(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-11-14
(45)【発行日】2022-11-22
(54)【発明の名称】熱要求調停装置
(51)【国際特許分類】
B60H 1/22 20060101AFI20221115BHJP
【FI】
B60H1/22 651C
B60H1/22 671
(21)【出願番号】P 2019053638
(22)【出願日】2019-03-20
【審査請求日】2021-05-13
(73)【特許権者】
【識別番号】000003207
【氏名又は名称】トヨタ自動車株式会社
(73)【特許権者】
【識別番号】000004260
【氏名又は名称】株式会社デンソー
(74)【代理人】
【識別番号】110001276
【氏名又は名称】特許業務法人 小笠原特許事務所
(72)【発明者】
【氏名】和田 竜一
(72)【発明者】
【氏名】舛久 達也
(72)【発明者】
【氏名】栗林 信和
(72)【発明者】
【氏名】磯村 晋作
【審査官】町田 豊隆
(56)【参考文献】
【文献】特開2017-071283(JP,A)
【文献】特開2015-186989(JP,A)
【文献】特開2015-168297(JP,A)
【文献】特開2017-165142(JP,A)
【文献】特開2014-213609(JP,A)
【文献】特開2013-199251(JP,A)
【文献】特開2013-189118(JP,A)
【文献】特開2018-184109(JP,A)
【文献】特開2010-064651(JP,A)
【文献】米国特許出願公開第2010/0074525(US,A1)
【文献】国際公開第2018/009122(WO,A1)
【文献】国際公開第2017/038677(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
B60H 1/22
(57)【特許請求の範囲】
【請求項1】
バッテリを冷却する冷却水を循環させる第1の熱回路と、冷房用の冷媒を状態変化させながら循環させ、前記第1の熱回路と熱交換可能な第2の熱回路とを備える車両に搭載され、前記第1及び第2の熱回路の熱要求を調停する熱要求調停装置であって、
前記第1の熱回路が前記第2の熱回路への排出を要求する要求排熱量と、前記第2の熱回路の要求排熱量とを取得する排熱量取得部と、
前記排熱量取得部が取得した前記第1の熱回路の要求排熱量と前記第2の熱回路の要求排熱量との和が、前記第2の熱回路の最大排熱可能量を超えないように、前記第1の熱回路及び前記第2の熱回路のそれぞれに許容する排熱量を決定する調停部とを備え、
前記第1の熱回路の要求排熱量と前記第2の熱回路の要求排熱量との和が、前記第2の熱回路の最大排熱可能量を超える場合、前記調停部は、前記第1の熱回路の要求排熱量が大きくなるにつれて、前記第1の熱回路に許容する排熱量を大きくし、記第2の熱回路に許容する排熱量を小さく
し、
前記調停部は、少なくとも一つの前記第1の熱回路の要求排熱量の閾値に応じて前記第1の熱回路に許容する排熱量及び前記第2の熱回路に許容する排熱量の分配比が決定される分配規則に基づいて、前記第1の熱回路及び前記第2の熱回路のぞれぞれに許容する排熱量を決定する、熱要求調停装置。
【請求項2】
前記第2の熱回路は、更に、冷却水を循環させる第3の熱回路と熱交換可能に結合されており、
前記第2の熱回路の最大排熱可能量が、前記第2の熱回路から前記第3の熱回路へと移動可能な熱量である、請求項1に記載の熱要求調停装置。
【請求項3】
バッテリを冷却する冷却水を循環させる第1の熱回路と、冷房用の冷媒を状態変化させながら循環させ、前記第1の熱回路と熱交換可能な第2の熱回路とを備える車両に搭載され、前記第1及び第2の熱回路の熱要求を調停する熱要求調停装置であって、
前記第1の熱回路が前記第2の熱回路への排出を要求する要求排熱量と、前記第2の熱回路の要求排熱量とを取得する排熱量取得部と、
前記排熱量取得部が取得した前記第1の熱回路の要求排熱量と前記第2の熱回路の要求排熱量との和が、前記第2の熱回路の最大排熱可能量を超えないように、前記第1の熱回路及び前記第2の熱回路のそれぞれに許容する排熱量を決定する調停部とを備え、
前記第1の熱回路の要求排熱量と前記第2の熱回路の要求排熱量との和が、前記第2の熱回路の最大排熱可能量を超える場合、前記調停部は、前記第1の熱回路の要求排熱量が大きくなるにつれて、前記第1の熱回路に許容する排熱量を大きくし、記第2の熱回路に許容する排熱量を小さくし、
前記調停部は、前記第1の熱回路の要求排熱量以外の条件を加味して遺伝的アルゴリズムにより求めた前記第1の熱回路に許容する排熱量及び前記第2の熱回路に許容する排熱量の分配比を用いて、前記第1の熱回路及び前記第2の熱回路のそれぞれに許容する排熱量を決定し、熱要求調停装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、車両において発生する熱要求を調停する熱要求調停装置に関する。
【背景技術】
【0002】
特許文献1には、冷凍回路、低水温回路及び高水温回路を備え、冷凍回路及び高水温回路がコンデンサを介して熱交換可能であり、冷凍回路及び低水温回路が冷媒-水熱交換器を介して熱交換可能である車両用空調装置が記載されている。特許文献1に記載の車両用空調装置では、冷凍回路と低水温回路との間で熱交換可能なサブクール(SC)コンデンサを設け、SCコンデンサで冷凍回路の冷媒の冷却を促進することにより、冷凍回路の効率改善を図っている。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
近年、車両の電動化が進んでいる。走行用バッテリを搭載した電動車両においては、劣化抑制のため走行用バッテリの冷却が必要である。先行文献に記載されるような複数の熱回路間で熱移動が可能なシステムにおいて、低水温回路の冷却水で走行用バッテリを冷却しながら車室内を冷房する場合、走行用バッテリが高温であれば、走行用バッテリの冷却に伴う排熱を低水温回路から冷凍回路に移動させることができる。
【0005】
ただし、冷凍回路から排出できる熱量には上限があるので、冷房使用時にバッテリ冷却のために冷凍回路にバッテリの排熱を移動させると、車室内の冷却が弱くなり、快適性を損なう可能性がある。したがって、冷房使用時かつバッテリ冷却時には、各熱回路の排熱量の調停が必要となる。
【0006】
それ故に、本発明は、冷房用の熱回路とバッテリ冷却用の熱回路とを備えた車両において、各熱回路の排熱量を好適に調整できる熱要求調停装置を提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明は、バッテリを冷却する冷却水を循環させる第1の熱回路と、冷房用の冷媒を状態変化させながら循環させ、第1の熱回路と熱交換可能な第2の熱回路とを備える車両に搭載され、第1及び第2の熱回路の熱要求を調停する熱要求調停装置に関する。熱要求調停装置は、第1の熱回路が第2の熱回路への排出を要求する要求排熱量と、第2の熱回路の要求排熱量とを取得する排熱量取得部と、排熱量取得部が取得した第1の熱回路の要求排熱量と第2の熱回路の要求排熱量との和が、第2の熱回路の最大排熱可能量を超えないように、第1の熱回路及び第2の熱回路のそれぞれに許容する排熱量を決定する調停部とを備える。第1の熱回路の要求排熱量と第2の熱回路の要求排熱量との和が、第2の熱回路の最大排熱可能量を超える場合、調停部は、第1の熱回路の要求排熱量が大きくなるにつれて、第1の熱回路に許容する排熱量を大きくし、記第2の熱回路に許容する排熱量を小さくし、調停部は、少なくとも一つの第1の熱回路の要求排熱量の閾値に応じて第1の熱回路に許容する排熱量及び第2の熱回路に許容する排熱量の分配比が決定される分配規則に基づいて、第1の熱回路及び第2の熱回路のぞれぞれに許容する排熱量を決定する。
【発明の効果】
【0008】
本発明によれば、冷房用の熱回路とバッテリ冷却用の熱回路とを備えた車両において、各熱回路の排熱量を好適に調整できる熱要求調停装置を提供できる。
【図面の簡単な説明】
【0009】
【
図1】実施形態に係る熱要求調停装置及び熱回路の概略構成を示す機能ブロック図
【
図2A】
図1に示す熱回路の構成例を示すブロック図
【
図2B】
図1に示す熱回路の構成例を示すブロック図
【
図3】熱要求収集フェーズにおける熱要求調停装置の機能の階層構造を示す図
【
図4】回答フェーズにおける熱要求調停装置の機能の階層構造を示す図
【
図5】熱要求調停装置が熱要求を調停するために実行する制御処理を示すフローチャート
【
図6】低温冷却回路及び冷媒回路の要求熱量と最大冷房能力との関係を示す図
【
図7】
図5に示すRE-LT間調停処理を示すフローチャート
【
図8】熱要求調停装置が各回路内のユニットに熱量を配分するために実行する制御処理を示すフローチャート
【発明を実施するための形態】
【0010】
本発明の一実施態様に係る熱要求調停装置は、冷房用の冷媒回路とバッテリ冷却用の低温冷却回路とを備えた車両において、低温冷却回路から冷媒回路への要求排熱量と冷媒回路の要求排熱量との和が、冷媒回路の最大排熱可能量(冷房能力)を超えないように、低温冷却回路及び冷媒回路のそれぞれに許容する排熱量を決定する。熱要求調停装置は、低温冷却回路から冷媒回路への要求排熱量と冷媒回路の要求排熱量との和が、冷媒回路の最大排熱可能量を超える場合、低温冷却回路から冷媒回路への要求排熱量が大きくなるにつれて、低温冷却回路に許容する排熱量を大きく、冷媒回路に許容する排熱量を小さくする。これにより、バッテリの温度によって定まる低温冷却回路の要求排熱量に応じて、低温冷却回路及び冷媒回路の排熱量を調整し、バッテリの冷却と空調の快適性の両立を図ることができる。
【0011】
(実施形態)
<構成>
図1は、実施形態に係る熱要求調停装置及び熱回路の概略構成を示す機能ブロック図である。
【0012】
熱要求調停装置1は、高温冷却回路HT、低温冷却回路LT及び冷媒回路REの3つの熱回路を備える車両に搭載され、各熱回路に含まれる複数のユニットの熱要求を調停する装置である。熱要求調停装置1は、車載ネットワークを介して、各熱回路に含まれるユニットの制御装置と通信可能である。高温冷却回路HT、低温冷却回路LT及び冷媒回路REは、それぞれ熱媒体を循環させる流路を有する。各熱回路に含まれるユニットは、熱媒体との間で熱交換を行うことができる。また、冷媒回路REは、高温冷却回路HT及び低温冷却回路LTのそれぞれと熱交換可能に結合されている。ここで、ユニットからの熱要求は、ユニットが要求する吸熱量またはユニットが要求する排熱量の値を含む情報である。本実施形態では、吸熱量または排熱量は、単位時間当たりの熱エネルギーの移動量(仕事率、単位:W)で表されるものとして説明する。また、以下では、説明の便宜上、ユニットが要求する吸熱量またはユニットが要求する排熱量を、「ユニットの要求熱量」といい、熱回路が要求する吸熱量または熱回路が要求する排熱量を、「熱回路の要求熱量」という。
【0013】
熱要求調停装置1は、取得部2と、算出部3と、調停部4と、配分部5とを備える。取得部2は、各熱回路に含まれる複数のユニットの制御装置から通信により要求熱量を取得する。算出部3は、取得部2が取得した複数のユニットの要求熱量を熱回路毎に集計し、各熱回路の要求熱量を算出する。調停部4は、算出部3が算出した各熱回路の要求熱量と、高温冷却回路HTと冷媒回路REとの間での移動可能熱量と、低温冷却回路LTと冷媒回路REとの間での移動可能熱量とに基づいて、各熱回路に許容する割り当て熱量を決定する。割り当て熱量は、各熱回路に割り当てられた吸熱量または排熱量である。本実施形態では、熱回路間の移動可能熱量及び割り当て熱量は、要求熱量と同様に単位時間当たりの熱エネルギーの移動量で表される。配分部5は、調停部4によって決定された各熱回路への割り当て熱量に基づいて、各熱回路に含まれるユニットに熱量を配分する。尚、熱要求調停装置1が実行する処理の詳細については後述する。
【0014】
図2Aは、
図1に示す熱回路の構成例を示すブロック図である。尚、
図2Aにおいては、熱媒体が循環する流路を太線で示している。
【0015】
高温冷却回路HTは、冷却水を循環させる回路であり、ヒータコア11と、電気ヒータ12と、ラジエータ13と、冷却水を循環させる図示しないウォーターポンプとを備える。高温冷却回路HTは、車室内の暖房のために冷却水に蓄熱する機能と、冷媒回路REから熱交換により受け取った熱を車外に放熱する機能とを有する。ヒータコア11は、冷却水が流れるチューブとフィンとを有し、フィンを通過する空気と冷却水の間で熱交換を行うユニットである。電気ヒータ12は、冷却水の温度が不足する際に冷却水を加熱するユニットである。ラジエータ13は、冷却水を空冷するためのユニットであり、冷却水が流れるチューブとフィンを有し、フィンを通過する空気と冷却水との間で熱交換を行うラジエータコアと、ラジエータコアの前方に設けられ、ラジエータコアへの通風量を増減させるグリルシャッターと、ラジエータコアの後方に設けられ、ラジエータコアに強制通風を行うためのラジエータファンとを有する。
【0016】
高温冷却回路HTにおいて、ヒータコア11及びラジエータ13は冷却水から吸熱を行うことができるユニットであり、電気ヒータ12は冷却水への排熱を行うことができるユニットである。また、ウォーターポンプ自体は、吸熱及び排熱のいずれも行わないが、冷却水の流速に応じて、ラジエータ13の放熱量及び後述する水冷コンデンサ42を介した冷媒回路REへの移動熱量を変化させることができるユニットである。
【0017】
低温冷却回路LTは、冷却水を循環させる回路であり、バッテリ21と、パワーコントロールユニット(以下、「PCU」という)22と、トランスアクスル(以下、「TA」という)23と、ラジエータ24と、冷却水を循環させる図示しないウォーターポンプとを備える。バッテリ21は、走行用モータに供給するための電力を蓄積するユニットである。PCU22は、走行用モータを駆動するインバータや電圧変換を行うDCDCコンバータ等を含み、走行用モータに供給する電力を制御するユニットである。TA23は、走行用モータ、発電機、動力分割機構及びトランスミッションを一体化したユニットである。ラジエータ24は、冷却水を空冷するためのユニットであり、冷却水が流れるチューブとフィンを有し、フィンを通過する空気と冷却水との間で熱交換を行うラジエータコアと、ラジエータコアの前方に設けられ、ラジエータコアへの通風量を増減させるグリルシャッターと、ラジエータコアの後方に設けられ、ラジエータコアに強制通風を行うためのラジエータファンとを有する。尚、低温冷却回路LTの冷却水流路は、図示しないバルブの開閉により変更可能であり、後述する
図2Bに示すように、バッテリ21を冷却する流路と、PCU22及びTA23を冷却する流路とを切り離すことができる。バッテリ21の流路と、PCU22及びTA23の流路とを分離可能とすることにより、低温冷却回路LT内で発生した熱の移動先をバッテリ21の温度に応じて適宜変更することができる。
【0018】
低温冷却回路LTにおいて、ラジエータ24は冷却水から吸熱を行うことができるユニットであり、バッテリ21、PCU22及びTA23は、冷却水の流路の一部を構成するウォータージャケットを介して冷却水へ排熱を行うことができるユニットである。ウォーターポンプ自体は、吸熱及び排熱のいずれも行わないが、冷却水の流速に応じて、バッテリ21、PCU22、TA23から冷却水への排熱量、ラジエータ24の放熱量、及び、後述するチラー41を介した冷媒回路REへの移動熱量を制御することができるユニットである。低温冷却回路LTは、バッテリ21、PCU22及びTA23を冷却して信頼性を確保するために設けられるものであるので、低温冷却回路LTを循環する冷却水の温度は、通常、高温冷却回路HTを循環する冷却水の温度よりも低く維持される。
【0019】
尚、以下の説明では、高温冷却回路HTの冷却水と低温冷却回路LTの冷却水とを区別する目的で、前者を「高温冷却水」といい、後者を「低温冷却水」という場合がある。
【0020】
冷媒回路REは、冷媒を状態変化させながら循環させる回路であり、コンプレッサ31と、エバポレータ32と、水冷コンデンサ42とを備える。冷媒回路REにおいては、コンプレッサ31が圧縮した冷媒を水冷コンデンサ42で凝縮させ、凝縮させた冷媒をエバポレータ32に設けられた膨張弁からエバポレータ32内に噴射して膨張させることにより、エバポレータ32の周囲の空気から吸熱を行うことができる。冷媒回路REにおいて、コンプレッサ31及びエバポレータ32は、冷媒に対して排熱を行うことができるユニットである。また、水冷コンデンサ42は、冷媒から吸熱し、高温冷却回路HTの冷却水へ排熱することができるユニットである。
【0021】
冷媒回路REは、チラー41を介して低温冷却回路LTと熱交換可能に結合されており、低温冷却回路LTで発生した熱を、チラー41を介して冷媒回路REに移動させることが可能である。また、冷媒回路REは、水冷コンデンサ42を介して高温冷却回路HTと熱交換可能に結合されており、冷媒回路REで発生した熱及び/または低温冷却回路LTから冷媒回路REに移動させた熱を、水冷コンデンサ42を介して高温冷却回路HTに移動させることができる。
【0022】
尚、
図2Aでは、電気電動車に搭載される熱回路を例として説明したが、本実施形態に係る熱要求調停装置は、ハイブリッド車に適用することも可能である。ハイブリッド車の場合は、高温冷却回路HTをエンジンの冷却に使用することができる。
【0023】
図2Bは、
図1に示す熱回路の構成例を示すブロック図であって、冷房使用時かつバッテリ高温時における回路構成と熱移動を示したものである。
図2Bにおいて、冷房使用時及びバッテリ高温時における熱の移動方向を矢印で示す。
【0024】
冷房使用時には、冷媒回路REのエバポレータ32が、冷媒の蒸発に伴って吸熱を行う。エバポレータ32を介して冷媒に吸収された熱は、コンプレッサ31による冷媒の圧縮で生じた圧縮熱と共に、水冷コンデンサ42における冷媒の冷却によって凝縮熱として高温冷却回路HTの冷却水に放熱される。
【0025】
低温冷却回路LTで発生した排熱は、低温冷却回路LTのラジエータ24から車外に放熱されるが、例えば、バッテリ21の温度が高く、外気温も高い場合には、バッテリ21、PCU22及びTA23で発生した全ての排熱をラジエータ24から放熱できないことが考えられる。この場合、上述した図示しないバルブの開閉により、
図2Bに示すように、バッテリ冷却用の流路を他のユニットを冷却するための流路から分離し、冷媒回路REを利用してバッテリ21の冷却を図る。以下の説明では、分離された2つの低温冷却回路のうち、冷媒回路REと熱交換可能に結合されている、バッテリ冷却用の熱回路を低温冷却回路LTとし、PCU22、TA23及びラジエータ24を含む熱回路を低温冷却回路LT’とする。低温冷却回路LT’のPCU22及びTA23で発生した排熱はラジエータ24から車外に放出される。一方、低温冷却回路LTのバッテリ21で発生した排熱は、チラー41での熱交換によって、低温冷却回路LTの冷却水から冷媒回路REの冷媒へと移動する。低温冷却回路LTから冷媒回路REへと排出された排熱は、水冷コンデンサ42において凝縮熱として高温冷却回路HTの冷却水に放熱される。
【0026】
冷房使用時には、通常、ヒータコア11からの排熱及び電気ヒータ12による冷却水の過熱を行わないので、高温冷却回路HTでは、水冷コンデンサ42を介して冷媒回路REから排出された排熱を全てラジエータ13から車外へと放出する。ただし、冷房使用時においても、必要があれば、ヒータコア11からの排熱を行っても良い。
【0027】
以下、
図3及び
図4を参照しながら、熱要求調停装置の機能の階層構造を説明する。
【0028】
図3は、熱要求収集フェーズにおける熱要求調停装置の機能の階層構造を示す図であり、
図4は、回答フェーズにおける熱要求調停装置の機能の階層構造を示す図である。
【0029】
本実施形態に係る熱回路の制御は、車両の各ユニットにおいて発生している熱要求を収集する熱要求収集フェーズと、収集した熱要求を調停し、調停結果に基づいて配分した吸熱量または排熱量を各ユニットに回答する回答フェーズとから構成される。また、熱要求収集フェーズ及び回答フェーズのそれぞれにおいて実行される制御は、3つの制御レイヤーに階層化されている。各制御レイヤーで行う処理は次の通りである。
【0030】
レイヤー1(L1):熱要求調停装置1は、3つの熱回路のそれぞれの要求熱量と熱回路間の移動可能熱量とに基づいて各熱回路の要求熱量を調停し、各熱回路に割り当てる吸熱量または排熱量と熱回路間の移動熱量とを決定する。レイヤー1において、各熱回路の要求熱量及び熱回路間の移動熱量を調整することにより、3つの熱回路で発生する熱量を有効に活用し、車両全体での熱利用効率やユニットの冷却効率の最適化等を図ることができる。例えば、ユニットの冷却で生じた排熱を車室内の暖房に利用したり、複数の熱回路を利用してユニットの冷却を促進させたりすることを効率的に行うことが可能となる。
【0031】
レイヤー2(L2):熱要求調停装置1は、各熱回路内における各ユニットの熱要求を調停し、各ユニットに熱量を配分する。レイヤー2における各熱回路内における熱要求の調停をレイヤー1における熱回路間の熱要求の調停と分けて行うことにより、熱要求の調停を効率的に行うことができる。また、車種やグレード等の違いにより各熱回路の構成ユニットが変わったとしても、構成ユニットの変更が熱回路間の熱要求の調停に影響しないため、調停機能の全体を変更する必要がなく、熱要求調停装置1の汎用性を向上させることができる。
【0032】
レイヤー3(L3):各ユニットを制御するECU等の制御装置が、各ユニットによる熱媒体からの吸熱量または熱媒体への排熱量の制御を行う。ユニットによる熱媒体からの吸熱量の増減は、例えば、ヒータコア11を流れる高温冷却水の流路や流速、ラジエータ13または24のファンの回転数やグリルシャッターの開度、ウォーターポンプまたは25により調整される冷却水の流速を制御することによって行うことができる。また、ユニットによる熱媒体への排熱量の増減は、例えば、電気ヒータ12の出力、コンプレッサ31の出力、エバポレータ32の膨張弁の開度、PCU22及びTA23によるバッテリ21からの電力消費を制御することによって行うことができる。また、吸熱量、排熱量また移動熱量を効率的に制御するため、各熱回路において、吸熱量を増減させる制御と排熱量を増減させる制御とを協調的に行うことが好ましい。
【0033】
尚、
図3及び
図4の例では、レイヤー0(L0)として、空調状態(オフ、暖房、除湿暖房、冷房)やバッテリの充電状態(充電中、充電なし)等のシチュエーションと、冷却水の水温等の車両状態とに基づいて、熱要求を充足するために使用する熱回路の選定や、各熱回路内における流路の切り替え等を行う制御レイヤーが設けられている。上述した低温冷却回路LTの流路の分離及び結合は、熱要求調停装置1がレイヤー0で取得した冷房の設定状態と低温冷却水の水温、バッテリ温度等に基づいて切り替えることができる。
【0034】
以下、熱要求収集フェーズ及び回答フェーズにおける制御レイヤーを調停処理の順序に従って具体的に説明する。
【0035】
[熱要求収集フェーズ]
L3:
図3に示した熱要求収集フェーズでは、まず、レイヤー3の制御として、各熱回路に含まれる、吸熱または排熱を行うユニットの制御装置が、要求する吸熱量または排熱量を算出する。ユニットの制御装置は、ユニットの吸熱量または排熱量を、制御目標値(温度)に達するために必要な単位時間当たりの吸熱量または排熱量として算出する。各熱回路の熱媒体が異なるため、温度のみで熱回路間の熱要求を集約及び調停することは困難であるが、熱要求の単位を統一することにより、レイヤー2における熱要求の集約とレイヤー1における各熱回路の熱要求の比較及び調整を容易に行うことができる。
【0036】
L2:次に、レイヤー2の制御として、熱要求調停装置1が吸熱または排熱を要求するユニットのそれぞれから、レイヤー3の制御で算出された要求熱量を取得する。熱要求調停装置1は、取得した要求熱量を熱回路毎に集約し、高温冷却回路HT全体の要求熱量、低温冷却回路LT全体の要求熱量及び冷媒回路RE全体の要求熱量を算出する。
【0037】
L1:次に、レイヤー1の制御として、熱要求調停装置1が、レイヤー2の制御で算出された各熱回路の要求熱量を収集し、各熱回路が要求する吸熱量または排熱量を把握する。
【0038】
[回答フェーズ]
L1:
図4に示した回答フェーズでは、まず、熱要求調停装置1は、レイヤー1の制御として、熱要求収集フェーズで収集した各熱回路の要求熱量の調停を行い、各熱回路に許容する吸熱量または排熱量を割り当てる。この際、熱要求調停装置1は、熱回路間の移動可能熱量を取得し、取得した移動可能熱量に基づいて、各熱回路に割り当てる熱量を決定する。低温冷却回路LTからチラー41を介した冷媒回路REへの移動可能熱量は、低温冷却回路LTのウォーターポンプにより制御される低温冷却水の流速と、冷却水及び冷媒の温度差とに基づいて算出することができる。また、冷媒回路REから高温冷却回路HTへの移動可能熱量は、冷媒回路に含まれるコンプレッサ31の制御量と、冷媒及び高温冷却水との温度差に基づいて算出することができる。また、
図2に示した高温冷却回路HT及び低温冷却回路LTのようにラジエータ13及び24が設けられている場合は、熱要求調停装置1は、更に、ラジエータ13及び24の一方または両方から車外への放熱可能量を取得し、取得した放熱可能量を更に考慮して、各熱回路に割り当てる吸熱量または排熱量を決定することが好ましい。
【0039】
L2:次に、レイヤー2の制御として、熱要求調停装置1は、レイヤー1の制御で各熱回路に割り当てた吸熱量または排熱量に基づいて、各熱回路内に含まれる複数のユニットのそれぞれに吸熱量または排熱量を配分する。レイヤー2の制御における吸熱量または排熱量の配分は、予め定められたユニットの優先順位や配分規則に基づいて行うことができる。熱要求調停装置1は、配分した吸熱量または排熱量を各ユニットの制御装置に出力する。
【0040】
L3:次に、レイヤー3の制御として、各熱回路に含まれるユニットの制御装置は、熱要求調停装置1により配分された吸熱量または排熱量に基づいて各ユニットを制御する。
【0041】
<制御処理>
図5は、熱要求調停装置が熱要求を調停するために実行する制御処理を示すフローチャートであり、
図6は、低温冷却回路及び冷媒回路の要求熱量と最大冷房能力との関係を示す図である。
図5に示す制御処理は、車両の始動に伴って開始され、所定の時間間隔で繰り返し実行される。
【0042】
ステップS1:取得部2は、高温冷却回路HT、低温冷却回路LT及び冷媒回路REに含まれる各ユニットから要求熱量を取得する。各ユニットの要求熱量は、各ユニットが要求する吸熱量または要求する排熱量であり、符号が逆の数値によって表すことができる。吸熱及び排熱のいずれも要求しない場合は、要求熱量はゼロとする。上述した通り、要求熱量の集約、比較及び調停を容易に行うために、熱量の単位を単位時間当たりの熱エネルギーの移動量に統一することが好ましい。その後、処理はステップS2に進む。
【0043】
ステップS2:算出部3は、取得部2がステップS1で取得した各ユニットの要求熱量を熱回路毎に集約し、高温冷却回路HT全体の要求熱量Qreq_ht、低温冷却回路LT全体の要求熱量Qreq_lt及び冷媒回路RE全体の要求熱量Qreq_reを算出する。ステップS1で取得する要求熱量を単位時間当たりの熱エネルギーの移動量とすることにより、ステップS2における算出処理を加減算により容易に行うことができる。その後、処理はステップS3に進む。
【0044】
ステップS3:調停部4は、低温冷却回路LTの要求熱量Qreq_ltを、チラー41を介して冷媒回路REに移動可能であるか否かを判定する。この判定は、低温冷却水と冷媒の現在の温度差やウォーターポンプで制御される低温冷却水の現在の流速等を用いて算出される、チラー41の最大移動可能熱量に基づいて行うことができる。ステップS3の判定がYESの場合、処理はステップS4に進み、それ以外の場合、処理はステップS5に進む。
【0045】
ステップS4:調停部4は、低温冷却回路LTへの割り当て熱量Qcmd_ltに、要求熱量Qreq_ltをセットする。その後、処理はステップS6に進む。
【0046】
ステップS5:調停部4は、低温冷却回路LTへの割り当て熱量Qcmd_ltに、チラー41の最大移動可能熱量をセットする。その後、処理はステップS6に進む。
【0047】
ステップS6:調停部4は、低温冷却回路LTの要求熱量Qreq_ltと冷媒回路REの要求熱量Qreq_reとの和を、水冷コンデンサ42を介して高温冷却回路HTに移動可能であるか否か、すなわち、要求熱量Qreq_lt及びQreq_reの和が、冷媒回路REの最大排熱可能量(冷媒回路REの最大冷房能力)以下であるか否かを判定する。冷媒回路REの最大排熱可能量は、水冷コンデンサ42の最大移動可能熱量に等しく、高温冷却水と冷媒の現在の温度差や高温冷却水の現在の流速等を用いて算出することができる。
【0048】
図2Bに示したように、低温冷却水の流路が2つに分離された状態で冷房とバッテリ21の冷却とが同時に要求される場合、
図2Bの低温冷却回路LTの要求熱量Qreq_ltは、バッテリ21が要求する排熱量に等しく、冷媒回路REの要求熱量Qreq_reはエバポレータ32が要求する排熱量に等しい。バッテリ21及びエバポレータ32が要求する排熱量は、バッテリの使用状態や冷房の温度設定、車室内の温度等に応じて変化するため、
図6に示すように、低温冷却回路LTの要求熱量Qreq_ltと冷媒回路REの要求熱量Qreq_reの組は様々な値を取り得る。
図6の例では、低温冷却回路LTの要求熱量がQreq_lt_1で、冷媒回路REの要求熱量がQreq_re_1である場合、両者の和が冷媒回路REの最大冷房能力Qr_maxを超えるため、低温冷却回路LT及び冷媒回路REの熱要求を調停する必要がある(ステップS6でNOと判定されるケースに該当)。一方、
図6の例で、低温冷却回路LTの要求熱量がQreq_lt_2で、冷媒回路REの要求熱量がQreq_re_2である場合、両者の和は冷媒回路REの最大冷房能力Qr_max以下であるため、熱要求の調停は不要であり、低温冷却回路LT及び冷媒回路REの要求熱量がそのまま許容する排熱量として割り当てられる(ステップS6でYESと判定されるケースに該当)。
【0049】
ステップS6の判定がYESの場合、処理はステップS7に進み、それ以外の場合、処理はステップS8に進む。
【0050】
ステップS7:調停部4は、冷媒回路REへの割り当て熱量Qcmd_reに要求熱量Qreq_reをセットする。その後、処理はステップS9に進む。
【0051】
ステップS8:調停部4は、RE-LT間調停処理を行うことにより、冷媒回路RE及び低温冷却回路LTの熱要求を調停し、冷媒回路REの最大排熱可能量を超えないように、冷媒回路RE及び低温冷却回路LTに許容する排熱量を割り当てる。ステップ8で実行する制御処理の詳細については後述する。その後、処理はステップS9に進む。
【0052】
ステップS9:調停部4は、高温冷却回路HTへの割り当て熱量Qcmd_htに、冷媒回路REへの割り当て熱量Qcmd_reと低温冷却回路LTへの割り当て熱量Qcmd_ltとの和をセットする。その後、処理はステップS10に進む。
【0053】
ステップS10:調停部4は、チラー41の移動熱量に低温冷却回路LTへの割り当て熱量Qcmd_ltをセットする。その後、処理はステップS11に進む。
【0054】
ステップS11:調停部4は、水冷コンデンサ42の移動熱量に、冷媒回路REへの割り当て熱量Qcmd_reと低温冷却回路LTへの割り当て熱量Qcmd_ltとの和をセットする。その後、処理を終了する。
【0055】
以上のステップS1~S11の制御処理により、熱回路間の要求熱量の調停を行い、各熱回路に吸熱量または排熱量を割り当てることができる。
【0056】
また、
図2Aの構成のように低温冷却回路LTにラジエータ24が設けられており、低温冷却回路LTの冷却水流路が分割されていない場合、ラジエータ24の放熱可能量を更に考慮しても良い。具体的には、ステップS3の前に、低温冷却回路LTが要求する排熱量をラジエータ24から車外に放熱可能か否かを調停部4が判定するステップを設ける。この場合、低温冷却回路LTの要求熱量Qreq_ltは、冷媒回路REへの移動を要求する熱量(ラジエータ24から放熱できない熱量)とする。低温冷却回路LTの要求排熱量をラジエータ24から車外に放熱可能である場合は、要求熱量Qreq_ltを0とし、それ以外の場合は、要求熱量Qreq_ltに、低温冷却回路LTの要求排熱量からラジエータ24の放熱可能量を差し引いた熱量をセットすれば良い。
【0057】
更に、
図2Aの構成のように高温冷却回路HTにラジエータ13が設けられている場合は、ラジエータ13の放熱可能量を考慮することが好ましい。具体的には、ステップS6の判定で用いる水冷コンデンサ42の移動可能熱量を取得する際に、コンプレッサ31の動作により冷媒回路REから高温冷却回路HTへと移動可能な熱量に加えて、高温冷却回路HTにおける要求吸熱量とラジエータ13の放熱可能量とに基づき、調停部4が、高温冷却回路HTにおける要求吸熱量とラジエータ13の放熱可能量との和を超えないように移動可能熱量を決定すれば良い。
【0058】
図7は、
図5に示すRE-LT間調停処理を示すフローチャートである。
図7で用いている値A、B及びCは、低温冷却回路LTが要求する排熱量(バッテリ21の要求排熱量)の大きさを区分するための閾値であり、0<A<B<Cを満足する。バッテリ21が高温になるほどバッテリ21が要求する排熱量は大きくなる。閾値Cは、最優先でバッテリ21を冷却することが必要となる排熱量である。
【0059】
ステップS101:調停部4は、低温冷却回路LTの要求熱量Qreq_ltが閾値A未満であるか否かを判定する。ステップS101の判定がYESの場合、処理はステップS102に進み、それ以外の場合、処理はステップS104に進む。
【0060】
ステップS102:調停部4は、冷媒回路REに許容する排熱量Qcmd_reに最大冷房能力×0.8を割り当てる。その後、処理はステップS103に進む。
【0061】
ステップS103:調停部4は、低温冷却回路LTに許容する排熱量Qcmd_reに最大冷房能力×0.2を割り当てる。その後、処理は
図5のステップS9に進む。
【0062】
ステップS104:調停部4は、低温冷却回路LTの要求熱量Qreq_ltが閾値A以上かつB未満であるか否かを判定する。ステップS104の判定がYESの場合、処理はステップS105に進み、それ以外の場合、処理はステップS107に進む。
【0063】
ステップS105:調停部4は、冷媒回路REに許容する排熱量Qcmd_reに最大冷房能力×0.5を割り当てる。その後、処理はステップS106に進む。
【0064】
ステップS106:調停部4は、低温冷却回路LTに許容する排熱量Qcmd_reに最大冷房能力×0.5を割り当てる。その後、処理は
図5のステップS9に進む。
【0065】
ステップS107:調停部4は、低温冷却回路LTの要求熱量Qreq_ltが閾値B以上かつC未満であるか否かを判定する。ステップS107の判定がYESの場合、処理はステップS108に進み、それ以外の場合、処理はステップS110に進む。
【0066】
ステップS108:調停部4は、冷媒回路REに許容する排熱量Qcmd_reに最大冷房能力×0.3を割り当てる。その後、処理はステップS109に進む。
【0067】
ステップS109:調停部4は、低温冷却回路LTに許容する排熱量Qcmd_reに最大冷房能力×0.7を割り当てる。その後、処理は
図5のステップS9に進む。
【0068】
ステップS110:調停部4は、冷媒回路REに許容する排熱量Qcmd_reに0を割り当てる。その後、処理はステップS111に進む。
【0069】
ステップS111:調停部4は、低温冷却回路LTに許容する排熱量Qcmd_reに最大冷房能力を割り当てる。その後、処理は
図5のステップS9に進む。
【0070】
冷房時かつバッテリ21の高温時には、低温冷却回路LTの要求排熱量と冷媒回路REの要求排熱量との和が冷媒回路REの最大冷房能力を超える場合がある。この場合、
図7に示した制御処理により、冷媒回路REの最大冷房能力を超えないように、冷媒回路RE及び低温冷却回路LTのそれぞれに許容する排熱量を割り当てることができる。また、
図7の制御処理では、低温冷却回路LTの要求排熱量、すなわち、バッテリ21の要求排熱量が大きくなるほど、低温冷却回路LTに許容する排熱量を大きく、冷媒回路REに許容する排熱量を小さくしている。この制御処理によれば、バッテリ21の温度が上昇して要求排熱量が大きくなるにつれて、冷房を制限してバッテリ21の冷却を優先し、バッテリ21の温度が低下して要求排熱量が小さくなるにつれて、冷房の制限を緩和する。したがって、バッテリ21の信頼性と空調の快適性とを両立させることが可能となる。
【0071】
尚、
図7において最大冷房能力を冷媒回路RE及び低温冷却回路LTに配分する際に用いた配分比(0.8:0.2、0.5:0.5、0.3:0.7、0:1)の数値は一例であり、低温冷却回路LTの要求排熱量の閾値A~Cと併せて適宜設定することができる。また、閾値の数は3に限定されず、任意の個数の閾値を設定することができる。
【0072】
また、
図7のように、冷媒回路REの冷房能力を予め設定された配分比で配分する代わりに、低温冷却回路LT(バッテリ21)の要求排熱量以外の条件を加味して遺伝的アルゴリズムにより求めた配分比の最適解を用いて、冷媒回路REの冷房能力を配分しても良い。
【0073】
図8は、熱要求調停装置が各回路内のユニットに熱量を配分するために実行する制御処理を示すフローチャートである。
図8に示す制御処理は、
図5に示した制御処理に続いて実行される。
【0074】
ステップS21:配分部5は、低温冷却回路LTへの割り当て熱量Qcmd_reが要求熱量Qreq_ltと等しいか否かを判定する。ステップS21の判定がYESの場合、処理はステップS22に進み、それ以外の場合、処理はステップS23に進む。
【0075】
ステップS22:配分部5は、低温冷却回路LTに含まれる各ユニットから要求された吸熱量または排熱量をそのまま各ユニットに配分する。その後、処理はステップS24に進む。
【0076】
ステップS23:配分部5は、低温冷却回路LTへの割り当て熱量Qcmd_ltを、予め定められた低温冷却回路LT内の配分規則に基づいて各ユニットに配分する。配分規則は、低温冷却回路LTのユニット毎に設定された冷却または加熱の優先度等に基づいて定義することができる。
図2Bに示したように、低温冷却水の流路が2つに分離された状態で冷房とバッテリ21の冷却とが同時に要求された場合、
図2Bに示す低温冷却回路LTの要求熱量は、バッテリ21の要求排熱量と等しいので、配分部5は、低温冷却回路LTに割り当てられた熱量Qcmd_ltをそのままバッテリ21に許容する排熱量として割り当てる。その後、処理はステップS24に進む。
【0077】
ステップS24:配分部5は、冷媒回路REへの割り当て熱量Qcmd_reが要求熱量Qreq_reと等しいか否かを判定する。ステップS24の判定がYESの場合、処理はステップS25に進み、それ以外の場合、処理はステップS26に進む。
【0078】
ステップS25:配分部5は、冷媒回路REに含まれる各ユニットから要求された排熱量をそのまま各ユニットに配分する。その後、処理はステップS27に進む。
【0079】
ステップS26:配分部5は、冷媒回路REへの割り当て熱量Qcmd_reを、予め定められた冷媒回路RE内の配分規則に基づいて各ユニットに配分する。配分規則は、車室内の快適性等に基づいて定義することができる。その後、処理はステップ27に進む。
【0080】
ステップS27:配分部5は、高温冷却回路HTへの割り当て熱量Qcmd_htが要求熱量Qreq_htと等しいか否かを判定する。ステップ27の判定がYESの場合、処理はステップS28に進み、それ以外の場合、処理はステップS29に進む。
【0081】
ステップS28:配分部5は、高温冷却回路HTに含まれる各ユニットから要求された吸熱量をそのまま各ユニットに配分する。その後、処理を終了する。
【0082】
ステップS29:配分部5は、高温冷却回路HTへの割り当て熱量Qcmd_htを充足するように、予め定められた高温冷却回路HT内の配分規則に基づいて各ユニットに熱量を配分する。具体的には、高温冷却回路HTが要求した吸熱量よりも割り当て熱量Qcmd_htが少ない場合、吸熱量の不足分を電気ヒータ12に配分する。また、低温冷却回路LT及び冷媒回路REからの排熱要求が多く、高温冷却回路HTが要求する吸熱量よりも割り当て熱量Qcmd_htが多い場合、電気ヒータ12に配分する吸熱量を減少させたり、ラジエータ13からの排熱量を増加させたりする。その後、処理を終了する。
【0083】
図8の処理が終了した後、各熱回路に含まれる各ユニットの制御装置は、各ユニットの吸熱量または排熱量が配分部5によって配分された量となるように、制御対象のユニットを制御する。具体的には、
図4のレイヤー3に示したように、高温冷却回路HTでは、各ユニットの吸熱量または排熱量が配分された量となるように、ヒータコア11の温度、電気ヒータ12の出力、ラジエータ13が備えるラジエータファンの回転数及び/またはグリルシャッターの開度、ウォーターポンプにより制御される冷却水の流速等を制御する。低温冷却回路LTでは、各ユニットの吸熱量または排熱量が配分された量となるように、バッテリ21の充放電、PCU22の出力、TA23の出力、ラジエータ24が備えるラジエータファンの回転数及び/またはグリルシャッターの開度、ウォーターポンプにより調整される冷却水の流速等を制御する。冷媒回路REでは、各ユニットの排熱量または吸熱量が配分された量となるように、コンプレッサ31の出力、エバポレータ32に冷媒を噴射させる膨張弁の開度等を制御する。
【0084】
尚、上述した熱要求調停装置1は、プロセッサ、ROM及び/またはRAMを有するECU等のコンピュータに、
図5、
図6及び
図8に示した制御処理を実行させることにより実現することができる。
【0085】
<効果等>
以上説明したように、本実施形態に係る熱要求調停装置1は、冷房用の冷媒回路REとバッテリ冷却用の低温冷却回路LTとを備えた車両において、低温冷却回路LTが冷媒回路REへと排出を要求する要求排熱量と冷媒回路REの要求排熱量との和が、冷媒回路の最大冷房能力を超えないように、低温冷却回路LT及び冷媒回路REのそれぞれに許容する排熱量を決定する。熱要求調停装置は、低温冷却回路LTから冷媒回路REへの要求排熱量と冷媒回路REの要求排熱量との和が、冷媒回路の最大冷房能力を超える場合、低温冷却回路LTから冷媒回路REへの要求排熱量が大きくなるにつれて、低温冷却回路LTに許容する排熱量を大きく、冷媒回路REに許容する排熱量を小さくする。これにより、バッテリの温度に応じて、低温冷却回路及び冷媒回路の排熱量を調整し、バッテリの冷却と空調の快適性の両立を図ることができる。したがって、本実施形態に係る熱要求調停装置1によれば、冷房用の熱回路とバッテリ冷却用の熱回路とを備えた車両において、限られた冷房能力を有効活用しつつ、各熱回路の排熱量を好適に調整することができる。コンプレッサ31や水冷コンデンサ42の容量を増加させる等により過剰な冷房能力を確保する必要がないため、製造コストを抑制することもできる。更に、低温冷却回路LTまたは冷媒回路REを構成するユニットの構成が変更された場合でも、調停部4による最大冷房能力の配分比率を適宜変更することにより、空調性能とバッテリ冷却の優先度を調整することが可能となる。
【0086】
また、本実施形態に係る熱要求調停装置1では、複数のユニットの熱要求に対する制御を階層化し、熱回路内における熱量の配分と、熱回路間における要求熱量の調停(各熱回路の要求熱量の調整)とを別の制御階層で行う。したがって、熱回路間における要求熱量の調停の際には、各ユニットの熱要求を個別に考慮する必要がなく、熱回路内における熱量の配分の際には、熱回路間の要求熱量を考慮する必要がない。したがって、車両に搭載される複数のユニットからの熱要求の調停と各ユニットに対する熱量の配分とを効率的に行うことが可能となる。また、各ユニットの個別の熱要求は熱回路間の要求熱量の調停時に直接参照されないため、車種やグレード、パワートレインの構成等により、熱回路のそれぞれを構成するユニットが異なる場合でも本実施形態に係る熱要求調停装置1を適用することができ、汎用性に優れる。
【0087】
また、熱要求調停装置1が制御処理に用いる吸熱量、排熱量、移動可能熱量、熱移動量及び放熱可能量を、単位時間当たりの熱エネルギーの移動量に統一することにより、熱要求の集約や調停、配分を容易に行うことができる。
【0088】
<その他の変形例等>
尚、上記の実施形態では、ユニット及び熱回路の吸熱量または排熱量を単位時間当たりの熱エネルギーの移動量(W単位)で表す例を説明したが、ユニット及び熱回路の吸熱量または排熱量を所定の制御時間に渡って要する熱エネルギーの量(J単位)としても良い。この場合、熱回路間の移動可能熱量も要求熱量と同様に単位時間当たりの熱エネルギーの移動量で表される。各ユニットが要求する吸熱量または排熱量を熱エネルギーの量で表した場合でも、
図5、
図6及び8で説明した制御処理によって、要求熱量の集約、調停及び配分を容易に行うことができ、熱回路を構成するユニット変更による影響も低減できる。
【産業上の利用可能性】
【0089】
本発明は、車両で発生する複数の熱要求を調停する熱要求調停装置として利用できる。
【符号の説明】
【0090】
1 熱要求調停装置
2 取得部
3 算出部
4 調停部
5 配分部
13 ラジエータ
24 ラジエータ
41 チラー
42 水冷コンデンサ
HT 高温冷却回路
LT 低温冷却回路
RE 冷媒回路