格を有するエポキシ樹脂、及びトリアジン核を骨格に有するエポキシ樹脂等が挙げられる。これらの中では、ビスフェノールA型エポキシ樹脂が好ましい。
【0057】
また、エポキシ樹脂のエポキシ当量は、特に限定されないが、例えば100g/eq以上500g/eq以下、好ましくは120g/eq以上400g/eq以下、さらに好ましくは150g/eq以上350g/eq以下である。
なお、エポキシ当量は、例えば、JIS K 7236に規定された方法に従って測定できる。
【0058】
<フェノキシ樹脂>
フェノキシ樹脂は、例えばエピハロヒドリンと2価のフェノール化合物とを反応させて得られる樹脂、又は2価のエポキシ化合物と2価のフェノール化合物とを反応させて得られる樹脂である。上記フェノキシ樹脂は、ビスフェノールA型骨格、ビスフェノールF型骨格、ビスフェノールA/F混合型骨格、ナフタレン骨格、フルオレン骨格、ビフェニル骨格、アントラセン骨格、ピレン骨格、キサンテン骨格、アダマンタン骨格又はジシクロペンタジエン骨格を有することが好ましい。上記フェノキシ樹脂は、ビスフェノールA型骨格、ビスフェノールF型骨格、ビスフェノールA/F混合型骨格、ナフタレン骨格、フルオレン骨格又はビフェニル骨格を有することがより好ましく、ビスフェノールA型骨格を有することがさらに好ましい。
【0059】
また、フェノキシ樹脂は、重量平均分子量が10000以上であり、好ましくは20000以上、より好ましくは30000以上であり、好ましくは1000000以下、より好ましくは250000以下である。樹脂としてこのように分子量の高いものを使用しても、本発明では、後述するように硬化性組成物を希釈した希釈液を塗布することで絶縁樹脂層を形成するので、容易に積層体を形成できる。なお、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定されるポリスチレン換算での重量平均分子量である。ゲルパーミエーションクロマトグラフィー(GPC)測定では、溶離液として、テトラヒドロフランを用いるとよい。
また、フェノキシ樹脂のエポキシ当量は、特に限定されないが、例えば2500g/eq以上25000g/eq以下、好ましくは4000g/eq以上18000g/eq以下、さらに好ましくは5000g/eq以上13000g/eq以下である。
【0060】
本発明において、上記したように、絶縁樹脂層12は、第1及び第2の硬化性組成物により形成される第1及び第2の絶縁層12A,12Bを有することが好ましい。第1の硬化性組成物において、硬化性化合物の含有量は、5質量%以上55質量%以下が好ましく、8質量%以上40質量%以下がより好ましく、9質量%上30質量%以下がさらに好ましい。これら範囲内とすることで、シート性などの各種性能を確保しやすくなる。
また、第2の硬化性組成物において、硬化性化合物の含有量は、3質量%以上55質量%以下が好ましく、4質量%以上35質量%以下がより好ましく、5質量%上25質量%以下がさらに好ましい。これら範囲内とすることで、シート性などの各種性能を確保しやすくなる。
【0061】
第1及び第2の硬化性組成物それぞれにおいて、エポキシ樹脂及びフェノキシ樹脂の両方を含有する場合、これらの合計量基準で、エポキシ樹脂の含有量が40質量%以上90質量%以下であり、フェノキシ樹脂の含有量が10質量%以上60質量%以下であることが好ましい。また、エポキシ樹脂の含有量が50質量%以上80質量%以下であり、フェノキシ樹脂の含有量が20質量%以上50質量%以下であることがより好ましく、エポキシ樹脂の含有量が55質量%以上75質量%以下であり、フェノキシ樹脂の含有量が25質量%以上45質量%以下であることがさらに好ましい。
【0062】
<熱硬化剤>
熱硬化剤としては、上記エポキシ樹脂やフェノキシ樹脂を使用する場合、フェノール化合物(フェノール熱硬化剤)、アミン化合物(アミン熱硬化剤)、イミダゾール化合物、酸無水物などが挙げられる。これらの中では、イミダゾール系化合物が好ましい。
【0063】
フェノール化合物としては、ノボラック型フェノール、ビフェノール型フェノール、ナフタレン型フェノール、ジシクロペンタジエン型フェノール、アラルキル型フェノール及びジシクロペンタジエン型フェノール等が挙げられる。
アミン化合物としては、ジシアンジアミド、ジアミノジフェニルメタン及びジアミノジフェニルスルフォン等が挙げられる。
【0064】
イミダゾール化合物としては、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1,2-ジメチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-メチルイミダゾールイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール及び2-フェニル-4-メチル-5-ジヒドロキシメチルイミダゾール等が挙げられる。
【0065】
酸無水物としては、スチレン/無水マレイン酸コポリマー、ベンゾフェノンテトラカルボン酸無水物、ピロメリット酸無水物、トリメリット酸無水物、4,4’-オキシジフタル酸無水物、フェニルエチニルフタル酸無水物、グリセロールビス(アンヒドロトリメリテート)モノアセテート、エチレングリコールビス(アンヒドロトリメリテート)、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、及びトリアルキルテトラヒドロ無水フタル酸等が挙げられる。
【0066】
第1及び第2の絶縁層12A、12B(すなわち、一方の面12X側の領域,他方の面12Y側の領域)それぞれを形成するための第1及び第2の硬化性組成物それぞれにおいて、熱硬化剤の含有量は、硬化性化合物100質量部に対して、例えば、1質量部以上100質量部以下、好ましくは10質量部以上90質量部以下、より好ましくは20質量部以上70質量部以下である。だだし、第1の絶縁層12Aは,硬化率を高めて、熱伝導体11との密着性を高めるために、上記の中でも、40質量部以上70質量部以下とすることがさらに好ましい。
また、硬化性化合物100質量部に対する熱硬化剤の含有量(すなわち、含有割合)は、第1の絶縁層のほうが、第2の絶縁層よりも多いことが好ましい。第1の絶縁層の含有量を多くすることで、第1の絶縁層12A(すなわち、一方の面12X側の領域)の硬化率を高くしやすくなる。
【0067】
なお、上記では、硬化性化合物は、エポキシ基を有する硬化性化合物である場合について説明したが、エポキシ基を有する硬化性化合物に限定されず、メラミン化合物、オキセタニル化合物、イソシアネート化合物などでもよく、また、熱硬化剤も、硬化性化合物に合わせて適宜選択されればよい。
【0068】
(分散剤)
硬化性組成物(すなわち、第1及び第2の硬化性組成物それぞれ)は、分散剤を含有してもよい。分散剤を、熱伝導性フィラーを樹脂成分に分散させやすくなり、積層体の絶縁性、熱伝導性を向上させる。
分散剤としては、例えば、アルコキシシラン類が使用される。アルコキシシラン類としては、反応性基を有するアルコキシシラン、及び反応性基を有しないアルコキシシランが挙げられる。反応性基を有するアルコキシシランにおける反応性基は、例えば、エポキシ基、(メタ)アクリロイル基、アミノ基、ビニル基、ウレイド基、メルカプト基、及びイソシアネート基から選ばれる。アルコキシシラン類は、反応性基を有するアルコキシシランが好ましく、エポキシ基を有するアルコキシシランがより好ましい。
エポキシ基を有するアルコキシシランとしては、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン等が挙げられる。
第1及び第2の硬化性組成物それぞれにおいて、分散剤の含有量は、0.01質量%以上2質量以下が好ましく、0.02質量%以上1.5質量以下がより好ましく、0.05質量%以上1質量%以下がさらに好ましい。これら下限値以上とすることで、熱伝導性フィラーを各絶縁層に分散させやすくなる。また、これら上限値以下とすることで、配合量に見合った効果を得やすくなる。
【0069】
本発明の樹脂組成物は、上記成分以外にも、難燃剤、酸化防止剤、イオン捕捉剤、粘着性付与剤、可塑剤、チキソ性付与剤、光増感剤及び着色剤などを含んでいてもよい。
【0070】
絶縁樹脂層12の厚さは、例えば、0.04mm以上0.30mm以下、好ましくは0.06mm以上0.25mm以下である。これら下限値以上とすることで、絶縁性や放熱性を担保しやすくなる。また、これら上限値以下とすることで、電子部品の薄型化などをしやすくなる。
また、第1の絶縁層12Aの厚さ(T1)に対する、第2の樹脂層の厚さ(T2)の比(T2/T1)は、例えば1/9以上9以下であり、好ましくは2/8以上8/2以下である。
【0071】
[熱伝導体]
熱伝導体11は、熱伝導率が10W/m・K以上である熱伝導体であれば特に限定されない。例えば、アルミニウム、銅、アルミナ、ベリリア、炭化ケイ素、窒化ケイ素、窒化アルミニウム及びグラファイトシート等が挙げられる。中でも、熱伝導体11は、銅又はアルミニウムであることが好ましい。銅又はアルミニウムは、熱伝導率が高く放熱性に優れている。なお、熱伝導体11の熱伝導率は、例えば、レーザーフラッシュ法によって測定可能である。
熱伝導体11の厚さは、例えば0.03mm以上3mm以下、好ましくは0.1mm以上2.5mm以下である。
【0072】
なお、以上の説明においては、絶縁樹脂層12が、図2に示すように、第1及び第2の絶縁層12A,12Bの2層からなる構成を中心に説明したが、絶縁樹脂層12は2層からなる構成に限定されない。例えば、第1及び第2の絶縁層の間に、第3の絶縁層が設けられてもよい。第3の絶縁層は、典型的には、上記のように熱伝導性フィラーが含有されるものであり、その熱伝導性フィラーは、上記した熱伝導性フィラーから適宜選択されるとよい。この場合、第3の絶縁層の比誘電率は、第1の絶縁層よりも大きく、第2の絶縁層よりも小さいことが好ましい。
また、絶縁樹脂層12の一方の面12Xから他方の面12Yに向けて、比誘電率が徐々に大きくなるように構成されてもよい。この場合には、絶縁樹脂層12は、例えば、絶縁樹脂層12全体の厚さよりも十分に薄い薄膜絶縁層が4層以上積層されて構成されればよい。この場合、各薄膜絶縁層は、例えば、フィラーの種類、含有量などを調整することで、各々の比誘電率が調整されればよい。
【0073】
(積層体の製造方法)
本発明においては、絶縁樹脂層を構成するための硬化性組成物の希釈液を作製して、その硬化性組成物の希釈液により、絶縁樹脂層を形成すればよい。以下、本発明の積層体の製造方法を、絶縁樹脂層が第1及び第2の絶縁層からなる場合について詳細に説明する。
【0074】
まず、第1及び第2の絶縁層それぞれを形成するための第1及び第2の硬化性組成物の希釈液を準備する。具体的には、硬化性化合物と、熱伝導性フィラーと、その他必要に応じて配合される熱硬化剤、その他の添加剤などを、有機溶剤に混合して、第1及び第2の硬化性組成物の希釈液を準備するとよい。
【0075】
ここで、樹脂組成物液を希釈させるための溶剤としては、特に限定されないが、n-ペンタン、n-ヘキサン、n-ヘプタン、シクロヘキサン等の脂肪族炭化水素系溶剤、トルエンなどの芳香族炭化水素系溶剤、酢酸エチル、酢酸n-ブチルなどのエステル系溶剤、アセトン、メチルエチルケトン(MEK)、シクロヘキサノン等のケトン系溶剤などが挙げられる。これら有機溶剤は、1種単独で使用してもよいし、2種以上を使用して混合溶剤としてもよい。これらの中では、メチルエチルケトンが好ましい。
また、第1及び第2の硬化性組成物の希釈液それぞれにおける固形分濃度は、例えば60~96質量%、好ましくは65~95質量%、より好ましく70~94質量%である。固形分濃度が下限値以上であると、効率的に絶縁層を形成することができる。また、固形分濃度を上限値以下とすることで、硬化性組成物の希釈液を適切な粘度に調整しやすくなるので、工程上の不具合が生じにくくなる。
【0076】
次に、第1の硬化性組成物の希釈液を、離型シートなどに塗布などして、乾燥することで、離型シート上に第1の絶縁層を形成するとよい。同様に、第2の硬化性組成物の希釈液を、離型シートなどに塗布などして、乾燥することで、離型シート上に第2の絶縁層を形成するとよい。
【0077】
絶縁樹脂層12は、第1及び第2の硬化性組成物の希釈に使用した有機溶剤を、絶縁層12A,12Bに微少量(例えば50~2000ppm)残存させてもよい。絶縁層12A,12Bに有機溶剤を微少量残存させることにより積層体10のシート性が向上する。
絶縁樹脂層12における溶剤含有量を一定範囲内とするためには、上記第1及び第2の硬化性組成物の希釈液の乾燥における乾燥時間及び乾燥温度は、比較的緩やかな条件で行えばよい。
具体的には、乾燥温度は、溶剤の種類などによって適宜設定すればよいが、例えば60℃以上120℃以下、好ましくは75℃以上100℃以下の範囲内で行うとよい。また、乾燥時間については、例えば5分以上60分以下、好ましくは10分以上40分以下である。乾燥温度及び乾燥時間を前記範囲に調整することにより、絶縁層12A,12Bが過度に硬化しないため、後の工程において絶縁樹脂層12を真空プレスした際に絶縁層12A,12B中の空気が層外に押し出されやすくなるため、空隙率を所望の範囲に調整しやすくなる。
乾燥は、熱風により行ってもよいし、硬化性組成物の希釈液が塗布された離型シートなどを乾燥炉やオーブン内に入れて乾燥させてもよい。
【0078】
上記のようにして作製した第1及び第2の絶縁層は、熱伝導体に順次積層した後にプレスし、必要に応じて硬化することで積層体が得られる。具体的には、まずは、離型シートから剥がした第1の絶縁層を熱伝導体に積層し、その後、例えば第1の絶縁層を真空プレスしつつ第1の絶縁層を硬化させるとよい(第1の硬化工程)。次に、離型シートから剥がした第2の絶縁層を第1の絶縁層の上に積層した後、次いで、必要に応じて、例えば第1及び第2の絶縁層を真空プレスしつつ、第1及び第2の絶縁層又は第2の絶縁層を硬化させるとよい(第2の硬化工程)。なお、第1及び第2の硬化工程における硬化は、加熱により行う。本製造方法においては、硬化を2回行うことで、第1の絶縁層、第2の絶縁層における硬化率を別々の値に調整しやすくなる。
【0079】
第1の硬化工程における絶縁層の真空プレスの条件は、特に限定されないが、真空プレス時のプレス圧は、好ましくは7MPa以上、より好ましくは8MPa以上であり、好ましくは20MPa以下、より好ましくは15MPa以下である。プレス圧が7MPa以上となると絶縁樹脂層の空隙率が低くなり、絶縁樹脂層中の空気が少なくなるため絶縁性能が良好となる。また、例えば、板状フィラーや凝集粒子などの空隙ができやすいフィラーを使用し、また、フィラーを大量に配合した場合であっても空隙ができにくくなる。一方、プレス圧が20MPa以下であると積層体が過度に圧縮されず柔軟性が良好となる。
第2の硬化工程における真空プレスの条件は、特に限定されないが、真空プレス時のプレス圧は、好ましくは0.1MPa以上、より好ましくは0.5MPa以上であるが、第1の硬化工程と同様に、7MPa以上であったりしてもよいし、8MPa以上であってもよい。第2の絶縁層は、好ましくは未硬化物または半硬化物であるが、未硬化物または半硬化物である場合には、プレス圧を高くしなくても空隙ができにくく、そのため、上記のように真空プレス圧を低くしてもよい。また、第2の硬化工程におけるプレス圧は、好ましくは20MPa以下、より好ましくは15MPa以下である。プレス圧が20MPa以下であると積層体が過度に圧縮されず柔軟性が良好となる。
【0080】
第1及び第2の硬化工程は、第1及び第2の絶縁層が所望の硬化特性となるように、加熱温度、加熱時間を調整するとよい。
具体的には、第1の硬化工程における加熱温度は、例えば、100℃以上230℃以下、好ましくは120℃以上210℃以下である。また、これら温度範囲内における加熱時間は、例えば30分以上5時間以下、好ましくは例えば1時間以上3時間以下である。
【0081】
第2の硬化工程における加熱温度は、通常、第1の硬化工程における加熱温度よりも低くするとよい。第2の硬化工程における加熱温度を低くすると、第2の絶縁層の硬化率を第1の絶縁層の硬化率よりも低くしやすくなる。
具体的には、第2の硬化工程における加熱温度は、例えば80℃以上150℃以下、好ましくは90℃以上130℃以下である。また、これら温度範囲内での加熱時間は、例えば1分以上1時間以下、好ましくは例えば1分以上30分以下である。第2の硬化工程における加熱温度及び加熱温度を上記範囲内とすることで、第2の絶縁層の硬化率を所望の範囲に調整しやすくなる。
ただし、第2の絶縁層を未硬化とする場合には、第2の硬化工程を省略するとよい。
【0082】
また、上記では、硬化工程は、第1の絶縁層を硬化する第1の工程と、主に第2の絶縁層を硬化する第2の硬化工程に分けて行われたが、第1及び第2の絶縁層は、同じ硬化工程において一括で行われてもよい。具体的には、例えば、熱伝導体の上に、第1の絶縁層、第2の絶縁層を順次積層した後に、加熱して、第1及び第2の絶縁層を硬化させてもよい。
この場合には、第1の絶縁層及び第2の絶縁層の硬化率は、例えば、各層に含有される熱硬化剤の含有量などにより適宜調整可能である。
【0083】
上記した製造方法では、離型シート上に形成された第1の絶縁層及び第2の絶縁層を、熱伝導体に順次転写したが、離型シートを使用しなくてもよい。そのような場合、第1の絶縁層は、熱伝導体に直接塗布し乾燥して形成するとよい。また、第2の絶縁層は、熱伝導体の上に形成された第1の絶縁層の上に直接塗布して乾燥して形成するとよい。
【0084】
なお、以上では、絶縁樹脂層が第1及び第2の絶縁層からなる積層体の製造方法について説明したが、絶縁樹脂層が他の構成を有する場合も同様の手法により製造できる。例えば、絶縁樹脂層が3つ以上の絶縁層からなる場合には、複数の絶縁層を、順次、熱伝導体の上に積層していけばよい。また、各絶縁層の硬化は、熱伝導体に1層積層する毎に加熱して行ってもよいが、例えば、複数層積層する毎に加熱して行ってもよい。
【0085】
(積層体の用途)
積層体10は、例えば、電子部品の一構成要素として使用され、具体的には回路などが取り付けられる基板とし使用され、好ましくはパワー半導体モジュールにおける基板として使用される。すなわち、本発明は、上記した積層体を備える電子部品や、その電子部品を備えるパワー半導体モジュールも提供する。
パワー半導体モジュールは、例えば、インバータ、エレベータ、無停電電源装置(UPS)等の産業用機器において使用され、好ましくはインバータである。
【0086】
積層体10は、他方の面12Yの表面に、リードフレームなどの導電層が取り付けられる。より具体的には、積層体10は、絶縁樹脂層12の他方の面12Y上に、導電層(図示しない)を配置し、次に、絶縁樹脂層12を加熱することで硬化させることで、導電層を積層体10に取り付けるとよい。本発明では、絶縁樹脂層12の他方の面12Y側の領域(例えば、第2絶縁層12B)を、上記したように、半硬化又は未硬化としておくことで、絶縁樹脂層12の硬化により、導電層と絶縁樹脂層12とが強固に接着されることになる。
また、積層体10は、導電層を他方の面12Y上に配置した後に、導電層が積層された積層体10をモールド樹脂などに埋め込んでもよい。なお、この場合、モールド樹脂の埋め込みは、絶縁樹脂層12が硬化された後に行ってもよいし、硬化される前に行ってもよい。
【実施例
【0087】
以下、実施例及び比較例により本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
【0088】
なお、各物性の測定方法は、以下の通りである。
[比誘電率]
各実施例、比較例で作製した第1及び第2の絶縁層を離型PETシートから剥がして、その両面を銅箔(厚み40μm)とアルミニウム板(厚み1.0mm)とでそれぞれ挟み、各実施例、比較例と同様の条件で硬化して、サンプルシートを得た。得られたサンプルシートを40mm×40mmにカットし、φ20mmのパターンをエッチングにて加工した。その後、比誘電率を岩崎通信株式会社製LCR(インピーダンス)解析装置「PSM3750」にて空気中室温で、周波数100mHzから10MHzまでをログスケールで分割して33点、1サイクル測定し、得られる波形を読み取ることで、周波数1MHzの比誘電率を求めた。
【0089】
[硬化率]
硬化率は、絶縁樹脂層の該当する領域を加熱する際の硬化発熱を測定することにより求められる。硬化率を測定する際には、示差走査型熱量分析(DSC)装置(SIIナノテクノロジー社製「DSC7020」)が用いられる。硬化率は、具体的には、以下のようにして測定される。
測定開始温度30℃及び昇温速度8℃/分で、絶縁樹脂層の該当する領域の成分をサンプルとして採取(サンプル重量20~30mg)して、180℃まで昇温し1時間保持する。この昇温でサンプルを硬化させた時に発生する熱量(以下「熱量A」とする)を測定する。また、厚み50μmの離型PET(ポリエチレンテレフタレート)シートに、各領域を形成するための硬化性組成物を厚み80μmとなるように塗工し、23℃及び0.01気圧の常温真空下において1時間乾燥すること以外は該当する領域の絶縁樹脂層と同様にして、非加熱で乾燥された未硬化状態の絶縁樹脂層を用意する。この絶縁樹脂層を用いて、上記の熱量Aの測定と同様にして、昇温硬化させたときに発生する熱量(以下、「熱量B」とする)を測定する。得られた熱量A及び熱量Bから、下記の式により硬化率を求める。
硬化率(%)=[1-(熱量A/熱量B)]×100
【0090】
[空隙率]
実施例及び比較例の各積層体を285℃で5分保持した後、10×10mmにカットし、得られたサンプルの断面を研磨紙にて表面平滑化し、クロスセクションポリッシャ(日本電子株式会社制「IB-19520CCP」)にて観察面を作製した。その後、断面をPtイオンスパッタ―(E-1045、日立ハイテクノロジーズ製)にてスパッタして得られた観察面を、走査電子顕微鏡(SEM)を用いてシート全体が入るように500倍及びPixel Size198.4に調整し、断面画像を得た。
次いで、この画像に対して画像処理及び解析を行った。「Avizo9.2」(Thermo Fisher Scientific社製)によりmedianフィルター処理(1pixel)を行った上で256階調のうち閾値75以下の領域をクラックとみなし、閾値75以下の領域の割合を求めることで空隙率を求めた。
【0091】
[溶融温度・溶融粘度]
第1の絶縁層、及び第2の絶縁層について、1.5cm角に切り取ったサンプルを準備し、レオメーター測定装置(TA instruments社製、「ARES」)を用いて、Frequency6.28Hz、Strain21.8%、温度30~195℃、8℃/分の昇温速度の条件で溶融温度、及び溶融温度における溶融粘度を測定した。なお、本測定において絶縁層が溶融しない場合には表1において「-」で示す。
【0092】
実施例、比較例で得られた積層体は、以下の方法により評価した。
[絶縁性評価]
得られた積層体の熱伝導体が設けられない他方の面上に直径2cmの円形の銅箔をパターニングして、テストサンプルを得た。耐電圧試験機(ETECH Electronics社製「MODEL7473」)を用いて、テストサンプル間に0.33kV/秒の速度で電圧が上昇するように、25℃にて交流電圧を印加した。テストサンプルに10mAの電流が流れた電圧を絶縁破壊電圧とした。絶縁破壊電圧をサンプル厚みで除算することで規格化し、絶縁破壊強度を算出した。絶縁破壊強度を以下の基準で判定した。
A:60kV/mm以上
B:50kV/mm以上60kV/mm未満
C:50kV/mm未満
【0093】
[放熱性評価]
実施例、比較例で得られた積層体を1cm角にカットした後、両面にカーボンブラックをスプレーした測定サンプルに対して、測定装置「ナノフラッシュ」(NETZSCH社、型番:LFA447)を用いて、レーザーフラッシュ法により熱伝導率の測定を行った。熱伝導率より、以下の基準により放熱性を評価した。
A:7W/m・K以上
B:7W/m・K未満
【0094】
実施例、比較例で使用した各成分は、以下の通りである。
エポキシ樹脂:ビスフェノールA型エポキシ樹脂、新日鉄住金化学株式会社製、商品名「YD-127」、エポキシ当量:180~190g/eq
フェノキシ樹脂:三菱ケミカル株式会社製、商品名「jER1256」、エポキシ当量:7,500~8,500g/eq、重量平均分子量:約5万
分散剤:3-グリシドキシプロピルトリエトキシシラン、信越化学社製、商品名「KBM403」
熱硬化剤(1):イミダゾール系化合物、四国化成工業株式会社製、商品名「2P4MZ」
熱硬化剤(2):ジシアンジアミド微粉砕品、三菱ケミカル株式会社、商品名「DICY7」
第1のフィラー:窒化ホウ素、板状フィラー、凝集粒子、水島合金属社製「HP-40」、アスペクト比6、一次粒子の平均長径7μm、凝集粒子の平均粒子径40μm、20%圧縮時における圧縮強度1.7N/mm
第2のフィラー:アルミナ、アスペクト比1、マイクロン製、商品名「AZ-4」、平均粒子径5μm
【0095】
[実施例1]
表1の配合に従って、第1及び第2の絶縁層を形成するための第1及び第2の硬化性組成物を調製した。なお、第1及び第2の硬化性組成物は、それぞれ固形量75質量%、90質量%となるように有機溶媒(MEK)で希釈した各組成物の希釈液として調製した。
第1の硬化性組成物の希釈液を離型PETシート(厚み40μm)上に、乾燥後の厚さが200μmになるように塗布した。また、第2の硬化性組成物の希釈液を別の離型PETシート(厚み40μm)上に、乾燥後の厚みが80μmになるように塗布し、これらを表1に記載の乾燥条件に従ってオーブン内で乾燥させ、各離型PETシートの上に、第1及び第2の絶縁層それぞれを形成した。
【0096】
次いで、離型PETシートの上に形成された第1の絶縁層を、離型PETシートを剥がしながら銅板(厚み0.4mm)に積層した。得られた硬化前の積層体を、温度195℃、圧力8MPaの条件で80分間真空プレスすることにより、第1の絶縁層を硬化させた(第1の硬化工程)。次に、離型PETシートの上に形成された第2の絶縁層を、離型PETシートを剥がしながら第1の絶縁層の上に積層し、温度110℃、圧力8MPaの条件で3分間真空プレスすることにより、第2の絶縁層が半硬化した積層体を得た(第2の硬化工程)。この積層体において、第1の絶縁層の厚さは0.1mm、第2の絶縁層の厚さは0.08mmであった。
【0097】
[実施例2~5、比較例1~3]
第1及び第2の硬化性組成物の配合を表1に示す配合に変更し、かつ真空プレス圧を表1に示すとおり変更した点を除いて実施例1と同様に実施した。なお、第1の絶縁層の欄に記載した真空プレス圧が、第1の硬化工程におけるプレス圧であり、第2の絶縁層の欄に記載した真空プレス圧が、第2の硬化工程におけるプレス圧である。
【0098】
【表1】
【0099】
表1の結果から明らかなように、各実施例では空隙率を特定の量以下とすることで、放熱性、及び絶縁性を良好にすることができた。
【符号の説明】
【0100】
10 積層体
11 熱伝導体
12 絶縁樹脂層
12A 第1の絶縁層
12B 第2の絶縁層
12X 一方の面
12Y 他方の面
図1
図2