(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-11-21
(45)【発行日】2022-11-30
(54)【発明の名称】逆浸透膜分離装置
(51)【国際特許分類】
C02F 1/44 20060101AFI20221122BHJP
B01D 61/12 20060101ALI20221122BHJP
【FI】
C02F1/44 A
B01D61/12
(21)【出願番号】P 2019049894
(22)【出願日】2019-03-18
【審査請求日】2021-12-15
(73)【特許権者】
【識別番号】000175272
【氏名又は名称】三浦工業株式会社
(74)【代理人】
【識別番号】100126000
【氏名又は名称】岩池 満
(74)【代理人】
【識別番号】100145713
【氏名又は名称】加藤 竜太
(72)【発明者】
【氏名】渡邉 隼人
(72)【発明者】
【氏名】中 祥彦
【審査官】目代 博茂
(56)【参考文献】
【文献】特開2018-202368(JP,A)
【文献】特開2018-202360(JP,A)
【文献】特開2017-221878(JP,A)
【文献】国際公開第2018/200434(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
B01D61/00-71/82
C02F1/44
(57)【特許請求の範囲】
【請求項1】
給水が流通する給水ラインと、
供給水を透過水と濃縮水とに分離する逆浸透膜モジュールと、
上流端において前記給水ラインに合流部で接続し、給水を含む供給水を前記逆浸透膜モジュールに供給する供給水ラインと、
前記逆浸透膜モジュールで分離された透過水が通過する透過水ラインと、
前記逆浸透膜モジュールで分離された濃縮水が通過する濃縮水ラインと、
前記濃縮水ラインの下流端に接続され、濃縮排水としての濃縮水を系外へ排出する濃縮排水ラインと、
実質的に無段階で開度を調整することにより、装置外へ排出する濃縮水の排水流量を調整する排水流量調整弁と、
前記排水流量調整弁の1次圧を測定する圧力測定手段と、
透過水の流量を測定する第1流量測定手段と、
前記排水流量を測定する第2流量測定手段と、
前記第2流量測定手段の故障を検知する故障検知手段と、
前記第2流量測定手段の故障時に、前記排水流量調整弁の1次圧の測定値と前記開度とから、前記排水流量の予測値を算出する排水流量予測手段と、
透過水の流量と前記排水流量の予測値とから算出される回収率が、該回収率の目標値である目標回収率となるように前記開度を調整する開度調整手段と、
を備える逆浸透膜分離装置。
【請求項2】
前記濃縮水ラインの下流端に接続され、濃縮水を供給水として前記合流部に返送する循環水ラインと、
前記濃縮水ラインを通過する濃縮水の流量を調整する濃縮水流量調整手段と、を更に備え、
前記圧力測定手段は、前記給水ラインを通過する給水の圧力を、前記排水流量調整弁の1次圧として測定する、請求項1に記載の逆浸透膜分離装置。
【請求項3】
前記供給水ラインに設けられ、給水を吸入して供給水として前記逆浸透膜モジュールに向けて吐出する加圧ポンプと、
透過水の流量が所定の流量目標値となるように、前記加圧ポンプを制御するポンプ制御手段と、を更に備える、請求項1又は2に記載の逆浸透膜分離装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、逆浸透膜分離装置に関する。
【背景技術】
【0002】
半導体の製造工程、電子部品や医療器具の洗浄等においては、不純物を含まない高純度の純水が使用される。この種の純水は、一般に、地下水や水道水等の原水を、逆浸透膜モジュール(以下、「RO膜モジュール」ともいう)で逆浸透膜分離処理することにより製造される。
【0003】
高分子材料からなる逆浸透膜の水透過係数は、温度により変化する。また、逆浸透膜の水透過係数は、細孔の閉塞(以下、「膜閉塞」ともいう)や、材質の酸化による劣化(以下、「膜劣化」ともいう)によっても変化する。
【0004】
そこで、供給水の温度や逆浸透膜の状態にかかわらず、RO膜モジュールにおける透過水の流量を一定に保つため、流量フィードバック水量制御を行う水質改質システムが提案されている(例えば、特許文献1参照)。この流量フィードバック水量制御では、RO膜モジュールで製造される透過水の流量が目標流量値となるように、加圧ポンプの駆動周波数がインバータにより制御される。
【0005】
上記水質改質システムにおいて、RO膜モジュールで分離された濃縮水は、RO膜モジュールの一次側出口ポートに接続された濃縮水ラインから送出される。また、RO膜モジュールで分離された透過水は、RO膜モジュールの二次側ポートに接続された透過水ラインから送出される。濃縮水ラインは、循環水ラインと濃縮水排水ラインとに分岐している。循環水ラインは、濃縮水ラインから送出された濃縮水の一部を、加圧ポンプの上流側における供給水ラインに返送するラインである。濃縮水排水ラインは、濃縮水ラインから送出された濃縮水の残部を装置外に排出するラインである。供給水ラインは、加圧ポンプを介してRO膜モジュールに供給水を供給するラインである。
【0006】
ところで、スパイラル型エレメントを用いるRO膜モジュールでは、有機成分や懸濁物質による膜面の閉塞を防止するため、通常、クロスフロー方式による分離操作が採用されている。このクロスフロー方式では、加圧ポンプにより、透過水の流量に比して5倍以上の流量で供給水を循環させながら、膜の一次側に供給水の浸透圧以上の圧力を加えて分離操作を行う。このとき、RO膜モジュールにおいて、透過水の流量に対する濃縮水の流量の比率で定義される循環比(濃縮水の流量/透過水の流量)は、“5”程度に調節されることが好ましい。
【0007】
循環比を所定値に調節する逆浸透膜分離装置として、特許文献2は、排水ラインを流通する濃縮水の流量を検出する流量センサを備え、この流量センサの検出流量が、回収率制御で決定した排水流量の演算値(目標排水流量)となるように、排水流量調整手段としての比例制御排水弁の弁開度を排水流量フィードバック制御する逆浸透膜分離装置を開示している。
【先行技術文献】
【特許文献】
【0008】
【文献】特開2005-296945号公報
【文献】特開2016-203084号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
しかし、特許文献2に係る逆浸透膜分離装置においては、濃縮水の排水流量を検出する流量センサに故障が発生した場合、前述の排水流量フィードバック制御を実行することはできなかった。このため、正常時の回収率を維持するためには、逆浸透膜分離装置を停止する必要が発生した。
【0010】
本発明は、排水流量計の故障時も装置を停止することなく、正常時と同等の回収率でのバックアップ運転が可能な逆浸透膜分離装置を提供することを目的とする。
【課題を解決するための手段】
【0011】
本発明は、給水が流通する給水ラインと、供給水を透過水と濃縮水とに分離する逆浸透膜モジュールと、上流端において前記給水ラインに合流部で接続し、給水を含む供給水を前記逆浸透膜モジュールに供給する供給水ラインと、前記逆浸透膜モジュールで分離された透過水が通過する透過水ラインと、前記逆浸透膜モジュールで分離された濃縮水が通過する濃縮水ラインと、前記濃縮水ラインの下流端に接続され、濃縮排水としての濃縮水を系外へ排出する濃縮排水ラインと、実質的に無段階で開度を調整することにより、装置外へ排出する濃縮水の排水流量を調整する排水流量調整弁と、前記排水流量調整弁の1次圧を測定する圧力測定手段と、透過水の流量を測定する第1流量測定手段と、前記排水流量を測定する第2流量測定手段と、前記第2流量測定手段の故障を検知する故障検知手段と、前記第2流量測定手段の故障時に、前記排水流量調整弁の1次圧の測定値と前記開度とから、前記排水流量の予測値を算出する排水流量予測手段と、透過水の流量と前記排水流量の予測値とから算出される回収率が、該回収率の目標値である目標回収率となるように前記開度を調整する開度調整手段と、を備える逆浸透膜分離装置に関する。
【0012】
また、前記濃縮水ラインの下流端に接続され、濃縮水を供給水として前記合流部に返送する循環水ラインと、前記濃縮水ラインを通過する濃縮水の流量を調整する濃縮水流量調整手段と、を更に備え、前記圧力測定手段は、前記給水ラインを通過する給水の圧力を、前記排水流量調整弁の1次圧として測定することが好ましい。
【0013】
また、前記供給水ラインに設けられ、給水を吸入して供給水として前記逆浸透膜モジュールに向けて吐出する加圧ポンプと、透過水の流量が所定の流量目標値となるように、前記加圧ポンプを制御するポンプ制御手段と、を更に備えることが好ましい。
【発明の効果】
【0014】
本発明によれば、排水流量計の故障時も装置を停止することなく、正常時と同等の回収率でのバックアップ運転が可能となる。
【図面の簡単な説明】
【0015】
【
図1】本発明の実施形態に係る逆浸透膜分離装置の全体構成図である。
【
図2】本発明の実施形態で用いられる流量調整ユニットに係る圧力と流量の関係を示す図である。
【
図3】本発明の実施形態に係る逆浸透膜分離装置に備わる制御部の機能ブロック図である。
【
図4】本発明の実施形態に係る逆浸透膜分離装置に備わる排水流量調整弁のCv値と開度との関係を示すグラフである。
【
図5】本発明の実施形態に係る逆浸透膜分離装置における回収率と排水流量調整弁の開度との関係を示すグラフである。
【
図6】本発明の実施形態に係る逆浸透膜分離装置の動作を示すフローチャートである。
【発明を実施するための形態】
【0016】
〔1 逆浸透膜分離装置の構成〕
本発明の第1実施形態に係る逆浸透膜分離装置1について、図面を参照しながら説明する。
図1は、第1実施形態に係る逆浸透膜分離装置1の全体構成図である。本実施形態に係る逆浸透膜分離装置1は、例えば、淡水から純水を製造する純水製造システムに適用される。
【0017】
図1に示すように、本実施形態に係る逆浸透膜分離装置1は、給水ポンプ12と、給水側インバータ13と、加圧ポンプ2と、加圧側インバータ3と、逆浸透膜モジュールとしてのRO膜モジュール4と、流量調整ユニット5と、逆止弁6と、排水流量調整手段としての排水流量調整弁7(比例制御弁)と、圧力センサP1と、第1流量センサFM1と、第2流量センサFM2と、制御部30と、を備える。なお、制御部30と被制御対象機器との電気的接続線の図示については、省略している。
【0018】
また、逆浸透膜分離装置1は、給水ラインL1と、供給水ラインL2と、透過水ラインL3と、第1濃縮水ラインL41と、第2濃縮水ラインL42と、循環水ラインL5と、排水ラインL6と、を備える。本明細書における「ライン」とは、流路、経路、管路等の流体の流通が可能なラインの総称である。
【0019】
給水ラインL1は、給水W1を、供給水ラインL2との合流部であるJ2まで供給するラインである。給水ラインL1の上流側の端部は、給水W1の供給源(不図示)に接続されている。給水ラインL1には、上流側から下流側に向けて順に、給水ポンプ12、圧力センサP1、合流部J2が設けられている。
【0020】
なお、給水ラインL1を流通する給水W1には、給水W1の供給源(不図示)から直接供給される給水に限らず、例えば、給水W1を濾過処理装置(除鉄除マンガン装置、活性炭濾過装置等)、硬水軟化装置等の前処理装置により前処理された給水も含まれる。
【0021】
給水ポンプ12は、給水ラインL1を流通する給水W1を吸入し、加圧ポンプ2へ向けて圧送(吐出)する装置である。給水ポンプ12には、給水側インバータ13から周波数が変換された駆動電力が供給される。給水ポンプ12は、供給(入力)された駆動電力の周波数(以下、「駆動周波数」ともいう)に応じた回転速度で駆動される。
【0022】
給水側インバータ13は、給水ポンプ12に、周波数が変換された駆動電力を供給する電気回路(又はその回路を持つ装置)である。給水側インバータ13は、制御部30と電気的に接続されている。給水側インバータ13には、制御部30から指令信号が入力される。給水側インバータ13は、制御部30により入力された指令信号(電流値信号又は電圧値信号)に対応する駆動周波数の駆動電力を給水ポンプ12に出力する。
【0023】
本実施形態においては、制御部30は、給水ポンプ12が給水W1を所定の一定圧力値で吐出するように、給水側インバータ13を制御する。給水ポンプ12により付与される給水W1の前記一定圧力値は、給水ラインL1を流通する給水W1を加圧ポンプ2に供給可能な圧力値に設定される。これにより、給水W1の給水圧力は、一定圧力値となる。
【0024】
圧力センサP1は、合流部J2での給水W1の圧力を検出する機器である。圧力センサP1で検出された給水W1の圧力(以下、「第1検出圧力値」ともいう)は、制御部30へ検出信号として送信される。なお、圧力センサP1は、給水W1の圧力を排水流量調整弁7の1次圧として測定する。
【0025】
供給水ラインL2は、給水W1を、供給水W2としてRO膜モジュール4に供給するラインである。供給水ラインL2の上流側の端部は、合流部J2に接続されている。供給水ラインL2の下流側の端部は、RO膜モジュール4の一次側入口ポートに接続されている。供給水ラインL2には、上流側から下流側に向けて順に、合流部J2、加圧ポンプ2、RO膜モジュール4が設けられている。
【0026】
加圧ポンプ2は、供給水ラインL2に設けられる。加圧ポンプ2は、供給水ラインL2において、給水W1を吸入し、供給水W2として、RO膜モジュール4へ向けて圧送(吐出)する装置である。加圧ポンプ2には、加圧側インバータ3から周波数が変換された駆動電力が供給される。加圧ポンプ2は、供給(入力)された駆動電力の周波数(以下、「駆動周波数」ともいう)に応じた回転速度で駆動される。
【0027】
加圧側インバータ3は、加圧ポンプ2に、周波数が変換された駆動電力を供給する電気回路(又はその回路を持つ装置)である。加圧側インバータ3は、制御部30と電気的に接続されている。加圧側インバータ3には、制御部30から指令信号が入力される。加圧側インバータ3は、制御部30により入力された指令信号(電流値信号又は電圧値信号)に対応する駆動周波数の駆動電力を加圧ポンプ2に出力する。
【0028】
RO膜モジュール4は、加圧ポンプ2から吐出された供給水W2を、溶存塩類が除去された透過水W3と、溶存塩類が濃縮された濃縮水W4とに膜分離処理する設備である。RO膜モジュール4は、単一又は複数のRO膜エレメント(不図示)を備える。RO膜モジュール4は、これらRO膜エレメントにより供給水W2を膜分離処理し、透過水W3及び濃縮水W4を製造する。
【0029】
透過水ラインL3は、RO膜モジュール4で分離された透過水W3を送出するラインである。透過水ラインL3の上流側の端部は、RO膜モジュール4の二次側ポートに接続されている。透過水ラインL3の下流側の端部は、需要箇所の装置等に接続されている。透過水ラインL3には、第1流量センサFM1(以下、「第1流量検出手段」とも呼称する)が設置される。
【0030】
第1流量センサFM1は、透過水ラインL3を流通する透過水W3の流量を第1検出流量値として検出する機器である。第1流量センサFM1は、透過水ラインL3に接続されている。第1流量センサFM1は、制御部30と電気的に接続されている。第1流量センサFM1で検出された透過水W3の第1検出流量値は、制御部30へ検出信号として送信される。第1流量センサFM1として、例えば、流路ハウジング内に軸流羽根車又は接線羽根車(不図示)を配置したパルス発信式の流量センサを用いることができる。
【0031】
第1濃縮水ラインL41は、RO膜モジュール4で分離された濃縮水W4を送出するラインである。第1濃縮水ラインL41の上流側の端部は、RO膜モジュール4の一次側出口ポートに接続されている。また、第1濃縮水ラインL41の下流側は、流量調整ユニット5の一次側に接続されている。
【0032】
また、第2濃縮水ラインL42は、流量調整ユニット5で流量が調整された濃縮水W4を送出するラインである。第2濃縮水ラインL42の上流側の端部は、流量調整ユニット5の二次側に接続されている。また、第2濃縮水ラインL42の下流側は、接続部J1において、循環水ラインL5及び排水ラインL6に分岐している。
【0033】
なお、以降では、第1濃縮水ラインL41と第2濃縮水ラインL42とをまとめて、「濃縮水ラインL4」と総称することがある。
【0034】
流量調整ユニット5は、当該流量調整ユニット5における差圧によらず、実質的に定流量の濃縮水を流通させる定流量要素と、当該流量調整ユニット5における差圧に実質的に比例して濃縮水W4の流量が高くなる比例要素とを備える。流量調整ユニット5における差圧は、具体的には、第1濃縮水ラインL41の水圧と第2濃縮水ラインL42の水圧との差圧である。定流量要素は、補助動力や外部操作を必要とせずに一定流量値を保持し、例えば水ガバナの名称で呼ばれるものを用いてもよい。また、比例要素としては、例えばオリフィスの名称で呼ばれるものを用いてもよく、オリフィスから流れる濃縮水W4の流量が、当該流量調整ユニット5における差圧に比例する。
【0035】
図2は、RO膜モジュール4の入口圧力と、流量調整ユニット5を流れる濃縮水の流量との関係の例を示すグラフである。流量調整ユニット5は、定流量要素を備えることから、入口圧力が発生すると、流量調整ユニット5を流れる濃縮水の流量は一気にA点まで上昇する。すなわち近似的には、入口圧力の発生と同時にA点の高さの流量が流量調整ユニット5に流れる。同時に、流量調整ユニット5は比例要素を備えることから、以降、入口圧力が上昇するに従い、流量調整ユニット5を流れる濃縮水の流量は、一次関数的に上昇する。
【0036】
なお、流量調整ユニット5において、定流量要素と比例要素とは一体的に構成されていてもよく、別体として構成されていてもよい。一体的に構成されている場合には、例えば、比例要素の流れ方向が、流量調整ユニット5の長軸方向と一致し、定流量要素の流れ方向が流量調整ユニット5の長軸方向に直交するように構成してもよい。あるいは、比例要素の流れ方向が流量調整ユニット5の長軸方向に直交し、定流量要素の流れ方向が流量調整ユニット5の長軸方向と一致するように構成してもよい。あるいは、定流量要素の流れ方向と比例要素の流れ方向が、共に流量調整ユニット5の長軸方向と一致するように構成してもよい。
また、以下では流量調整ユニット5を、「濃縮水流量調整手段」とも呼称する。
【0037】
循環水ラインL5は、濃縮水ラインL4から分岐するラインであって、RO膜モジュール4で分離された濃縮水W4の一部である循環水W41を、合流部J2に返送するラインである。循環水ラインL5の上流側の端部は、接続部J1において、濃縮水ラインL4に接続されている。また、循環水ラインL5の下流側の端部は、合流部J2において、給水ラインL1に接続されている。循環水ラインL5には、逆止弁6が設けられている。
【0038】
排水ラインL6は、接続部J1において濃縮水ラインL4から分岐され、RO膜モジュール4で分離された濃縮水W4の残部である排水W42を装置外(系外)に排出するラインである。排水ラインL6には、排水流量調整手段としての第2流量センサFM2、排水流量調整弁7が設けられている。
【0039】
第2流量センサFM2は、排水ラインL6を流通する排水W42の流量を第2検出流量値として検出する機器である。第2流量センサFM2は、制御部30と電気的に接続されている。第2流量センサFM2で検出された排水W42の第2検出流量値は、制御部30へパルス信号として送信される。第2流量センサFM2として、例えば、流路ハウジング内に軸流羽根車又は接線羽根車(不図示)を配置したパルス発信式の流量センサを用いることができる。
【0040】
排水流量調整弁7は、排水ラインL6から装置外へ排出する排水W42の排水流量を調整可能な弁である。排水流量調整弁7は、制御部30と電気的に接続されている。排水流量調整弁7の弁開度は、制御部30から送信される駆動信号により制御される。制御部30から電流値信号(例えば、4~20mA)を排水流量調整弁7に送信して、弁開度を制御することにより、排水W42の排水流量を調整することができる。
【0041】
制御部30は、CPU、ROM、RAM、CMOSメモリ等を有し、これらはバスを介して相互に通信可能に構成される、当業者にとって公知のものである。
【0042】
CPUは逆浸透膜分離装置1を全体的に制御するプロセッサである。該CPUは、ROMに格納された各種プログラムを、バスを介して読み出し、該各種プログラムに従って逆浸透膜分離装置1全体を制御することで、後述の故障検知部301、排水流量予測部302、開度調整部303、及びポンプ制御部304としての機能を実現するように構成される。RAMには一時的な計算データや表示データ等の各種データが格納される。CMOSメモリは図示しないバッテリでバックアップされ、逆浸透膜分離装置1の電源がオフされても記憶状態が保持される不揮発性メモリとして構成される。
【0043】
図3は、制御部30の機能ブロック図である。制御部30は、故障検知部301、排水流量予測部302、開度調整部303、及びポンプ制御部304を備える。
【0044】
故障検知部301は、第2流量センサFM2の故障を検知する。ここで、第2流量センサFM2の故障としては、例えば第2流量センサFM2の内部や、第2流量センサFM2から制御部30までの間における断線が挙げられ、第2流量センサFM2からの電流値がいきなり0になることにより検知される。
【0045】
排水流量予測部302は、第2流量センサFM2の故障時に、排水流量調整弁7の1次圧の測定値と排水流量調整弁7の開度とから、排水流量の予測値を算出する。
【0046】
より詳細な算出方法は以下の通りである。すなわち、排水流量調整弁7を全開にしたとき、単位時間あたりに排水流量調整弁7を通過する流体の排水流量のことを排水流量調整弁7の容量という。この流体の仕様をある標準値に保つことによってあらわされた数値を容量係数といい、例としてCv値が挙げられる。
Cv値とは、具体的には、排水流量をQ[gal/mol]、水の比重をG、排水流量調整弁7の前後での差圧をΔp[lbf/in2]としたとき、以下の式(1)によって算出される値である。同じ差圧であれば、Cv値が大きいほど通過する流量は大きくなり、同じCv値であれば差圧が大きいほど通過する流量は大きくなる。
Cv=Q×√(G/Δp) 式(1)
【0047】
図4は、Cv値と排水流量調整弁7の開度との関係の例を示すグラフであり、この関係を表す関係式は、あらかじめCPUに設定される。排水流量予測部302は、排水流量調整弁7の開度から、
図4のグラフに示される関係式を用いて、Cv値を算出し、このCv値と排水流量調整弁7の1次圧とから、排水流量の予測値を算出する。
【0048】
開度調整部303は、第1流量センサFM1によって検出される透過水W3の流量と、排水流量予測部302によって算出される排水流量の予測値とから回収率を算出し、この回収率が、当該回収率の目標値である目標回収率となるように、排水流量調整弁7の開度を調整する。なお、目標回収率は水温によって異なる。
【0049】
より詳細には、開度調整部303は、故障検知部301によって排水流量調整弁7の故障が検知された場合に、バックアップ運転として、排水流量調整弁7の差圧(実際には、圧力センサP1によって検出される給水圧力)が、例えば0.2MPa等の固定値となるよう制御した後、目標回収率となる排水流量調整弁7の開度を演算し、開度をフィードバック制御する。
【0050】
図5は、回収率と排水流量調整弁7の開度との関係を示すグラフである。
図5に示されるように、目標とする回収率が高くなるほど、排水流量調整弁7の開度を下げる必要がある。
【0051】
上述のように、
図4に示される、Cv値と排水流量調整弁7の開度との関係式をあらかじめCPUに設定しておき、排水流量予測部302が、この関係式を用いて、Cv値を算出後、算出されたCv値を用いて排水流量を予測し、予測された排水流量を用いて回収率を算出し、算出される回収率が目標回収率となるように、開度調整部303が排水流量調整弁7の開度を調整するとした。これに限定されず、
図5に示される回収率と排水流量調整弁7の開度との関係式をあらかじめCPUに設定しておき、開度調整部303がこの関係式を用いて排水流量調整弁7の開度を調整してもよい。
【0052】
ポンプ制御部304は、加圧ポンプ2を制御する。例えば、ポンプ制御部304は、第1流量センサFM1によって検出される透過水W3の流量が所定の流量目標値となるように、加圧ポンプ2をフィードバック制御してもよい。
【0053】
〔2 逆浸透膜分離装置の動作〕
図6は、逆浸透膜分離装置1の動作を示すフローチャートである。
ステップS1において、故障検知部301が、第2流量センサFM2の故障を検知した場合(S1:YES)には、処理はステップS2に移行する。故障検知部301が、第2流量センサFM2の故障を検知しない場合(S1:NO)には、処理はステップS1に移行する。
【0054】
ステップS2において、開度調整部303は、排水流量調整弁7の差圧が固定値となるよう制御した後、第1流量センサFM1によって検出される透過水W3の流量と、排水流量予測部302によって算出される排水流量の予測値とから、回収率を算出し、この回収率が、当該回収率の目標値である目標回収率となるように、排水流量調整弁7の開度の目標値を算出する。
【0055】
ステップS3において、開度調整部303は、排水流量調整弁7の開度を、ステップS2において算出された目標値となるように、フィードバック制御する。
その後、処理はステップS2に移行する(リターン)。
【0056】
〔3 実施形態の効果〕
上述した実施形態に係る逆浸透膜分離装置1によれば、例えば、以下のような効果が得られる。
本実施形態に係る逆浸透膜分離装置1は、第2流量センサFM2の故障を検知する故障検知部301と、第2流量センサFM2の故障時に、排水流量調整弁7の1次圧の測定値と排水流量調整弁7の開度とから、排水流量の予測値を算出する排水流量予測部302と、透過水W3の流量と排水流量の予測値とから算出される回収率が、該回収率の目標値である目標回収率となるように排水流量調整弁7の開度を調整する開度調整部303とを備える。
これにより、第2流量センサFM2の故障時も装置を停止させることなく、正常時とほぼ同等の回収率でのバックアップ運転をすることが可能となる。
【0057】
また、逆浸透膜分離装置1は、濃縮水ラインL4の下流端に接続され、供給水としての濃縮水W4を合流部J2に返送する循環水ラインL5と、濃縮水ラインL4を通過する濃縮水の流量を調整する流量調整ユニット5と、を更に備え、圧力センサP1は、給水ラインL1を通過する給水W1の圧力を、排水流量調整弁7の1次圧として測定する。
これにより、循環比を上げて、RO膜モジュール4の膜面での目詰まり防止を図るために、循環水ラインL5を設けた場合、排水ラインL6上に別途、圧力測定手段を設けなくとも、給水ラインL1に設けた圧力センサP1を、排水流量調整弁7の1次圧を計測するための手段として活用することができる。
【0058】
また、逆浸透膜分離装置1は、供給水ラインL2に設けられ、供給水W2を吸入してRO膜モジュール4に向けて吐出する加圧ポンプ2と、透過水W3の流量が所定の流量目標値となるように、加圧ポンプ2を制御するポンプ制御部304とを更に備える。
定流量フィードバック制御により、透過水W3の流量を制御することで、透過水W3の安定供給が可能となる。
【0059】
〔4 変形例〕
上記の実施形態においては、逆浸透膜分離装置1が、循環水ラインL5及び逆止弁6を備える構成としたが、これには限られない。具体的には、逆浸透膜分離装置1は、循環水ラインL5及び逆止弁6を備えない構成としてもよい。
【符号の説明】
【0060】
1 逆浸透膜分離装置
2 加圧ポンプ
3 加圧側インバータ(インバータ)
4 RO膜モジュール(逆浸透膜モジュール)
5 流量調整ユニット
7 排水流量調整弁
12 給水ポンプ
13 給水側インバータ(インバータ)
30 制御部
301 故障検知部
302 排水流量予測部
303 開度調整部
304 ポンプ制御部
FM1、FM2 流量センサ(流量検出手段)
P1 圧力センサ(圧力測定手段)
L1 給水ライン
L2 供給水ライン
L3 透過水ライン
L4 濃縮水ライン
L41 第1濃縮水ライン
L42 第2濃縮水ライン