IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 三菱マテリアル株式会社の特許一覧

特許7180102電子・電気機器用銅合金、電子・電気機器用銅合金板条材、電子・電気機器用部品、端子、及び、バスバー
<>
  • 特許-電子・電気機器用銅合金、電子・電気機器用銅合金板条材、電子・電気機器用部品、端子、及び、バスバー 図1
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-11-21
(45)【発行日】2022-11-30
(54)【発明の名称】電子・電気機器用銅合金、電子・電気機器用銅合金板条材、電子・電気機器用部品、端子、及び、バスバー
(51)【国際特許分類】
   C22C 9/00 20060101AFI20221122BHJP
   H01B 1/02 20060101ALI20221122BHJP
   H01B 5/02 20060101ALI20221122BHJP
   C22F 1/08 20060101ALN20221122BHJP
   C22F 1/00 20060101ALN20221122BHJP
【FI】
C22C9/00
H01B1/02 A
H01B5/02 A
H01B5/02 Z
C22F1/08 B
C22F1/00 611
C22F1/00 612
C22F1/00 613
C22F1/00 623
C22F1/00 624
C22F1/00 630A
C22F1/00 630K
C22F1/00 650A
C22F1/00 661A
C22F1/00 682
C22F1/00 683
C22F1/00 685A
C22F1/00 685Z
C22F1/00 686A
C22F1/00 691A
C22F1/00 691B
C22F1/00 691C
C22F1/00 691Z
C22F1/00 692A
C22F1/00 692Z
C22F1/00 694A
C22F1/00 694B
【請求項の数】 10
(21)【出願番号】P 2018069098
(22)【出願日】2018-03-30
(65)【公開番号】P2019178399
(43)【公開日】2019-10-17
【審査請求日】2021-03-10
(73)【特許権者】
【識別番号】000006264
【氏名又は名称】三菱マテリアル株式会社
(74)【代理人】
【識別番号】100149548
【弁理士】
【氏名又は名称】松沼 泰史
(74)【代理人】
【識別番号】100175802
【弁理士】
【氏名又は名称】寺本 光生
(74)【代理人】
【識別番号】100142424
【弁理士】
【氏名又は名称】細川 文広
(74)【代理人】
【識別番号】100140774
【弁理士】
【氏名又は名称】大浪 一徳
(72)【発明者】
【氏名】松永 裕隆
(72)【発明者】
【氏名】川▲崎▼ 健一郎
(72)【発明者】
【氏名】森 広行
(72)【発明者】
【氏名】牧 一誠
(72)【発明者】
【氏名】秋坂 佳輝
【審査官】川村 裕二
(56)【参考文献】
【文献】特開2017-186664(JP,A)
【文献】特開2017-186662(JP,A)
【文献】特開2011-132564(JP,A)
【文献】特許第6187630(JP,B1)
【文献】特開2019-178397(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C22C 9/00- 9/10
C22F 1/00- 1/18
H01B 1/02
H01B 5/02
(57)【特許請求の範囲】
【請求項1】
Mgを0.15mass%以上0.35mass%未満の範囲内、Pを0.0005mass%以上0.01mass%未満の範囲内で含み、残部がCuおよび不可避的不純物からなり、
Mgの含有量〔Mg〕とPの含有量〔P〕が質量比で、
〔Mg〕+20×〔P〕<0.5
の関係を満たし、
圧延の幅方向に対して直交する面を観察面として、母相をEBSD法により10000μm以上の測定面積を測定間隔0.25μmステップで測定して、データ解析ソフトOIMにより解析されたCI値が0.1以下である測定点を除いて解析し、隣接する測定間の方位差が15°を超える測定点間を結晶粒界とし、Σ29以下の対応粒界を特殊粒界とし、それ以外をランダム粒界とした際、OIMから解析された粒界3重点において、
粒界3重点を構成する3つの粒界全てが特殊粒界であるJ3の全粒界3重点に対する割合をNFJ3とし、粒界3重点を構成する2つの粒界が特殊粒界であり、1つがランダム粒界であるJ2の全粒界3重点に対する割合をNFJ2としたとき、
0.20<(NFJ2/(1-NFJ3))0.5≦0.45
が成り立つとともに、
圧延方向に対して直交方向に引張試験を行った際の強度TSTDと、圧延方向に対して平行方向に引張試験を行った際の強度TSLDと、から算出される強度比TSTD/TSLDが1.1未満であり、
金型のクリアランスを板厚の3%として打ち抜きを行った際のかえり高さが板厚の3.0%以下であることを特徴とする電子・電気機器用銅合金。
【請求項2】
導電率が75%IACS超えであることを特徴とする請求項1に記載の電子・電気機器用銅合金。
【請求項3】
Mgの含有量〔Mg〕とPの含有量〔P〕が質量比で、
〔Mg〕/〔P〕≦400
の関係を満たすことを特徴とする請求項1又は請求項2に記載の電子・電気機器用銅合金。
【請求項4】
圧延方向に対して平行方向に引張試験を行った際の0.2%耐力が200MPa以上であることを特徴とする請求項1から請求項3のいずれか一項に記載の電子・電気機器用銅合金。
【請求項5】
残留応力率が150℃、1000時間で75%以上であることを特徴とする請求項1から請求項4のいずれか一項に記載の電子・電気機器用銅合金。
【請求項6】
請求項1から請求項5のいずれか一項に記載の電子・電気機器用銅合金からなり、厚さが0.5mm超えとされていることを特徴とする電子・電気機器用銅合金板条材。
【請求項7】
表面にSnめっき層又はAgめっき層を有することを特徴とする請求項6に記載の電子・電気機器用銅合金板条材。
【請求項8】
請求項6又は請求項7に記載された電子・電気機器用銅合金板条材からなることを特徴とする電子・電気機器用部品。
【請求項9】
請求項6又は請求項7に記載された電子・電気機器用銅合金板条材からなることを特徴とする端子。
【請求項10】
請求項6又は請求項7に記載された電子・電気機器用銅合金板条材からなることを特徴とするバスバー。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、コネクタやプレスフィット等の端子、バスバー等の電子・電気機器用部品に適した電子・電気機器用銅合金、この電子・電気機器用銅合金からなる電子・電気機器用銅合金板条材、電子・電気機器用部品、端子、及び、バスバーに関するものである。
【背景技術】
【0002】
従来、コネクタやプレスフィット等の端子、バスバー等の電子・電気機器用部品には、導電性の高い銅又は銅合金が用いられている。
ここで、電子機器や電気機器等の大電流化にともない、電流密度の低減およびジュール発熱による熱の拡散のために、これら電子機器や電気機器等に使用される電子・電気機器用部品の大型化、厚肉化が図られている。このため、電子・電気機器用部品を構成する材料には、高い導電率やプレス加工時の打ち抜き加工性、良好な曲げ加工性が求められている。また、自動車のエンジンルーム等の高温環境下で使用されるコネクタの端子等においては、耐応力緩和特性も求められている。
【0003】
ここで、コネクタやプレスフィット等の端子、バスバー等の電子・電気機器用部品に使用される材料として、例えば特許文献1、2には、Cu-Mg系合金が提案されている。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2007-056297号公報
【文献】特開2014-114464号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
ここで、特許文献1に記載されたCu-Mg系合金においては、Pの含有量が0.08~0.35mass%と多いため、冷間加工性及び曲げ加工性が不十分であり、所定の形状の電子・電気機器用部品を成型することが困難であった。
また、特許文献2に記載されたCu-Mg系合金においては、Mgの含有量が0.01~0.5mass%、及びPの含有量が0.01~0.5mass%とされていることから、粗大な晶出物が生じ、冷間加工性及び曲げ加工性が不十分であった。
【0006】
さらに、上述のCu-Mg系合金においては、Mgによって銅合金溶湯の粘性が上昇することから、Pを添加しないと鋳造性が低下してしまうといった問題があった。
また、上述したように、近年の電子機器や電気機器等の大電流化にともない、電子・電気機器用部品を構成する材料においては、厚肉化が図られている。しかしながら、厚肉化が進むと、打ち抜き時に発生するかえり高さが高くなり、プレス加工時の打ち抜き加工性が低下するといった問題があった。
【0007】
また、上述の電子・電気機器用部品においては、その用途によっては、使用時に多方向に応力が作用することがある。また、電子・電気機器用部品を成型する際に、多方向に曲げ加工が施されることがある。このため、電子・電気機器用部品を構成する材料には、等方性が求められることがある。
【0008】
この発明は、前述した事情に鑑みてなされたものであって、導電性、強度、曲げ加工性、耐応力緩和特性、鋳造性及び、打ち抜き性に優れ、かつ等方性に優れた電子・電気機器用銅合金、電子・電気機器用銅合金板条材、及び、この電子・電気機器用銅合金板条材からなる電子・電気機器用部品、端子、及び、バスバーを提供することを目的とする。
【課題を解決するための手段】
【0009】
この課題を解決するために、本発明者らが鋭意検討した結果、合金中に含有されるMg及びPの含有量を所定の関係式の範囲内に設定することで、MgとPを含む晶出物が粗大化することが抑制され、曲げ加工性を低下させることなく、強度、耐応力緩和特性、鋳造性を向上させることが可能であるとの知見を得た。
また、上述の銅合金において、圧延の幅方向に対して直交する面を観察面として、母相をEBSD法により解析した結果、粒界3重点を構成する特殊粒界及びランダム粒界の比率を規定することにより、プレス加工時において亀裂が粒界に沿って進展しやすくなり、プレス加工時の打ち抜き加工性も向上させることが可能となるとの知見を得た。
さらに、上述の銅合金において、圧延方向に対して直交方向(TD)に引張試験を行った際の強度TSTDと、圧延方向に対して平行方向(LD)に引張試験を行った際の強度TSLDと、から算出される強度比TSTD/TSLDを制限することで、材料の等方性を確保できるとの知見を得た。
【0010】
この課題を解決するために、本発明の電子・電気機器用銅合金は、Mgを0.15mass%以上0.35mass%未満の範囲内、Pを0.0005mass%以上0.01mass%未満の範囲内で含み、残部がCuおよび不可避的不純物からなり、Mgの含有量〔Mg〕とPの含有量〔P〕が質量比で、〔Mg〕+20×〔P〕<0.5の関係を満たし、圧延の幅方向に対して直交する面を観察面として、母相をEBSD法により10000μm以上の測定面積を測定間隔0.25μmステップで測定して、データ解析ソフトOIMにより解析されたCI値が0.1以下である測定点を除いて解析し、隣接する測定間の方位差が15°を超える測定点間を結晶粒界とし、Σ29以下の対応粒界を特殊粒界とし、それ以外をランダム粒界とした際、OIMから解析された粒界3重点において、粒界3重点を構成する3つの粒界全てが特殊粒界であるJ3の全粒界3重点に対する割合をNFJ3とし、粒界3重点を構成する2つの粒界が特殊粒界であり、1つがランダム粒界であるJ2の全粒界3重点に対する割合をNFJ2としたとき、0.20<(NFJ2/(1-NFJ3))0.5≦0.45が成り立つとともに、圧延方向に対して直交方向に引張試験を行った際の強度TSTDと、圧延方向に対して平行方向に引張試験を行った際の強度TSLDと、から算出される強度比TSTD/TSLDが1.1未満であり、金型のクリアランスを板厚の3%として打ち抜きを行った際のかえり高さが板厚の3.0%以下であることを特徴としている。
【0011】
なお、EBSD法とは、後方散乱電子回折像システム付の走査型電子顕微鏡による電子線反射回折法(Electron Backscatter Diffraction Patterns:EBSD)を意味し、またOIMは、EBSDによる測定データを用いて結晶方位を解析するためのデータ解析ソフト(Orientation Imaging Microscopy:OIM)である。さらにCI値とは、信頼性指数(Confidence Index)であって、EBSD装置の解析ソフトOIM Analysis(Ver.7.2)を用いて解析したときに、結晶方位決定の信頼性を表す数値として表示される数値である(例えば、「EBSD読本:OIMを使用するにあたって(改定第3版)」鈴木清一著、2009年9月、株式会社TSLソリューションズ発行)。
ここで、EBSD法により測定してOIMにより解析した測定点の組織が加工組織である場合、結晶パターンが明確ではないため結晶方位決定の信頼性が低くなり、CI値が低くなる。特に、CI値が0.1以下の場合にその測定点の組織が加工組織であると判断される。
【0012】
また、特殊粒界とは、結晶学的にCSL理論(Kronberg et al:Trans.Met.Soc.AIME,185,501(1949))に基づき定義されるΣ値で3≦Σ≦29に属する対応粒界であって、かつ、当該対応粒界における固有対応部位格子方位欠陥Dqが、Dq≦15°/Σ1/2(D.G.Brandon:Acta.Metallurgica.Vol.14,p.1479,(1966))を満たす結晶粒界であるとして定義される。
一方、ランダム粒界とは、Σ値が29以下の対応方位関係があってかつDq≦15°/Σ1/2を満たす特殊粒界以外、の粒界である。
【0013】
なお、粒界3重点としては、3つの粒界がすべてランダム粒界であるJ0、1つの粒界が特殊粒界であるとともに2つの粒界がランダム粒界であるJ1、2つの粒界が特殊粒界であるとともに1つがランダム粒界であるJ2、3つの粒界がすべて特殊粒界であるJ3の4種類が存在している。
よって、粒界3重点を構成する3つの粒界全てが特殊粒界であるJ3の全粒界3重点に対する割合NFJ3は、NFJ3=J3/(J0+J1+J2+J3)で定義される。
また、粒界3重点を構成する2つの粒界が特殊粒界であり、1つがランダム粒界であるJ2の全粒界3重点に対する割合NFJ2は、NFJ2=J2/(J0+J1+J2+J3)で定義される。
【0014】
上述の構成の電子・電気機器用銅合金によれば、Mgの含有量が0.15mass%以上0.35mass%未満の範囲内とされているので、銅の母相中にMgが固溶することにより、導電率を大きく低下させることなく、強度、耐応力緩和特性を向上させることが可能となる。
また、Pを0.0005mass%以上0.01mass%未満の範囲内で含んでいるので、Mgを含む銅合金溶湯の粘度を下げることができ、鋳造性を向上させることができる。
そして、Mgの含有量〔Mg〕とPの含有量〔P〕が質量比で、〔Mg〕+20×〔P〕<0.5の関係を満足しているので、MgとPを含む粗大な晶出物の生成を抑制でき、冷間加工性及び曲げ加工性が低下することを抑制できる。
【0015】
また、圧延の幅方向に対して直交する面を観察面として、母相をEBSD法により10000μm以上の測定面積を測定間隔0.25μmステップで測定して、データ解析ソフトOIMにより解析されたCI値が0.1以下である測定点を除いて解析し、隣接する測定間の方位差が15°を超える測定点間を結晶粒界とし、Σ29以下の対応粒界を特殊粒界とし、それ以外をランダム粒界とした際、OIMから解析された粒界3重点において、粒界3重点を構成する3つの粒界全てが特殊粒界であるJ3の全粒界3重点に対する割合をNFJ3とし、粒界3重点を構成する2つの粒界が特殊粒界であり、1つがランダム粒界であるJ2の全粒界3重点に対する割合をNFJ2としたとき、0.20<(NFJ2/(1-NFJ3))0.5≦0.45を満たしているので、粒界に沿って亀裂が進展しやすくなり、プレス加工時の打ち抜き加工性を向上させることが可能となる。
【0016】
そして、圧延方向に対して直交方向に引張試験を行った際の強度TSTDと、圧延方向に対して平行方向に引張試験を行った際の強度TSLDと、から算出される強度比TSTD/TSLDが1.1未満であることから、強度の異方性が少なく、大電流用の端子やバスバーのようにLD方向、TD方向ともに強度が必要な場合にも十分な強度が確保され、また特定の方向を必要以上に高強度化することにより発生する曲げ加工時の割れ等の発生を抑制することができる。すなわち、圧延方向に対して曲げの軸が直交方向となる曲げ(GW曲げ)、及び、圧延方向に対して曲げの軸が平行方向となる曲げ(BW曲げ)において、良好な曲げ加工性を備えることができる。
【0017】
ここで、本発明の電子・電気機器用銅合金においては、導電率が75%IACS超えであることが好ましい。
この場合、導電率が十分に高いため、従来、純銅を用いていた用途にも適用することが可能となる。
【0018】
また、本発明の電子・電気機器用銅合金においては、Mgの含有量〔Mg〕とPの含有量〔P〕が質量比で、〔Mg〕/〔P〕≦400の関係を満たすことが好ましい。
この場合、鋳造性を低下させるMgの含有量と鋳造性を向上させるPの含有量との比率を、上述のように規定することにより、鋳造性を確実に向上させることができる。
【0019】
さらに、本発明の電子・電気機器用銅合金においては、圧延方向に対して平行方向に引張試験を行った際の0.2%耐力が200MPa以上であることが好ましい。
この場合、圧延方向に対して平行方向に引張試験を行った際の0.2%耐力が200MPa以上とされているので、容易に変形することがなく、大電流・高電圧向けのコネクタやプレスフィット等の端子、バスバー等の電子・電気機器用部品の銅合金として特に適している。
【0020】
また、本発明の電子・電気機器用銅合金においては、残留応力率が150℃、1000時間で75%以上であることが好ましい。
この場合、残留応力率が上述のように規定されていることから、高温環境下で使用した場合であっても永久変形を小さく抑えることができ、例えばコネクタ端子等の接圧の低下を抑制することができる。よって、エンジンルーム等の高温環境下で使用される電子機器用部品の素材として適用することが可能となる。
【0021】
本発明の電子・電気機器用銅合金板条材は、上述の電子・電気機器用銅合金からなり、厚さが0.5mm超えとされていることを特徴としている。
この構成の電子・電気機器用銅合金板条材によれば、上述の電子・電気機器用銅合金で構成されていることから、導電性、強度、曲げ加工性、耐応力緩和特性、打ち抜き加工性に優れており、厚肉化したコネクタやプレスフィット等の端子、バスバー等の電子・電気機器用部品の素材として特に適している。
【0022】
ここで、本発明の電子・電気機器用銅合金板条材においては、表面にSnめっき層又はAgめっき層を有することが好ましい。
この場合、表面にSnめっき層又はAgめっき層を有しているので、コネクタやプレスフィット等の端子、バスバー等の電子・電気機器用部品の素材として特に適している。なお、本発明において、「Snめっき」は、純Snめっき又はSn合金めっきを含み、「Agめっき」は、純Agめっき又はAg合金めっきを含む。
【0023】
本発明の電子・電気機器用部品は、上述の電子・電気機器用銅合金板条材からなることを特徴としている。なお、本発明における電子・電気機器用部品とは、コネクタやプレスフィット等の端子、バスバー等を含むものである。
この構成の電子・電気機器用部品は、上述の電子・電気機器用銅合金板条材を用いて製造されているので、大電流用途に対応して大型化および厚肉化した場合であっても優れた特性を発揮することができる。
【0024】
本発明の端子は、上述の電子・電気機器用銅合金板条材からなることを特徴としている。
この構成の端子は、上述の電子・電気機器用銅合金板条材を用いて製造されているので、大電流用途に対応して大型化および厚肉化した場合であっても優れた特性を発揮することができる。
【0025】
本発明のバスバーは、上述の電子・電気機器用銅合金板条材からなることを特徴としている。
この構成のバスバーは、上述の電子・電気機器用銅合金板条材を用いて製造されているので、大電流用途に対応して大型化および厚肉化した場合であっても優れた特性を発揮することができる。
【発明の効果】
【0026】
本発明によれば、導電性、強度、曲げ加工性、耐応力緩和特性、鋳造性及び、打ち抜き性に優れ、かつ等方性に優れた電子・電気機器用銅合金、電子・電気機器用銅合金板条材、及び、この電子・電気機器用銅合金板条材からなる電子・電気機器用部品、端子、及び、バスバーを提供することができる。
【図面の簡単な説明】
【0027】
図1】本実施形態である電子・電気機器用銅合金の製造方法のフロー図である。
【発明を実施するための形態】
【0028】
以下に、本発明の一実施形態である電子・電気機器用銅合金について説明する。
本実施形態である電子・電気機器用銅合金は、Mgを0.15mass%以上0.35mass%未満の範囲内、Pを0.0005mass%以上0.01mass%未満の範囲内で含み、残部がCuおよび不可避的不純物からなる組成を有する。
【0029】
そして、Mgの含有量〔Mg〕とPの含有量〔P〕が質量比で、
〔Mg〕+20×〔P〕<0.5
の関係を有している。
【0030】
そして、本発明の一実施形態である電子・電気機器用銅合金においては、圧延の幅方向に対して直交する面を観察面として、母相をEBSD法により10000μm以上の測定面積を測定間隔0.25μmステップで測定して、データ解析ソフトOIMにより解析されたCI値が0.1以下である測定点を除いて解析し、隣接する測定間の方位差が15°を超える測定点間を結晶粒界とし、Σ29以下の対応粒界を特殊粒界とし、それ以外をランダム粒界とした際、OIMから解析された粒界3重点において、粒界3重点を構成する3つの粒界全てが特殊粒界であるJ3の全粒界3重点に対する割合をNFJ3とし、粒界3重点を構成する2つの粒界が特殊粒界であり、1つがランダム粒界であるJ2の全粒界3重点に対する割合をNFJ2としたとき、
0.20<(NFJ2/(1-NFJ3))0.5≦0.45
が成り立つものとされている。
【0031】
さらに、本発明の一実施形態である電子・電気機器用銅合金においては、圧延方向に対して直交方向に引張試験を行った際の強度TSTDと、圧延方向に対して平行方向に引張試験を行った際の強度TSLDと、から算出される強度比TSTD/TSLDが1.1未満とされている。すなわち、本実施形態では、電子・電気機器用銅合金の圧延材とされており、圧延の最終工程における圧延方向に対して直交方向に引張試験を行った際の強度TSTDと、圧延方向に対して平行方向に引張試験を行った際の強度TSLDとの関係が、上述のように規定されているのである。
【0032】
なお、本実施形態では、Mgの含有量〔Mg〕とPの含有量〔P〕が質量比で、
〔Mg〕/〔P〕≦400
の関係を有していることが好ましい。
【0033】
また、本実施形態である電子・電気機器用銅合金においては、導電率が75%IACS超えとされていることが好ましい。
さらに、本実施形態である電子・電気機器用銅合金においては、圧延方向に対して平行方向に引張試験を行った際の0.2%耐力が200MPa以上であることが好ましい。すなわち、本実施形態では、電子・電気機器用銅合金の圧延材とされており、圧延の最終工程における圧延方向に対して平行方向に引張試験を行った際の0.2%耐力が上述のように規定されているのである。
また、本実施形態である電子・電気機器用銅合金においては、残留応力率が150℃、1000時間で75%以上とされていることが好ましい。
【0034】
ここで、上述のように成分組成、結晶組織、各種特性を規定した理由について以下に説明する。
【0035】
(Mg:0.15mass%以上0.35mass%未満)
Mgは、銅合金の母相中に固溶することで、高い導電率を保持したまま、強度および耐応力緩和特性を向上させる作用を有する元素である。
ここで、Mgの含有量が0.15mass%未満の場合には、その作用効果を十分に奏功せしめることができなくなるおそれがある。一方、Mgの含有量が0.35mass%以上の場合には、導電率が大きく低下するとともに、銅合金溶湯の粘性が上昇し、鋳造性が低下するおそれがある。
以上のことから、本実施形態では、Mgの含有量を0.15mass%以上0.35mass%未満の範囲内に設定している。
なお、強度および耐応力緩和特性をさらに向上させるためには、Mgの含有量の下限を0.16mass%以上とすることが好ましく、0.17mass%以上とすることがさらに好ましく、0.18mass%以上とすることがより好ましい。また、導電率の低下及び鋳造性の低下を確実に抑制するためには、Mgの含有量の上限を0.32mass%以下とすることが好ましく、0.30mass%以下とすることがさらに好ましく、0.28mass%以下とすることがより好ましい。
【0036】
(P:0.0005mass%以上、0.01mass%未満)
Pは、鋳造性を向上させる作用効果を有する元素である。
ここで、Pの含有量が0.0005mass%未満の場合には、その作用効果を十分に奏功せしめることができないおそれがある。一方、Pの含有量が0.01mass%以上の場合には、MgとPを含有する粗大な晶出物が生成することから、この晶出物が破壊の起点となり、冷間加工時や曲げ加工時に割れが生じるおそれがある。
以上のことから、本実施形態においては、Pの含有量を0.0005mass%以上0.01mass%未満の範囲内に設定している。なお、確実に鋳造性を向上させるためには、Pの含有量の下限を0.001mass%以上とすることが好ましく、0.002mass%以上とすることがさらに好ましい。また、粗大な晶出物の生成を確実に抑制するためには、Pの含有量の上限を0.009mass%未満とすることが好ましく、0.008mass%未満とすることがさらに好ましく、0.0075mass%以下とすることより好ましい。
【0037】
(〔Mg〕+20×〔P〕<0.5)
上述のように、MgとPが共存することにより、MgとPを含む晶出物が生成することになる。
ここで、質量比で、Mgの含有量〔Mg〕とPの含有量〔P〕とした場合に、〔Mg〕+20×〔P〕が0.5以上となる場合には、MgおよびPの総量が多く、MgとPを含む晶出物が粗大化するとともに高密度に分布し、冷間加工時や曲げ加工時に割れが生じやすくなるおそれがある。
以上のことから、本実施形態においては、〔Mg〕+20×〔P〕を0.5未満に設定している。なお、晶出物の粗大化および高密度化を確実に抑制して、冷間加工時や曲げ加工時における割れの発生を抑制するためには、〔Mg〕+20×〔P〕を0.48未満とすることが好ましく、0.46未満とすることがさらに好ましい。
【0038】
(〔Mg〕/〔P〕≦400)
Mgは、銅合金溶湯の粘度を上昇させ、鋳造性を低下させる作用を有する元素であることから、本実施形態において、鋳造性をさらに確実に向上させるためには、MgとPの含有量の比率を適正化することが好ましい。
ここで、質量比で、Mgの含有量〔Mg〕とPの含有量〔P〕とした場合に、〔Mg〕/〔P〕が400以下とすることにより、MgとPの含有量の比率が適正化され、Pの添加による鋳造性向上効果を確実に奏功せしめることが可能となる。
以上のことから、本実施形態において、鋳造性をさらに確実に向上させる際には、〔Mg〕/〔P〕を400以下に設定することが好ましい。鋳造性をより向上させるためには、〔Mg〕/〔P〕を350以下とすることがさらに好ましく、300以下とすることがより好ましい。
なお、〔Mg〕/〔P〕が過剰に低い場合には、Mgが晶出物として消費され、Mgの固溶による効果を得ることができなくなるおそれがある。MgとPを含有する晶出物の生成を抑制し、Mgの固溶による耐力、耐応力緩和特性の向上を確実に図るためには、〔Mg〕/〔P〕の下限を20超えとすることが好ましく、25超えであることがさらに好ましい。
【0039】
(不可避不純物:0.1mass%以下)
その他の不可避的不純物としては、Ag、B、Ca、Sr、Ba、Sc、Y、希土類元素、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Re、Fe、Ru、Os、Co、Se、Te、Rh、Ir、Ni、Pd、Pt、Au、Zn、Cd,Hg、Al、Ga、In、Ge、Sn、As、Sb、Tl、Pb、Bi、Be、N、C、Si、Li、H、O、S等が挙げられる。これらの不可避不純物は、導電率を低下させる作用があることから、総量で0.1mass%以下とする。
また、Ag、Zn、Snは銅中に容易に混入して導電率を低下させるため、総量で500massppm未満とすることが好ましい。
さらに、Si、Cr、Ti、Zr、Fe、Coは、特に導電率を大きく減少させるとともに、介在物の形成により曲げ加工性を劣化させるため、これらの元素は総量で500massppm未満とすることが好ましい。
【0040】
(粒界3重点の割合)
プレス加工時における打ち抜き加工性は、破断時のかえり高さが小さいほど優れていることになる。ここで、プレス加工を行う材料の厚さが増すほど相対的にかえり高さが高くなる傾向にある。
プレス加工時のかえり高さを低減するためには、プレス加工時に破断が粒界に沿って速やかに発生すればよい。ランダム粒界のネットワークが長くなると粒界に沿った破断が生じやすくなる。ランダム粒界のネットワーク長を長くするためには、粒界3重点を構成する3つの粒界のうち全てが、Σ29以下であらわされる特殊粒界であるJ3、もしくは3つのうち2つが特殊粒界であるJ2の割合を制御することが重要である。
【0041】
そのため、本実施形態においては、圧延の幅方向に対して直交する面を観察面として、母相をEBSD法により10000μm以上の測定面積を測定間隔0.25μmステップで測定して、データ解析ソフトOIMにより解析されたCI値が0.1以下である測定点を除いて解析し、隣接する測定間の方位差が15°を超える測定点間を結晶粒界とし、Σ29以下の対応粒界を特殊粒界とし、それ以外をランダム粒界とした際、OIMから解析された粒界3重点において、粒界3重点を構成する3つの粒界全てが特殊粒界であるJ3の全粒界3重点に対する割合をNFJ3とし、粒界3重点を構成する2つの粒界が特殊粒界であり、1つがランダム粒界であるJ2の全粒界3重点に対する割合をNFJ2としたとき、
0.20<(NFJ2/(1-NFJ3))0.5≦0.45
を満足するものとしている。
【0042】
ここで、(NFJ2/(1-NFJ3))0.5が0.45を超えると、ランダム粒界のネットワーク長が相対的に短くなり、特殊粒界のネットワーク長が長くなるため、プレス加工時のかえり高さが高くなる。一方、(NFJ2/(1-NFJ3))0.5が0.20以下の場合は実質的に加工組織となるため、曲げ加工性が低下する。このため、本実施形態においては、(NFJ2/(1-NFJ3))0.5を、0.20を超え0.45以下の範囲内とした。
なお、(NFJ2/(1-NFJ3))0.5の下限は、0.21以上であることが好ましく、0.22以上であることがさらに好ましく、0.23以上であることがより好ましい。一方、(NFJ2/(1-NFJ3))0.5の上限は、0.40以下であることが好ましく、0.35以下であることがさらに好ましい。
【0043】
(TSTD/TSLD:1.1未満)
圧延方向に対して直交方向(TD)に引張試験を行った際の強度TSTDと、圧延方向に対して平行方向(LD)に引張試験を行った際の強度TSLDと、から算出される強度比TSTD/TSLDが1.1以上だと、主としてBrass方位{110}〈112〉の発達により、異方性が大きくなり、TD方向の曲げ加工性が悪くなる。
このため、本実施形態においては、圧延方向に対して直交方向(TD)に引張試験を行った際の強度TSTDと、圧延方向に対して平行方向(LD)に引張試験を行った際の強度TSLDと、から算出される強度比TSTD/TSLDを1.1未満としている。これにより、強度の異方性が少なく、大電流用の端子やバスバーのようにLD方向、TD方向ともに強度が必要な場合にも十分な強度が確保され、また特定の方向を必要以上に高強度化することにより発生する曲げ加工時の割れ等の発生を抑制することができる。これにより、圧延方向に対して曲げの軸が直交方向となる曲げ(GW曲げ)、及び、圧延方向に対して曲げの軸が平行方向となる曲げ(BW曲げ)において、良好な曲げ加工性を備えることができる。
ここで、強度比TSTD/TSLDの上限は、1.08以下とすることが好ましく、1.06以下とすることがさらに好ましく、1.05以下とすることがより好ましい。なお、TSTD/TSLDの下限に特に制限はないが、高強度が要求される場合には、TSTD/TSLDの下限は、0.94以上であることが好ましく、0.95以上であることがさらに好ましく、0.96以上であることがより好ましい。
【0044】
(導電率:75%IACS超え)
本実施形態である電子・電気機器用銅合金において、導電率を75%IACS超えに設定することにより、コネクタやプレスフィット等の端子、バスバー等の電子・電気機器用部品として良好に使用することができる。
なお、導電率は76%IACS超えであることが好ましく、77%IACS超えであることがさらに好ましく、78%IACS超えであることがより好ましい。
【0045】
(0.2%耐力:200MPa以上)
本実施形態である電子・電気機器用銅合金においては、0.2%耐力を200MPa以上とすることにより、容易に変形することがなく、大電流・高電圧向けのコネクタやプレスフィット等の端子、バスバー等の電子・電気機器用部品の素材として特に適するものとなる。なお、本実施形態では、圧延方向に対して平行方向に引張試験を行った際の0.2%耐力が200MPa以上とされている。
ここで、上述の0.2%耐力は、225MPa以上であることが好ましく、250MPa以上であることがさらに好ましい。
また、3mmを超える厚さで条形状にしてコイル巻にしても巻きぐせがつくことがなく、高い生産性を達成するために、0.2%耐力の上限は450MPa以下が好ましく、400MPa以下さらに好ましく、375MPa以下がより好ましい。
【0046】
(残留応力率:75%以上)
本実施形態である電子・電気機器用銅合金においては、上述のように、残留応力率が、150℃、1000時間で75%以上とされている。
この条件における残留応力率が高い場合には、高温環境下で使用した場合であっても永久変形を小さく抑えることができ、接圧の低下を抑制することができる。よって、本実施形態である電子・電気機器用銅合金は、自動車のエンジンルーム周りのような高温環境下で使用される端子として適用することが可能となる。本実施形態では、圧延方向に対して平行方向に応力緩和試験を行った残留応力率が150℃、1000時間で75%以上とされている。
なお、残留応力率は150℃、1000時間で77%以上とすることが好ましく、150℃、1000時間で80%以上とすることがさらに好ましい。
【0047】
次に、このような構成とされた本実施形態である電子・電気機器用銅合金の製造方法について、図1に示すフロー図を参照して説明する。
【0048】
(溶解・鋳造工程S01)
まず、銅原料を溶解して得られた銅溶湯に、前述の元素を添加して成分調整を行い、銅合金溶湯を製出する。なお、各種元素の添加には、元素単体や母合金等を用いることができる。また、上述の元素を含む原料を銅原料とともに溶解してもよい。また、本合金のリサイクル材およびスクラップ材を用いてもよい。ここで、銅溶湯は、純度が99.99mass%以上とされたいわゆる4NCu、あるいは99.999mass%以上とされたいわゆる5NCuとすることが好ましい。溶解工程では、Mgの酸化を抑制するため、また水素濃度低減のため、HOの蒸気圧が低い不活性ガス雰囲気(例えばArガス)による雰囲気溶解を行い、溶解時の保持時間は最小限に留めることとする。
【0049】
そして、成分調整された銅合金溶湯を鋳型に注入して鋳塊を製出する。なお、量産を考慮した場合には、連続鋳造法または半連続鋳造法を用いることが好ましい。
この際、溶湯の凝固時に、MgとPを含む晶出物が形成されるため、凝固速度を速くすることで晶出物サイズをより微細にすることが可能となる。そのため、鋳造時の冷却速度は0.1℃/sec以上とすることが好ましく、さらに好ましくは0.5℃/sec以上である。
【0050】
(均質化工程S02)
次に、得られた鋳塊の均質化のために加熱処理を行う。鋳塊の内部には、凝固の過程においてMgが偏析した部分、さらに偏析してMg濃度が増加することにより発生したCuとMgを主成分とする金属間化合物等が存在することがある。そこで、これらの偏析および金属間化合物等を消失または低減させるために、鋳塊を400℃以上900℃以下にまで加熱する加熱処理を、1時間以上24時間未満行うことで、鋳塊内において、Mgを均質に拡散させたり、Mgを母相中に固溶させたりする。なお、この均質化工程S02は、非酸化性または還元性雰囲気中で実施することが好ましい。
【0051】
ここで、加熱温度が400℃未満では、溶体化が不完全となり、母相中にCuとMgを主成分とする金属間化合物が多く残存するおそれがある。一方、加熱温度が900℃を超えると、銅素材の一部が液相となり、組織や表面状態が不均一となるおそれがある。よって、加熱温度を400℃以上900℃以下の範囲に設定している。加熱温度の下限は、好ましくは500℃以上、より好ましくは600℃以上である。また加熱温度の上限は、好ましくは850℃以下、より好ましくは800℃以下である。
【0052】
(熱間加工工程S03)
Mgの偏析は粒界に生じやすいため、Mg偏析の部分が存在すると粒界3重点の制御が難しくなる。
そこで、Mgの偏析の解消、及び、組織の均一化の徹底のため、前述の均質化工程S02の後に熱間加工を実施する。
熱間加工の総加工率は50%以上とすることが好ましく、60%以上とすることがさらに好ましく、70%以上とすることがより好ましい。
この場合、加工方法に特に限定はなく、例えば圧延、線引き、押出、溝圧延、鍛造、プレス等を採用することができる。また、熱間加工温度は、400℃以上900℃以下の範囲内とすることが好ましい。
【0053】
(溶体化工程S04)
粒界におけるMg偏析の解消を徹底するために前述の熱間加工工程S03の後に、溶体化熱処理を実施する。溶体化熱処理は500℃以上900℃以下で1秒以上10時間以下保持する条件で実施すればよい。この工程は前述の熱間加工工程S03と兼ねてもよい。その場合は熱間加工の終了温度を500℃超えとし、熱間加工終了後500℃以上で10秒以上保持すればよい。
【0054】
(粗加工工程S05)
所定の形状に加工するために、粗加工を行う。なお、この粗加工工程S05では、100℃以上350℃以下の温間加工を1回以上実施する。100℃以上350℃以下の温間加工を実施することで、加工中に極微小な再結晶領域を増加させることができ、後の工程である中間熱処理工程S07の再結晶時に組織がランダム化するとともに、ランダム粒界の総数を増加させることができ、NFJ2/(1-NFJ3))0.5の値を所望の範囲にすることができる。温間加工を1回とする場合は、粗加工工程S05の最終工程で実施する。また、温間加工に代わって、1加工工程あたりの加工率を上げることによる加工発熱を利用してもよい。その場合は、例えば圧延では1パスあたりの加工率を15%以上、好ましくは20%以上、より好ましくは30%以上で実施することが好ましい。温間加工の回数は望ましくは2回以上実施することが好ましい。温間加工の温度について、下限温度は好ましくは150℃以上、より好ましくは200℃を超えとすればよい。また上限は再結晶後の粒成長が顕著に生じないように350℃以下とするが、好ましくは325℃以下、より好ましくは300℃未満とすればよい。
【0055】
(異方性低減熱処理工程S06)
粗加工工程S05後に、圧延集合組織である、Brass方位{110}〈112〉が発達していると圧延方向に対して直交方向に引張試験を行った際の強度TSTDが圧延方向に平行方向に引張試験を行った際の強度TSLDに比較して相対的に高くなる。このため異方性が大きくなる。一方、立方体方位である{100}〈001〉が発達するとTSTDおよびTSLDの強度差は相対的に小さくなり、異方性が低下する。粗圧延後にBrass方位{110}〈112〉の抑制および立方体方位である{100}〈001〉を発達させるための熱処理を実施する。Brass方位の抑制および立方体方位を発達させるためには、100℃/min以上の昇温速度で、400℃以上900℃未満で1秒から5分未満の熱処理を実施すればよい。昇温速度は好ましくは150℃/min以上、より好ましくは200℃/min以上、最も好ましくは300℃/min以上である。なお、粗加工工程S05及び異方性低減熱処理工程S06は、繰り返し実施してもよい。加熱後の冷却方法は、特に限定しないが、水焼入など冷却速度が200℃/min以上となる方法を採用することが好ましい。
【0056】
(中間熱処理工程S07)
異方性低減熱処理S06後に、ランダム粒界の数割合を増加させるための結晶粒成長および加工性向上のための軟化を目的として熱処理を実施する。熱処理の方法は特に限定はないが、好ましくは400℃以上900℃以下の保持温度で、10秒以上10時間以下の保持時間で、非酸化雰囲気または還元性雰囲気中で熱処理を行う。また、加熱後の冷却方法は、特に限定しないが、水焼入など冷却速度が200℃/min以上となる方法を採用することが好ましい。
本工程は前述の異方性低減熱処理工程S06と兼ねてもよい。その場合は熱処理温度を500℃以上とすればよい。より好ましくは525℃以上、最も好ましくは550℃以上である。
【0057】
(仕上げ加工工程S08)
中間熱処理工程S07後の銅素材を所定の形状に加工するため、仕上げ加工を行う。なお、この仕上げ加工工程S08においては、加工中に導入された転位がすみやかに再配列し、NFJ2/(1-NFJ3))0.5の値を所望の範囲にし、さらに耐応力緩和特性を向上させるために、50℃以上300℃未満の温間加工を少なくとも1回は実施する。50℃以上300℃未満の温間加工を実施することにより、加工中に導入された転位が再配列するために、耐応力緩和特性が向上する。仕上げ加工工程は最終的な形状によって、加工方法および加工率が異なるが、条や板とする場合は圧延を実施すればよい。また1回以上の温間加工以外の工程については、通常の冷間加工とすればよい。50℃以上300℃未満の温間加工に代わって、1加工工程あたりの加工率を上げて、その加工発熱を利用してもよい。その場合は、例えば圧延では1パスあたりの加工率を10%以上とすればよい。
【0058】
また、加工率は、最終形状に近似するように適宜選択されることになるが、加工硬化によって強度を向上させるためには、加工率を10%以上とすることが好ましい。また。さらなる強度の向上を図る場合には、加工率を12%以上とすることがより好ましく、加工率を15%以上とすることがさらに好ましい。またBrass方位の発達を抑制するため、加工率の上限は80%以下とすればよい。好ましくは70%以下、より好ましくは60%以下、さらに好ましくは50%以下、最も好ましくは40%以下である。
【0059】
(仕上げ熱処理工程S09)
次に、仕上げ加工工程S08によって得られた塑性加工材に対して、耐応力緩和特性の向上および低温焼鈍硬化のために、または残留ひずみの除去のために、仕上げ熱処理を実施する。熱処理温度は、100℃以上800℃以下の範囲内とすることが好ましい。なお、この仕上げ熱処理工程S09においては、再結晶による粒界3重点における特殊粒界の数割合を抑制するために、熱処理条件(温度、時間、冷却速度)を設定する必要がある。例えば200℃から500℃の範囲では1秒以上10時間以下の保持時間とすることが好ましい。この熱処理は、非酸化雰囲気または還元性雰囲気中で行うことが好ましい。熱処理の方法は特に限定はないが、製造コスト低減の効果から、連続焼鈍炉による高温短時間の熱処理が好ましい。
さらに、上述の仕上げ加工工程S08と仕上げ熱処理工程S09とを、繰り返し実施してもよい。
【0060】
このようにして、本実施形態である電子・電気機器用銅合金(電子・電気機器用銅合金板条材)が製出されることになる。電子・電気機器用銅合金板条材の厚さの上限は特にないが、電子・電気機器用銅合金板条材をプレス加工によりコネクタや端子、バスバーとする際に、厚さが5.0mmを超えるとプレス機の荷重が著しく増大すること、及び、単位時間あたりの生産性が落ちることになり、コスト高になる。このため、本実施形態においては、電子・電気機器用銅合金板条材の厚さを0.5mm超え5.0mm以下とすることが好ましい。なお、電子・電気機器用銅合金板条材の厚さの下限は、1.0mm超えとすることが好ましく、1.5mm以上とすることがさらに好ましく、2.0mm以上とすることがより好ましく、3.0mm超えとすることが一層好ましい。
【0061】
ここで、本実施形態である電子・電気機器用銅合金板条材は、そのまま電子・電気機器用部品に使用してもよいが、板面の一方、もしくは両面に、膜厚0.1~100μm程度のSnめっき層またはAgめっき層を形成してもよい。
さらに、本実施形態である電子・電気機器用銅合金(電子・電気機器用銅合金板条材)を素材として、打ち抜き加工や曲げ加工等を施すことにより、例えばコネクタやプレスフィット等の端子、バスバーといった電子・電気機器用部品が成形される。
【0062】
以上のような構成とされた本実施形態である電子・電気機器用銅合金によれば、Mgの含有量が0.15mass%以上0.35mass%未満の範囲内とされているので、銅の母相中にMgが固溶することで、導電率を大きく低下させることなく、強度、耐応力緩和特性を向上させることが可能となる。
また、Pを0.0005mass%以上0.01mass%未満の範囲内で含んでいるので、鋳造性を向上させることができる。
【0063】
また、Mgの含有量〔Mg〕とPの含有量〔P〕が質量比で、〔Mg〕+20×〔P〕<0.5の関係を満足しているので、MgとPの粗大な晶出物の生成を抑制でき、冷間加工性及び曲げ加工性が低下することを抑制できる。
【0064】
また、圧延の幅方向に対して直交する面を観察面として、母相をEBSD法により10000μm以上の測定面積を測定間隔0.25μmステップで測定して、データ解析ソフトOIMにより解析されたCI値が0.1以下である測定点を除いて解析し、隣接する測定間の方位差が15°を超える測定点間を結晶粒界とし、Σ29以下の対応粒界を特殊粒界とし、それ以外をランダム粒界とした際、OIMから解析された粒界3重点において、粒界3重点を構成する3つの粒界全てが特殊粒界であるJ3の全粒界3重点に対する割合をNFJ3とし、粒界3重点を構成する2つの粒界が特殊粒界であり、1つがランダム粒界であるJ2の全粒界3重点に対する割合をNFJ2としたとき、
0.20<(NFJ2/(1-NFJ3))0.5≦0.45
が成り立つので、ランダム粒界ネットワークの長さが長く、プレス加工時に速やかに粒界に沿った破壊が生じるため、プレス打ち抜き加工性にも優れている。
【0065】
そして、本実施形態である電子・電気機器用銅合金においては、圧延方向に対して直交方向に引張試験を行った際の強度TSTDと、圧延方向に対して平行方向に引張試験を行った際の強度TSLDと、から算出される強度比TSTD/TSLDが1.1未満であることから、強度の異方性が少なく、大電流用の端子やバスバーのようにLD方向、TD方向ともに強度が必要な場合にも十分な強度が確保され、また特定の方向を必要以上に高強度化することにより発生する曲げ加工時の割れ等の発生を抑制することができる。これにより、圧延方向に対して曲げの軸が直交方向となる曲げ(GW曲げ)、及び、圧延方向に対して曲げの軸が平行方向となる曲げ(BW曲げ)において、良好な曲げ加工性を備えることができる。
【0066】
さらに、本実施形態では、好ましくは、Mgの含有量〔Mg〕とPの含有量〔P〕が質量比で、〔Mg〕/〔P〕≦400の関係を満たしているので、鋳造性を低下させるMgの含有量と鋳造性を向上させるPの含有量との比率が適正化され、P添加の効果により、鋳造性を確実に向上させることができる。
【0067】
さらに、本実施形態である電子・電気機器用銅合金においては、圧延方向に対して平行方向に引張試験を行った際の引張試験を行った際の0.2%耐力が200MPa以上とされており、導電率が75%IACS超えとされているので、高電圧、大電流化に伴う、電子・電気機器用部品の厚肉化に適しており、コネクタやプレスフィット等の端子、バスバー等の電子・電気機器用部品の素材として特に適している。
【0068】
また、本実施形態である電子・電気機器用銅合金においては、残留応力率が150℃、1000時間で75%以上とされているので、高温環境下で使用した場合であっても永久変形を小さく抑えることができ、例えばコネクタ端子等の接圧の低下を抑制することができる。よって、エンジンルーム等の高温環境下で使用される電子機器用部品の素材として適用することが可能となる。
【0069】
また、本実施形態である電子・電気機器用銅合金板条材は、上述の電子・電気機器用銅合金で構成されていることから、この電子・電気機器用銅合金板条材に曲げ加工等を行うことで、コネクタやプレスフィット等の端子、バスバー等の電子・電気機器用部品を製造することができる。
なお、表面にSnめっき層又はAgめっき層を形成した場合には、コネクタやプレスフィット等の端子、バスバー等の電子・電気機器用部品の素材として特に適している。
【0070】
さらに、本実施形態である電子・電気機器用部品(コネクタやプレスフィット等の端子、バスバー等)は、上述の電子・電気機器用銅合金で構成されているので、大型化および厚肉化しても優れた特性を発揮することができる。
【0071】
以上、本発明の実施形態である電子・電気機器用銅合金、電子・電気機器用銅合金板条材、電子・電気機器用部品(端子、バスバー等)について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
例えば、上述の実施形態では、電子・電気機器用銅合金の製造方法の一例について説明したが、電子・電気機器用銅合金の製造方法は、実施形態に記載したものに限定されることはなく、既存の製造方法を適宜選択して製造してもよい。
【実施例
【0072】
以下に、本発明の効果を確認すべく行った確認実験の結果について説明する。
純度99.99mass%以上の無酸素銅(ASTM B152 C10100)からなる銅原料を準備し、これを高純度グラファイト坩堝内に装入して、Arガス雰囲気とされた雰囲気炉内において高周波溶解した。得られた銅溶湯内に、各種添加元素を添加して表1に示す成分組成に調製し、鋳型に注湯して鋳塊を製出した。なお、本発明例1,11は断熱材(イソウール)鋳型、それ以外の本発明例および比較例はカーボン鋳型を鋳造用の鋳型として用いた。鋳塊の大きさは、厚さ約100mm×幅約150mm×長さ約100mmとした。この鋳塊の鋳肌近傍を面削した。その後、Arガス雰囲気中において、電気炉を用いて表2に記載の温度条件で4時間の加熱を行い、均質化処理を行った。
【0073】
均質化熱処理後の鋳塊を熱間圧延し、厚さ約50mmとした。その後、切断し、電気炉を用いて、表2に記載の条件で4時間の加熱を行い、溶体化処理を実施した。
溶体化処理後、圧延ロールを300℃まで加熱し、表2に示す圧延率で粗圧延を実施した。
【0074】
粗圧延後は、ソルトバス炉を用いて表2に記載された温度条件で10秒保持の異方性低減熱処理を実施した後、水冷した。
その後、ソルトバス炉を用いて、表2に記載の温度で、それぞれについて10秒から300秒の間で中間熱処理を実施し、その後、水冷した。
【0075】
熱処理を行った銅素材を、適宜、最終形状に適した形にするために、切断するとともに、酸化被膜を除去するために表面研削を実施した。その後、圧延ロールを200℃に加熱し、表2に記載された圧延率で仕上げ圧延(仕上げ加工)を実施し、本発明例1~10及び比較例1,2,4,5では厚さ3.5mm、幅約150mmの薄板を製出した。また本発明例11~20では厚さ1.5mm、幅約150mmの薄板を製出した
そして、仕上げ圧延(仕上げ加工)後に、表2に示す条件で、電気炉もしくはソルトバス炉を用いて表2に記載の条件で、仕上げ熱処理を実施し、その後、水焼入れを行い、特性評価用薄板を作製した。
【0076】
そして、以下の項目について評価を実施した。評価結果を表3に示す。
【0077】
(鋳造性)
鋳造性の評価として、前述の鋳造時における肌荒れの有無を観察した。目視で肌荒れが全くあるいはほとんど認められなかったものを◎、深さ1mm未満の小さな肌荒れが発生したものを○、深さ1mm以上2mm未満の肌荒れが発生したものを△とした。また深さ2mm以上の大きな肌荒れが発生したものは×とし、途中で評価を中止した。評価結果を表に示す。
なお、肌荒れの深さとは、鋳塊の端部から中央部に向かう肌荒れの深さのことである。
【0078】
(粒界3重点割合)
圧延の幅方向に対して直交する断面、すなわちTD面(Transverse direction)を観察面として、EBSD測定装置及びOIM解析ソフトによって、次のように結晶粒界(特殊粒界とランダム粒界)および粒界3重点を測定した。耐水研磨紙、ダイヤモンド砥粒を用いて機械研磨を行った後、コロイダルシリカ溶液を用いて仕上げ研磨を行った。そして、EBSD測定装置(FEI社製Quanta FEG 450,EDAX/TSL社製(現 AMETEK社) OIM Data Collection)と、解析ソフト(EDAX/TSL社製(現 AMETEK社)OIM Data Analysis ver.7.2)によって、電子線の加速電圧20kV、測定間隔0.25μmステップで10000μm以上の測定面積で、CI値が0.1以下である測定点を除いて、各結晶粒の方位差の解析を行い、隣接する測定点間の方位差が15°以上となる測定点間を結晶粒界とした。また、各粒界3重点を構成する3つの粒界についてはNeighboring grid pointでの算出したCSL signma valueの値を用いて、特殊粒界およびランダム粒界を識別した。Σ29を超える対応粒界についてはランダム粒界とみなした。
【0079】
(機械的特性)
特性評価用条材からJIS Z 2241に規定される13B号試験片を採取し、JIS Z 2241のオフセット法により、0.2%耐力および引張強度TSを測定した。なお、試験片は、圧延方向に直交する方向と圧延方向に平行な方向で採取した。そして、得られた強度TSTD、TSLDから、強度比TSTD/TSLDを算出した。評価結果を表3に示す。またLD方向の0.2%耐力も表3に示す。
【0080】
(導電率)
特性評価用条材から幅10mm×長さ150mmの試験片を採取し、4端子法によって電気抵抗を求めた。また、マイクロメータを用いて試験片の寸法測定を行い、試験片の体積を算出した。そして、測定した電気抵抗値と体積とから、導電率を算出した。なお、試験片は、その長手方向が特性評価用条材の圧延方向に対して平行になるように採取した。評価結果を表3に示す。
【0081】
(曲げ加工性)
日本伸銅協会技術標準JCBA-T307:2007の4試験方法に準拠して曲げ加工を行った。圧延方向に対して曲げの軸が直交方向(LD方向曲げ)および平行方向(TD方向曲げ)になるように、特性評価用薄板から本発明例1~10及び比較例2,4,5については幅3.5mm×長さ30mmの試験片を切断、複数採取し、切断面を研磨した後、曲げ角度が90度、曲げ半径が3mm(R/t=0.9)のW型の治具を用い、W曲げ試験を行った。また本発明例11~20については幅10mm×長さ30mmの試験片を切断、複数採取し、切断面を研磨した後、曲げ角度が90度、曲げ半径が1.5mm(R/t=1.0)のW型の治具を用い、W曲げ試験を行った。
曲げ部の外周部を目視で観察して割れが観察された場合は「×」、大きなしわが観察さ破断や微細な割れが確認できない場合を○として判定を行った。
【0082】
(打ち抜き加工性)
特性評価用条材から金型で円孔(φ8mm)を多数打ち抜いて、かえり高さの測定により評価を行った。
金型のクリアランスは板厚に対して約3%とし、50spm(stroke per minute)の打ち抜き速度により打ち抜きを行った。かえり高さの測定は穴抜き側の切口面を観察し、10点計測し、板厚に対しての割合で評価した。
かえり高さの最も高いものが板厚に対して2.5%以下のものを「◎」と評価し、2.5%超え3.0%以下のものを「〇」、3.0%を超えるものを「×」と評価した。
【0083】
(耐応力緩和特性)
耐応力緩和特性試験は、日本伸銅協会技術標準JCBA-T309:2004の片持はりねじ式に準じた方法によって応力を負荷し、150℃の温度で1000時間保持後の残留応力率を測定した。
試験方法としては、各特性評価用条材から圧延方向に対して平行する方向に試験片(幅10mm)を採取し、試験片の表面最大応力が耐力の80%となるように、初期たわみ変位を2mmと設定し、スパン長さを調整した。上記表面最大応力は次式で定められる。
表面最大応力(MPa)=1.5Etδ0/Ls 2
ただし、
E:ヤング率(MPa)
t:表に記載の試料の厚さ(t=1.5mmもしくは3.5mm)
δ:初期たわみ変位(2mm)
:スパン長さ(mm)
である。
150℃の温度で、1000h保持後の曲げ癖から、残留応力率を測定し、耐応力緩和特性を評価した。なお残留応力率は次式を用いて算出した。
残留応力率(%)=(1-δt0)×100
ただし、
δ:150℃で1000h保持後の永久たわみ変位(mm)-常温で24h保持後の永久たわみ変位(mm)
δ:初期たわみ変位(mm)
である。
【0084】
【表1】
【0085】
【表2】
【0086】
【表3】
【0087】
比較例1は、Mgの含有量が本発明の範囲よりも少なく、耐応力緩和特性が低かった。そのため、曲げ加工性評価および打ち抜き性は評価しなかった。
比較例2は、Mgの含有量が本発明の範囲よりも多く、〔Mg〕+20×〔P〕が本発明の範囲外であったため、曲げ加工性が「×」評価であった。さらには、導電率が低くかった。そのため耐応力緩和特性、打ち抜き性の評価試験は実施しなかった
比較例3は、Pの含有量が本発明の範囲よりも多く、〔Mg〕+20×〔P〕が0.5を超えており、圧延時に耳割れが発生したため、その後の評価を中止した。
比較例4は、(NFJ2/(1-NFJ3))0.5が本発明の範囲をはずれていたため、打ち抜き性が悪かった。そのため耐応力緩和特性は評価しなかった。
比較例5は、TSTD/TSLDが本発明の範囲を超えており、そのためTD方向の曲げ加工性が不十分であった。このため打ち抜き性、耐応力緩和特性は評価しなかった。
【0088】
これに対して、本発明例においては、TSTD/TSLDが本発明の範囲とされており、TD方向及びLD方向の曲げ加工にいずれも優れていた。また、0.2%耐力、導電率、耐応力緩和特性、鋳造性、打ち抜き加工性に優れていることが確認された。
以上のことから、本発明例によれば、導電性、強度、曲げ加工性、耐応力緩和特性、鋳造性及び、打ち抜き性に優れ、かつ等方性に優れた電子・電気機器用銅合金、電子・電気機器用銅合金板条材、及び、この電子・電気機器用銅合金板条材からなる電子・電気機器用部品、端子、及び、バスバーを提供できることが確認された。
図1