IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ゴマコ・コーポレーションの特許一覧

<>
  • 特許-可動機械用フリーステアリングシステム 図1
  • 特許-可動機械用フリーステアリングシステム 図2A
  • 特許-可動機械用フリーステアリングシステム 図2B
  • 特許-可動機械用フリーステアリングシステム 図2C
  • 特許-可動機械用フリーステアリングシステム 図2D
  • 特許-可動機械用フリーステアリングシステム 図2E
  • 特許-可動機械用フリーステアリングシステム 図3
  • 特許-可動機械用フリーステアリングシステム 図4
  • 特許-可動機械用フリーステアリングシステム 図5
  • 特許-可動機械用フリーステアリングシステム 図6
  • 特許-可動機械用フリーステアリングシステム 図7
  • 特許-可動機械用フリーステアリングシステム 図8
  • 特許-可動機械用フリーステアリングシステム 図9
  • 特許-可動機械用フリーステアリングシステム 図10
  • 特許-可動機械用フリーステアリングシステム 図11
  • 特許-可動機械用フリーステアリングシステム 図12
  • 特許-可動機械用フリーステアリングシステム 図13
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-11-16
(45)【発行日】2022-11-25
(54)【発明の名称】可動機械用フリーステアリングシステム
(51)【国際特許分類】
   B62D 6/00 20060101AFI20221117BHJP
   E02F 9/20 20060101ALI20221117BHJP
   E02F 9/02 20060101ALI20221117BHJP
   B62D 7/14 20060101ALI20221117BHJP
   B60B 19/00 20060101ALI20221117BHJP
   B62D 101/00 20060101ALN20221117BHJP
   B62D 113/00 20060101ALN20221117BHJP
【FI】
B62D6/00
E02F9/20 Q
E02F9/02 A
E02F9/02 Z
B62D7/14
B60B19/00 H
B62D101:00
B62D113:00
【請求項の数】 20
(21)【出願番号】P 2019559302
(86)(22)【出願日】2018-05-02
(65)【公表番号】
(43)【公表日】2020-07-02
(86)【国際出願番号】 US2018030710
(87)【国際公開番号】W WO2018204526
(87)【国際公開日】2018-11-08
【審査請求日】2021-04-12
(31)【優先権主張番号】62/500,215
(32)【優先日】2017-05-02
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】15/969,451
(32)【優先日】2018-05-02
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】517392089
【氏名又は名称】ゴマコ・コーポレーション
(74)【代理人】
【識別番号】100118902
【弁理士】
【氏名又は名称】山本 修
(74)【代理人】
【識別番号】100106208
【弁理士】
【氏名又は名称】宮前 徹
(74)【代理人】
【識別番号】100120112
【氏名又は名称】中西 基晴
(74)【代理人】
【識別番号】100172041
【弁理士】
【氏名又は名称】小畑 統照
(72)【発明者】
【氏名】シェーディング,チャド
(72)【発明者】
【氏名】ファー,トーマス・シー
【審査官】飯島 尚郎
(56)【参考文献】
【文献】特開2007-099209(JP,A)
【文献】特開2009-190662(JP,A)
【文献】実開平02-043770(JP,U)
【文献】米国特許出願公開第2017/0349213(US,A1)
【文献】特開2014-004933(JP,A)
【文献】特開2006-044460(JP,A)
【文献】特開2007-030808(JP,A)
【文献】米国特許出願公開第2009/0143940(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
B62D 6/00
E02F 9/20
E02F 9/02
B62D 7/14
B60B 19/00
B62D 101/00-137/00
(57)【特許請求の範囲】
【請求項1】
逆回転動作の目標回転中心に対応する位置を取得するステップと、
モールドのリヤ押し出しエッジが前記目標回転中心によって規定される回転経路に接することを維持するように、前記目標回転中心に基づいて、対応するトラックの偏向角に対応する複数のアクチュエータのそれぞれの作動量を決定するステップと、
1つ以上のアクチュエータを作動させて、複数のトラックのうちの1つ以上を回転させて、前記決定された作動量に適合させるステップと、
を含む方法。
【請求項2】
目標経路を受信するステップと、
前記目標経路における第1の弧長を決定するステップと、
前記第1の弧長に対応する回転中心を決定するステップと、
前記複数のトラックのそれぞれの偏向角を決定して、目標弧長を生成するステップと、
1つ以上のアクチュエータを作動させて、複数のトラックの1つ以上を回転させて、前記決定された偏向に適合させるステップと、
を更に含む請求項1に記載の方法。
【請求項3】
前記複数のトラックのそれぞれは油圧駆動され、
前記逆回転動作の前記回転中心と各トラックの前記偏向角とは、前記複数のトラックを駆動するために均一な油圧をかけることができるように構成される、
請求項2に記載の方法。
【請求項4】
目標経路からの少なくとも1つの経路トラッキング誤差を測定するステップと、
少なくとも1つの経路トラッキング誤差を、建設機械の1つ以上の基準点での偏向角に変換するステップと、
前記1つ以上の基準点での1つ以上の目標基準点角度を計算するステップと、
前記1つ以上の目標基準点角度を前記偏向角に加算して、複合迎え角を生成するステップと、
前記複合迎え角と1つ以上の基準点とから導出される線-線交差に基づいて、同期回転中心を計算するステップと、
1つ以上のアクチュエータを作動させて、1つ以上のトラックを対応する目標トラックの偏向に回転させるステップと、
前記同期回転中心に基づいて各トラックのトラック速度を設定するステップと、
を更に含む請求項2に記載の方法。
【請求項5】
トラックの偏向と経路半径とを各トラックの移動速度に相関させる一連の関数に基づいて、前記複数のトラックのそれぞれの移動速度を決定するステップを更に含む、請求項1に記載の方法。
【請求項6】
前記複数のトラックのそれぞれは油圧駆動され、
前記回転中心と各トラックの偏向角とは、前記複数のトラックを駆動するために均一な油圧をかけることができるように構成される、
請求項1に記載の方法。
【請求項7】
押し出しモールドと、
複数のトラックであって、当該複数のトラックのそれぞれは、複数のアクチュエータの少なくとも1つに関連付けられ、前記複数のアクチュエータの少なくとも1つは、対応するトラックを回転させるように構成されている、複数のトラックと、
少なくとも1つのプロセッサであって、
目的経路を受け付け、
前記目的経路の第1の弧長を決定し、
前記第1の弧長に対応する回転中心を決定し、
前記目的弧長を生成するために、前記複数のトラックのそれぞれについて偏向角を決定し、
1つ以上のアクチュエータを作動させて、前記複数のトラックの1つ以上を回転させて、決定された偏向角に適合させ、前記押し出しモールドのリヤ押し出しエッジが前記回転中心によって規定される回転経路に接することを維持する
ためのプロセッサ実行可能コードを介して構成される少なくとも1つのプロセッサと、
を備える建設機械。
【請求項8】
前記少なくとも1つのプロセッサは、さらに、
前記目的経路から少なくとも1つの経路トラッキング誤差を測定し、
前記少なくとも1つの経路トラッキング誤差を、前記建設機械の1つ以上の基準点での偏向角に変換し、
前記1つ以上の基準点での1つ以上の目標基準点角度を計算し、
前記1つ以上の目標基準点角度を前記偏向角に加えて複合迎え角を生成し、
前記複合迎え角と前記1つ以上の基準点とから導出された線-線交差に基づいて、同期回転中心を計算し、
1つ以上のアクチュエータを作動させて、1つ以上のトラックを、対応する目標トラックの偏向に回転させ、
前記同期回転中心に基づいて各トラックの移動速度を設定する
ように構成されている、請求項7に記載の建設機械。
【請求項9】
前記少なくとも1つのプロセッサは、さらに、
逆回転動作の目的回転中心に対応する位置を受け取り、
前記目的回転中心に対応する前記複数のトラックのそれぞれについて偏向角を決定し、
1つ以上のアクチュエータを作動させて、前記複数のトラックの1つ以上を回転させて、前記目標偏向に適合させる
ように構成されている、請求項7に記載の建設機械。
【請求項10】
複数のトラックのそれぞれは油圧駆動され、
前記逆回転動作の回転中心と各トラックの偏向角とは、前記複数のトラックを駆動するために均一な油圧をかけることができるように構成される、
請求項9に記載の建設機械。
【請求項11】
前記少なくとも1つのプロセッサは、さらに、
トラックの偏向と経路半径とを各トラックの移動速度に相関させる一連の関数に基づいて、前記複数のトラックのそれぞれの移動速度を決定する
ように構成されている、請求項10に記載の建設機械。
【請求項12】
前記複数のトラックのそれぞれは油圧駆動され、
前記回転中心と各トラックの偏向角とは、前記複数のトラックを駆動するために均一な油圧をかけることができるように構成される、
請求項7に記載の建設機械。
【請求項13】
前記少なくとも1つのプロセッサとデータ通信するユーザーインターフェースデバイスを更に備え、
前記少なくとも1つのプロセッサは、さらに、
目標回転中心に対応する前記ユーザーインターフェースデバイスからの入力を受け付け、
トラックの偏向とトラック速度とを経路半径と相関させる一連の関数に関連して、前記目標回転中心をトラックの偏向とトラック速度とに相関させる
ように構成されている、
請求項7に記載の建設機械。
【請求項14】
少なくとも1つのプロセッサと、
前記プロセッサとデータ通信する複数のアクチュエータであって、それぞれがトラックに対応し、前記複数のアクチュエータのうちの少なくとも1つは、対応するトラックを回転させるように構成される、複数のアクチュエータと、
前記少なくとも1つのプロセッサとデータ通信し、前記少なくとも1つのプロセッサを構成するためのプロセッサ実行可能コードを格納するメモリであって、前記プロセッサ実行可能コードが、
逆回転動作の目標回転中心に対応する位置を受け付け、
モールドのリヤ押し出しエッジが前記目標回転中心によって規定される回転経路に接することを維持するように、前記目標回転中心に基づいて、対応するトラックの偏向角に対応する前記複数のアクチュエータのそれぞれの作動量を決定し、
1つ以上のアクチュエータを作動させて、前記複数のトラックのうちの1つ以上を回転させて、決定された作動量に適合させる
ためのプロセッサ実行可能コードである、メモリと、
を備えるコンピュータ機器。
【請求項15】
前記プロセッサ実行可能コードは、さらに、
前記目的経路から少なくとも1つの経路トラッキング誤差を測定し、
前記少なくとも1つの経路トラッキング誤差を建設機械の1つ以上の基準点での偏向角に変換し、
前記1つ以上の基準点での1つ以上の目標基準点角度を計算し、
前記1つ以上の目標基準点角度を偏向角に加えて複合迎え角を生成し、
前記複合迎え角と前記1つ以上の基準点から導出されたラインとラインの交点に基づいて、同期回転中心を計算し、
1つ以上のアクチュエータを作動させて、1つ以上のトラックを、対応する目標トラックの偏向に回転させ、
前記同期回転中心に基づいて各トラックの移動速度を設定する
ように前記少なくとも1つのプロセッサを構成する、請求項14に記載のコンピュータ機器。
【請求項16】
前記プロセッサ実行可能コードは、さらに、
目標経路を受け付け、
前記目的経路の第1の弧長を決定し、
前記第1の弧長に対応する回転中心を決定し、
前記目標弧長を生成するために、前記複数のトラックのそれぞれについて偏向角を決定し、
1つ以上のアクチュエータを作動させて、前記複数のトラックの1つ以上を回転させて、決定された偏向角に適合させる
ように前記少なくとも1つのプロセッサを構成する、請求項14に記載のコンピュータ機器。
【請求項17】
前記複数のトラックのそれぞれは油圧駆動され、
前記逆回転動作の前記回転中心と各トラックの前記偏向角とは、前記複数のトラックを駆動するために均一な油圧をかけることができるように構成される、
請求項16に記載のコンピュータ機器。
【請求項18】
前記プロセッサ実行可能コードが、さらに、
トラックの偏向と経路半径とを各トラックの移動速度に相関させる一連の関数に基づいて、前記複数のトラックのそれぞれの移動速度を決定する
ように前記少なくとも1つのプロセッサを構成する、請求項14に記載のコンピュータ機器。
【請求項19】
前記複数のトラックのそれぞれは油圧駆動され、
前記回転中心と各トラックの偏向角とは、前記複数のトラックを駆動するために均一な油圧をかけることができるように構成される、
請求項14に記載のコンピュータ機器。
【請求項20】
前記少なくとも1つのプロセッサとデータ通信するユーザーインターフェースデバイスを更に備え、
前記プロセッサ実行可能コードは、さらに、
目標回転中心に対応する前記ユーザーインターフェースデバイスからの入力を受け付け、
トラックの偏向とトラック速度とを経路半径と相関させる一連の関数に関連して、前記目標回転中心をトラックの偏向とトラック速度とに相関させる
ように構成されている、
請求項14に記載のコンピュータ機器。
【発明の詳細な説明】
【技術分野】
【0001】
[0001] 関連出願への相互参照
本出願は、以下に載せた出願(「関連出願」)から利用可能な最も早い有効な出願日に関連し、その利益を主張する(例えば、仮特許出願以外の最も早い利用可能な優先日を主張する、又は米国特許法119条(e)の下で、仮特許出願、関連出願のすべての親、祖父母、曾祖父母などの任意またはすべての出願の利益を主張する)。
【0002】
関連出願
米国特許庁の法定外要件の目的で、本出願は、Chad M. Schaeding及びTom Farrを発明者とする2017年5月2日に出願されたと可動機械用フリーステアリングシステムと題した米国仮特許出願第62/500,215号の通常の(仮でない)特許出願を構成する。
【0003】
[0002] 発明の分野
本発明は、概して、ステアリング可動建設機械を制御するための機械および方法の両方に関し、具体的には、シャシーおよびその付属器具を正確に制御することに関する。
【背景技術】
【0004】
[0003] 可動地上係合機械(建設、農業、鉱業など)用の自動ステアリングシステムは、閉ループ比例積分微分(PID)コントローラを利用して経路トラッキング誤差を最小限に抑えることにより経路をたどる。PIDコントローラは、目標設定値の測定変数に基づいて誤差値を継続的に計算し、補正を適用する。
【0005】
[0004] 制限されたステアリング機械、すなわち、フロントステアのみの場合、個々のトラックの同期は、トラックシステムの機械的/幾何学的設計によってほとんど保証される。経路トラッキング誤差の最小化は、自動ステアリング制御の主要な目的であり、すべてのステアリング制御システムの主要な要素である。
【0006】
[0005] スキッドステア、ドーザー、またはシャシーに固定されたトラック/ホイールを有する同様の2つのトラック機械で実行される逆回転は、一方を前方に、他方を逆に進めることにより機能する。より小さな機器では、この方法による逆回転はゼロターンと呼ばれる。
【0007】
[0006] オフロードフォークリフト、土壌スタビライザー、および舗装機などの他の機器は、クラブ(crab)、調整された、フロント/リヤステアを提供する。選択的ないずれか又はすべてのトラックに操舵可能なトラックが含まれている場合、より複雑で協調的なステアリング動作が可能となる。
【0008】
[0007] したがって、複雑な経路および曲線に沿って機械を自動的に操舵するためのトラックおよびホイールステアリングのための装置および方法が存在すると有利であろう。
【発明の概要】
【課題を解決するための手段】
【0009】
[0008] 少なくとも1つの実施形態では、複数の操舵可能なトラックを備えた建設機械は、前記トラックを動的に操舵し、各トラックで独立して前進および後退運動を作動させるためのコンピュータシステムを含む。このシステムは、回転中心と、対応するトラックの偏向および速度と、を決定し、回転または逆回転を実行する。
【0010】
[0009] 別の実施形態では、コンピュータシステムは、複雑な経路を弧長に変換し、各弧長は特定の回転中心に対応し、回転中心を動的に特定して各弧長に沿って機械(または対応する工具)を動かす。
【0011】
[0010] 自由浮動の動的な回転中心は、機械のトラックの角度を共通の回転中心に制限し、それらの角度とトラック速度を関連付けて適切なパラメータを自動的に適用する。
【図面の簡単な説明】
【0012】
[0011] 本明細書に開示される本発明の概念の実施形態の多数の利点は、添付の図面を参照することにより、当業者によりよく理解されよう。
図1図1は、本明細書に開示される本発明の概念を実施するためのシステムの例示的な実施形態のブロック図を示す。
図2A図2Aは、本明細書に開示される本発明の概念の実施形態によるマルチトラック建設機械の上面図を示す。
図2B図2Bは、本明細書に開示される本発明の概念の実施形態によるマルチトラック建設機械の上面図を示す。
図2C図2Cは、本明細書に開示される本発明の概念の実施形態によるマルチトラック建設機械の上面図を示す。
図2D図2Dは、本明細書に開示される本発明の概念の実施形態によるマルチトラック建設機械の上面図を示す。
図2E図2Eは、本明細書に開示される本発明の概念の実施形態によるマルチトラック建設機械の上面図を示す。
図3図3は、本明細書に開示される本発明の概念の実施形態によるマルチトラック建設機械の上面図を示す。
図4図4は、本明細書に開示される本発明の概念の実施形態によるマルチトラック建設機械のステアリングモードゾーンの概略図を示している。
図5図5は、本明細書に開示される本発明の概念の実施形態によるマルチトラック建設機械の概略図を示している。
図6図6は、本明細書に開示される本発明の概念の実施形態によるマルチトラック建設機械のステアリングモードゾーンの概略図を示している。
図7図7は、本明細書に開示される本発明の概念の実施形態によるフロントステアを使用するマルチトラック建設機械の概略図を示している。
図8図8は、本明細書に開示される本発明の概念の実施形態によるフロントステアを使用するマルチトラック建設機械の概略図を示している。
図9図9は、本明細書に開示される本発明の概念の実施形態によるフロントステアを使用するマルチトラック建設機械の概略図を示している。
図10図10は、本明細書に開示される本発明の概念の実施形態によるリヤステアを使用するマルチトラック建設機械の概略図を示している。
図11図11は、本明細書で開示される本発明の概念の実施形態によるリヤステアを使用するマルチトラック建設機械の概略図を示している。
図12図12は、本明細書に開示される本発明の概念の実施形態による、移動距離に関連するステアリングトラックの偏差のグラフを示している。
図13図13は、本明細書に開示される本発明の概念の実施形態による、機械を操舵する方法のフローチャートを示している。
【発明を実施するための形態】
【0013】
[0012] 本明細書に開示される発明概念の少なくとも1つの実施形態を詳細に説明する前に、発明概念は、その適用において、以下で説明される又は図面で示される構成の詳細および構成要素の配置またはステップまたは方法論に限定されないことを理解されたい。本発明の概念の実施形態の以下の詳細な説明では、本発明の概念のより完全な理解を提供するために、多くの特定の詳細が述べられている。しかし、本開示の利益を有する当業者には、本明細書に開示された発明概念がこれらの特定の詳細なしで実施され得ることが明らかであろう。他の例では、本開示を不必要に複雑にすることを避けるために、周知の特徴は詳細に説明されない場合がある。本明細書に開示された発明概念は、他の実施形態が可能であり、または様々な方法で実施または実行することができる。また、本明細書で使用される表現および用語は説明を目的とするものであり、限定とみなされるべきではないことを理解されたい。
【0014】
[0013] 本明細書において、参照番号に続く文字は、同じ参照番号を有する前述の要素または特徴(例えば、1,1a,1b)と類似するが必ずしも同一ではない可能性がある特徴または要素の実施形態を参照することを意図する。そのような略記法は、便宜上の目的のみに使用されており、特に明記されていない限り、本明細書に開示されている本発明の概念を限定するものと解釈されるべきではない。
【0015】
[0014] さらに、そうではないことが明示的に述べられていない限り、「または」は、包括的な「または」を指し、排他的な「または」を指すものではない。たとえば、「状態AまたはB」は、Aが真であり(または存在する)Bが偽である(または存在しない)、Aが偽であり(または存在しない)Bが真である(または存在する)、AとBとの両方が真である(または存在する)、の何れかによって満たされる。
【0016】
[0015] さらに、「1つ(a)」または「1つ(an)」の使用は、本発明の概念の実施形態の要素および構成要素を説明するために採用されている。これは単に便宜上および発明概念の一般的な意味を与えるために行われ、「a」および「an」は1つ又は少なくとも1つを含むことを意図しており、そうでないことを意味することが明らかでない限り、単数形は複数も含む。
【0017】
[0016] 最後に、本明細書で使用される「一実施形態」または「いくつかの実施形態」への言及は、実施形態に関連して説明される特定の要素、特徴、構造、または特性が、本明細書に開示されている発明概念の少なくとも1つの実施形態に含まれることを意味する。明細書の様々な場所での「いくつかの実施形態」という語句の出現は、必ずしもすべて同じ実施形態を指しているわけではなく、開示された発明概念の実施形態は、本明細書に明示的に記載または記載されているに等しい特徴の1つ又は複数を含んでもよいし、本開示に必ずしも明示的に記載されていないまたは記載されているとはいえない他の特徴と合わせた2つ以上のそうした特徴のサブコンビネーションの任意の組み合わせを含んでもよい。
【0018】
[0017] 本明細書に提示される特定の説明は、
https://www.wirtgen.de/en/technologies/soil-stabilization/operating-principle/lenksystem_1.php
にて利用可能な「現場の要件に適合されたステアリングシステム」、及びアイオワ州立大学-エイムズ、2013年「ロバストなナビゲーション制御および枕地旋回」を参照してより完全に理解することができる。
【0019】
[0018] 図1を参照すると、本明細書で開示される発明概念を実施するためのシステム100の例示的な実施形態のブロック図が示されている。システム100は、プロセッサ102と、プロセッサ実行可能コードを格納するためのプロセッサ102に接続されたメモリ104と、本明細書でより詳細に説明する関連経路データを格納するためのプロセッサ102に接続されたデータ格納要素106と、トラックまたはホイールにそれぞれ関連付けられた複数のアクチュエータ108、110、112、114と、を含む。プロセッサ102は、アクチュエータ108、110、112、114のそれぞれを動的に作動させて、関連するトラックまたはホイールを回転させ、関連経路データによって規定される経路を実行する。こうした実行には、回転中心を動的に変更して複雑な可変半径曲線を作成することが含まれる。アクチュエータ108、110、112、114は、関連するトラックを回転させるための要素、もしくは機械上のいくつかの基準点に対して対応するトラックの位置を直線的に移動もしくは調整するための要素、またはそれらの何らかの組み合わせを含み得る。
【0020】
[0019] 少なくとも1つの実施形態では、システム100は、全地球測位システムなどの衛星ナビゲーションシステムへの通信を含む無線データ通信用の1つ以上のアンテナ116も含む。プロセッサ102は、システム100を含む機械の実世界における位置を識別するために位置データを受信し、そうした位置データを経路データと共に利用し、補正アルゴリズムを適用して複数のアクチュエータ108、110、112、114を自動的に調整し、目的の経路に沿うように機械を維持する。少なくとも1つの実施形態では、複数のアクチュエータ108、110、112、114のそれぞれは、本明細書でより詳細に説明される特定の動作モード中に識別された偏差を補正するための機能のセットに関連付けられ得る。
【0021】
[0020] 少なくとも1つの実施形態では、オペレータは、ジョイスティックおよび従来のシングルノブステアダイヤル(1入力)およびトラベルダイヤル(1入力)などの有線または無線手動コントローラを介してシステム100とインターフェース118する。少なくとも1つの実施形態では、ステアノブは、プログラム可能なパラメータ、すなわち回転軸の中心(y値)を介して構成される。
【0022】
[0021] 少なくとも1つの実施形態では、ジョイスティックは、プッシュ/プルによる従来の移動設計(前進/後退)および左/右を介したクラブ機能を有する。機械は、「クラブサークル(crab circle)」の周りで回転中心を動かすことにより、クラブする(crab)ことができる。少なくとも一実施形態では、ジョイスティックをひねることで、回転中心を動かして、座標ステアリングを開始することができる。システム100は、片手(ジョイスティック)で、モードを切り替えることなくすべての移動の柔軟性を可能にする。
【0023】
[0022] 少なくとも1つの実施形態では、インターフェース118は、タッチスクリーンなどのディスプレイ上のグラフィックユーザーインターフェース(GUI)を含み、これにより、ユーザーは、限定されるものではないが、速度、操舵モード、および回転中心の位置決めなどのシステム100のパラメータを設定/調整することができる。自動操作中は、このようなGUIが優先インターフェースになり得る。さらに、システム100は、速度を設定するダイヤルおよび操舵用のジョイスティック、クルーズ制御、ロック操舵などのための補助ボタンを備えたインターフェース118の何らかの組み合わせを含み得る。
【0024】
[0023] 図2A図2Eを参照すると、本明細書に開示される発明概念の実施形態によるマルチトラック建設機械200の上面図が示されている。機械200は、独立した移動を伴う複数のトラック202、206、210、214(またはホイール)を含み、各トラックは、機械200の目標経路を生成するための一連の機能に従って、関連するトラック202、206、210を独立して回転させる1つ以上のアクチュエータ204、208、212、216に関連付けられる。
【0025】
[0024] 少なくとも1つの実施形態では、すべてのトラック202、206、210、214は、関数tan-1(長さ/幅)によって定義される同じ大きさで回転し、フロントトラック202、206は内側に回転し、リヤトラック210、214は外側に回転する。回転中心はシャシーの中心になる。回転中心から各トラック202、206、210、214までの距離は等しく、トラック速度も同様である。逆回転は、各トラック202、206、210、214を同じ速度で移動させ、一方側を前方に、もう一方側を逆に移動させることによって実現される。
【0026】
[0025] トラック中心を結んで作成される多角形(本実施形態では長方形)の外接円には、回転中心(円中心)と、回転中心から各トラックまでの距離(円半径)が含まれる。さまざまな可動機械の設計と構成とにより、外接および逆回転が許可および制限される。外接円を持つトラック位置は、共円(concyclic)機械構成と呼ばれる。共円機械構成には、すべて一般的な機械形状である三角形、長方形、および等脚台形などのすべての正多角形が含まれる。ただし、こうしたレイアウトは、機械が逆回転できることを保証するものではない。トラック202、206、210、214も、目標角度に自由に回転し、等しい速度で移動する必要がある。
【0027】
[0026] 機械200の操舵性は、逆回転する能力により大幅に改善され、例えば、可能な限り小さな領域で回転する。共円機械構成は、同じ速度の移動回路に変換される単一の円周がある。油圧駆動の場合、同じ移動速度は同じ流量に変換される。これは、シンプルで手頃であり、比較的直線的な移動のための非常に効果的な移動回路である。
【0028】
[0027] 機械200は、機械200の運動のタイプおよび回転中心の位置によって規定されるいくつかのモードに置かれてもよい。図2Aを参照すると、機械200は、各トラック202、206、210、214がクラブ移動(clabbing)または他の横方向の動きなしに機械200の設置領域内の回転中心まわりに機械200を回転させるように構成された回転モードで示されている。図2Bを参照すると、機械200は、各トラック202、206、210、214が機械200を経路に沿って直線的に移動させるように構成されたクラブモードで示されている。いくつかの数学的な目的のため、こうした動きは、回転中心が無限にある回転としてモデル化される。図2Cを参照すると、機械200は、各トラック202、206、210、214が機械200の設置領域の外側の回転中心まわりに機械200を回転させるように構成された回転モードで示されている。図2Dを参照すると、機械200は、フロントトラック202、206が機械200を回転するように構成され、リヤトラック210、214が直線運動するように構成された回転モードで示されている。こうしたモードでは、フロントトラック202、206は異なる偏向を有し得る。図2Eを参照すると、機械200は、リヤトラック210、214が機械200を回転させるように構成され、フロントトラック202、206が直線運動するように構成された回転モードで示されている。こうしたモードでは、リヤトラック210、214は異なる偏向を有し得る。
【0029】
[0028] 図3を参照すると、本明細書に開示される発明概念の実施形態によるマルチトラック建設機械300の上面図が示されている。機械加工されたF_00は、複数のトラック302、306、310、314またはホイールを含む。少なくとも1つの実施形態では、機械300は、垂直軸326および水平軸328によって画定される平面内で回転中心318まわりに回転するように構成される。回転中心318は、機械300の設置領域の外部にあってもよい。
【0030】
[0029] トラック302、306、310、314の構成は、回転中心318から機械300の固定点までのベクトル322に直交する移動方向320によって規定する又は規定されることができる。さらに、ベクトル322が更新されるとき、または回転に関連する円弧の接線に適合するように、移動方向320は回転中に連続的に更新されてもよい。同様に、各トラック302、306、310、314は、各トラック302、306、310、314の偏向を定義するために、回転中心からのトラック固有ベクトル304、308、312、316に関連付けられてもよい。一例として、第2のトラック306は、垂直軸326または水平軸328からの偏向により第2のトラック固有ベクトル308および対応する移動方向324に関連付けられ、回転に関連する円弧に対して移動方向324を接線方向に保つ。各トラック302、306、310、314、または1つ以上のトラック302、306、310、314が固定されている機械300におけるトラック302、306、310、314のいくつかのサブセットは、各トラック302、306、310、314の回転中心318からの距離によって定義される特定の偏向を有し得る。
【0031】
[0030] 図4を参照すると、本明細書に開示される発明概念の実施形態によるマルチトラック建設機械用のステアリングモードゾーン406、408、410、412、414、416、418を有する空間領域の概略図が示されている。回転中心は、XY平面内の任意の場所であり得る。少なくとも1つの実施形態では、ステアリングモードゾーン406、408、410、412、414、416、418は、トラック400、402、404またはホイールが右クラブ構成にあるときの一般的な移動方向を規定する「右クラブ」ゾーン406、416と、トラック400、402、404またはホイールが左クラブ構成にあるときの一般的な移動方向を規定する「左クラブ」ゾーン408、414と、機械のトラック400、402、404またはホイールが左または右にそれぞれ移動する構成にあるときの「左調整」および「右調整」ゾーン410、412と、機械のトラック400、402、404またはホイールが機械の設置領域内で実質的に回転するための構成にあるときの「逆回転」ゾーン418と、を含む。
【0032】
[0031] 各ゾーン406、408、410、412、414、416、418は、そうしたゾーン406、408、410、412、414、416、418内のトラック固有ベクトル、またはそうしたゾーン406、408、410、412、414、416、418を有する回転中心に基づいて、各トラック400、402、404のトラック偏向スキームまたは機能セットに関連付けられてもよい。こうした偏向スキームまたは機能は、操舵可能なトラック400、402、404の数および位置に基づく変数を含み得る。
【0033】
[0032] 少なくとも1つの実施形態では、逆回転は外接円回転に限定されず、最小半径回転を介して影響を受ける場合もある。回転中心は、機械シャシーの内側または外側のゾーン406、408、410、412、414、416、418内に位置してもよく、動的に移動可能であってもよい。そうした実施形態は、フロントのみ、クラブ、調整、外接円回転など、ステアリングの既存のすべてのモードを可能にし得る。さらに、そのような実施形態は、外接円回転、本体/シャシー内の非周期な回転および逆回転、非対称の調整など、他の最小、小、および大半径制御を可能にし得る。
【0034】
[0033] 図5を参照すると、本明細書に開示される発明概念の実施形態による、複数のトラック502、508、514が前方トラック位置524および後方トラック位置526によって境界付けられるマルチトラック建設機械の概略図が示される。少なくとも1つの実施形態では、複数のトラック502、508、514またはホイールのそれぞれは、ニュートラルな前方方向504、510、516に関連付けられ、そこからトラックの偏向を測定することができる。少なくとも1つの実施形態では、そうした偏向は、回転中心520から対応するトラック502、508、514へのトラック固有ベクトル506、512、518に基づき、回転経路522を生成する。図5は、機械の設置領域内の回転中心520を示しており、機械は、回転経路522内に完全に含まれ得る。
【0035】
[0034] 任意の可動機械の最小回転半径は、外接円であり、機械の外接円半径内である。このような回転は、逆回転と回転の両方を使用して実現できる。逆回転には、トラック502、508、514の回転角度をより小さな範囲とすることが求められ、回転には、移動回路を分割する単一フローが求められる。
【0036】
[0035] 図6を参照すると、複数のトラック602、608、614またはホイールが前方トラック位置624および後方トラック位置626によって境界付けられているマルチトラック建設機械の概略図が示される。複数のトラック602、608、614のそれぞれは、ニュートラルな前方方向604、610、616に関連付けられ、そこからトラックの偏向を測定することができる。そうした偏向は、回転中心620から対応するトラック602、608、614へのトラック固有ベクトル606、612、618に基づき、回転経路622を生成する。図6は、機械の設置領域の外部の回転中心620を示している。さらに、回転経路622のサイズ(直径)は、トラック固有ベクトル606、612、618の長さ、つまり、回転中心620からの各トラック602、608、614の距離によって定義され得る。少なくとも1つの実施形態では、回転経路622は機械の工具経路を規定する。
【0037】
[0036] 回転中心620を自由に移動させて、例えば舗装機械のモールドのリヤ押出エッジに対応する横方向機械軸上に置くことにより、直線および曲線領域において出口エッジが回転経路622に接することを保証する。回転中心620を前方トラック位置624に向かってスライドさせことにより、例えばトリマーヘッドの刃先に向かって移動させることができ、これにより、押出プロセスの前に狭い半径のセグメントをトリミングすることが可能になる。
【0038】
[0037] 少なくとも1つの実施形態では、回転中心620をモールド押出エッジの横軸に沿って出し入れすることにより、任意のサイズ半径の目標トラック角度を計算することが可能になる。
【0039】
[0038] 少なくとも1つの実施形態では、任意の数のトラック602、608、614の目標トラック角度、移動回転速度、および方向は、所与の回転中心について既知であり、関数のセットを介して相関付けられる。たとえば、半径0.61メートル(2フィート)に対応する回転経路622で左に曲がる(回転中心620は縁石の上部背面から0.61メートル左にある)ために、フロントトラック602、614が左に曲がること(対応するニュートラル前方向604、616からの負の偏向)が求められ、リヤトラック608が右に曲がること(対応するニュートラル前方向610からの正の偏向)が求められる。さらに、すべてのトラック602、608、616は、そうしたトラック602、608、614がたどる経路の半径に基づいて異なる速度で移動する。例えば、左フロントトラック602は半径4.5メートル(14.7フィート)の経路に沿って移動し、右フロントトラック614は半径4.66メートル(15.3フィート)の経路に沿って移動し、左リヤトラックは608は、半径2メートル(6.6フィート)の経路に沿って移動し得る。
【0040】
[0039] こうした例示的な実施形態では、機械は前方または後方に移動することができる。走行時、半径値の比率は目標走行速度比を提供する。具体的には、右フロントトラック614が左フロントトラック602より2.3倍速く移動することが求められ、左フロントトラック602が左リヤトラック608より2.2倍速く移動することが求められる。
【0041】
[0040] オペレータが左リヤトラック608の移動速度を2メートル/分(6.6フィート/分)に設定すると、システムは左フロントトラック602を4.5メートル/分(14.7フィート/分)に、及び右フロントトラック614を4.66メートル/分(15.3フィート/分)に自動的に設定する。比率は、工具またはモールドの位置に対して維持される。この方法でオフセットすると、速度は約1/3減少し、約0.61メートル/分(2フィート/分)減少する。一定の、特定の工具速度が必要な場合は、それに応じて目標トラック速度を決定および設定し得る。
【0042】
[0041] 少なくとも1つの実施形態では、制御システムは、オペレータが任意のトラック602、608、614の移動速度を設定し、工具および適切なトラックの偏向および速度が自動的に導出されるように、トラック602、608、614の関係機能を含んでもよい。
【0043】
[0042] 少なくとも1つの実施形態では、オンボードセンサはリアルタイムで位置を感知し、半径またはトラック位置を変更するために目標トラック角度を即座に更新する。少なくとも1つの実施形態では、オペレータは、構成要素間の関係の基本的な巻き尺を使用して、X、Y値を入力する。半径は動的に変化する可能性があるため、目標角度は常に更新される。
【0044】
[0043] 図7を参照すると、本明細書に開示される発明概念の実施形態によるフロントステアを使用するマルチトラック建設機械の概略図が示されている。少なくとも1つの実施形態では、マルチトラック建設機械は、前方トラック位置724および後方トラック位置726によって境界付けられた複数のトラック702、708、714またはホイールを含む。少なくとも1つの実施形態では、複数のトラック702、708、714のうちの1つ以上は向きが固定され、複数のトラック702、708、714のうちの1つ以上は回転することができる。図7では、フロントトラック702は回転し、リヤトラック708、714が固定されるように構成されている。回転するフロントトラック702は、ニュートラルな前方方向704に関連付けられ、そこからトラックの偏向を測定することができる。そうした偏向は、トラック固有ベクトル706に基づいているが、固定されたトラック708、714も、回転中心720から概ね移動しないトラック固有ベクトル712、718を規定して、回転経路722を生成することができる。図7は、機械の設置領域内の回転中心720を示している。さらに、フロントトラック702の偏向は、回転中心720の位置および回転経路722の直径を規定し得るが、固定されたトラック708、714の方向(前方または後方のいずれか)は、トラック708、714の回転中心722に対する相対位置に対応し得る。少なくとも1つの実施形態では、回転経路722は、機械の工具経路を規定する。
【0045】
[0044] 特に図7を、及び図8-9を、及び概して図10-11を参照すると、一部の機械は、共円構成であっても、逆回転の条件を満たすために必要なすべてのトラックステアリング角度におけるすべての範囲を持たない場合がある。例えば、図7に示す機械は、三角形の同心円状のレイアウトを有しており、回転中心720が外心にあるように外接することができる。しかしながら、2つのリヤトラック708、714は、回転中心700が外心にあることができないように、制限された回転角度を有し得る。このような構成では、回転中心720を2つのリヤトラック708、714の中間点に移動すると、機械の本体内のポイントまわりに機械が回転するが、逆回転よりも大きな領域が必要とされる。回転中心720からフロントトラック702およびリヤトラック708、714までの距離が異なるため、フロントトラック702は左リヤトラック708よりも前方に速く回転する。なお、右リヤトラック714は、左リヤトラック708と同じ速度で逆回転する。
【0046】
[0045] 少なくとも1つの実施形態において、そのシャシー内のポイントまわりの機械の任意の回転は、たとえ外接円でなくても、機械が回転する最小領域を持つというユーザーの期待を満たし得る。そのような実施形態では、機械は非環状形状を有してもよいが、そのような構成は、残りのトラック702、708、714と比較して少なくとも1つの異なるトラック速度を必要とする。さらに、そうした機械は、残りのトラック702、708、714と比較して反対方向における少なくとも1つのトラック移動を必ず有する。単一の走行回路のみを備えた機械の場合、そのような異なるトラック方向は、油圧走行回路を手動で再構成して、目標軌道702、708、714の走行方向を逆にする必要がある。
【0047】
[0046] あるいは、各トラック702、708、714を座標操舵方式で回転させることが可能である場合、すなわち、フロントトラック702が左に回転し、リヤトラック708、714が正しい量で右に回転する場合、これにより、外接円内のすべてのトラック702、708、714で前方への移動を維持することが可能になる。
【0048】
[0047] 図8を参照すると、本明細書に開示される発明概念の実施形態によるフロントステアを使用するマルチトラック建設機械の概略図が示されている。少なくとも1つの実施形態では、マルチトラック建設機械は、前方トラック位置824と後方トラック位置826とによって境界付けられた複数のトラック802、808、814またはホイールを含む。少なくとも1つの実施形態では、複数のトラック802、808、814のうちの1つ以上は向きが固定され、複数のトラック802、808、814のうち1つ以上は回転することができる。図8では、フロントトラック802は回転し、リヤトラック808、814が固定されるように構成される。回転するフロントトラック802は、ニュートラルな前方方向804に関連付けられ、そこからトラックの偏向を測定することができる。そうした偏向は、トラック固有ベクトル806に基づいているが、固定されたトラック808、814は、回転中心820からのトラック固有ベクトル812、818を規定して、回転経路822を生成することもできる。図8は、機械の設置領域の外側の回転中心820を示している。フロントトラック802の偏向は、回転中心820の位置を規定する。少なくとも1つの実施形態では、回転経路822は、機械の工具経路を規定する。
【0049】
[0048] 図9を参照すると、本明細書に開示される発明概念の実施形態によるフロントステアを使用するマルチトラック建設機械の概略図が示されている。少なくとも1つの実施形態では、マルチトラック建設機械は、前方トラック位置924と後方トラック位置926とによって境界付けられた複数のトラック902、908、914またはホイールを含む。少なくとも1つの実施形態では、複数のトラック902、908、914のうちの1つ以上は向きが固定され、複数のトラック902、908、914のうち1つ以上は回転する。図9では、フロントトラック902は回転し、リヤトラック908、914が固定されるように構成される。回転するフロントトラック902は、ニュートラルな前方方向904に関連付けられ、そこからトラックの偏向を測定することができる。そうした偏向は、トラック固有ベクトル906に基づいているが、固定されたトラック908、914は、回転中心920からのトラック固有ベクトル912、918を規定して、回転経路922を生成することもできる。図9は、機械の設置領域の外側の回転中心920を示すが、回転経路922は、フロントトラック902の経路に実質的に対応する。少なくとも1つの実施形態では、回転経路922は機械の工具経路を規定する。
【0050】
[0049] 図10を参照すると、本明細書に開示される発明概念の実施形態によるリヤステアを使用するマルチトラック建設機械の概略図が示されている。少なくとも1つの実施形態では、マルチトラック建設機械は、前方トラック位置1024と後方トラック位置1026とによって境界付けられた複数のトラック1002、1008、1014またはホイールを含む。複数のトラック1002、1008、1014のうちの1つ以上は向きが固定され、複数のトラック1002、1008、1014のうちの1つ以上は回転する。図10では、フロントトラック1002は固定され、リヤトラック__08、1014は回転するように構成される。回転するリヤトラック1008、1014はそれぞれ、ニュートラルな前方方向1010、1016に関連付けられ、そこからトラックの偏向を測定することができる。そうした偏向は、回転中心1020からのトラック固有ベクトル1012、1018に基づき、回転経路1022を生成する。図10は、前方トラック位置1024に沿った回転中心1020を示す。少なくとも1つの実施形態では、回転経路1022は、機械の工具経路を規定する。
【0051】
[0050] 図11を参照すると、本明細書に開示される発明概念の実施形態によるリヤステアを使用するマルチトラック建設機械の概略図が示されている。少なくとも1つの実施形態では、マルチトラック建設機械は、前方トラック位置1124と後方トラック位置1126とによって境界付けられた複数のトラック1102、1108、1114、またはホイールを含む。複数のトラック1102、1108、1114のうちの1つ以上は向きが固定され、複数のトラック1102、1108、1114のうちの1つ以上は回転する。図11では、フロントトラック1102は固定され、リヤトラック_08、1114は回転するように構成される。回転するリヤトラック1108、1114はそれぞれ、ニュートラルな前方方向1110、1116に関連付けられ、そこからトラックの偏向を測定することができる。そうした偏向は、回転中心1120からのトラック固有ベクトル1112、1118に基づき、回転経路1122を生成する。図11は、前方トラック位置1124に沿った、および直交リヤトラック1114に関連するニュートラルな前方方向1116に沿った回転中心1120を示す。少なくとも1つの実施形態では、回転経路1122は機械の工具経路を規定する。
【0052】
[0051] 図5から図11に示された特定の実施形態に関して、それぞれの回転経路522、622、_22、722、822、922、1022、1122の円弧は、それぞれのトラック502、508、514、602、608、614、702、708、714、802、808、814、902、908、914、1002、1008、1014、1102、1108、1114の偏向に対する周期的な調整によって規定される大きな完成経路を規定することができ、回転中心520、620、_20、720、820、920、1020、1120および対応する回転経路の直径522、622、_22、722、822、922、1022、1122を変更する。さらに、複合経路が、1つ以上の可変半径曲線およびクラブ移動に対応する直線セグメントによってさらに規定されてもよい。
【0053】
[0052] 図12を参照すると、本明細書で開示される発明概念の実施形態による移動距離に関連するステアリングトラック偏向1200、1202、1204のグラフが示されている。ステアリングトラックの偏向1200、1202、1204は、そうした偏向1200、1202、1204によって生成される対応する曲線の半径に関連付けられる。様々な実施形態は、トラックの偏向1200、1202、1204の経路湾曲に対する異なる関係、またはそうした関係の組み合わせを利用し、さまざまな円弧長で構成される望ましい経路を生成してもよい。さらに、そうした関係には、実際の経路と望ましい経路との差を特定し、その差を、トラック偏向1200、1202、1204に対応する修正によって規定される修正曲率に変換することによる修正フィードバックのためのメカニズムが含まれてよい。
【0054】
[0053] 自動ステアリングシステムでは、概して、ストリングトラッキングセンサ、トータルステーション、衛星測位システムなどの何らかの測位デバイスを参照して経路トラッキング誤差を計算し、トラック偏向1200、1202、1204および/または速度を調整して誤差を最小化する方向に機械を移動させること(閉ループ制御)により、経路トラッキング誤差が修正される。こうした調整は、順方向または逆方向において行うことができるが、目標経路に戻るために何らかの動きが必要とされる。経路トラッキング誤差は、閉ループ迎え角を生成するステアリングオーソリティ(authority)機能への入力である。
y(角度)=f(ミリメートル、調整パラメータ)
【0055】
[0054] ステアリングオーソリティ機能は、減衰または緩くてもよく、つまり、3mm(1/8インチ)が1度に対応してもよいし、または厳しく積極的に、つまり、例えば3mm(1/8インチ)が10度に対応してもよい。直線およびほぼ直線の経路の場合、経路トラッキング誤差と閉ループ制御のみによって、機械を十分に操舵して、望ましい経路整合を維持することができる。
【0056】
[0055] 非常に特定の機械構成、例えば、モールドおよびトラックがすべて延長され、モールド出口と一列に並んだリヤ操舵可能トラックの場合、リヤトラックのみが経路調整誤差を修正するためのステアリング調整を必要とする。このような機械のフロントストリングラインセンサーは、上記の機能が事前にプログラムされたトラッキング誤差の最大トラック角度を満たすように、長手方向(前後方向)および鉛直方向に正確に配置されなければならない。
【0057】
[0056] リヤ操舵可能軌道が工具と一直線になっていない場合、非ゼロの角度が必要であり、これは、経路トラッキング誤差が存在する場合にのみ生成され得る。このような要件は、経路トラッキング誤差を最小限に抑えたいという要望と矛盾する。
【0058】
[0057] 本発明の実施形態を利用するシステムは、最初に各トラックを目標トラック角度(開ループ)に変えることによりトラッキング誤差を修正することができる。その後、ストリング、3Dなどによって経路トラッキング誤差が測定され、迎え偏向角に変換されると、各トラックの迎え角は角度の加算に設定される。たとえば、左フロントトラック角度が67度に設定され、右フロントトラック角度が28度に設定される。続いて、システムは1/2インチ(12.7mm)の経路トラッキング誤差を測定し、その誤差を4度の迎え偏向角に調整または関連付ける。
【0059】
[0058] アッカーマン(Ackermann)操舵は、この角度をシャシーの中心線に適用し、外側は2度の補正を受け、内側は6度の補正を受ける。誤差の方向に応じて、結果補正角度は73度と30度、または61度と26度になる。リヤ操舵可能トラックに誤差がなく追加の迎え偏向がない場合、リヤのトラックは修正されないが、どちらの方向(目的経路の左または右)にも経路トラッキング誤差が発生し得る。
【0060】
[0059] 狭い(小さな)経路トラッキング誤差、したがって小さな迎え偏向角の場合、トラックと移動速度は十分に同期したままであり、ステアリングシステムは安定したままである。ただし、アッカーマン方法では、より大きな誤差に対して共通の回転中心が保証されない。
【0061】
[0060] 少なくとも1つの実施形態では、トラッキング誤差を補正する方法は、経路トラッキング誤差を距離として測定し、距離の誤差を機械の基準点(すなわち、シャシーの前後、モールドの前後など)での迎え偏向角に変換することを含む。誤差は、ゼロ、同一方向、異なる方向、またはそれらの任意の組み合わせであり得る。
【0062】
[0061] 誤差が測定されると、同一基準点から目標基準点角度が計算される。目標および迎え偏向角が追加されて、複合偏向角が生成される。基準点の位置と組み合わされた迎え角に基づいて、同期した回転中心が線-線交差の解(a solution of a line-line intersection)から計算される。目標トラック角度と移動速度回転は、更新された同期回転中心に基づいて決定される。そして、経路トラッキング誤差を最小限に抑えるために、コントローラによって目標トラッキング角度と移動速度が適用される。
【0063】
[0062] いくつかの実施形態では、方法を実施するシステムは、角度および移動速度をチェックして、それらが所定の許容範囲内で同期したままであることを確認し、それに応じて目標値を変更する。
【0064】
[0063] いくつかの実施形態では、特定の形状および設定について、改善された生成速度、機械をより速い移動のために経路トラッキング誤差を許容することが好ましい。そのようなシステムは、そのオプションが利用可能に設計され、選択されると、副次的目的によって、半径が大きく異なる要素(スパイラル)間で滑らかに移行する。
【0065】
[0064] 図13を参照すると、本明細書に開示される発明概念の実施形態による機械を操舵する方法のフローチャートが示されている。データベースから、またはオペレータ入力を介して、経路半径が受け付けられる1300。らせん遷移または可変半径経路の場合、現在のアクティブ半径が設定される1302。操舵誤差が、機械の既知の位置および1つ以上の基準マーカーに基づいて測定される1304。操舵誤差角度は、オーソリティポイントで半径目標角度に加算され1306、アクティブ回転ポイントが計算される1308。アクティブ回転ポイントに基づいて、テーブルまたは関数のセットを参照して、目標トラック角度が計算または別の方法で決定され1310、既知のマシンの制限に対してチェックされる。制限を超えた場合、トラック角度が適切な制限内になるまで、更新されたパラメータに基づいてトラック角度が再計算されてもよい。最大絶対誤差を特定し、修正手順を駆動するためのマスタートラックを決定するために、目標トラック角度が現在のアクティブ角度と比較される1312。各トラックの速度が計算され1314、適用されて、計算された目標角度が計算される。機械が正しい経路に近づくと、移行モードを適用して、修正目標角度から修正プロセス後に機械が維持できる目標経路固有の角度にトラック角度をスムーズに移行する1316ことができる。その後、必要に応じてプロセスを繰り返してもよい。
【0066】
[0065] 本明細書に開示された発明概念およびそれらに付随する利点の多くが、開示された発明概念の実施形態の前述の説明によって理解され、本明細書に開示された本発明の概念の広い範囲から逸脱することなく、またはそれらの構成の利点のすべてを犠牲にすることなく、その構成要素の形態、構造、配置においてさまざまな修正がなされてもよく、様々な実施形態からの個々の特徴を組み合わせて、他の実施形態に到達することができることが明らかであろう。本明細書の前述の形態は、単にその説明的な実施形態であり、添付の特許請求の範囲は、そうした変更を包含および含むことを意図している。さらに、個々の実施形態のいずれかに関連して開示された特徴のいずれも、他の実施形態に組み込むことができる。
図1
図2A
図2B
図2C
図2D
図2E
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13