(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-11-18
(45)【発行日】2022-11-29
(54)【発明の名称】計測システム、情報処理装置及び情報処理方法
(51)【国際特許分類】
G01B 11/00 20060101AFI20221121BHJP
G01B 11/24 20060101ALI20221121BHJP
G01B 21/00 20060101ALI20221121BHJP
G01C 15/00 20060101ALI20221121BHJP
【FI】
G01B11/00 A
G01B11/24 K
G01B21/00 Z
G01C15/00 101
(21)【出願番号】P 2021059506
(22)【出願日】2021-03-31
【審査請求日】2021-03-31
(73)【特許権者】
【識別番号】000135771
【氏名又は名称】株式会社パスコ
(74)【代理人】
【識別番号】110001254
【氏名又は名称】弁理士法人光陽国際特許事務所
(72)【発明者】
【氏名】安井 嘉文
(72)【発明者】
【氏名】前田 近邦
(72)【発明者】
【氏名】西村 修
【審査官】信田 昌男
(56)【参考文献】
【文献】特開2020-016665(JP,A)
【文献】特開2018-017652(JP,A)
【文献】特開2009-294128(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01B 11/00
G01B 11/24
G01B 21/00
G01C 15/00
(57)【特許請求の範囲】
【請求項1】
第1計時手段を有し、車両に搭載されて走行する前記車両から周囲を
当該周囲の各計測地点の前記車両に固定された座標系での位置を含んで計測して、当該
位置の計測時の前記第1計時手段による第1計測日時及び前記
計測地点の前記位置を含む周囲計測データを出力する周囲計測手段と、
第2計時手段を有し、前記車両に搭載されて走行する前記車両の
地球表面に固定された座標系での地理的位置及び姿勢を計測して、
前記地理的位置及び姿勢の計測時の前記第2計時手段による第2計測日時
並びに前記
地理的位置及び姿勢を含む車両計測データを出力する車両計測手段と、
前記周囲計測手段及び前記車両計測手段に同期信号を出力する同期信号出力手段と、
前記車両計測データを用いて前記周囲計測データに係る地理的三次元位置を特定する位置特定手段と、
を備え、
前記周囲計測手段は、前記同期信号が入力された同期タイミングにおける前記第1計時手段による第1同期日時を出力し、
前記車両計測手段は、前記同期タイミングにおける前記第2計時手段による第2同期日時を出力し、
前記位置特定手段は、
前記第1同期日時及び前記第2同期日時の組合せにより、前記第1計時手段による日時と前記第2計時手段による日時との対応関係を求め、
前記対応関係を用いて前記第1計測日時に対応する前記第2計時手段の対応日時を特定し、
前記車両計測データに基づいて、前記対応日時における前記車両の地理的位置及び姿勢を算出し、
算出された前記車両の地理的位置及び姿勢を用いて、前記対応日時における前記
計測地点の前記地理的三次元位置を特定する
ことを特徴とする計測システム。
【請求項2】
前記位置特定手段は、前記第2計時手段による日時に対する前記第1計時手段による日時のずれ量を前記対応関係として求め、前記対応関係に応じて前記第1計測日時における前記ずれ量を算出することで、前記対応日時を特定することを特徴とする請求項1記載の計測システム。
【請求項3】
前記位置特定手段は、複数の前記同期タイミングのそれぞれにおける前記第1同期日時及び前記第2同期日時の組を用いて、前記第1同期日時と前記第2同期日時の差を多項式近似することにより、前記ずれ量を定めることを特徴とする請求項2記載の計測システム。
【請求項4】
前記位置特定手段は、複数の前記同期タイミングのそれぞれにおける前記第1同期日時及び前記第2同期日時の組を用いて、前記第1同期日時から前記第2同期日時への変換関数を多項式近似で求めることにより、前記対応関係を定めることを特徴とする請求項1記載の計測システム。
【請求項5】
第1計時手段を有し、車両に搭載されて走行する前記車両から周囲を
当該周囲の各計測地点の前記車両に固定された座標系での位置を含んで計測して、当該
位置の計測時の前記第1計時手段による第1計測日時及び前記
計測地点の前記位置を含む周囲計測データを出力する周囲計測手段から前記周囲計測データを取得する周囲計測データ取得手段と、
第2計時手段を有し、前記車両に搭載されて走行する前記車両の
地球表面に固定された座標系での地理的位置及び姿勢を計測して、
前記地理的位置及び姿勢の計測時の前記第2計時手段による第2計測日時
並びに前記
地理的位置及び姿勢を含む車両計測データを出力する車両計測手段から前記車両計測データを取得する車両計測データ取得手段と、
前記車両計測データを用いて前記周囲計測データに係る地理的三次元位置を特定する位置特定手段と、
を備え、
前記周囲計測手段は、所定の同期信号が入力された同期タイミングにおける前記第1計時手段による第1同期日時を出力し、
前記車両計測手段は、前記所定の同期信号が入力された前記同期タイミングにおける前記第2計時手段による第2同期日時を出力し、
前記位置特定手段は、
前記第1同期日時及び前記第2同期日時の組合せにより、前記第1計時手段による日時と前記第2計時手段による日時との対応関係を求め、
前記対応関係を用いて前記第1計測日時に対応する前記第2計時手段の対応日時を特定し、
前記車両計測データに基づいて、前記対応日時における前記車両の地理的位置及び姿勢を算出し、
算出された前記車両の地理的位置及び姿勢を用いて
前記計測地点の前記地理的三次元位置を特定し、当該地理的三次元位置を前記周囲の計測の結果に対応付ける
ことを特徴とする情報処理装置。
【請求項6】
走行する車両から周囲を
当該周囲の各計測地点の前記車両に固定された座標系での位置を含んで計測して、当該
位置の計測時の第1計時手段による第1計測日時及び前記
計測地点の前記位置を含む周囲計測データを出力する周囲計測手段から、前記周囲計測データを取得する周囲計測データ取得ステップ、
走行する前記車両の
地球表面に固定された座標系での地理的位置及び姿勢を計測して、
前記地理的位置及び姿勢の計測時の第2計時手段による第2計測日時
並びに前記
地理的位置及び姿勢を含む車両計測データを出力する車両計測手段から、前記車両計測データを取得する車両計測データ取得ステップ、
前記車両計測データを用いて前記周囲計測データに係る地理的三次元位置を特定する位置特定ステップ、
を含み、
前記周囲計測
データ取得ステップでは、前記周囲計測手段に所定の同期信号が入力された同期タイミングにおける前記第1計時手段による第1同期日時を併せて取得し、
前記車両計測
データ取得ステップでは、前記車両計測手段に前記同期信号が入力された前記同期タイミングにおける前記第2計時手段による第2同期日時を併せて取得し、
前記位置特定ステップでは、
前記第1同期日時及び前記第2同期日時の組合せにより、前記第1計時手段による日時と前記第2計時手段による日時との対応関係を求め、
前記対応関係を用いて前記第1計測日時に対応する前記第2計時手段の対応日時を特定し、
前記車両計測データに基づいて、前記対応日時における前記車両の地理的位置及び姿勢を算出し、
算出された前記車両の地理的位置及び姿勢を用いて、前記対応日時における前記
計測地点の前記地理的三次元位置を特定する
ことを特徴とする情報処理方法。
【発明の詳細な説明】
【技術分野】
【0001】
この発明は、複数の計測データを取得して統合する計測システム、情報処理装置及び情報処理方法に関する。
【背景技術】
【0002】
道路などの移動交通網を利用してその周囲を、又は道路面などのこの移動交通網自体を、走行車両に搭載された計測機器により移動計測することで、計測作業の効率化を図る技術がある。例えば、特許文献1に記載の路面状態管理装置においては、走行する車両からの移動計測は、搭載車両の車輪の回転数を計数して車両の走行距離を求める走行距離測定装置などによる移動距離の計測に応じて予め定められた距離ごとに出力される指示信号に従って行われる。移動計測の結果やGPS受信機などにより得られた現在位置は、予め定められた距離の複数の区間に、上記指示信号の発生タイミングに基づいて割り当てられて管理される。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
より精度の高い情報を取得する場合には、車両の走行時における絶対位置の変化や、車両の運動に応じた姿勢などの変動の影響が無視できなくなる。しかしながら、従来のように複数の計測機器に共通の指示信号に応じた計測を行わせるには、いずれかの計測機器の計測間隔を変更する必要が生じ、計測機器の再設計を行わなければならなくなる。このことは計測機器の組み合わせを変更するたびに生じる。また複数の計測機器それぞれが指示信号の入力タイミングで即座に計測値を取得しなければならないことも設計負担となる。このように高精度にそろえるように装置の設計を変更するには、非常に手間とコストがかかるという問題がある。
【0005】
本開示の目的は、設計の変更に要する手間やコストを抑えながら、移動計測に係る複数の計測結果を高精度に整合させることのできる計測システム、情報処理装置及び情報処理方法を提供することにある。
【課題を解決するための手段】
【0006】
上記目的を達成するため、本開示は、
第1計時手段を有し、車両に搭載されて走行する前記車両から周囲を当該周囲の各計測地点の前記車両に固定された座標系での位置を含んで計測して、当該位置の計測時の前記第1計時手段による第1計測日時及び前記計測地点の前記位置を含む周囲計測データを出力する周囲計測手段と、
第2計時手段を有し、前記車両に搭載されて走行する前記車両の地球表面に固定された座標系での地理的位置及び姿勢を計測して、前記地理的位置及び姿勢の計測時の前記第2計時手段による第2計測日時並びに前記地理的位置及び姿勢を含む車両計測データを出力する車両計測手段と、
前記周囲計測手段及び前記車両計測手段に同期信号を出力する同期信号出力手段と、
前記車両計測データを用いて前記周囲計測データに係る地理的三次元位置を特定する位置特定手段と、
を備え、
前記周囲計測手段は、前記同期信号が入力された同期タイミングにおける前記第1計時手段による第1同期日時を出力し、
前記車両計測手段は、前記同期タイミングにおける前記第2計時手段による第2同期日時を出力し、
前記位置特定手段は、
前記第1同期日時及び前記第2同期日時の組合せにより、前記第1計時手段による日時と前記第2計時手段による日時との対応関係を求め、
前記対応関係を用いて前記第1計測日時に対応する前記第2計時手段の対応日時を特定し、
前記車両計測データに基づいて、前記対応日時における前記車両の地理的位置及び姿勢を算出し、
算出された前記車両の地理的位置及び姿勢を用いて、前記対応日時における前記計測地点の前記地理的三次元位置を特定する
ことを特徴とする計測システムである。
【発明の効果】
【0007】
本発明に従うと、設計の変更に要する手間やコストを抑えながら、移動計測に係る複数の計測結果を高精度に整合させることができるという効果がある。
【図面の簡単な説明】
【0008】
【
図1】路面計測システムによる計測について説明する図である。
【
図3】各計測部による計測タイミングの一覧を示す図表である。
【
図4】ひび割れ検出出力制御処理の制御手順を示すフローチャートである。
【
図5】各計測部による計測データの同期について説明する図である。
【
図6】計測データから路面の絶対位置を特定する手順を説明する図である。
【
図7】絶対位置特定処理の制御手順を示すフローチャートである。
【
図8】絶対位置特定処理の変形例を示すフローチャートである。
【発明を実施するための形態】
【0009】
以下、本発明の実施の形態を図面に基づいて説明する。
図1は、本実施形態の計測システムである路面計測システム1による計測について説明する図である。
【0010】
路面計測システム1は、道路の路面(道路面)並びに車両Wの位置及び姿勢などを計測するための計測装置100を含む。計測装置100は、車両Wのルーフ上などに搭載されて計測動作し、走行する車両Wの後方側から鉛直下向きに道路面を計測可能である。また、計測装置100は、車両Wに対して固定されており、車両Wの走行、向きの変化、傾きや上下動などの運動により変化する位置及び姿勢を計測する。
【0011】
車両Wは、計測装置100を搭載して固定することが可能であれば、一般的な車種のものであってよく、計測のための専用車両である必要もない。計測装置100は、車両Wのルーフへの取り付け固定部材などを備えていてもよい。
【0012】
図2には、路面計測システム1の全体構成図を示す。
路面計測システム1は、上記の計測装置100と、本実施形態の情報処理装置として計測データを処理する処理装置200とを含む。
【0013】
計測装置100は、路面計測部110(周囲計測手段)と、車両計測部120(車両計測手段)と、周囲計測部130(周囲計測手段)と、同期信号出力部140(同期信号出力手段)と、制御部150と、記憶部160と、通信部170などを備える。これらのうち、路面計測部110、車両計測部120及び周囲計測部130(まとめて各計測部とも記す)が計測動作を行う。上記
図1で示した形態にかかわらず、計測装置100のうち制御部150、記憶部160及び通信部170は、車両Wの内側に位置して各計測部と通信接続されていてもよい。
【0014】
路面計測部110は、照射部111と、撮影部112と、計時部113(第1計時手段)などを備え、道路面の高さを計測し、その結果である路面計測データを出力する。
照射部111は、発光部1111と、走査部1112とを有する。発光部1111は、レーザ光を生成して出射する。走査部1112は、発光部1111から出射されるレーザ光を走査させて、走査方向について広がる幕状の範囲に光を出力する。走査範囲は、車両Wが道路(車線)に沿って走行している場合に、計測対象である道路(車線)の幅方向(横断方向。すなわち、鉛直方向及び車両Wの走行方向のいずれにも垂直な方向)について全幅又はこれに準じる範囲とされてよい。検出間隔は、検出精度に応じた間隔に定められる。幅方向(走査方向)に沿っての計測の位置間隔は、検出対象のひび割れの幅の下限値以下である必要があり、例えば、1mmである。また、車両Wの走行方向(道路の延在方向)についての計測の位置間隔は、撮影部112の撮影間隔と車両Wの走行速度との組合せにより定まる。
【0015】
撮影部112は、照射部111により出射されたレーザ光の道路面からの反射光を検出する撮影動作を行う。撮影部112は、光切断法により反射位置、すなわち道路面の高さ(路面高さ)を特定するために、レーザ光の道路面への入射方向(鉛直下向き方向)に対して斜めに反射光を検出し、撮影可能な場所に位置している。すなわち、計測装置100が搭載された車両W上で、照射部111と撮影部112とが固定されている。撮影部112の焦点位置、光軸方向、視野角及びレンズ歪などのカメラパラメータ、並びに照射部111の出射位置及び出射角などの撮影条件が不図示の記憶部に記憶され、不図示の制御部によって、撮影部112において反射光を検出した画素の位置と撮影条件とから、車両Wに固定された座標系における光の出射位置に対する相対的な反射位置(路面位置)が算出される。この反射位置の計測結果は、光の出射位置からの距離として得られてもよい。この光切断法により、撮影部112は、各走査線上で、反射位置の高さ、すなわち路面高さと反射強度の分布を路面計測データとして取得する。路面高さの特定精度は、検出対象のひび割れの検出下限値以下である必要があり、例えば、計測装置100の解像度と設置条件は、0.6mm間隔で計測可能なものとされる。計測を行う各日時で、車両Wの走行に応じて照射部111と撮影部112の位置が変化することで、取得する路面計測データの絶対位置(地球表面に固定された座標系における地理的位置)が変化する。
【0016】
この光切断法による計測は、レーザ光を照射しての計測であるので、レーザ光の照射を行わない通常の撮影による計測と比較して陰影の影響が生じにくく、ひび割れの深さや形状などの計測を従来よりも高精度で行いやすい。また、計測が時刻、季節や天気の制限を受けづらいため、計測時期の限定や計測予定の延期などが生じにくい。
【0017】
計時部113は、計時して現在の日時を出力する。計時部113は、例えば、発振子の発振により生成される所定の周波数信号を計数して日時を特定する。発振子は、例えば、水晶発振子やMEMS発振子である。この発振子を有する発振器は、発振周波数についての温度補償などがなされていてもよいし、恒温槽付きなどであってもよい。しかしながら、計時部113の出力する日時には、時間経過とともに正確な日時からずれが生じ得る。計時部113は、撮影部112から撮影タイミングで撮影信号が入力されると、このタイミングの日時を撮影日時(第1計測日時)として出力する。撮影日時は、当該撮影日時の撮影結果に基づく路面計測部110の計測結果に対応付けられて、路面計測データに含まれる。また、同期信号出力部140から同期信号が入力されると、計時部113は、当該同期信号が入力された同期タイミング(同期タイミング)の日時を同期日時(第1同期日時)として出力する。同期日時は、計測結果と対応付けられずに路面計測データに含まれる。
この路面計測部110は、本発明の周囲計測手段の一例であり、路面計測データは、周囲計測データの一例である。
【0018】
車両計測部120は、衛星測位部121と、姿勢計測部122と、計時部123(第2計時手段)などを備え、車両(基準位置)に係る計測を行って車両計測データとして出力する。車両に係る計測は、少なくとも路面計測部110による道路面の高さの計測に対応する期間行われる。車両計測データには、衛星測位部121により得られる車両Wの地理的位置を示す絶対位置データと、姿勢計測部122により得られる車両Wの姿勢を示す姿勢データとが含まれる。
【0019】
衛星測位部121は、GNSS(Global Navigation Satellite System)に係る複数(少なくとも4機)の測位衛星からの電波を受信することで現在の車両Wの絶対位置(すなわち、計測装置100が搭載されている車両Wの基準位置)を計測する測位動作を行って、絶対位置データを出力する。衛星測位部121は、電波の受信及び復号が可能な測位衛星に、例えば、米国の衛星測位システムであるGPS(Global Positioning System)に係る衛星を含んでいてもよく、また、これに限られなくてもよい。例えば、受信対象の測位衛星には、ロシアの衛星測位システムであるGLONASS(Globalnaya Navigatsionnaya Sputnikovaya Sistema / Global Navigation Satellite System)などに係る衛星が含まれていてもよく、これらが併用されてもよい。また、各衛星測位システムにおける複数の周波数帯の送信電波が併用されてもよい。絶対位置は、例えば、緯度、経度及び高度の3成分により表される。また、絶対位置とともに現在の日時(第2計測日時)が取得される。
【0020】
姿勢計測部122は、加速度センサ1221及びジャイロセンサ1222を備え、計測装置100が搭載されている車両Wの姿勢を計測して、姿勢データを出力する。加速度センサ1221及びジャイロセンサ1222の各々は、直交する3軸方向についての加速度と回転速度(角速度)とをそれぞれ計測可能である(3軸と回転軸とを合わせて6軸)。これらのそれぞれを順次加算し、初期姿勢を加算することにより特定される車両の姿勢には、車両の向き(道路面に平行な面内での回転)、傾き(道路に垂直な方向を含む面内での回転)、上下動(振動)、及び加減速(平行移動速度の変化)が含まれ得る。
【0021】
計時部123は、計時部113と同様に、計時して現在の日時を出力する。また、ここでは、計時部123は、衛星測位部121により特定された日時により計時する日時が随時補正される。すなわち、計時部123が出力する日時は路面計測システム1で要求される水準において正確である。計時部123は、衛星測位部121及び姿勢計測部122から計測タイミングで(計測時に)各々計測信号が入力されると、それらのタイミングの日時をそれぞれ測位日時、計測日時として出力する。測位日時は、当該測位日時に計測された絶対位置と対応付けられて絶対位置データに含められ、計測日時は、当該計測日時に計測された姿勢と対応付けられて、姿勢データに含められる。また、計時部123は、同期信号出力部140から同期信号が入力されると、同期タイミングの日時を同期日時(第2同期日時)として出力する。同期日時は、絶対位置及び姿勢のいずれにも対応付けられずに車両計測データに含まれる。
【0022】
本発明の他の周囲計測手段の例である周囲計測部130は、レーザスキャナ131を有する。レーザスキャナ131は、周囲全方向に順次レーザ光を出射し、その反射光を検出して、検出されるまでの経過時間と光速とからTOF(Time of Flight)により車両周囲の反射面までの距離を計測して、周囲計測データを出力する。車両周囲の反射面は、路面計測部110の計測範囲外の道路面を含み、好適にはさらに周囲の道路設備、建物、植物及び地表面などを含む。周囲計測部130による継続的な計測結果の統合により、路面計測部110による計測範囲の周囲の道路面の形状を含む三次元道路データが生成される。周囲計測データの解像度は、路面計測データの解像度よりも低くてよく、周囲計測データから道路面のひび割れを検出できなくてよい。
【0023】
周囲計測部130の計測結果は、車両Wの計測装置100の位置を基準とした相対的なものである。特に限定するものではないが、車両計測部120及び周囲計測部130は、まとめて同一筐体内に位置していてもよい。ここでは、周囲計測部130は、計時部123の日時を車両計測部120と共用する。計時部123は、周囲計測部130からレーザスキャナ131による計測タイミングで計測信号が入力されると、その計測タイミングにおける(計測時の)日時を計測日時として出力する。計測日時は、当該計測日時における周囲計測の結果に対応付けられて周囲計測データに含まれる。
【0024】
同期信号出力部140は、路面計測部110、車両計測部120及び周囲計測部130に対して上述の同期信号を出力する。同期信号出力部140は、例えば、MCU(Micro Control Unit)で実現され、図示略の距離計から取得される自身の移動量に基づいて所定距離、例えば、3mの移動ごとに同期信号を出力する。例えば、車両Wが速度60km/hで等速走行している場合には、同期信号の時間間隔は180msecとなる。あるいは、同期信号出力部140は、発振回路を有して所定時間の経過ごとに同期信号を出力してもよい。
【0025】
制御部150は、CPU(Central Processing Unit)などを有し、各計測部から計測データと同期日時データとを取得して記憶部160に記憶させる。また、制御部150は、記憶部160に記憶させたデータの通信部170による送信出力を制御する。
【0026】
記憶部160は、各計測部による計測データを記憶する。記憶部160は、不揮発性メモリを有する。不揮発性メモリは、例えば、フラッシュメモリ及び/又はHDD(Hard Disk Drive)であってよい。
【0027】
通信部170は、インターネット回線やLAN(Local Area Network)などのネットワークを経由して外部と通信を行う。外部には、処理装置200が含まれる。計測装置100の各計測部による計測データは、処理装置200に対して送信されて処理される。通信部170は、計測装置100による計測動作中に常に外部と通信が可能となっている必要はない。計測の終了後に通信部170がネットワークに接続されてもよい。
【0028】
処理装置200は、制御部210と、記憶部220と、通信部230と、入出力部240などを備える。処理装置200は、例えば、通常のPCなどであってもよく、計測装置100とは別体であってよい。
【0029】
制御部210は、CPU(Central Processing Unit)などを備え、演算処理を実行して、本実施形態の位置特定手段として、計測装置100から受信した計測データの解析処理及び表示画像の生成処理を行う。解析処理には、例えば、後述のように道路面のひび割れ地点の検出、ひび割れ地点及び周囲の計測地点(周囲の計測の結果)の地理的三次元位置の特定、及び三次元道路データの生成などが含まれる。
【0030】
記憶部220は、計測装置100から受信した計測データ(路面計測データ、車両計測データ、及び周囲計測データ)、制御部210によるこれらの計測データの解析データ(後述のひび割れ地点データ、三次元ひび割れ図データ、三次元道路データ221を含む)、及び解析処理に係る処理用のプログラム222などを記憶する。記憶部220は、例えば、揮発性メモリ(RAM:Random Access Memory)と、不揮発性メモリなどを有する。不揮発性メモリには、HDD(Hard Disk Drive)が含まれていてもよい。揮発性メモリは、制御部210のCPUに作業用のメモリ空間を提供する。
なお、路面計測システム1は、記憶部220とはさらに異なるデータベース装置などを処理装置200の外に含んでいてもよい。あるいは、HDDなどが計測装置100に直接外付けで取り付けられて計測データがリアルタイムでこのHDDに書き込まれてもよい。計測終了後にHDDが計測装置100から取り外され、持ち運ばれて処理装置200に取り付けられて、記憶部220として動作してもよい。
【0031】
通信部230は、インターネット回線やLANなどのネットワークを経由して外部と通信を行う。外部には、計測装置100が含まれ、計測装置100における計測データが随時又は計測終了後などにまとめて取得され得る。なお、計測装置100と処理装置200とがネットワークにおいて直接接続されるのではなく、間にデータサーバなどを挟んで間接的にデータのやり取りがなされるのであってもよい。
【0032】
入出力部240は、解析結果をそのユーザに示す出力部、例えば、表示画面を有する表示部241や画像を形成するプリンタなどと、出力させる内容の要求などを受け付ける操作受付部242などの入力部とを含む。制御部210の処理により取得された解析データのうち入力部により指定された内容及び表示形態で出力部により出力される。
【0033】
次に、計測装置100による計測動作について説明する。
【0034】
計測装置100では、各計測部がそれぞれ計測を行って、計測データを処理装置200に出力する。また、路面計測データ及び周囲計測データでは、上記のように車両Wに固定された座標系での計測位置が特定される。
【0035】
図3は、各計測部による計測タイミングの一覧を示す図表である。
上記のように、同期信号出力部140が所定の距離間隔で同期信号を出力し(本発明の情報処理方法における同期信号出力ステップ)、路面計測部110は、同期信号出力部140が出力する同期信号に基づいて初回の計測タイミングが規定され、以降、3mの移動の間に均等な時間間隔a、例えば、0.12msec間隔で道路面の計測を行う、という動作を繰り返す。車両Wが速度60km/hで等速走行している場合には、3m間隔の2回の同期信号の間、すなわち、180msecの間に2mmの距離間隔で1500回の計測が行われる。上記のように、各計測タイミングにおいて路面計測部110が出力する計測結果には、計時部113の日時t1(j)(j=1、2、3…)が付される。
【0036】
衛星測位部121は、同期信号とは独立して一定の時間間隔b、例えば、50msec間隔で測位動作を行い、車両Wの絶対位置データとして出力する。すなわち、上記180msecの間に測位動作が約3.6回実行される。絶対位置データには、各々計時部123の日時t2(i)(i=0、1、2…)、すなわち、測位動作で特定、調整されている日時が付される。上記のように、この日時t2は正確な絶対日時である。
【0037】
姿勢計測部122は、同期信号とは独立して一定の時間間隔c、例えば、5msec間隔で加速度センサ1221及びジャイロセンサ1222の計測結果を取得して車両Wの姿勢データとして出力する。姿勢データには、各々計時部123が計時する日時t3(m)(m=0、1、2…)が付される。上記の180msecの間に姿勢データは36回取得される。上記のように、計時部123から出力される日時t3は、正確な絶対日時である。
【0038】
周囲計測部130のレーザスキャナ131は、同期信号とは独立して一定の時間間隔d、例えば、5msecの間隔で、路面計測部110による計測範囲外の道路面(周囲道路面)を含む周囲の物体の位置を計測して、それぞれ周囲計測データとして出力する。周囲計測データには、周囲の計測タイミングにおける計時部123の日時t4(n)(n=0、1、2…)が付される。上記のように、計時部123から出力される日時t4は、正確な絶対日時である。
【0039】
これらの各計測データでは、路面計測部110の路面計測データに含まれる計測日時t1(j)には、絶対日時との間にずれがある。したがって、計測データを取得した処理装置200では、計測日時t1(j)を絶対日時であるt2(t1(j))に変換して解析を行う。また、複数の計測部による計測タイミングは互いに異なっている。そこで、計測日時t2(t1(j))における他の計測データ、例えば、測位データは、この計測日時t2(t1(j))の前後である測位日時t2(i)における測位の結果を内部補間(例えば、線形補間)することで求められ、姿勢データは、この計測日時t2(t1(j))の前後である計測日時t3(m)における計測の結果を内部補間(例えば、線形補間)することで求められる。
【0040】
図4は、路面計測システム1の処理装置200において実行されるひび割れ検出出力制御処理の制御部210による制御手順を示すフローチャートである。
このひび割れ検出出力制御処理は、例えば、車両Wを走らせて路面計測部110、車両計測部120及び周囲計測部130による計測が行われた後などに、計測装置100の計測データに処理装置200からアクセスが可能になった状況でユーザによる所定の入力操作などにより実行される。
【0041】
周囲計測データ取得手段(制御部210)は、通信部230を介して計測装置100から路面計測データを取得し、車両計測データ取得手段(制御部210)は、通信部230を介して計測装置100から車両計測データを取得する(ステップS101;周囲計測データ取得ステップ、車両計測データ取得ステップ)。周囲計測データ取得手段(制御部210)は、通信部230を介して周囲計測データを取得する(ステップS102)。これらステップS101、S102で取得される3種類のデータの取得順番は任意に入れ替え可能であり、また、並行して取得されてもよい。
【0042】
位置特定手段(制御部210)は、後述する絶対位置特定処理を実行する(ステップS103)。これにより、路面計測データの正確な計測日時及び路面計測データ及び周囲計測データの各絶対位置が特定される。
【0043】
制御部210は、ひび割れ検出のために、道路の凹凸のうち道路面自体の傾斜及びわだちなどによる凹凸の成分を除去又は低減する(ステップS104)。例えば、制御部210は、ひび割れのスケールより大きな範囲で移動平均を求めて計測されている高さから差し引く。
【0044】
制御部210は、残りの路面計測データの凹凸パターンからひび割れを検出する(ステップS105)。例えば、制御部210は、ステップS104で移動平均を差し引いた高さ、すなわち深さが検出対象とするひび割れの深さの下限(例えば2mm)以上である計測地点をひび割れ地点として検出する。
【0045】
制御部210は、検出されたひび割れ地点のデータ(絶対位置や深さなどの情報)に計測タイミングを示す絶対日時データを対応付ける(ステップS106)。絶対日時は、ユーザが時系列的にひび割れの発生や変化を追う場合にも利用され得る。
【0046】
制御部210は、検出されたひび割れ地点のデータ及びこれに対応付けられた絶対日時のデータを記憶部220に記憶させる(ステップS107)。なお、ステップS101、S102で取得された未処理の各計測データや、ステップS105の処理で得られたひび割れ地点を含む路面計測データは、別個に記憶部220に記憶保持されてもよい。路面計測データは、例えば、計測測線Lをなす各回の計測ごとに計測地点の絶対位置の集合に対して計測日時のデータが対応付けられていてもよい。
制御部210は、絶対日時及び絶対位置が対応付けられた周囲計測データを三次元道路データ221として記憶部220に記憶させる(ステップS108)。
【0047】
制御部210は、指定された視点位置、視線方向、視野角及び表示サイズに応じて三次元道路データ221と路面計測データに含まれるそれぞれの計測地点の投影位置(撮影面上の位置)を算出することで、三次元ひび割れ図を生成する。制御部210は、生成した三次元ひび割れ図の画像を表示部241などにより表示させ、更に道路面の計測地点のうちひび割れ地点を他の色などでハイライト表示させる(ステップS109)。このとき、制御部210は、操作受付部242を介してユーザに選択されたひび割れ地点の特性データ(絶対日時、絶対位置及び深さなど)を吹き出し表示させることができる。そして、制御部210は、ひび割れ検出出力制御処理を終了する。
【0048】
次に、計測日時t1の絶対日時への変換について詳しく説明する。上記のように、計時部113が計時して出力する日時t1には、正確な日時t2、すなわち絶対日時との間にずれがある。路面計測システム1では、同期信号出力部140から出力される同期信号に同期して路面計測部110及び車両計測部120から出力される同一タイミングの日時t1と日時t2とを取得して比較することで、日時t1と絶対日時である日時t2との間のずれの度合を特定し、日時t1から日時t2への変換を可能とする。
【0049】
図5は、各計測部による計測データの同期について説明する図である。
【0050】
上述のように、同期信号出力部140からは、同期信号Tk(k=0、1、2…)が3mの移動ごとに出力されて、路面計測部110及び車両計測部120へ入力される。路面計測部110及び車両計測部120は、それぞれ同期信号Tkが入力された同期タイミングで各々計数している同期日時t1(Tk)(第1同期日時)、t2(Tk)(第2同期日時)を取得する。
【0051】
これらの同期日時の対応関係を多項式近似することにより日時t1から日時t2への変換を可能とする。日時t1は、時間経過とともに日時t2とのずれの大きさが変化し得る。そのため、近似式g(t1)は、日時の関数とするのが好適である。
【0052】
これらの同期日時のずれ量(t1(Tk)-t2(Tk))を日時t1に対して、例えば、二次の多項式による近似式g(t1)=t1-t2=A・t12+B・t1+Cとして定義する。すなわち、日時t1から日時t2への変換は、日時t1に対して近似式g(t1)で示されるずれ量を反映したt2=t1-g(t1)によりなされる。なお二次の多項式は一例であり、近似式g(t1)は、一次関数であってもよいし三次以上の関数であってもよい。
【0053】
複数の同期信号Tkにおける(t1(Tk)-t2(Tk))とg(t1(Tk))とがなるべく等しくなるように、{t1(Tk),t1(Tk)-t2(Tk)}=[{t1(T0),t1(T0)-t2(T0)},{t1(T1),t1(T1)-t2(T1)},…]を近似的に成立させる定数A,B,Cを回帰分析により算出することができる。あるいは、ずれ量は、g(t1)=t2-t1と定義されてもよく、この場合はt2=t1+g(t1)となる。
【0054】
複数の同期信号Tkは、ある道路区間の計測を1回行う間に出力された全ての同期信号に応じた同期タイミングであってもよい。また、近似式g(t1)は、計測データを所定時間(例えば1時間)ごとに分割した区間ごとに算出され、区間ごとに用いられてもよい。分割した区間設定は、計測時の温度変化が大きな場合や、路面計測システム1(計測装置100)の電気的な環境の変化が大きい場合などに有用である。
【0055】
算出された近似式gに路面計測部110の路面計測データに付されている計測日時t1(j)(第1計測日時)を代入する(近似式gを用いる)ことで、衛星測位に基づく正確な日時t2を基準とした全ての路面計測のタイミングt2(t1(j))(対応日時)が特定される。
【0056】
衛星測位部121と姿勢計測部122とは独立した構成である場合などで、衛星測位部121により特定された日時により計時する日時が補正される計時部123とは異なる計時部により、姿勢計測部122が日時t3を取得し、及び/又は周囲計測部130が日時t4を取得する場合には、これらの日時t3、t4が日時t2と異なり得る。この場合には、日時t3、t4を計時して出力する計時部に対しても同期信号が入力されて、姿勢計測部122からは姿勢データ及び計測された日時t3(m)とともに、同期日時t3(Tk)が出力され、周囲計測部130からは周囲計測データ及び計測された日時t4(n)とともに、同期日時t4(Tk)が出力される。これらについても同じ手順で日時t3の日時t2に対するずれ量の近似式g及び日時t4の日時t2に対するずれ量の近似式gが算出されて、いずれも日時t2を基準とした計測タイミングが特定される。
【0057】
なお、一定時間間隔で計測されるものについては、必ずしも全ての計測データに対して計測日時のデータが付されなくてもよい。同期タイミングの日時、同期タイミングからその後最初の計測までのタイムラグ(aL、bL、cL、dL)、及び計測の時間間隔a、b、c、dにより、全ての計測日時が特定され得る。
これらのように計測タイミングの正確な日時を特定する処理は、特に限定するものではないが、計測データを計測装置100から取得した処理装置200により行われればよい。すなわち、制御部210は、計測装置100の通信部170と処理装置200の通信部230との間での通信を利用して、路面計測データ及び周囲計測データを取得する周囲計測データ取得手段としても動作し、また、車両計測データを取得する車両計測データ取得手段としても動作する。
【0058】
絶対日時による路面の計測日時t2(t1(j))(対応日時)が特定されると、計測日時t2(t1(j))と、測位日時t2(i)及び車両Wの姿勢の計測日時t3(m)などとの時間差が正確に特定可能となる。これにより、例えば、路面の計測日時t2(t1(3))(第1計測日時)における絶対位置(地理的三次元位置)は、当該計測日時t2(t1(3))の前の一番近いタイミングで測位が行われた日時t2(0)の絶対位置、及び計測日時t2(t1(3))の後の一番近いタイミングで測位が行われた日時t2(1)の絶対位置(緯度、経度及び高度の3成分それぞれ)の内分点として求められ、日時t2(t1(3))(第1計測日時)の車両の姿勢は、計測日時t2(t1(3))の前の一番近いタイミングで姿勢の計測が行われた日時t3(0)の姿勢、及び計測日時t2(t1(3))の後の一番近いタイミングで姿勢の計測が行われた日時t3(1)の姿勢(加速度の3軸方向及び角速度の3軸方向のそれぞれ)の内分点として求められる。あるいは、前後3回以上の日時での計測データを用いた補間により絶対位置及び姿勢が求められてもよい。
【0059】
上記のように、路面計測データ及び周囲計測データは、車両Wに固定された座標系での計測であるので、上記座標系における計測地点に対して、計測された日時t2(t1(j))における車両Wの基準位置の絶対位置と、車両Wの基準位置に対する路面計測部110(周囲計測部130)の初期相対位置と、計測日時t2(t1(j))における車両の姿勢に応じた初期相対位置からのずれとが加算されることで、計測地点の絶対位置が得られる。
【0060】
図6は、計測データから路面の絶対位置を特定する手順を説明する図である。
図6(a)に示すように、各測位日時における車両Wの基準位置P(t2(i))が取得されている。ここでは、i=0~2についての各基準位置が示されている。基準位置Pは、衛星測位部121の位置であってよく、すなわち、衛星測位の結果がそのまま用いられてよい。
【0061】
次いで、道路面を計測した日時t1(j)を絶対日時に換算した日時t2(t1(j))(j=0、1、2…)を特定し、この日時における車両Wの基準位置P(t2(t1(j)))を当該日時の前後の基準位置の線形補間により特定する。また、この日時t2(t1(j))における車両Wの姿勢を、車両計測データにおける当該日時の前後の車両Wの姿勢を線形補間することなどにより求める。
【0062】
車両Wの基準位置Pと道路面の計測位置との相対関係と、車両Wの姿勢とを考慮することで、
図6(b)に示すように、各計測タイミングにおける路面計測の基準範囲を示す計測測線L(j)が定まる。車両Wが平坦な道を等速でまっすぐ走っていれば、各計測測線Lは等間隔かつ互いに平行となるが、車両Wの進行方向が変化したり、加減速したりすることで、計測測線Lの一部が非平行となったり、不均等な間隔となったりする。
【0063】
路面計測部110による各計測測線Lのタイミングでの計測結果は、計測測線Lに対する相対的な高さ方向のずれを示している。すなわち、
図6(c)に示すように、各計測測線Lを基準として当該計測測線L上の道路面の高さH(j)が特定される。これにより、計測対象の道路上の水平方向絶対位置(緯度、経度)に対して道路面の高さのデータが各々得られる。計測測線Lは、車高が予め特定されていれば、平坦な道路において窪みやひび割れなどのない本来の路面高と同一面内となる。したがって、求められた道路面の高さH(j)と計測測線Lの高さ(路面高)との差が本来の道路面からの凹凸量となる。
【0064】
図7は、
図4のステップS103で実行される絶対位置特定処理の制御手順を示すフローチャートである。
基準状態での路面計測部110及び周囲計測部130の相対位置(計測基準位置からの相対位置及び道路からの高さ)、並びに初期姿勢(計測開始時点の車両Wの姿勢)は、予め記憶部220に記憶されている。
絶対位置特定処理が開始されると、位置特定手段(制御部210)は、路面計測データ、車両計測データ及び周囲計測データを参照してステップS201~S209の処理を行う。
位置特定手段は、同期日時t2(Tk)と同期日時t1(Tk)とを用いて、日時t1の日時t2に対するずれ量の近似式gを算出する(ステップS201)。位置特定手段は、このずれ量の近似式gを路面の計測日時t1(j)にそれぞれ適用して絶対日時である日時t2(t1(j))に変換する(ステップS202)。
【0065】
位置特定手段は、測位日時t2(i)が変換後の各計測日時t2(t1(j))の前後である絶対位置に対する線形補間により当該計測日時t2(t1(j))における計測基準位置(車両位置)を算出する(ステップS203)。
【0066】
位置特定手段は、姿勢計測の結果を順次加算して計測日時t3(m)における姿勢を算出し、姿勢の計測日時t3(m)が変換後の各計測日時t2(t1(j))の前後である姿勢に対する線形補間により当該計測日時t2(t1(j))における車両の姿勢を算出する(ステップS204)。
【0067】
位置特定手段は、計測基準位置、初期姿勢、車両の姿勢、及び基準状態での路面計測部110の相対位置に基づいて、各計測日時t2(t1(j))での計測測線を算出する(ステップS105)。位置特定手段は、各計測日時t2(t1(j))に各計測地点で計測された相対高さを当該日時の計測線上の対応する位置に加算することで、路面高さの絶対位置を算出する(ステップS206)。
ステップS201~S206の処理が、本発明の情報処理方法における位置特定ステップを構成する。
【0068】
なお、計測データの全体に対してステップS201~S206の各処理を実行する代わりに、計測データを所定時間ごとに分割した区間に対するステップS201~S206の各処理を区間数だけ繰り返し行うのであってもよい。
【0069】
次いで、制御部210は、周囲の計測日時t4(n)のそれぞれにおける計測基準位置(車両位置)を、測位日時t2(i)が当該計測日時t4(n)の前後である絶対位置に対する線形補間により算出する(ステップS207)。ここでは、日時t4は、日時t2とずれがないので、そのまま利用されてよい。
【0070】
制御部210は、各計測日時t4(n)における車両の姿勢を、計測日時t3(m)が当該計測日時t4(n)の前後である姿勢に対する線形補間により算出する(ステップS208)。
【0071】
制御部210は、各計測日時t4(n)において得られた計測基準位置、初期姿勢、車両の姿勢、基準状態での周囲計測部130の相対位置及び周囲計測データ(レーザスキャナ131に対する周囲の物体の相対位置)に基づいて、当該計測日時t4(n)においてレーザが反射された各地点(周囲道路面)の絶対位置を算出する(ステップS209)。
なお、周囲計測データの全体に対してステップS207~S209の各処理を実行する代わりに、計測データを所定時間ごとに分割した区間に対するステップS207~S209の処理を区間数だけ繰り返し行ってもよい。
【0072】
制御部210は、複数の計測日時t4(n)の周囲計測データを絶対位置に基づいて統合する(ステップS210)。例えば、制御部210は異なる計測日時の間で水平位置が所定距離以下だが高さの差が所定値以上である地点については移動物を計測したデータであるとみなしていずれも除外する、などの統合を行う。一部の計測日時で陰などにより得られなかった地点については、他の計測日時に得られたデータで補われる。これらの統合の判断に係る条件や基準は、周知の技術なども援用して適宜定められてよい。これにより、周囲計測データに基づく三次元道路データ221が得られる。そして、制御部210は、絶対位置特定処理を終了して、処理をひび割れ検出出力制御処理に戻す。
【0073】
[変形例]
なお、本発明は、上記実施の形態に限られるものではなく、様々な変更が可能である。
例えば、日時t1から日時t2への変換は、ずれ量(t2-t1)の近似式gによりなされるのではなくてもよい。例えば、複数の同期信号Tkがそれぞれ入力された日時t1(Tk)、t2(Tk)の組により、日時t1における当該日時t1を日時t2に直接変換する変換関数fd(t1)を二次の多項式t2=fd(t1)=D・t12+E・t1+Fで定義することで多項式近似により求められてもよい。複数の同期信号Tkのタイミングにおける日時t1(Tk)、t2(Tk)の組について、それぞれ、t2(Tk)とfd(t1(Tk))とがそれぞれなるべく等しくなるように、(t1(Tk),t2(Tk))=[{t1(T0),t2(T0)},{t1(T1),t2(T1)},…]を近似的に成立させる(多項式近似する)定数D,E,Fを回帰分析により算出してもよい。なお二次の多項式は一例であり、変換関数fdは、一次関数であってもよいし三次以上の関数であってもよい。
【0074】
図8は、絶対位置特定処理の変形例を示すフローチャートである。
この絶対位置特定処理は、上記実施形態の絶対位置特定処理からステップS201、ステップS202の処理がそれぞれステップS201a、S202aに置き換えられたものであり、その他の処理は同一であって、同一の処理内容には同一の符号を付して説明を省略する。
【0075】
この絶対位置特定処理では、位置特定手段は、日時t1から日時t2への変換関数fdを算出する(ステップS201a)。位置特定手段は、この変換関数fdを路面の計測日時t1(j)にそれぞれ適用して絶対日時である日時t2(t1(j))に変換する(ステップS202a)。それから、位置特定手段の処理は、ステップS203へ移行する。
【0076】
あるいは、他の変形例として、日時t1と日時t2のずれ量を算出する基準開始日時t0を定め、このずれ量を近似式g(t1)=G・(t1-t0)2+H・(t1-t0)+Iのように定義して、t2(Tk)とt1(Tk)-g(t1(Tk))との差が小さくなるように定数G、H、Iを求めてもよい。同様に、変換関数fdがfd(t1)=J・(t1-t0)2+K・(t1-t0)+Lのように定義されてもよい。これらにより、t1-t0が年月日などを含めた大きい値とならないので、演算処理が容易になる。基準開始日時t0は、例えば、路面計測の開始日時や、開始前に日時t1を日時t2と合わせる初期設定(調時)処理を行った日時などであってもよい。
【0077】
また、上記実施の形態では、姿勢計測部122が加速度センサ1221及びジャイロセンサ1222を備えることとしたが、これらに限られない。その他のセンサ、例えば、方位センサや傾斜センサなどを備えていてもよい。
また、測位を行う衛星測位部121以外の測位部(衛星測位に限られなくてもよい)が1又は複数存在して、これにより計時する日時が補正される計時部がある場合には、当該測位部(複数の場合にはそれらのうちいずれか)により得られた日時により計時する日時が補正される計時部の日時が基準とされてもよい。例えば、この測位部と衛星測位部との間で日時の精度に優劣をつけることができる場合には、最も精度の高い測位部により得られた日時により補正される計時部の日時が基準とされるように定められればよい。
【0078】
また、上記実施の形態では、路面計測部110が3mごとの同期信号あるいは所定時間ごとの同期信号を時間間隔aでの計測の開始契機とするトリガ信号としても用いる例を示したが、同期信号出力部140が3mごとの同期信号に加えて路面計測部110のみに対する2mmごとのトリガ信号を出力し、路面計測部110が時間間隔aでの計測をせずにトリガ信号ごとに計測してもよい。
【0079】
また、レーザスキャナ131は、TOFによる計測の代わりに位相差(Phase Shift)を用いた計測を行うものであってもよい。
【0080】
また、上記実施の形態では、計測装置100による計測の終了後に計測データが処理装置200へ送られて処理が行われるものとして説明したが、これに限られない。計測装置100による計測を実行しながらリアルタイム又は多少の遅延時間を伴って(まとめて略リアルタイムで)計測データの処理が行われてもよい。この場合、通信部170と通信部230との間は、無線通信などで接続されていてもよいし、処理装置200が車両Wの内部に位置していてもよい。また、上記実施の形態では、絶対位置特定処理の処理がまとめて一度に行われることとしたが、これに限られない。日時t1からt2へ変換する変換関数の算出(ステップS201。ステップS202の処理を含めてもよい)、路面高さの算出(ステップS202~S206。ステップS202の処理を除いてもよい)、周囲の位置の算出(ステップS207~S210)の処理は、各々異なる処理、異なる処理装置で別個に行われてもよい。
【0081】
また、上記実施の形態では、路面のひび割れなどによる周囲の位置そのものを計測する場合について説明したが、位置情報を必要とするものであれば、これに限られない。周囲の各位置の特性や材質などの計測結果を得る計測システムであってもよい。
【0082】
以上のように、本実施形態の計測システムである路面計測システム1は、計時部113を有し、車両Wに搭載されて走行する車両Wから周囲(路面)を計測して、当該周囲の計測を行った計測タイミングにおける計時部113による日時t1(j)及び周囲の計測の結果を含む周囲計測データを出力する周囲計測手段としての路面計測部110と、計時部123を有し、車両Wに搭載されて走行する車両Wの地理的位置及び姿勢を計測して、当該車両Wの計測を行った計測タイミングにおける計時部123による日時t2(i)及び車両Wの計測の結果を含む車両計測データを出力する車両計測部120と、路面計測部110及び車両計測部120に同期信号を出力する同期信号出力部140と、車両計測データを用いて周囲計測データに係る(ここでは、周囲計測データに含まれる周囲の計測の結果、すなわち計測地点の)地理的三次元位置を特定する位置特定手段としての制御部210と、を備える。
路面計測部110は、同期信号が入力された同期タイミングにおける計時部113による日時t1(Tk)を出力し、車両計測部120は、同期タイミングにおける計時部123による日時t2(Tk)を出力する。
位置特定手段としての制御部210は、日時t1(Tk)、日時t2(Tk)の組合せにより、計時部113による日時t1と計時部123による日時t2との対応関係を求め、この対応関係を用いて日時t1(j)に対応する計時部123の日時t2(t1(j))を特定し、車両計測データに基づいて、特定された日時t2(t1(j))における車両Wの地理的位置及び姿勢を算出し、算出された車両Wの地理的位置及び姿勢を用いて、日時t2(t1(j))における周囲の計測の結果に係る(計測地点の)地理的三次元位置を特定する。
このように、各計測部に同期信号Tkを入力して同期タイミングの日時を当該各計測部に出力させることで、容易に各計測部間で計時されている日時のずれが取得される。これらの変化傾向に基づいて路面計測部110の計測が行われた日時t1(j)のタイミングを車両計測部120のタイミングと対応付けて、日時t1(j)の地理的三次元位置及び姿勢をその前後の計測データで補間して算出することで、各計測部による計測データのタイミングをそろえることができる。よって、この路面計測システム1では、設計の変更に要する手間やコストを抑えながら、移動計測に係る複数の計測結果を高精度に整合させることができる。また、同期信号の入力タイミングで即座に計測値が取得できないようなセンサ機器による計測データや互いに異なる時間分解能で計測される結果も、各計測タイミングを直接的により高難度に合わせるように調整するのではなく、容易かつ適切に望ましいタイミングのデータとして取得することができる。
【0083】
また、位置特定手段としての制御部210は計時部123によるt1に対する計時部113による日時t1のずれ量(t1-t2)を対応関係として求め、この対応関係により日時t1(j)に対するずれ量を算出することで、日時t2(t1(j))を特定する。このようにずれ量を求めることで、容易に日時t1(j)を日時t2(t1(j))に変換することが可能となり、特に、日時t2が正確である場合には、計測日時を容易に正確な日時に統一してタイミングの調整を行うことができる。
【0084】
また、位置特定手段としての制御部210は、複数の同期タイミングのそれぞれにおける日時t1(Tk)及び日時t2(Tk)の組を用いて、日時t1(Tk)と日時t2(Tk)の差を多項式近似することにより、ずれ量を定める。ずれ量は、計測条件や計時部113の発振子などの特性に応じて変化し得る。これを複数回の同期タイミングで得られる日時t1(Tk)、t2(Tk)の組により多項式近似することで、精度よく近似式g(t1)で表されるずれ量の日時t1に応じた変化に追随してタイミング合わせを可能とし、また、計測の日時t1(j)における地理的位置及び姿勢を得ることができる。
【0085】
あるいは、位置特定手段としての制御部210は、複数の同期タイミングのそれぞれにおける日時t1(Tk)及び日時t2(Tk)の組を用いて、日時t1(Tk)から日時t2(Tk)への変換関数fd(t1)を多項式近似で求めることにより、対応関係を定めることとしてもよい。日時t1から日時t2への変換が1度の計算で終了するので処理が容易である。
【0086】
また、本実施形態の情報処理装置としての処理装置200は、制御部210を備える。制御部210は、周囲計測データ取得手段として、計時部113を有し、車両Wに搭載されて走行する車両Wから周囲(路面)を計測して、当該周囲の計測を行った計測タイミングにおける計時部113による日時t1(j)及び周囲の計測の結果を含む周囲計測データとしての路面計測データを出力する路面計測部110から、路面計測データを取得する。制御部210は、車両計測データ取得手段として、計時部123を有し、車両Wに搭載されて走行する車両Wの地理的位置及び姿勢を計測して、当該車両Wの計測を行った計測タイミングにおける計時部123による計測日時t2(i)及び車両Wの計測の結果を含む車両計測データを出力する車両計測部120から車両計測データを取得する。制御部210は、位置特定手段として、車両計測データを用いて路面計測データに係る地理的三次元位置を特定する。路面計測部110は、所定の同期信号が入力された同期タイミングにおける計時部113による日時t1(Tk)を出力し、車両計測部120は、所定の同期信号が入力された同期タイミングにおける計時部123による日時t2(Tk)を出力する。位置特定手段としての制御部210は、日時t1(Tk)及び日時t2(Tk)の組合せにより、計時部113による日時と計時部123による日時との対応関係を求め、この対応関係を用いて日時t1(j)に対応する計時部123の対応する日時t2(t1(j))を特定し、車両計測データに基づいて、特定された日時t2(t1(j))における車両Wの地理的位置及び姿勢を算出し、算出された車両Wの地理的位置及び姿勢を用いて、日時t2(t1(j))における周囲(路面)の計測の結果に係る地理的三次元位置を特定する。
このように、処理装置200において、計測装置100から取得した各計測部の計測データのタイミングを、同期信号Tkの入力時における日時t1(Tk)、t2(Tk)の対応関係に基づいて特定し、一方の日時t1を他方の日時t2に変換することで、計測装置100で計測のタイミングをそろえるための制御やハードウェアの調整を行う必要がない。そして、周囲計測データの計測タイミングにおける車両計測データを内部補間などによって算出することで、計測データのタイミングも合わせることができる。よって、この処理装置200では、計測装置100な同期タイミングでのデータ出力を要求することなく、また、処理装置200でも容易な処理によって、移動計測に係る複数の計測結果を高精度に整合させることができる。また、同期信号の入力タイミングで即座に計測値が取得できないようなセンサ機器による計測データも容易かつ適切に望ましいタイミングのデータとして取得することができる。
【0087】
また、本実施形態の情報処理方法は、走行する車両Wから周囲を計測して、当該周囲の計測を行った計測タイミングにおける計時部113による日時t1(j)及び周囲の計測の結果を含む周囲計測データを出力する周囲計測手段(路面計測部110など)から、周囲計測データを取得する周囲計測データ取得ステップ、走行する車両Wの地理的位置及び姿勢を計測して、当該車両Wの計測を行った計測タイミングにおける計時部123による日時t2(i)及び車両Wの計測の結果を含む車両計測データを出力する車両計測部120から、車両計測データを取得する車両計測データ取得ステップ、車両計測データを用いて周囲計測データに係る地理的三次元位置を特定する位置特定ステップ、を含む。周囲計測ステップでは、周囲計測手段に所定の同期信号Tkが入力された同期タイミングにおける計時部113による日時t1(Tk)を併せて取得し、車両計測ステップでは、車両計測部120における上記同期タイミングにおける計時部123による日時t2(Tk)を併せて取得し、位置特定ステップでは、日時t1(Tk)及び日時t2(Tk)の組合せにより、計時部113による日時t1と計時部123による日時t2との対応関係を求め、この対応関係を用いて計測が行われた日時t1(j)に対応する計時部123の日時t2(t1(j))を特定し、車両計測データに基づいて、特定された日時t2(t1(j))における車両Wの地理的位置及び姿勢を算出し、算出された車両Wの地理的位置及び姿勢を用いて、日時t2(t1(j))における周囲の計測の結果に係る地理的三次元位置を特定する。
このような情報処理方法により、複数の計測部による計測が当該計測の際に同期されていなくても、容易に高精度にタイミングを整合させて、複数の計測データを統合することができる。
【0088】
その他、上記実施の形態で示した具体的な構成、処理動作の内容及び手順などは、本発明の趣旨を逸脱しない範囲において適宜変更可能である。本発明の範囲は、特許請求の範囲に記載した発明の範囲とその均等の範囲を含む。
【符号の説明】
【0089】
1 路面計測システム
100 計測装置
110 路面計測部
111 照射部
1111 発光部
1112 走査部
112 撮影部
113 計時部
120 車両計測部
121 衛星測位部
122 姿勢計測部
1221 加速度センサ
1222 ジャイロセンサ
123 計時部
130 周囲計測部
131 レーザスキャナ
140 同期信号出力部
150 制御部
160 記憶部
170 通信部
200 処理装置
210 制御部
220 記憶部
221 三次元道路データ
222 プログラム
230 通信部
240 入出力部
241 表示部
242 操作受付部
L 計測測線
P 基準位置
Tk 同期信号
W 車両
fd 変換関数
g 近似式