(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-11-17
(45)【発行日】2022-11-28
(54)【発明の名称】車両のバッテリ充電制御装置
(51)【国際特許分類】
H02J 7/00 20060101AFI20221118BHJP
H02J 7/10 20060101ALI20221118BHJP
B60L 1/00 20060101ALI20221118BHJP
【FI】
H02J7/00 P
H02J7/10 H
H02J7/10 B
B60L1/00 L
(21)【出願番号】P 2018235063
(22)【出願日】2018-12-17
【審査請求日】2021-09-22
(73)【特許権者】
【識別番号】000005348
【氏名又は名称】株式会社SUBARU
(74)【代理人】
【識別番号】100090033
【氏名又は名称】荒船 博司
(74)【代理人】
【識別番号】100093045
【氏名又は名称】荒船 良男
(72)【発明者】
【氏名】田島 綾一
【審査官】右田 勝則
(56)【参考文献】
【文献】特開2012-249462(JP,A)
【文献】特開2017-093226(JP,A)
【文献】特開2016-226102(JP,A)
【文献】特開2013-165635(JP,A)
【文献】特開2015-046992(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H02J 7/00
H02J 7/10
B60L 1/00
B60L 50/40
(57)【特許請求の範囲】
【請求項1】
走行モータに電力を供給する第1バッテリと、前記第1バッテリの電圧を降下させる電圧変換器と、前記電圧変換器の出力から充電可能でありかつ前記第1バッテリの出力電圧よりも低い電圧を出力する第2バッテリと、前記第2バッテリの出力及び前記電圧変換器の出力により動作可能な車載機器と、を備えた車両に搭載される、車両のバッテリ充電制御装置であって、
前記電圧変換器から前記第2バッテリへ送られる充電電流を減少させることが可能な電流調整回路と、
前記電圧変換器の出力電流に基づいて前記電流調整回路を制御する制御部と、
を備え
、
前記制御部は、
前記電圧変換器の出力電流と第2閾値との比較結果に基づいて、前記電流調整回路を制御して前記第2バッテリの充電の実行と非実行とを切り替えることを特徴とする車両のバッテリ充電制御装置。
【請求項2】
前記電流調整回路は、
前記電圧変換器から前記車載機器へ電力が伝送される電源ラインと前記第2バッテリとを接続又は遮断する第1スイッチと、
平滑用フィルタと、
前記第2バッテリと前記電源ラインとを前記平滑用フィルタを介して接続又は遮断する第2スイッチと、
前記第2バッテリから前記電源ラインへ前記車載機器の駆動電流を伝送可能な電力用ダイオードと、
を備えることを特徴とする請求項1記載の車両のバッテリ充電制御装置。
【請求項3】
前記制御部は、
前記電圧変換器の出力電流と第1閾値との比較結果に基づいて、前記電流調整回路を制御して前記充電電流の減少量を変化させることを特徴とする請求項1又は請求項2に記載の車両のバッテリ充電制御装置。
【請求項4】
前記制御部は、
更に前記第2バッテリの状態に基づいて、前記電流調整回路を制御して前記充電電流の減少量を変化させることを特徴とする請求項3記載の車両のバッテリ充電制御装置。
【請求項5】
前記制御部は、前記電圧変換器の出力電流の代わりに、あるいは、前記電圧変換器の出力電流に加えて、前記電圧変換器の出力電圧、前記車載機器に送られる電流、及び、前記車載機器の駆動状況のいずれか1つ又は複数に基づいて、前記電流調整回路を制御することを特徴とする請求項1から請求項
4のいずれか一項に記載の車両のバッテリ充電制御装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、高電圧を出力する第1バッテリと低電圧を出力する第2バッテリとを有する車両において第2バッテリの充電制御を行う車両のバッテリ充電制御装置に関する。
【背景技術】
【0002】
走行モータにより走行可能なEV、HEVなどの車両は、走行モータに電力を供給する第1バッテリ(例えば高電圧バッテリ)と、エンジンの補機など、他の車載機器に電力を供給する第2バッテリ(例えば12V鉛バッテリ)とを有する。このような車両においては、第1バッテリの電力を用いて第2バッテリの充電と、車載機器の駆動とを行う場合がある。
【0003】
特許文献1には、高電圧バッテリと、12Vバッテリと、高電圧バッテリの電圧を降下するDC/DCコンバータと、を備える車両において、DC/DCコンバータを効率の高い動作点で使用するシステムが開示されている。このシステムでは、車載機器の消費電力が少ない軽負荷状態のときに、高電圧バッテリの電力を用いてDC/DCコンバータから12Vバッテリへ充電を行い、これによりDC/DCコンバータの負荷を高め、電力変換効率を上げている。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
走行モータに電力を供給する第1バッテリと、第1バッテリの出力を降圧する電圧変換器とを備える車両において、電圧変換器の定格出力を小さく抑えたいという要求がある。定格出力が小さくなると、電圧変換器を小型化でき、電圧変換器の搭載スペースの縮小あるいは他の部品の搭載スペースを広げられるという利点が得られる。加えて、電圧変換器の重量及びコストの低減を図れるという利点が得られる。
【0006】
しかしながら、単に、電圧変換器の定格出力を小さくしただけでは、例えば、第2バッテリへの充電中に車載機器の負荷が増した場合などに、電圧変換器から正常な出力電圧の出力が困難になるという課題が生じる。あるいは、電圧変換器の定格出力が小さいと、高負荷時に電圧変換器の変換効率が低下し、車両の燃費又は電費が悪化するという課題が生じる。
【0007】
本発明は、車載機器の電源電圧の異常低下又は車両の燃費又は電費の悪化を抑制しつつ、電圧変換器の定格出力の低減を図ることのできる車両のバッテリ充電制御装置を提供することを目的とする。
【課題を解決するための手段】
【0008】
請求項1記載の発明は、
走行モータに電力を供給する第1バッテリと、前記第1バッテリの電圧を降下させる電圧変換器と、前記電圧変換器の出力から充電可能でありかつ前記第1バッテリの出力電圧よりも低い電圧を出力する第2バッテリと、前記第2バッテリの出力及び前記電圧変換器の出力により動作可能な車載機器と、を備えた車両に搭載される、車両のバッテリ充電制御装置であって、
前記電圧変換器から前記第2バッテリへ送られる充電電流を減少させることが可能な電流調整回路と、
前記電圧変換器の出力電流に基づいて前記電流調整回路を制御する制御部と、
を備え、
前記制御部は、
前記電圧変換器の出力電流と第2閾値との比較結果に基づいて、前記電流調整回路を制御して前記第2バッテリの充電の実行と非実行とを切り替えることを特徴とする。
【0009】
請求項2記載の発明は、請求項1記載の車両のバッテリ充電制御装置において、
前記電流調整回路は、
前記電圧変換器から前記車載機器へ電力が伝送される電源ラインと前記第2バッテリとを接続又は遮断する第1スイッチと、
平滑用フィルタと、
前記第2バッテリと前記電源ラインとを前記平滑用フィルタを介して接続又は遮断する第2スイッチと、
前記第2バッテリから前記電源ラインへ前記車載機器の駆動電流を伝送可能な電力用ダイオードと、
を備えることを特徴とする。
【0010】
請求項3記載の発明は、請求項1又は請求項2に記載の車両のバッテリ充電制御装置において、
前記制御部は、
前記電圧変換器の出力電流と第1閾値との比較結果に基づいて、前記電流調整回路を制御して前記充電電流の減少量を変化させることを特徴とする。
【0011】
請求項4記載の発明は、請求項3記載の車両のバッテリ充電制御装置において、
前記制御部は、
更に前記第2バッテリの状態に基づいて、前記電流調整回路を制御して前記充電電流の減少量を変化させることを特徴とする。
【0013】
請求項5記載の発明は、請求項1から請求項4のいずれか一項に記載の車両のバッテリ充電制御装置において、
前記制御部は、前記電圧変換器の出力電流の代わりに、あるいは、前記電圧変換器の出力電流に加えて、前記電圧変換器の出力電圧、前記車載機器に送られる電流、及び、前記車載機器の駆動状況のいずれか1つ又は複数に基づいて、前記電流調整回路を制御することを特徴とする。
【発明の効果】
【0014】
本発明によれば、車載機器の消費電力が変動した場合に、制御部が電流調整回路を制御して第2バッテリの充電電流を増減させることで、電圧変換器のトータルの出力電流を調整し、電圧変換器からその定格出力に対応する適正な範囲の電流を出力させることができる。これにより、定格出力に対して負荷が過大となって出力電圧が異常に低下するといった不都合、並びに、非効率な動作範囲での電圧変換器の駆動が続いて車両の燃費又は電費が悪化するといった不都合を抑制しつつ、電圧変換器の定格出力の低減を図ることができる。
【図面の簡単な説明】
【0015】
【
図1】本発明の実施形態の車両を示すブロック図である。
【
図2】電圧変換器の出力電流と変換効率との関係を示すグラフである。
【
図3】制御部が実行する充電制御処理を示すフローチャートである。
【発明を実施するための形態】
【0016】
以下、本発明の実施形態について図面を参照して詳細に説明する。
図1は、本発明の実施形態の車両を示すブロック図である。
【0017】
本発明の実施形態の車両1は、EV(Electric Vehicle)又はHEV(Hybrid Electric Vehicle)等であり、
図1に示すように、駆動輪2と、駆動輪2を駆動する走行モータ3と、走行モータ3に電力を供給する第1バッテリ11とを備える。第1バッテリ11は、例えばリチウムイオンバッテリ又はニッケル水素バッテリなどの二次電池であり、走行用の電力を蓄積し、走行用の高電圧を出力する。
【0018】
車両1は、さらに、第1バッテリ11と走行モータ3との間で電力を変換するインバータ13と、インバータ13を制御する走行制御部31とを備える。走行制御部31は、運転者の運転操作に応じてインバータ13を制御し、走行モータ3を力行運転又は回生運転する。これにより駆動輪2が運転操作に応じて駆動され、車両1が走行する。
【0019】
車両1は、さらに、例えば図示略の内燃機関を駆動するために電気的に駆動される補機42と、電気的に駆動される様々な電気機器41と、これらに電源電圧を供給する第2バッテリ15とを備える。補機42には、内燃機関を始動するスタータモータが含まれてもよい。電気機器41としては、車両のライト、室内照明、メータ類、オーディオ、ディスプレイなど、様々な機器が適用できる。第2バッテリ15は、例えば鉛蓄電池などの二次電池であり、第1バッテリ11の出力電圧よりも低い電圧(例えば12V)を出力する。第2バッテリ15には、第2バッテリ15のSOC(State of Charge)を推定可能な物理量(例えば開放端電圧又は放電電圧など)を検出する検出部15aが取り付けられている。電気機器41及び補機42は、本発明に係る車載機器の一例に相当する。
【0020】
車両1は、さらに、第1バッテリ11の電圧を降圧し、降圧した電圧を補機42及び電気機器41の電源ラインLpwに出力する電圧変換器12を備える。電圧変換器12は、半導体スイッチ素子のスイッチング動作により、直流電圧を降圧するDC/DCコンバータであり、第1バッテリ11の高電圧を低電圧系の電圧に降下させる。低電圧系とは、第2バッテリ15が入出力する電圧範囲を意味する。電圧変換器12は、降圧動作と並行して、出力電流を検出し、出力電流出力情報を出力する。電圧変換器12は、出力電流の検出の代わりに、出力電圧を検出し、出力電圧情報を出力してもよい。
【0021】
車両1は、さらに、電源ラインLpwから第2バッテリ15へ送られる充電電流を減少させる(「絞る」と言い換えてもよい)ことが可能な電流調整回路5と、電流調整回路5を制御する制御部32とを備える。制御部32は、検出部15aから第2バッテリ15の検出値の情報を受ける。検出値は、先にも述べたが、SOC(State of Charge)を計算可能な物理量の情報(例えば開放端電圧又は放電電圧などの電圧情報)である。さらに、制御部32は、電圧変換器12から出力電流情報を受ける。制御部32及び電流調整回路5の組み合わせが、本発明に係るバッテリ充電制御装置の一例に相当する。
【0022】
電流調整回路5は、電源ラインLpwと第2バッテリ15とを接続又は遮断する第1スイッチSW1、平滑用フィルタ51、電源ラインLpwと第2バッテリ15とを平滑用フィルタ51を介して接続又は遮断する第2スイッチSW2、並びに、第2バッテリ15から電源ラインLpwに駆動電流を伝送可能な電力用ダイオードD1とを有する。平滑用フィルタ51は、第2スイッチSW2のスイッチング動作により流れる電流を平滑する。平滑用フィルタ51は、特に制限されないが、入力端と出力端との間に設けられたインダクタンスL1と、入力端と接地電位との間並びに出力端と接地電位との間に設けられた静電容量C1、C2とを含む。平滑用フィルタ51と第2スイッチSW2とは直列に接続され、平滑用フィルタ51及び第2スイッチSW2の直列回路と、第1スイッチSW1と、電力用ダイオードD1とは、電源ラインLpwと第2バッテリ15の出力端子との間において、並列接続される。
【0023】
電力用ダイオードD1は、電気機器41及び補機42の駆動電流を流すことのできるダイオードであり、半導体スイッチの寄生ダイオードとは異なる。電力用ダイオードD1は、電気機器41及び補機42が一時的に大電流を必要としたときに大電流を流すことのできる瞬時最大定格を有していてもよい。
【0024】
第1スイッチSW1及び第2スイッチSW2は、例えば電力用半導体スイッチである。第2スイッチSW2は、比較的に高速にオンとオフとを繰り返すスイッチング動作を行うように制御される。第1スイッチSW1は、高速にオンとオフとを繰り返すようなスイッチング動作は想定されておらず、オンとオフとに切り替えられる。第1スイッチSW1としてはリレーが適用されてもよい。
【0025】
このように構成された電流調整回路5によれば、第2バッテリ15の充電率が低いときに、第1スイッチSW1がオン、第2スイッチSW2がオフされることで、電圧変換器12から第2バッテリ15へ充電電流を流して、第2バッテリ15を充電することができる。第2バッテリ15の充電率が低いと、第2バッテリ15の電圧が低下する。そして、第2バッテリ15の出力電圧が電圧変換器12の出力電圧よりも低下することで、第1スイッチSW1を介して電圧変換器12から第2バッテリ15へ充電電流が送られる。
【0026】
また、電流調整回路5によれば、第2バッテリ15の充電率が高いときに、第1スイッチSW1がオン、第2スイッチSW2がオフされることで、第1スイッチSW1を介して第2バッテリ15から補機42及び電気機器41へ駆動電流を供給することができる。第2バッテリ15の充電率が高いと、第2バッテリ15の電圧が上昇し、電圧変換器12の出力電圧と同等又はそれ以上になることで、負荷の変動に応じて、第2バッテリ15と電圧変換器12とから補機42及び電気機器41へ駆動電流が送られる。
【0027】
また、電流調整回路5によれば、第2バッテリ15の充電率が低いときに、第1スイッチSW1をオフ、第2スイッチSW2をスイッチング動作させることで、電圧変換器12から第2バッテリ15へ充電電流を送り、かつ、第1スイッチSW1を介して充電させる場合よりも充電電流を減少させる(絞る)ことができる。第2スイッチSW2が、PWM(Pulse Width Modulation)制御によりオンとオフとを交互に切り替えることで、電圧変換器12から平滑用フィルタ51を介して第2バッテリ15へ充電電流を送ることができる。電圧変換器12から第2バッテリ15に送られる充電電流の大きさは、第2スイッチSW2のオンデューティを制御することで増減できる。
【0028】
また、電流調整回路5によれば、第1スイッチSW1がオフ、第2スイッチSW2がオフ又はPWM制御中、補機42又は電気機器41の負荷が一時的に大きくなった場合に、電力用ダイオードD1を介して第2バッテリ15から電源ラインLpwへ電流を送ることができる。負荷が一時的に大きくなる場合とは、例えばスタータモータの始動時などがある。一時的に補機42又は電気機器41に大電流が引き込まれると、電源ラインLpwの電圧が低下する。そして、この電圧が第2バッテリ15の電圧よりも一定量以上小さくなると、第2バッテリ15から電力用ダイオードD1を介して電源ラインLpwに比較的に大きな電流が送られて、補機42又は電気機器41の駆動電流を補充することができる。
【0029】
制御部32は、制御プログラム及び制御データを格納した記憶装置を含み、制御プログラムを実行することで、予め定められた制御処理を実現する。制御部32は、車両1に含まれる様々なECU(Electronic Control Unit)の1つ又は複数により構成されてもよい。あるいは、制御部32は、電流調整回路5の制御のために専用に設けられたECUから構成されてもよい。
【0030】
図2は、電圧変換器の出力電流と変換効率との関係を示すグラフである。電圧変換器12は、負荷(電気機器41及び補機42)の大きさに対して定格出力が過大にならないよう、小さめの定格出力が選定されている。
図2に示すように、電圧変換器12においては、出力電流が適正範囲W1にあるとき、高い電力変換効率が実現され、出力電流が適正範囲W1よりも大きい高負荷範囲W2にあるとき、出力電流が大きくなるほど、電力効率が低下する。
【0031】
<充電制御処理>
図3は、制御部が実行する充電制御処理を示すフローチャートである。
【0032】
例えば電源が投入されると、制御部32が、
図3の充電制御処理を開始する。充電制御処理において、制御部32は、システムが動作中か否かを判別し(ステップS1)、システムが動作中である場合に、ステップS1以降のループ処理を繰り返し実行する。ここで、システムが動作中とは、例えば、図示略のメインリレーが第1バッテリ11の出力電路を接続し、第1バッテリ11の出力電圧が電圧変換器12及びインバータ13へ供給され、かつ、電気機器41又は補機42に電源が供給されている状態等を意味する。
【0033】
ループ処理において、制御部32は、電圧変換器12の出力電流Iが第2閾値Ith02よりも大きいか否かを判別し(ステップS2)、否であれば、電圧変換器12の出力電流Iが第1閾値Ith01よりも大きいか否かを判別する(ステップS3)。ここで、第1閾値Ith01は、
図2に示したように、電圧変換器12の適正範囲W1と高負荷範囲W2との境界あるいは境界の周辺の値に、予め設定されている。第2閾値Ith02は、例えば電圧変換器12の定格電流に近い値に、予め設定されている。第2閾値Ith02は、第1閾値Ith01よりも大きい。
【0034】
さらに、ループ処理において、制御部32は、第2バッテリ15のSOCが高充電率閾値よりも大きいか否の判別(ステップS4)と、第2バッテリ15のSOCが中充電率閾値よりも大きいか否かの判別(ステップS5、S6)とを行う。ここで、制御部32は、第2バッテリ15の検出部15aの出力からSOCを換算又は計算して求めてもよいし、検出部15aの出力をSOCが換算された値とし、この換算に対応した高充電率閾値又は中充電率閾値との比較を行ってもよい。
【0035】
高充電率閾値は、満充電に近い充電率など、負荷が無い状態で、例えば電圧変換器12から第2バッテリ15への充電がほぼ行われないか、行われても充電電流が非常に小さくなる充電率に、予め設定される。中充電率閾値は、その他の負荷が無い状態で、例えば電圧変換器12から第2バッテリ15へ小さな充電電流しか流れない充電率に、予め設定される。中充電率閾値は、充電率についての第1閾値と呼び、高充電率閾値は、充電率についての第2閾値と呼んでもよい。
【0036】
これらの判別処理の結果、出力電流Iが第2閾値Ith02よりも大きく、かつ、第2バッテリ15のSOCが高充電率閾値以下であれば、制御部32は、第1スイッチSW1をオフ、第2スイッチSW2をオフする(ステップS7)。出力電流Iが第2閾値Ith02よりも大きい場合とは、電圧変換器12の出力電流が定格出力に近い状態を意味し、この状態で電圧変換器12から第2バッテリ15へ充電電流が出力されると、電圧変換器12の出力電圧が異常なレベルまで低下してしまう。また、第2バッテリ15のSOCが高充電率閾値以下のとき、第1スイッチSW1がオンであると、第2バッテリ15に充電電流が引き込まれる可能性がある。そのため、制御部32は、ステップS7の切り替えを行うことで、電源ラインLpwから第2バッテリ15へ充電電流が引き込まれることを抑制している。一方、このような制御中、補機42又は電気機器41のいずれかが一時的に大電流を必要とした場合、電圧変換器12の電流供給だけでは対応できないが、電流調整回路5の電力用ダイオードD1を介して、第2バッテリ15から負荷へ電流を出力することができる。これにより、大電流が必要なときに、第2バッテリ15からの電流供給により、電源ラインLpwの電圧が異常なレベルまで下がってしまうことを抑制できる。
【0037】
ステップS2~S6の判別処理の結果、出力電流Iが第2閾値Ith02よりも大きく、かつ、第2バッテリ15のSOCが高充電率閾値よりも大きければ、制御部32は、第1スイッチSW1をオン、第2スイッチSW2をオフする(ステップS8)。出力電流Iが第2閾値Ith02よりも大きく、定格出力に近い状態でも、第2バッテリ15の充電率が高い状態であれば、電圧変換器12から第2バッテリ15へ充電電流が引き込まれることはほとんどない。さらに、第2バッテリ15は、電気機器41及び補機42に駆動電流を供給するように作用する。したがって、このような場合に、制御部32は、ステップS8の切り替えを行うことで、電源ラインLpwに接続された大きな負荷に対応して、第2バッテリ15と電圧変換器12との両方から電流供給を行うことができる。第1スイッチSW1を介して第2バッテリ15から電流を送ることで、低損失に電流を送ることができる。
【0038】
ステップS2~S6の判別処理の結果、出力電流Iが第1閾値Ith01から第2閾値Ith02の間であり、かつ、第2バッテリ15のSOCが中充電率閾値以下であれば、制御部32は、第1スイッチSW1をオフにする(ステップS9)。さらに、この条件で、制御部32は、第2スイッチSW2をオフ又は低いオンデューティでスイッチング制御する(ステップS9)。出力電流Iがこの範囲にあるとき、
図2に示したように、出力電流Iが増えるほど電力の変換効率が低下する。また、第2バッテリ15の充電率が低いときには、第2バッテリ15の充電率がより低下することを避けた方が好ましい。これらのことから、制御部32は、ステップS9の切り替えを行うことで、電圧変換器12の変換効率がより低下されることの抑制と、第2バッテリ15のSOCがより低下することの抑制との両方を図ることができる。
【0039】
なお、ステップS9で制御部32が第2スイッチSW2をスイッチング制御する場合、出力電流Iが大きくなるほど、あるいは、第2バッテリ15のSOCが大きくなるほど、スイッチング制御のオンデューティを低下させる制御を行ってもよい。
【0040】
ステップS2~S6の判別処理の結果、出力電流Iが第1閾値Ith01から第2閾値Ith02の間であり、かつ、第2バッテリ15のSOCが中充電率閾値よりも大きければ、制御部32は、第1スイッチSW1をオン、第2スイッチSW2をオフする(ステップS10)。出力電流Iがこの範囲にあるとき、変換効率がより低くならないように、出力電流Iを増大させない方が好ましい。一方、高負荷により電源ラインLpwの電圧が比較的に低く、かつ、第2バッテリ15の充電率が低くなければ、電源ラインLpwから第2バッテリ15へ充電電流が引き込まれることは余りなく、逆に、第2バッテリ15から負荷へ駆動電流が供給されやすい。このため、制御部32は、ステップS10の切り替えを行うことで、電圧変換器12の変換効率の低下を抑制することができる。さらに、第2スイッチSW2のスイッチング制御は、それ自体、電力の消費が生じるので、スイッチング制御を行わないことで、車両1の燃費又は電費の向上に寄与することができる。
【0041】
ステップS2~S6の判別処理の結果、出力電流Iが第1閾値Ith01以下であり、かつ、第2バッテリ15のSOCが中充電率閾値以下であれば、制御部32は、第1スイッチSW1をオフ、第2スイッチSW2を高いオンデューティでスイッチング制御する(ステップS11)。出力電流Iがこの範囲にあるとき、電圧変換器12の出力には余裕がある。また、第2バッテリ15の充電率が上記条件のように低ければ、第2バッテリ15の充電率を上げた方が好ましい。したがって、制御部32は、ステップS11の切り替えを行うことによって、電圧変換器12の余裕分を用いて、第2バッテリ15の速やかな受電率の改善を図ることができる。
【0042】
なお、ステップS11で制御部32が第2スイッチSW2をスイッチング制御する場合、出力電流が小さくなるほど、あるいは、第2バッテリ15のSOCが小さくなるほど、スイッチング制御のオンデューティを上昇させる制御を行ってもよい。
【0043】
ステップS2~S6の判別処理の結果、出力電流Iが第1閾値Ith01以下であり、かつ、第2バッテリ15のSOCが中充電率閾値よりも大きければ、制御部32は、第1スイッチSW1をオン、第2スイッチSW2をオフする(ステップS12)。この条件は、電圧変換器12の出力にも、第2バッテリ15の充電率にも、余裕があることを示している。したがって、制御部32は、ステップS12の切り替えを行うことで、電気機器41及び補機42に効率的に駆動電流を供給し、かつ、電気機器41又は補機42が一時的に大電流を要求したときにも、これに対応することを可能としている。すなわち、オン状態の第1スイッチSW1に電流を流すほうが電力用ダイオードD1に電流を流すよりも、低損失に電力を伝送できる。また、第2スイッチSW2のスイッチング制御はそれ自体に電力の消費が生じる。このため、ステップS12の切り替えにより、電気機器41及び補機42への電力伝送の効率化が図れる。
【0044】
制御部32は、ステップS7からステップS12のいずれか1つを実行したら、処理をステップS1に戻して、ステップS1からのループ処理を繰り返す。そして、車両1の電源がオフされてシステムが終了すると、充電制御処理が終了する。
【0045】
以上のように、本実施形態の車両1及びバッテリ充電制御装置(電流調整回路5及び制御部32)によれば、電圧変換器12から第2バッテリ15に送られる充電電流を減少させる(絞る)ことが可能な電流調整回路5を有する。さらに、制御部32が電圧変換器12の出力電流に基づいて電流調整回路5を制御する。したがって、電気機器41及び補機42の消費電力に変動があっても、制御部32が、第2バッテリ15の充電電流を増減させることで、電圧変換器12のトータルの出力電流を調整することができる。これにより、過大でない定格出力を有する電圧変換器12が適用されても、電圧変換器12をその定格出力に応じた適正な動作点で動かせる割合が増し、電源ラインLpwの電圧が異常なレベルで低下するといった不都合、又は、電圧変換器12の変換効率が非常に低下するといった不都合を抑制できる。また、定格出力の低い電圧変換器12を採用できることで、電圧変換器12の搭載スペースの削減、電圧変換器12の重量の低減、並びに、電圧変換器12のコストの低減を図ることができる。
【0046】
さらに、本実施形態の車両1及びバッテリ充電制御装置によれば、電流調整回路5に、第1スイッチSW1と、平滑用フィルタ51及び第2スイッチSW2と、電力用ダイオードD1とが含まれる。したがって、第1スイッチSW1をオンすることで、第2バッテリ15と電源ラインLpwとの間で低損失に電力を伝送できる。さらに、第2スイッチSW2をスイッチング制御することで、電流を減少させて(絞って)、電圧変換器12の出力から第2バッテリ15を充電することができる。加えて、第1スイッチSW1をオフさせることにより第2バッテリ15の充電が制限されている状態で、電気機器41又は補機42が一時的に大電流を必要としたとき、電力用ダイオードD1を介して、第2バッテリ15から電源ラインLpwへ電流を送って、大電流の一部を補うことができる。すなわち、このような電流調整回路5によって、第2バッテリ15のSOCと電圧変換器12の出力電流Iの大きさが異なる複数の状況に適した電流制御を実現できる。
【0047】
さらに、本実施形態の車両1及びバッテリ充電制御装置によれば、制御部32は、出力電流Iと第1閾値Ith01との比較結果に基づき、電流調整回路5を介して第2バッテリ15に流れる充電電流を減少させる量(絞る量)を変化させる(
図3のステップS3、S9、S11を参照)。このような制御により、電圧変換器12の変換効率の低下を抑制した第2バッテリ15の充電制御を実現できる。
【0048】
さらに、本実施形態の車両1及びバッテリ充電制御装置によれば、制御部32は、第2バッテリ15のSOCに応じて、電流調整回路5を介して第2バッテリ15に流れる充電電流を減少させる量(絞る量)を切り替える(
図3のステップS5、S9、S10、あるいは、ステップS6、S11、S12を参照)。このような制御により、電圧変換器12の変換効率と第2バッテリ15のSOCとの両方を考慮した、第2バッテリ15の充電制御を実現できる。
【0049】
さらに、本実施形態の車両1及びバッテリ充電制御装置によれば、制御部32は、出力電流Iと第2閾値Ith02との比較結果に基づき、電流調整回路5を制御して第2バッテリ15の充電の実行と非実行とを切り替える(
図3のステップS2、ステップS2のYESのシーケンスと、NOのシーケンスとを参照)。このような制御により、負荷に対して小さめの定格出力を有する電圧変換器12が適用され、電圧変換器12の出力が定格出力に近づいたような場合でも、電圧変換器12から第2バッテリ15へ充電電流が流れないようにして、電圧変換器12の出力電圧が異常なレベルに低下してしまうことを抑制できる。
【0050】
以上、本発明の実施形態について説明した。しかし、本発明は上記実施形態に限られない。例えば、上記実施形態では、制御部32は、電圧変換器12の出力電流Iに基づいて電流調整回路5を制御する構成を示した。しかし、電圧変換器12の出力電流Iは、電気機器41及び補機42に供給されるトータルの電流値(負荷電流)、電圧変換器12の出力電圧、電気機器41及び補機42の駆動状況(負荷の駆動状況)と相関を有する。したがって、制御部32は、出力電流Iの代わりに、あるいは、出力電流Iに加えて、負荷電流、電圧変換器12の出力電圧、負荷の駆動状況のいずれか1つ又は複数に基づいて、同様に電流調整回路5を制御してもよい。その際、実施形態で示した出力電流Iについての第1閾値Ith01と第2閾値Ith02とは、電流調整回路5を制御するパラメータに対応した値又は条件に変更すればよい。また、上記実施形態では、第2スイッチSW2のスイッチング動作により、第2バッテリ15の充電電流を減少させる構成として、
図1の例を一具体例として示したが、平滑用フィルタ51の回路構成、並びに、第2スイッチSW2と平滑用フィルタ51との接続形態等は、適宜変更可能である。その他、実施形態で示した細部は、発明の趣旨を逸脱しない範囲で適宜変更可能である。
【符号の説明】
【0051】
1 車両
2 駆動輪
3 走行モータ
5 電流調整回路
51 平滑用フィルタ
SW1 第1スイッチ
SW2 第2スイッチ
D1 電力用ダイオード
11 第1バッテリ
12 電圧変換器
13 インバータ
15 第2バッテリ
15a 検出部
31 走行制御部
32 制御部
Lpw 電源ライン