(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-11-18
(45)【発行日】2022-11-29
(54)【発明の名称】ガスクラスターイオンビーム装置、分析装置
(51)【国際特許分類】
H01J 27/20 20060101AFI20221121BHJP
H01J 37/08 20060101ALI20221121BHJP
H01J 37/30 20060101ALI20221121BHJP
H01J 27/02 20060101ALI20221121BHJP
G01N 23/2273 20180101ALI20221121BHJP
G01N 23/2202 20180101ALI20221121BHJP
【FI】
H01J27/20
H01J37/08
H01J37/30 Z
H01J27/02
G01N23/2273
G01N23/2202
(21)【出願番号】P 2019061228
(22)【出願日】2019-03-27
【審査請求日】2022-01-28
(73)【特許権者】
【識別番号】596043379
【氏名又は名称】アルバック・ファイ株式会社
(74)【代理人】
【識別番号】110003339
【氏名又は名称】弁理士法人南青山国際特許事務所
(74)【代理人】
【識別番号】100104215
【氏名又は名称】大森 純一
(74)【代理人】
【識別番号】100196575
【氏名又は名称】高橋 満
(74)【代理人】
【識別番号】100168181
【氏名又は名称】中村 哲平
(74)【代理人】
【識別番号】100144211
【氏名又は名称】日比野 幸信
(72)【発明者】
【氏名】十河 真生
(72)【発明者】
【氏名】山瑞 拡路
(72)【発明者】
【氏名】坂井 大輔
(72)【発明者】
【氏名】渡邉 勝己
【審査官】中尾 太郎
(56)【参考文献】
【文献】特開2000-087227(JP,A)
【文献】特表2003-505867(JP,A)
【文献】特表2003-527614(JP,A)
【文献】特開2008-116363(JP,A)
【文献】特開2010-245043(JP,A)
【文献】Hagena O. F. et al.,Cluster Formation in Expanding Supersonic Jets: Effect of Pressure, Temperature, Nozzle Size, and Test Gas,The Journal of Chemical Physics,米国,American Institute of Physics,1972年,56・5,1793-1802
(58)【調査した分野】(Int.Cl.,DB名)
H01J 27/20
H01J 37/08
H01J 37/30
H01J 27/02
G01N 23/2273
G01N 23/2202
(57)【特許請求の範囲】
【請求項1】
ノズル支持体によって支持されたノズルの噴出孔からソースガスが噴出されて形成されたガスクラスターが内部を飛行するイオン化室と、
前記イオン化室内を飛行する前記ガスクラスターに熱電子を照射し、ガスクラスターイオンを生成するイオン化用フィラメントと、
を有し、前記ガスクラスターイオンから成るガスクラスターイオンビームが前記イオン化室の外部に射出されるガスクラスターイオンビーム装置であって、
冷却体と、前記冷却体を所定温度に冷却する冷却装置と、前記ノズルに前記ソースガスを供給するガス配管と、前記ソースガスを加熱するガス加熱装置と、
前記ガスクラスターイオンビームが照射される試料が配置される試料室と、
前記試料の表面の物理量を測定する測定装置とを有し、
前記ノズル支持体と前記イオン化室とは互いに非接触にされると共に前記冷却体に接触され、前記ノズルから噴出される前記ソースガスの温度が制御される分析装置。
【請求項2】
前記ノズルに供給される前記ソースガスの圧力を制御する圧力制御装置が設けられた請求項1記載の分析装置。
【請求項3】
内部に前記ノズル支持体が配置され真空排気される噴出槽と、
内部に前記イオン化室が配置され真空排気されるイオン化槽と、を有し、
前記噴出槽と前記イオン化槽とは互いに非接触にされると共に前記冷却体に接触された請求項1又は請求項2のいずれか1項記載の分析装置。
【請求項4】
前記冷却体には前記冷却装置で冷却された冷却水が循環されて前記冷却体が冷却される請求項1乃至請求項3のいずれか1項記載の分析装置。
【請求項5】
ノズル支持体によって支持されるノズルの噴出孔からソースガスが噴出されて形成されたガスクラスターが内部を飛行するイオン化室と、
前記イオン化室内を飛行する前記ガスクラスターに熱電子を照射し、ガスクラスターイオンを生成するイオン化用フィラメントと、
を有し、前記ガスクラスターイオンから成るガスクラスターイオンビームが前記イオン化室の外部に射出されるガスクラスターイオンビーム装置であって、
冷却体と、前記冷却体を所定温度に冷却する冷却装置と、前記ノズルに前記ソースガスを供給するガス配管と、前記ソースガスを加熱するガス加熱装置と、
を有し、
前記ノズル支持体と前記イオン化室とは互いに非接触にされると共に前記冷却体に接触され、前記ノズルから噴出される前記ソースガスの温度が制御されるガスクラスターイオンビーム装置。
【請求項6】
前記ノズルに供給される前記ソースガスの圧力を制御する圧力制御装置が設けられた請求項5記載のガスクラスターイオンビーム装置。
【請求項7】
内部に前記ノズル支持体が配置され真空排気される噴出槽と、
内部に前記イオン化室が配置され真空排気されるイオン化槽と、を有し、
前記噴出槽と前記イオン化槽とは互いに非接触にされると共に前記冷却体に接触された請求項5又は請求項6のいずれか1項記載のガスクラスターイオンビーム装置。
【請求項8】
前記冷却体には前記冷却装置で冷却された冷却水が循環されて前記冷却体が冷却される請求項5乃至請求項7のいずれか1項記載のガスクラスターイオンビーム装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、表面分析に用いるガスクラスターイオンビーム装置に係り、特にガスクラスターイオンビーム装置のクラスターサイズの制御とビーム電流の安定を実現する技術に関する。
【背景技術】
【0002】
従来よりガスクラスターイオンビーム(GCIB)銃は基板表面の清浄化、平滑化、ドーピング、エッチングなどの表面処理に用いられている。特に、表面分析装置の分野では、低損傷のスパッタリング銃として広く用いられている。
【0003】
ガスクラスターは数十から数千個の気体分子の凝集体である。ガスクラスターはノズルから噴出された気体が断熱膨張により凝集されることで生成される。それを電子衝撃等でイオン化してできたものがガスクラスターイオンである。
【0004】
ガスクラスターイオンは電場により加速・収束されて試料に照射されるが、気体分子一個当たりのエネルギーは加速電圧をガスクラスター構成分子数で割ったエネルギーとなる。このため、表面処理で用いられるその他のイオン、すなわちAr単原子イオンやGa原子イオン等、と比較して試料表面の損傷が極めて小さくなる。
【0005】
GCIB銃を表面分析装置の分野で用いられるスパッタリングイオン銃として適応するためには、ビーム電流およびクラスターサイズの制御が必要である。
【0006】
表面分析装置ではスパッタリングイオン銃を用いて深さ方向分析を行う。深さ方向分析とは、スパッタリングイオン銃により試料表面を削ることと表面の状態分析を繰り返し行うことで、各深さでの状態の情報を取得する手法であり、試料がスパッタリングイオン銃によって削られる速度を一定にすることで状態の深さ方向分布を見積もる手法である。
【0007】
GCIB銃では、スパッタリングで試料を削る速度が主にビーム電流とクラスターサイズに依存する。
【0008】
このため、表面分析装置用GCIB銃では、ビーム電流とクラスターサイズの制御が重要となる。さらに、GCIB銃はこれまで主に有機試料を低損傷で分析することに用いられてきたが、近年クラスターサイズを小さく制御することで無機試料を低損傷で分析することが求められている。
【0009】
実際にクラスターサイズの制御は実現されており、いくつか市販もされている。それらは導入ガスの圧力制御またはマスフィルターといった機能によりクラスターサイズを制御している。
【0010】
しかしながら、導入ガスとイオン化室の温度を効果的に制御してクラスターサイズとビーム電流を制御したGCIB銃はない。
【先行技術文献】
【特許文献】
【0011】
【文献】特開平4-354865号公報
【文献】特開2008-116363号公報
【文献】特開2006-156065号公報
【非特許文献】
【0012】
【文献】Boldarev, A. S., et al., Rev. Sci. Instr. 77, 083112 (2006)
【文献】Material Science and Engineering R 34 (2001) 231-295.
【発明の開示】
【発明が解決しようとする課題】
【0013】
本発明は、各種の表面分析において、有機無機材料やその複合体からなる様々な種類の試料に対して、損傷を抑制しながら試料の深さ方向の分析を実現することを課題とする。
【課題を解決するための手段】
【0014】
ガスクラスターイオンビーム(GCIB)のクラスターサイズの制御の原理を説明する。
【0015】
(1)ガスクラスターサイズ
ガスクラスターサイズNは下記の(式1)によって表される。
【0016】
N = 33(Γ*/1000)2.35 …… (式1)
但し、Γ* = kh(0.74d/tanα)0.85P0T0
-2.29
khはビームを生成すべきソースガスのガス種に依存した定数(例えばArでkh =1650, Krでkh =2890)、dはノズルの直径、αはノズル開き角の半角、P0はソースガスの圧力、T0はソースガスの温度である(Boldarev, A. S., et al., Rev. Sci. Instr. 77, 083112 (2006) 式(1),(2))。圧力P0はソースガスがノズルの噴出口を通過する際の圧力である。
【0017】
ノズル径が変形せず、ガスクラスターが単一種で構成されているか又はその構成比が一定である場合は、上記(式1)から、導入ガスの圧力P0の値と導入ガスの温度T0の値とを制御することでガスクラスターサイズNを制御できることが分かる。
【0018】
(2)GCIBのビーム電流
ガスクラスターイオンビームの電流値は中性のガスクラスターの生成量とガスクラスターのイオン化効率により制御する。
【0019】
中性のガスクラスターイオンビームの強度Iは(式2)によって表される。
【0020】
I ∝ P0d(Tb/T0)(γ/(γ-1)) ……(式2)
Tbはソースガスの沸点、γはソースガスの比熱である(アルゴンガスでTbは87.30K、γは4.987[cal/mol・℃])。(Material Science and Engineering R 34 (2001) 231-295. (式2.6))
上記(式2)から、ノズル径dがソースガスの圧力P0と温度T0とにより変形せずに、また、ソースガスに単一種または構成比一定のガス種を使用する場合にはソースガスの圧力P0と温度T0とを制御すればガスクラスターの生成量を制御することができることが分かる。
【0021】
Ar原子をイオン化する場合のように、電子衝撃によってソースガスをイオン化する場合のイオン化効率は、熱電子を生成するイオン化用フィラメントに流すエミッション電流と電子を加速するためのイオン化電圧によって制御することができる。
【0022】
ガスクラスターを電子衝撃によってイオン化する場合のイオン化効率は、エミッション電流とイオン化電圧に加えて、クラスターサイズNを制御することにより制御することができる。
【0023】
これはガスクラスターのイオン化効率がガスクラスターの断面積つまりガスクラスターサイズNの2/3乗に比例するためである。ここで、ガスクラスターサイズNは(式1)で表されており、制御可能であるから、ガスクラスターのイオン化効率も制御可能である(Material Science and Engineering R 34 (2001) 231-295. (Fig.9))
【0024】
(3) 温度制御方法
ガスクラスターの生成過程で断熱膨張する際のソースガスの温度T0を制御するためにはノズルからソースガスを噴出させる直前のソースガスの温度を制御することが効果的である。
つまり、ガス導入路のうち、ソースガスがノズルに到達する直前に通過する部分の温度を制御することで断熱膨張する際のソースガスの温度制御が可能となり、また装置の小型化も可能となる。
【0025】
ソースガスを温度制御するためには、加熱だけではなく冷却も重要である。これはヒーターによって加熱したノズルは真空中では冷えにくく、ノズルの温度を下げることが困難なためであり、ノズルやノズルが配置されたノズル支持体を冷却することで、ノズルから噴出される際のソースガスを冷却することができ、クラスターイオンの安定したイオン化を効果的に実現することができる。
【0026】
イオン化室の温度を低温に保つと、イオン化用フィラメントの汚染や損傷が低減されるので、イオン化用フィラメントの長寿命化にも寄与する。また熱影響による立上げ直後のガスクラスターイオンビームの強度の変動も抑制することが可能となる。
【0027】
上記課題を解決するため、本発明は、ノズル支持体によって支持されたノズルの噴出孔からソースガスが噴出されて形成されたガスクラスターが内部を飛行するイオン化室と、前記イオン化室内を飛行する前記ガスクラスターに熱電子を照射し、ガスクラスターイオンを生成するイオン化用フィラメントと、を有し、前記ガスクラスターイオンから成るガスクラスターイオンビームが前記イオン化室の外部に射出されるガスクラスターイオンビーム装置であって、冷却体と、前記冷却体を所定温度に冷却する冷却装置と、前記ノズルに前記ソースガスを供給するガス配管と、前記ソースガスを加熱するガス加熱装置と、前記ガスクラスターイオンビームが照射される試料が配置される試料室と、前記試料の表面の物理量を測定する測定装置とを有し、前記ノズル支持体と前記イオン化室とは互いに非接触にされると共に前記冷却体に接触され、前記ノズルから噴出される前記ソースガスの温度が制御される分析装置である。
本発明は、前記ノズルに供給される前記ソースガスの圧力を制御する圧力制御装置が設けられた分析装置である。
本発明は、内部に前記ノズル支持体が配置され真空排気される噴出槽と、内部に前記イオン化室が配置され真空排気されるイオン化槽と、を有し、前記噴出槽と前記イオン化槽とは互いに非接触にされると共に前記冷却体に接触された分析装置である。
本発明は、前記冷却体には前記冷却装置で冷却された冷却水が循環されて前記冷却体が冷却される分析装置である。
本発明は、ノズル支持体によって支持されるノズルの噴出孔からソースガスが噴出されて形成されたガスクラスターが内部を飛行するイオン化室と、前記イオン化室内を飛行する前記ガスクラスターに熱電子を照射し、ガスクラスターイオンを生成するイオン化用フィラメントと、を有し、前記ガスクラスターイオンから成るガスクラスターイオンビームが前記イオン化室の外部に射出されるガスクラスターイオンビーム装置であって、冷却体と、前記冷却体を所定温度に冷却する冷却装置と、前記ノズルに前記ソースガスを供給するガス配管と、前記ソースガスを加熱するガス加熱装置と、を有し、前記ノズル支持体と前記イオン化室とは互いに非接触にされると共に前記冷却体に接触され、前記ノズルから噴出される前記ソースガスの温度が制御されるガスクラスターイオンビーム装置である。
本発明は、前記ノズルに供給される前記ソースガスの圧力を制御する圧力制御装置が設けられたガスクラスターイオンビーム装置である。
本発明は、内部に前記ノズル支持体が配置され真空排気される噴出槽と、内部に前記イオン化室が配置され真空排気されるイオン化槽と、を有し、前記噴出槽と前記イオン化槽とは互いに非接触にされると共に前記冷却体に接触されたガスクラスターイオンビーム装置である。
本発明は、前記冷却体には前記冷却装置で冷却された冷却水が循環されて前記冷却体が冷却されるガスクラスターイオンビーム装置である。
【0028】
ノズルに供給されるソースガスの温度とノズルから噴出されるソースガスの温度とは等しいから、ガス配管の噴出槽内に位置する部分のうち、ノズルに近い近接部分を加熱することにより、ノズルに供給されるソースガスが加熱され、ノズルから噴出されるソースガスが加熱されることになる。
【0029】
従って、近接部分の温度を測定して近接部分の温度が一定温度を維持するように制御することで、ノズルに供給されるソースガスの温度が制御され、その結果、ノズルから噴出されるソースガスの温度が制御され、ガスクラスターイオンのサイズが一定値に維持される。
【0030】
更に、ソースガスが噴出孔から噴出される際の圧力が一定圧力を維持するように制御されると、更にガスクラスターサイズが一定値に維持される。
【発明の効果】
【0031】
ガスクラスターイオンのサイズとガスクラスターイオンビームの電流値とを一定値に維持することができるので、試料のスパッタリング速度が安定し、高精度の深さ方向分析を行うことができる。
【図面の簡単な説明】
【0032】
【
図1】本発明の一例のガスクラスターイオンビーム装置
【
図2】ガスクラスターイオンビーム装置を有するスパッタリング装置の一例
【
図3】ガスクラスターイオンビーム装置を有する分析装置の一例
【
図4】ガスクラスターイオンビーム装置を有する分析装置の他の例
【
図5】(a)、(b):ビーム電流値と時間の関係を示すグラフ (c)、(d):噴出槽及びイオン化用フィラメントを取り付けるフランジの温度と時間の関係を示すグラフ
【
図6】(a):ガスクラスターイオンサイズと圧力の関係を示すグラフ (b):ビーム電流値と圧力の関係を示すグラフ
【
図7】ガスクラスターイオンビームの電流値とガスクラスターイオンサイズとの関係を示すグラフ
【発明を実施するための最良の形態】
【0033】
図1の符号2は本発明の一例のガスクラスターイオンビーム装置であり、噴出部3とイオン化部4と冷却体18とを有している。噴出部3は内部に真空雰囲気が形成される噴出槽5を有しており、イオン化部4は、内部に真空雰囲気が形成されるイオン化槽6を有している。噴出槽5の内部にはノズル支持体13が配置されており、イオン化槽6の内部にはイオン化室14が配置されている。
【0034】
冷却体18は環状形の平板形形状であり、冷却体18の中央には貫通孔である通過孔28が設けられている。
【0035】
冷却体18の四面のうち、外周側面と内周側面とは曲面であり、他の二面は平面であり、噴出槽5とイオン化槽6とノズル支持体13とイオン化室14とは、それぞれ筒形形状である。噴出槽5の開口の縁とノズル支持体13の開口の縁とは、冷却体18の表面のうちの同じ一平面にそれぞれ接続されている。符号47は、その一平面を示している。
【0036】
他方、イオン化槽6の開口の縁とイオン化室14の開口の縁とは、冷却体18の表面のうちの反対側の一平面48にそれぞれ接続されて、イオン化室14はセラミック製支持体40によって冷却体18に固定されている。
【0037】
ここでは、ノズル支持体13は冷却体18に固定されており、また、不図示の部材によって噴出槽5に固定されている。ノズル支持体13の重量は噴出槽5と冷却体18とによって支持されている。
【0038】
噴出槽5とイオン化槽6との外部にはソースガスが充填されたガス源32が配置されている。ここではソースガスにはアルゴンガスが用いられているが、他の希ガスや窒素ガス、酸素ガス等のガスを用いることができる。
【0039】
噴出槽5とノズル支持体13とは有底であり、噴出槽5の底面にはガス源32に接続されたガス配管31が気密に挿通され、ノズル支持体13の底面には、ノズル支持体13の内部に配置されたノズル17が固定されており、ガス配管31の先端はノズル支持体13の底面においてノズル17に接続されている。
【0040】
ガスクラスターイオンビーム装置2は制御装置8を有しており、ガス源32は制御装置8によって動作が制御され、圧力制御されたソースガスがノズル17に供給されるようになっている。
【0041】
ノズル17にはガス配管31の内部とノズル支持体13の内部とを接続する噴出孔26が設けられている。
【0042】
噴出槽5又はイオン化槽6の少なくとも一方には真空排気装置49が接続されている。真空排気装置49は制御装置8によって制御されており、真空排気装置49が制御装置8によって制御されて動作すると、噴出槽5とイオン化槽6とノズル支持体13とイオン化室14との内部は真空排気され、真空雰囲気が形成され、制御装置8によってガス源32が動作され、ソースガスがガス配管31を通過してノズル17に供給されると噴出孔26からノズル支持体13の内部に形成された真空雰囲気中にソースガスが噴出される。
【0043】
ノズル17から噴出されたソースガスの分子又は原子は断熱膨張によって速度が同一の値となり、ソースガスの分子又は原子から成るソースガス粒子は並進して高密度になり、ファンデルワールス力によりソースガス粒子が凝集して中性のガスクラスターが生成される。
【0044】
冷却体18の二個の平面47,48のうち、噴出槽5の開口とノズル支持体13との開口とが接続された一平面47には、貫通孔27を有するスキマー34が取り付けられている。
【0045】
貫通孔27は、ノズル支持体13の内部に位置しており、ノズル17の噴出孔26は貫通孔27に向けられている。
【0046】
噴出孔26と貫通孔27と通過孔28とは、中心軸線が一致するように一直線に並んで配置されており、形成された中性のガスクラスターの流れは、周辺部分がスキマー34によって除去され、中心部分がビーム状に成形されて貫通孔27と通過孔28とを通過する。
【0047】
イオン化室14の壁のうち、冷却体18側には入口孔29が形成され、その反対側には出口孔30が形成されており、入口孔29は通過孔28と対面して配置されており、ガスクラスタービームの進行方向には入口孔29が位置している。
【0048】
イオン化室14のうち入口孔29が形成された壁と出口孔30が形成された壁との間には、イオン化用フィラメント23が配置されている。
【0049】
イオン化槽6の外部には加熱電源25aが配置されており、イオン化槽6には、熱電子用導入端子39aが設けられている。イオン化用フィラメント23は熱電子用導入端子39aを介して加熱電源25aに電気的に接続されており、制御装置8によって加熱電源25aが動作を開始すると加熱電源25aからイオン化用フィラメント23に電流が供給されてイオン化用フィラメント23を流れ、イオン化用フィラメント23が加熱される。
【0050】
噴出槽5と、イオン化槽6と、ノズル支持体13とは接地電位に接続されており、イオン化室14はセラミック製支持体40により接地電位と絶縁されている。イオン化室14は、加速電圧(正電圧)が印加されており、イオン化用フィラメント23には加速電圧を基準としたイオン化電圧(負電圧)が印加されており、イオン化用フィラメント23が所定温度に昇温されるとイオン化用フィラメント23からイオン化室14の内部に熱電子が放出される。
【0051】
スキマー34によってビーム状に成形されたガスクラスターは入口孔29からイオン化室14の内部に入射し、イオン化室14の内部を走行する間に放出された熱電子が照射され、ガスクラスターが電子と衝突するとイオン化してガスクラスターのイオンが生成される。
【0052】
イオン化室14の出口孔30が位置する部分の外側には、引出電極35が配置されている。
【0053】
形成されたガスクラスターのイオンは引出電極35に印加された加速電圧を基準として引出電圧(負電圧)によって吸引され、出口孔30からガスクラスターイオンビームとしてイオン化室14の外部に引き出され、さらに加速電圧によって加速される。
【0054】
加速されたガスクラスターイオンビームの走行先にはウィーンフィルタ36とベンド電極37とがこの順序で配置されている。
【0055】
ウィーンフィルタ36に印加される電圧とベンド電極37に印加される電圧とは制御装置8によって制御されており、ガスクラスターイオンビーム中のガスクラスターイオンは、ウィーンフィルタ36に印加される電圧によってArモノマーイオン(原子イオン)が除去され、ベンド電極37に印加される電圧によってイオンの方向が曲げられて中性のガス粒子が除去され、単一種類のイオンから成るガスクラスターイオンビームが絞り穴38を通過する。
【0056】
絞り穴38を通過したガスクラスターイオンビームはガスクラスターイオンビーム装置2から射出され、試料に照射されると、試料表面がスパッタリングされる。
【0057】
図2の符号12aは上記ガスクラスターイオンビーム装置2を有するスパッタリング装置の例であり、
図3の符号12bと
図4の符号12cとは、上記ガスクラスターイオンビーム装置2を有する分析装置の例である。
図2と後述する
図3、4では制御装置8と制御装置8が制御する装置との電気的接続は省略する。
【0058】
図2のスパッタリング装置12aと
図3、4の分析装置12b、12cとでは、絞り穴38よりもガスクラスターイオンビームの下流側に収束偏向槽53が配置されている。
【0059】
収束偏向槽53の内部には集束レンズ51と偏向電極54とが配置されている。集束レンズ51に印加される電圧・電流と偏向電極54に印加される電圧・電流とは制御装置8によって制御されている。
【0060】
収束偏向槽53は絞り穴38を通過したガスクラスターイオンビームが入射する位置に配置されており、ガスクラスターイオンビーム装置2から射出されたガスクラスターイオンビームは収束偏向槽53の内部に入射し、集束レンズ51によって収束され、偏向電極54により飛行方向が調整されて試料55、65、75へと照射される。ここでは試料55、65、75上での照射領域の大きさと形状は偏向電極54により制御することができる。
【0061】
曲げられたガスクラスターイオンビームの進行方向には、試料室52、62、72が配置されている。試料室52、62、72は真空排気装置58、68、78によって真空排気され、真空雰囲気が形成されている。
【0062】
試料室52、62、72の内部には試料55、65、75が配置されており、試料室52、62、72の内部に入射したガスクラスターイオンビームは試料55、65、75の表面に照射され、試料55、65、75の表面がスパッタリングされ、真空雰囲気内で新しい表面を露出させる。
【0063】
従って、試料室52、62、72に試料55、65、75の表面を分析する分析装置を設けておくと、試料55、65、75の深さ方向の分析を行うことができる。
【0064】
ところで、イオン化用フィラメント23が発熱するとイオン化用フィラメント23が配置されたイオン化室14は高温に昇温する。イオン化室14が昇温するとイオン化室14の熱放射によってイオン化槽6の温度も昇温する。従って、イオン化室14とノズル支持体13の間や、イオン化槽6と噴出槽5との間に熱伝導があった場合はノズル支持体13や噴出槽5が昇温してしまう。
【0065】
噴出槽5とイオン化槽6とノズル支持体13とセラミック製支持体40とは冷却体18に接触されており、イオン化室14の重量はセラミック製支持体40を介して冷却体18によって支持されている。
【0066】
イオン化室14は噴出槽5とノズル支持体13とは非接触にされ、また、イオン化槽6も噴出槽5とノズル支持体13とは非接触にされている。要するに、ノズル支持体13は、イオン化室14とイオン化槽6とから分離されており、イオン化室14とイオン化槽6とから熱伝導による熱は伝達されないようになっている。
【0067】
冷却体18は冷却装置19に接続され、冷却装置19から冷却水が供給されている。冷却体18の内部には空洞から成る液体通路が設けられており、冷却体18に供給された冷却水は液体通路を流れて熱交換して昇温した後、冷却装置19に戻って冷却されて冷却体18に供給される。
【0068】
冷却体18には冷却用温度センサ45が設けられており、冷却体18の温度は冷却用温度センサ45によって測定され、制御装置8は、冷却体18の温度が予め設定された設定温度を維持するように、冷却装置19によって冷却する冷却水の温度を制御する。
【0069】
但し、冷却水の温度は制御装置8により冷却装置19に設けられたセンサによって測定し、制御装置8は冷却水の温度が予め記憶された温度になるように冷却装置19を動作させることで、冷却体18を設定温度にしてもよい。
【0070】
その結果、冷却体18は室温よりも冷却され、イオン化室14とイオン化槽6とが高温に昇温しても、イオン化槽6やイオン化室14への熱伝導は無く、ノズル支持体13に熱が伝導されないようになっている。
【0071】
ガス源32には圧力制御装置10が設けられている。制御装置8にはソースガスの圧力値が設定されており、圧力制御装置10は、ガス源32からノズル17に供給されるソースガスの圧力値を、制御装置8に設定された圧力値になるように制御する。
【0072】
ガス配管31には、ガス配管31を加熱するガス加熱装置15が設けられている。ここでは、ガス加熱装置15はガス配管31に接触された金属ブロック21と、金属ブロック21を加熱する抵抗加熱ヒータ22とを有している。噴出槽5の外部には加熱用電源25bが配置されており、抵抗加熱ヒータ22は電流導入端子39bを介して加熱用電源25bに電気的に接続されている。
【0073】
加熱用電源25bが出力する電力は制御装置8によって制御されており、抵抗加熱ヒータ22が通電されて発熱すると、ガス配管31は加熱される。
【0074】
ガス配管31のノズル17に接続された部分の近傍を近接部分20とすると、近接部分20の温度は、噴出孔26を取り囲むノズル17の部分の温度と同じ温度になっており、近接部分20の温度を制御することで、ノズル17の噴出孔26を制御するようになっている。
【0075】
ここでは、近接部分20は金属ブロック21の内部に配置されており、近接部分20の外周は金属ブロック21に接触されている。
【0076】
抵抗加熱ヒータ22は金属ブロック21の内部に配置されており、抵抗加熱ヒータ22が発熱すると、金属ブロック21が加熱され、昇温した金属ブロック21によって近接部分20が加熱される。
【0077】
近接部分20には制御装置8に接続された温度センサ44が設けられており、制御装置8は温度センサ44によって近接部分20の温度を測定し、測定された温度が記憶された所定の温度に一致するように加熱用電源25bを制御して抵抗加熱ヒータ22を発熱させる。
【0078】
ここで、噴出槽5とノズル支持体13とは、室温(ここでは27℃とする)よりも低温に冷却された冷却体18に接触して冷却されているので、冷却体18が冷却されているときに加熱用電源25bを停止させると近接部分20や噴出孔26の周囲は室温よりも低温に冷却される。
【0079】
冷却体18が0℃以下に冷却されているときに加熱用電源25bによって抵抗加熱ヒータ22に通電されて抵抗加熱ヒータ22を発熱させると、近接部分20の温度を0℃以上300℃以下の温度に維持することができる。
【0080】
ガスクラスターのサイズを表面分析に適切な大きさにするためには、ノズルから噴出されるソースガスの温度を10℃以上100℃以下の一定温度に制御することが望ましい。
【0081】
制御装置8には室温が所定温度として記憶されており、制御装置8によって抵抗加熱ヒータ22が電流制御されながら通電され、近接部分20を室温に近い温度にすることができる。
【0082】
また、ノズル17に供給されるソースガスの圧力は、圧力制御装置10によって所定圧力を維持するように制御されており、イオン化室14やイオン化槽6の温度が変化しても、ノズル17から噴出されるソースガスの温度は変化せず、また、ガス源32に充填されたソースガスの圧力が変化してもノズル17から噴出されるソースガスの圧力は変化しないようになっている。
【0083】
そのため、ガスクラスターイオンビーム強度(ガスクラスターイオンビームの電流値)やガスクラスターイオンのサイズは一定値が維持されるので、ガスクラスターイオンビームが照射される試料55、65、75のスパッタリングレートも一定値に維持される。
【0084】
圧力制御装置10は、供給するソースガスの圧力を200kPa以上2MPa以下の範囲に制御することが可能であり、ガスクラスターのサイズを安定して適切な大きさにするためには300kPa以上1000kPa以下の範囲で一定値に制御することが望ましい。ソースガスの流量は、ここでは5~300ccmに設定されている。
【0085】
圧力制御装置10によって供給するソースガスの圧力を制御することでソースガスが噴出孔26を通過する際の圧力を制御するようになっている。
【0086】
図3の符号12bと
図4の符号12cとは、上記ガスクラスターイオンビーム装置2を有する分析装置の一例であり、試料室62、72には試料65、75の表面分析を行う測定装置60、70が設けられている。測定装置60、70は制御装置8によって制御されている。
【0087】
図3の分析装置12bの測定装置60は、X線源61と、静電半球型エネルギーアナライザーである分析器64とを有しており、X線源61によって真空雰囲気中に配置された試料65の表面にX線が照射されると、試料65の表面のX線が照射された部分から放出された光電子が分析器64に入射する。
【0088】
分析器64が入射した光電子のエネルギー分布を測定し、測定結果を制御装置8に送信すると、制御装置8により、試料65中の元素の同定とその化学結合状態等を表示することができる。
【0089】
測定後、X線の照射を停止し、収束偏向槽53を通過したガスクラスターイオンビームは試料室62に入射し、試料65に照射され、試料65の表面がスパッタリングされ、新しい表面が露出され、X線源61と分析器64とによる測定を行うことができる。このように、測定装置60による表面分析と、ガスクラスターイオンビーム装置2によって試料65の新しい表面の露出とを繰り返すと、試料65の深さ方向の知見が得られる。
【0090】
図4の分析装置12cでは、試料室72に設けられた測定装置70は、一次イオン銃71と分析器74とを有しており、一次イオン銃71によって真空雰囲気中に配置された試料75の表面に一次イオンが照射されると試料75の表面の一次イオンが照射された部分から二次イオンが放射され、分析器74に入射する。
【0091】
ここでは分析器74は飛行時間型二次イオン質量分析装置であり、分析器74に入射した二次イオンは分析器74によって質量分析され、測定結果が制御装置8に送信されると、制御装置8によって試料75の表面に含まれる物質の同定や含有率が表示される。
【0092】
この分析装置12cの場合も、収束偏向槽53を通過したガスクラスターイオンビームは試料室72に入射し、試料75に照射されると試料75の表面がスパッタリングされ、新しい表面が露出されるので、深さ方向の知見が得られる。
【0093】
なお、上記ガスクラスターイオンビーム装置を有する分析装置には、オージェ電子分光法分析装置、オージェ電子回折法分析装置、ラザフォード後方散乱法分析装置等、光電子を用いる分析装置に限定されるものではなく、試料表面にガスクラスターイオンビームを照射して試料の新しい表面を露出させて分析する分析装置が広く含まれる。
【0094】
上記ノズル支持体13は、冷却体18によってイオン化室14との間の熱伝導が遮断されており、イオン化室14からの熱伝導による熱移動が無いようにされているが、イオン化室14から放出された輻射熱が冷却体18の通過孔28とスキマー34の貫通孔27とを通過してノズル支持体13に到達すると、ノズル支持体13は加熱される。
【0095】
ノズル支持体13は真空断熱環境に置かれているので、時間が経過すると温度が上昇する。
【0096】
図5(a)~(d)はアルゴンガスをソースガスに用いた場合の上記ガスクラスターイオンビーム装置2のガス加熱装置15の効果を説明するためのグラフである。
【0097】
図5(a)、(b)は、時間を横軸に記載しガスクラスターイオンビーム電流の電流値(ビーム電流)を縦軸に記載した場合の通電時間とガスクラスターイオンビームの電流値との関係を示すグラフであり、
図5(a)はガス加熱装置15を停止させ冷却装置19による冷却体18の冷却を行ったときの関係を示すグラフであり、
図5(b)は、冷却装置19による冷却体18の冷却とガス加熱装置15によるガス配管31の近接部分20の加熱の両方を行ったときの関係を示すグラフである。
【0098】
図5(a)、(b)を比較すると、
図5(b)の方がビーム電流値の時間変化は小さいことが読み取れ、ガス加熱装置15による温度制御の効果が分かる。
【0099】
図5(c)、(d)は、時間を横軸に記載し、フィラメント取付フランジの温度と噴出槽との温度を縦軸に記載した場合の、時間と温度の関係を示すグラフであり、
図5(a)、(b)と同様に、
図5(c)はガス加熱装置15を停止させ冷却装置19による冷却体18の冷却を行ったときの関係を示すグラフであり、
図5(d)は冷却装置19による冷却体18の冷却とガス加熱装置15によるガス配管31の近接部分20の加熱の両方を行った場合である。
【0100】
図5(c)、(d)の間にはフィラメント取付フランジの温度変化に相違は無いが、
図5(d)の方が噴出槽の温度変動は小さいことは明らかである。
【0101】
図6(a)はソースガス圧力を横軸に記載し、ガスクラスターサイズを縦軸に記載したときの、異なる温度に於ける圧力とガスクラスターサイズの関係を示すグラフであり、温度が低いときや圧力が高いときにはガスクラスターサイズが大きくなり、温度が高いときや圧力が低いときにはガスクラスターサイズが小さくなることが示されている。
【0102】
図6(b)はソースガス圧力を横軸に記載し、ビーム電流値を縦軸に記載したときの、異なる温度に於けるソースガス圧力とビーム電流値の関係を示すグラフであり、温度が低いときや圧力が高いときにはビーム電流値が大きくなり、温度が高いときや圧力が低いときにはビーム電流が小さくなることが示されている。
【0103】
図7は、ビーム電流値を横軸に記載し、ガスクラスターイオンのサイズを縦軸に記載した場合の、異なるイオン化電力に於けるビーム電流値とガスクラスターサイズの関係を示すグラフであり、符号NORはイオン化電流が15mA、イオン化電圧が150Vのときの関係を示しており、符号HPはイオン化電流が40mA、イオン化電圧が250Vのときの関係を示している。
【0104】
イオン化のための投入電力(イオン化電流とイオン化電圧の積)を大きくしたときの方がガスクラスターイオンサイズは小さくなることがわかる。
【0105】
Arのガスクラスターイオンサイズとスパッタ速度の関係を測定した。測定結果を下記表1に示す。
【0106】
【0107】
表1から、ガスクラスターサイズNが450のスパッタ速度は、ガスクラスターサイズNが2500のスパッタ速度の10倍程度であることが分かる。但し、ソースガスがArの場合は、Siに対するスパッタ速度の方がSiO2に対するスパッタ速度よりも大きい(早い)。450の場合の1.3nm/minの値はSiに対するスパッタ速度であり、2500の場合の0.1nm/minの値はSiO2に対するスパッタ速度であることから、450のSiO2に対するスパッタ速度はSiに対するスパッタ速度よりも小さい値になると考えられる。
【0108】
また、450の場合のビーム電流の大きさは、2500の場合の1/4程度であったことから、450のSiO2に対するスパッタ速度は2500のSiO2に対するスパッタ速度の数倍程度の大きさになると予想される。
【符号の説明】
【0109】
2……ガスクラスターイオンビーム装置
5……噴出槽
6……イオン化槽
10……圧力制御装置
12b、12c……分析装置
13……ノズル支持体
14……イオン化室
15……ガス加熱装置
17……ノズル
18……冷却体
19……冷却装置
23……イオン化用フィラメント
26……噴出孔
31……ガス配管
55……試料
52、62、72……試料室