(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-11-22
(45)【発行日】2022-12-01
(54)【発明の名称】医用画像処理装置および放射線治療システム
(51)【国際特許分類】
A61B 6/00 20060101AFI20221124BHJP
G06T 7/00 20170101ALI20221124BHJP
A61N 5/10 20060101ALI20221124BHJP
【FI】
A61B6/00 350D
A61B6/00 370
A61B6/00 360Z
G06T7/00 612
A61N5/10 M
(21)【出願番号】P 2021027492
(22)【出願日】2021-02-24
(62)【分割の表示】P 2016226133の分割
【原出願日】2016-11-21
【審査請求日】2021-02-24
(73)【特許権者】
【識別番号】317015294
【氏名又は名称】東芝エネルギーシステムズ株式会社
(73)【特許権者】
【識別番号】301032942
【氏名又は名称】国立研究開発法人量子科学技術研究開発機構
(74)【代理人】
【識別番号】110001380
【氏名又は名称】弁理士法人東京国際特許事務所
(72)【発明者】
【氏名】田口 安則
(72)【発明者】
【氏名】平井 隆介
(72)【発明者】
【氏名】坂田 幸辰
(72)【発明者】
【氏名】岡屋 慶子
(72)【発明者】
【氏名】森 慎一郎
【審査官】亀澤 智博
(56)【参考文献】
【文献】特開2016-116659(JP,A)
【文献】特開2016-131737(JP,A)
【文献】特開2014-212820(JP,A)
【文献】米国特許出願公開第2012/0226152(US,A1)
【文献】特開2013-078479(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 6/00 - 6/14
A61N 5/00 - 5/10
G06T 1/00 , 7/00
(57)【特許請求の範囲】
【請求項1】
被検体の透視画像の全体またはその一部である第1画像のうち、前記被検体において放射線照射の対象となるターゲット部の動きと相関がある情報が特定の条件を満たす特定画像から取得された特徴量を用いて機械学習で事前に学習された識別器のパラメータが記憶される記憶部と、
前記被検体の前記第1画像とは別の
前記透視画像を取得する画像取得部と、
前記画像取得部から取得した前記透視画像の全体またはその一部である第2画像の特徴量を取得する特徴量取得部と、
前記記憶部に記憶されたパラメータと前記第2画像の特徴量とに基づいて、前記第2画像を判定した結果を示す判定信号を出力する信号出力部と、
を備え
、
前記ターゲット部の動きと相関がある情報は、少なくとも前記被検体に設置されたマーカについての情報を含み、
少なくとも1つの前記特定の条件は、前記マーカが前記第1画像内の特定位置に位置していることであり、
前記特徴量は、前記特定画像の画素値を並べたベクトルであり、
前記識別器の前記機械学習で用いられる複数の前記第1画像は、前記マーカが前記特定位置に写っている画像であり、
前記判定信号は、前記第2画像内の前記特定位置に前記マーカがあるか否かを2値、または、尤度で表し、
前記信号出力部は、前記記憶部に記憶されたパラメータが表す前記識別器へ前記第2画像の特徴量を入力し、前記識別器からの出力を前記判定信号として出力する、
医用画像処理装置。
【請求項2】
前記ターゲット部の動きと相関がある情報は、前記被検体の呼吸情報であり、
前記特定の条件は、前記第1画像に対応する前記呼吸情報が前記ターゲット部への前記放射線照射に適した呼吸の状態であることであり、
前記判定信号は、前記第2画像の状態が前記放射線照射を実施して良い正常状態か否かを表す、
請求項1に記載の医用画像処理装置。
【請求項3】
前記識別器は、1クラスサポートベクターマシンであり、
前記識別器の前記機械学習で用いられる複数の前記第1画像には、前記マーカが前記特定位置に写っていない画像が含まれない、
請求項1に記載の医用画像処理装置。
【請求項4】
前記マーカが設けられた前記被検体を医用検査装置で検査することで生成された前記被検体の3次元ボリューム画像を取得する第1取得部と、
前記被検体の前記透視画像の撮影に用いる撮影装置のジオメトリ情報を取得する第2取得部と、
をさらに備え、
前記第1画像は、前
記3次元ボリューム画像
および前記ジオメトリ情報に基づいて生成されたデジタル再構成画像である、
請求項1に記載の医用画像処理装置。
【請求項5】
前記マーカが設けられた前記被検体を医用検査装置で検査することで生成された前記被検体の3次元ボリューム画像を取得する第1取得部と、
前記被検体の前記透視画像の撮影に用いる撮影装置のジオメトリ情報を取得する第2取得部と、
前記3次元ボリューム画像および前記ジオメトリ情報に基づいて、前記マーカが写る画像の撮影または画像処理の設定に用いる特定設定情報を生成する特定生成部と、
をさらに備え、
前記透視画像の一部は、前記特定設定情報から定める、
請求項1に記載の医用画像処理装置。
【請求項6】
前記第1画像は、前記マーカの仮想像をComputer Graphicsを用いて作成した画像である、
請求項
1に記載の医用画像処理装置。
【請求項7】
前記事前に学習された前記識別器のパラメータは、前記第1画像のうち、前記特定の条件を満たさない非特定画像から取得された特徴量も用いられて学習されたものである、
請求項1から請求項
6のいずれか1項に記載の医用画像処理装置。
【請求項8】
請求項1に記載の医用画像処理装置と、
前記被検体の前記透視画像を撮影する撮影装置と、
前記撮影装置を用いて連続して撮影される複数の前記透視画像に写る
前記マーカの位置を追跡する画像処理を行う追跡部を備える動体追跡装置と、
前記動体追跡装置を用いて追跡される前記マーカが
前記特定位置に存在するときに前記被検体における前記放射線照射の対象となる前記ターゲット部に放射線を照射する放射線照射装置と、
を備え、
前記医用画像処理装置が出力した前記判定信号が、前記放射線照射装置の制御に利用される、または、前記第2画像の判定の結果が、前記追跡部で用いられる、
放射線治療システム。
【請求項9】
請求項2に記載の医用画像処理装置と、
前記被検体の前記透視画像を撮影する撮影装置と、
前記撮影装置を用いて連続して撮影される複数の前記透視画像に写る
前記マーカの位置を追跡する画像処理を行う追跡部を備える動体追跡装置と、
前記動体追跡装置を用いて追跡される前記マーカが
前記特定位置に存在するときに前記被検体における前記放射線照射の対象となる前記ターゲット部に放射線を照射する放射線照射装置と、
を備え、
前記医用画像処理装置が出力した前記判定信号が、前記放射線照射装置の制御に利用される、
放射線治療システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明の実施形態は、放射線治療システムに用いる医用画像を処理する医用画像処理技術に関する。
【背景技術】
【0002】
従来、患部に放射線を照射する治療を行う際に、呼吸や心拍や腸などの動きによって患者の患部が動いてしまう場合がある。そこで、待ち伏せ照射法や追跡照射法を用いて患部に放射線を照射するようにしている。例えば、治療中に患者をX線で撮影することで、患部近傍に留置したマーカが写る透視画像を得る。そして、透視画像をテンプレートとマッチングすることで、マーカの動きを追跡して適切なタイミングで放射線を照射するようにしている。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
前述の技術にあっては、治療計画時に予めX線撮影した患者の透視画像を参照しながら、医師や放射線技師などのユーザがテンプレートの設定を行わなければならず、その手間がかかる。さらに、治療中に透視画像の画像処理を行ってマーカの位置を追跡する場合に、透視画像の全範囲をリアルタイムで処理しようとすると、CPUの処理負荷が生じてしまう。そこで、画像処理の負荷を低減するために、透視画像中のマーカが写る範囲をユーザが予め設定しなければならず、その手間がかかるという課題がある。
【0005】
本発明の実施形態はこのような事情を考慮してなされたもので、マーカが写る画像の撮影または画像処理の設定に関するユーザの手間を省力化することができる医用画像処理技術を提供することを目的とする。
【課題を解決するための手段】
【0006】
本発明の実施形態に係る医用画像処理装置は、被検体の透視画像の全体またはその一部である第1画像のうち、前記被検体において放射線照射の対象となるターゲット部の動きと相関がある情報が特定の条件を満たす特定画像から取得された特徴量を用いて機械学習で事前に学習された識別器のパラメータが記憶される記憶部と、前記被検体の前記第1画像とは別の前記透視画像を取得する画像取得部と、前記画像取得部から取得した前記透視画像の全体またはその一部である第2画像の特徴量を取得する特徴量取得部と、前記記憶部に記憶されたパラメータと前記第2画像の特徴量とに基づいて、前記第2画像を判定した結果を示す判定信号を出力する信号出力部と、を備え、前記ターゲット部の動きと相関がある情報は、少なくとも前記被検体に設置されたマーカについての情報を含み、少なくとも1つの前記特定の条件は、前記マーカが前記第1画像内の特定位置に位置していることであり、前記特徴量は、前記特定画像の画素値を並べたベクトルであり、前記識別器の前記機械学習で用いられる複数の前記第1画像は、前記マーカが前記特定位置に写っている画像であり、前記判定信号は、前記第2画像内の前記特定位置に前記マーカがあるか否かを2値、または、尤度で表し、前記信号出力部は、前記記憶部に記憶されたパラメータが表す前記識別器へ前記第2画像の特徴量を入力し、前記識別器からの出力を前記判定信号として出力する。
【発明の効果】
【0007】
本発明の実施形態により、マーカが写る画像の撮影または画像処理の設定に関するユーザの手間を省力化することができる医用画像処理技術が提供される。
【図面の簡単な説明】
【0008】
【
図1】第1実施形態の放射線治療システムを示すシステム構成図。
【
図2】第1実施形態の医用画像処理装置を示すブロック図。
【
図3】第1実施形態の動体追跡装置を示すブロック図。
【
図4】X線照射部とX線検出部と被検体との関係を示す概略図。
【
図5】マーカの追跡に用いるX線画像(DRR画像)を示す画像図。
【
図6】マーカの選択に用いるX線画像(DRR画像)を示す画像図。
【
図7】範囲表示が変更されるときのX線画像(DRR画像)を示す画像図。
【
図8】範囲表示が変更されるときのX線画像(DRR画像)を示す画像図。
【
図9】医用画像処理装置の特定設定情報生成処理を示すフローチャート。
【
図10】医用画像処理装置の特定設定情報生成処理を示すフローチャート。
【
図11】第1実施形態の動体追跡装置のマーカ追跡処理を示すフローチャート。
【
図12】第1実施形態の動体追跡装置のマーカ追跡処理を示すフローチャート。
【
図13】第2実施形態の動体追跡装置を示すブロック図。
【
図14】動体追跡装置のインターロック処理を示すフローチャート。
【
図15】動体追跡装置のインターロック処理を示すフローチャート。
【
図16】第3実施形態の動体追跡装置を示すブロック図。
【
図18】第3実施形態の動体追跡装置のマーカ追跡処理を示すフローチャート。
【発明を実施するための形態】
【0009】
(第1実施形態)
以下、本実施形態を添付図面に基づいて説明する。まず、第1実施形態の医用画像処理装置について
図1から
図12を用いて説明する。
図1の符号1は、患者Pの体内に発生した腫瘍などの患部Tに放射線Rを照射して治療を行うために用いる放射線治療システムである。なお、治療に用いる放射線Rには、X線、γ線、電子線、陽子線、中性子線、重粒子線などが用いられる。
【0010】
なお、放射線治療を行うときには、充分な出力の放射線Rを患者P(被検体)の患部T(ターゲット部)の位置に正確に照射しなければならない。さらに、患部Tの近傍の正常な組織(非ターゲット部)の被ばく量を抑える必要がある。ここで、肺がんや肝臓がんや膵臓がんなどの治療において、患部Tは、呼吸や心拍や腸などの動きと一緒に常に動いている。複数ある照射法のうち、ゲーティング照射法では、放射線Rの照射位置や照射範囲は、予め固定される。そのため、患部Tの動きを把握し、患部Tが特定の位置になったときに放射線Rを照射する必要がある。追尾照射法では、患部Tの位置を追尾し、その位置に放射線Rを照射する。以降はゲーティング照射法の場合を例にとって説明するが、本発明は追尾照射法にも適用できる。患部Tの位置の特定には、例えば、X線画像が利用される。しかし、患部TがX線画像に明瞭に写るとは限らない。
【0011】
そこで、本実施形態では、患部Tの近傍にマーカM(
図4参照)を留置する。このマーカMは、患部Tより明瞭に写る。このマーカMが患部Tの動きに同調して動くので、マーカMの動きをX線で撮影して監視することで、患部Tの動きを把握する。そして、所定の照射条件を満たすタイミングで放射線Rを照射する。例えば、患者Pが息を吐き切ったときでかつ、マーカMが特定の位置にきたときを照射条件とし、患者Pの呼吸に同期させて繰り返し放射線Rを患部Tに照射する。なお、以下の説明では、呼吸に同期させて放射線Rを照射することを例示するが、心拍や腸の動きなどに同期させて放射線Rを照射しても良い。
【0012】
本実施形態のマーカMは、例えば、直径が1~2mm程度の微小な金属球で構成される。なお、マーカMの材質には、体内に留置しても害が少ないものが用いられ、具体的には例えば金である。また、金属は、人体を構成する組織よりもX線を透過させ難いため、X線画像40(
図5から
図8参照)に比較的明瞭に写る。また、マーカMは、イントロデューサ(ニードルガイド)などの専用の穿刺器具を用いて体内に挿入される。例えば、複数個のマーカM1~M3が体内の患部T近傍に留置される(
図4参照)。
【0013】
図1に示すように、放射線治療システム1を用いた治療計画を立てる際に、まず、マーカMを留置した患者P(被検体)のコンピュータ断層撮影を行う。本実施形態では、コンピュータ断層撮影により患者Pの各種検査を行うための医用検査装置2が設けられている。この医用検査装置2は、X線CT装置で構成される。そして、医用検査装置2を用いて患者Pの3次元ボリューム画像を生成する。なお、3次元ボリューム画像は例えば、ボクセルデータからなる。
【0014】
なお、本実施形態では、X線CT装置を例示しているが、この医用検査装置2(診断装置)は、患者Pの3次元ボリューム画像を取得できるものであれば他の装置であっても良い。例えば、MRI装置(Magnetic Resonance Imaging)であっても良いし、超音波画像診断装置であっても良い。
【0015】
本実施形態の放射線治療システム1は、マーカMが写る画像の撮影または画像処理の設定に用いる特定設定情報を生成する医用画像処理装置3と、患者Pの患部TおよびマーカMが写るX線画像40(透視画像)を撮影するX線撮影装置7(透視装置)と、患者Pの呼吸を監視するための呼吸監視装置8と、特定設定情報とX線画像40を用いて時々刻々と動くマーカMの位置を追跡する動体追跡装置4と、動体追跡装置4を用いて追跡されるマーカMが特定位置41(ゲーティングウインドウ)に存在するときに患部Tに放射線を照射する放射線照射装置5と、患者Pが配置されるベッド6と、を備える。
【0016】
なお、医用画像処理装置3および動体追跡装置4は、CPU、ROM、RAM、HDDなどのハードウエア資源を有し、CPUが各種プログラムを実行することで、ソフトウエアによる情報処理がハードウエア資源を用いて実現されるコンピュータで構成される。さらに、後述の医用画像処理方法は、プログラムをコンピュータに実行させることで実現される。
【0017】
また、動体追跡装置4には、X線撮影装置7と呼吸監視装置8とが接続される。なお、X線画像40には、マーカMの像が写る。さらに、動体追跡装置4は、放射線治療中にX線撮影装置7を用いて撮影したX線画像40のマーカMの位置を追跡し、かつ呼吸監視装置8を用いて患者Pの呼吸の状態(例えば、呼吸波形)を監視する。そして、動体追跡装置4は、放射線Rの照射タイミングを特定し、照射タイミング信号を出力する。
【0018】
また、X線撮影装置7は、X線を患者Pに照射するX線照射部9と、患者Pを透過したX線を検出するX線検出部10とを備える。なお、X線検出部10は、フラットパネルディテクタ(FPD)やイメージインテンシファイアなどで構成される。
【0019】
本実施形態では、1のX線照射部9および1のX線検出部10で1組の機器が合計2組設けられている。2組のX線照射部9およびX線検出部10で異なる2方向から同時にX線撮影を行うことで、マーカMの3次元位置を取得することができる。また、2方向から同時に撮影したそれぞれのX線画像40に写る同一のマーカMは、画像処理により互いに対応付けることができる。
【0020】
なお、実際のX線撮影では、2組のX線照射部9およびX線検出部10を用いて、2方向(例えば、患者Pの右手側および左手側の2方向)から撮影した一対のX線画像40(医用画像)が得られる。さらに、後述のDRR画像46(Digitally Reconstructed Radiograph、デジタル再構成画像、医用画像)についても、一対の画像が得られる。しかしながら以下の説明では、理解を助けるために、1方向から撮影したX線画像40およびDRR画像46を例示して説明する(
図5から
図8参照)。
【0021】
図5に示すように、X線画像40には、患部Tや複数個のマーカMが写る。患部TやマーカMの写り方は、X線照射部9およびX線検出部10の配置や向きなどにより決定される。なお、X線画像40は、時系列に沿って連続して撮影されるので、この複数のX線画像40(フレーム)により動画像を生成することができる。そして、X線画像40を画像処理することによりマーカMの動き、つまり、患部Tの動きを把握することができる。
【0022】
例えば、複数のX線画像40のそれぞれのマーカMの位置を繋ぐことで、マーカMの移動の軌跡42を取得することができる。このマーカMの軌跡42において、息を吐いたときの終点位置43と息を吸ったときの終点位置44とが明確になる。そして、息を吐いたときの終点位置43を特定位置41とし、この特定位置41にマーカMが在るときに放射線Rを患部Tに照射する。このようにすれば、マーカMの追跡に基づいて、正確性の高い呼吸同期照射を実現できる。なお、特定位置41は、
図5に示すように、X線画像40に含まれる特定の領域(例えば、矩形状の領域)となっている。
【0023】
なお、X線画像40の全範囲をリアルタイムで処理しようとすると、CPUの処理負荷が高くなってしまう。そこで、画像処理の負荷を低減するために、X線画像40のマーカMが写る可能性がある特定範囲45(探索範囲)が設定され、この特定範囲45のみを探索する画像処理が行われる。また、X線画像40(DRR画像46)として、2方向から撮影した一対の画像を取得し、この一対の画像について特定範囲45や特定位置41を特定することで、マーカMの位置やその軌跡42の3次元的な位置を取得することができる。
【0024】
図1に示すように、呼吸監視装置8は、患者Pに取り付けられた呼吸センサ11に接続されている。この呼吸センサ11を用いて患者Pの呼吸の状態を監視する。そして、呼吸監視装置8は、患者Pの呼吸の状態を示す呼吸情報を動体追跡装置4に出力する。なお、本実施形態では、呼吸監視装置8が取得した患者Pの呼吸状態が息を吐いたことを表しているとき、かつ、前述の特定位置41にマーカMが在るときの両方の条件が揃ったときに、放射線Rを患部Tに照射するようにしている。なお、患者Pの呼吸状態に関わらず、前述の特定位置41にマーカMが在るときに放射線Rを患部Tに照射しても良い。
【0025】
また、放射線照射装置5は、照射制御部12に接続されている。この照射制御部12より放射線Rの照射タイミングが制御される。さらに、この照射制御部12が動体追跡装置4に接続されている。なお、照射制御部12は、動体追跡装置4から出力される照射タイミング信号を受信したときに、放射線照射装置5から放射線Rを照射するよう放射線照射装置5を制御する。
【0026】
図2に示すように、医用検査装置2は、患者Pのコンピュータ断層撮影を行う装置であり、患者Pの複数の方向からの投影データを撮影する投影データ撮影部13と、この投影データ撮影部13により得られる2次元の複数の投影データに基づいて患者Pの立体的な3次元ボリューム画像を生成する3次元ボリューム画像生成部14とを備える。3次元ボリューム画像は、例えば、複数のボクセルの情報を含む。そして、3次元ボリューム画像生成部14は、3次元ボリューム画像を医用画像処理装置3に向けて出力する。なお、コンピュータ断層撮影を時系列に沿って連続して行うことで、患者Pの立体的な動画像を生成することができる。これにより患部TやマーカMの3次元的な動きを取得することができる。
【0027】
また、医用画像処理装置3は、患者Pの3次元ボリューム画像を医用検査装置2から取得する第1取得部15と、第1取得部15により取得した3次元ボリューム画像を記憶する3次元ボリューム画像記憶部16と、患者PのX線画像40の撮影に用いるX線撮影装置7のX線照射部9およびX線検出部10のジオメトリ情報を取得する第2取得部17と、第2取得部17により取得したジオメトリ情報を記憶するジオメトリ情報記憶部18と、3次元ボリューム画像記憶部16に記憶された3次元ボリューム画像に基づいて、マーカMの位置情報(座標)を取得する位置情報取得部19(第3取得部)と、を備える。
【0028】
なお、ジオメトリ情報には、X線照射部9の位置、X線検出部10の位置、およびX線検出部10においてX線を検出する面の向きを表すパラメータが含まれる。このジオメトリ情報は、X線撮影装置7の設計図データ(CADデータ)などに基づいて予め構成される。さらに、ジオメトリ情報を外部機器から取得するのみならず、第2取得部17がジオメトリ情報を予め記憶していても良い。X線撮影装置7が可動式であれば、第2取得部17は、各状態でのジオメトリ情報を外部から取得したり、記憶しておいたりする。
【0029】
また、患者Pの3次元ボリューム画像には、マーカMを構成する金属(例えば金)のCT値が含まれる。そして、位置情報取得部19は、その金属のCT値を特定することで、患者Pの体内に留置されたマーカMの3次元的な位置情報を取得することができる。なお、医用検査装置2では、時系列に沿って連続してコンピュータ断層撮影が行われる。そして、各撮影のタイミングに対応(同期)して患者Pの呼吸の状態も監視される。この呼吸の状態を表す呼吸情報は、医用検査装置2から得られる3次元ボリューム画像と対応付けられて3次元ボリューム画像記憶部16に記憶されている。
【0030】
また、患者Pの3次元ボリューム画像には、患部Tの位置情報が含まれる。なお、3次元ボリューム画像における患部Tの位置情報は、治療計画時にユーザ(例えば医師)により入力される。ユーザを補助するために、自動的に特定されても良い。なお、特定の時刻の患部Tの位置情報がユーザにより入力される場合に、他の時刻の患部TおよびマーカMの位置情報は、イメージレジストレーションによって計算可能であるので、自動的に取得することができる。3次元ボリューム画像におけるマーカMの位置情報は、前述の通り、CT値から自動的に取得できる。
【0031】
さらに、医用画像処理装置3は、患者Pの3次元ボリューム画像とX線撮影装置7のジオメトリ情報とに基づいて、DRR画像46を生成するDRR画像生成部20と、このDRR画像46を表示するDRR画像表示部21(再構成画像表示部)とを備える。なお、DRR画像46は、X線撮影装置7を用いて3次元ボリューム画像を仮想的に撮影した仮想的なX線画像40である。なお、X線画像40およびDRR画像46は、ほぼ同じ構図の画像となるので、
図5から
図8に例示する画像図を、X線画像40およびDRR画像46であるとして以下に説明する。
【0032】
図2に示すように、医用画像処理装置3は、患者Pの3次元ボリューム画像とX線撮影装置7のジオメトリ情報とマーカMの位置情報とDRR画像46とに基づいて、マーカMが写る画像の撮影または画像処理の設定に用いる特定設定情報を生成する特定生成部22と、この特定設定情報を記憶する特定設定情報記憶部23とを備える。なお、マーカMが写る画像とは、X線撮影装置7が撮影したX線画像40およびDRR画像生成部20が生成したDRR画像46のことである。
【0033】
本実施形態の特定設定情報(追跡条件)は、X線撮影装置7でX線画像40を撮影するとき、および動体追跡装置4でマーカMの動きを追跡するときに用いる設定に関する。例えば、特定設定情報は、マーカMの軌跡42を予測してX線画像40における特定範囲45および特定位置41を設定するための情報を含む(
図5参照)。また、特定設定情報は、患者Pに設けられた複数個のマーカMのうちのいずれかを画像処理の対象として設定するかについての情報を含む。
【0034】
このように、特定設定情報を生成することで、動体追跡装置4の画像処理に用いる特定範囲45および特定位置41の設定を自動化することができる。そのため、医師または放射線技師などのユーザの手間を省力化することができる。さらに、マーカMの位置情報を用いて特定設定情報を生成することで、マーカMの位置に応じて、マーカMが写る画像の撮影または画像処理を行うことができる。
【0035】
なお、X線画像40を撮影する前に予め特定設定情報を生成できる。マーカMの追跡に関して手動で設定するために、事前にX線画像40を撮影する場合と比較して、短時間で設定を完了することができる。また、事前の撮影がないので、患者の被曝量が少なくて済む。
【0036】
また、特定設定情報が特定範囲45を設定する情報を含むことで、マーカMが写る特定範囲45を主な対象として、画像処理を行うことができるので、処理負荷を低減することができる。さらに、特定設定情報が特定位置41(ゲーティングウインドウ)を設定する情報を含むことで、特定設定情報を用いて放射線照射装置5の放射線照射のタイミングを設定することができる。なお、特定位置41は、ピンポイントであっても良いし、所定のマージンを有する領域であっても良い。
【0037】
なお、特定設定情報は、マーカMが存在する可能性が高い範囲に照射されるX線の出力を向上させるための設定に用いても良い。このように、マーカMが存在する可能性が高い範囲に限定してX線の照射出力を向上させることで、マーカM以外の組織の被ばく量を低減させつつ、マーカMをX線画像40に明瞭に撮影できる。そして、X線画像40に写るマーカMを特定する画像処理を行い易くなる。
【0038】
図4に示すように、患者Pの体内の骨47および内臓48、或いはベッド6の金属部材などのX線を通過させ難い部分がある。このような部分の像49にマーカMの像が重なると(
図6参照)、画像処理でマーカMの位置を特定し難くなる。そこで、特定生成部22は、患者Pの体内に留置された複数個のマーカMのうち、X線画像40に明瞭に写るマーカMを特定するために用いられる特定設定情報を生成することが好ましい。
【0039】
例えば、3個のマーカM1~M3が体内に留置される。この場合に特定生成部22は、患者Pの体内に留置された3個のマーカM1~M3のうち、それぞれのマーカM1~M3の位置を通過する直線L1~L3を特定する。これらの直線L1~L3はそれぞれ、X線照射部9からマーカM1~M3を通ってX線検出部10まで延びる直線である。
【0040】
さらに、特定生成部22は、X線照射部9とX線検出部10の間に仮想的に3次元ボリューム画像を配置する。なお、3次元ボリューム画像がCT画像であれば、CT画像を構成する各ボクセルには、X線の通過し難さを示すCT値が付与される。そして、骨47などのX線を通過させ難い部分のボクセルに付与されたCT値は、他のボクセルのCT値と比較して大きな値になっている。そこで、直線L1~L3の中から、X線照射部9からX線検出部10までの間に存在する3次元ボリューム画像中のボクセルのCT値の合計が最も小さい直線を特定する。
図4では、直線L1に特定する。そして、特定した直線L1に対応するマーカM1を画像処理の対象として設定する。このようにすれば、画像処理に適切なマーカM1を複数個のマーカM1~M3から選択することができる。
【0041】
3次元ボリューム画像がCT画像であれば、本発明の特定生成部22は、マーカM1~M3の位置を通過する直線L1~L3のうち、X線撮影装置7のX線照射部9からX線検出部10までの直線上に存在する全てのボクセルのCT値の総和が最も小さい直線L1に対応するマーカM1を画像処理の対象として設定する。このようにすれば、患者PのX線画像40を撮影したときに、最も明瞭にX線画像40に写るマーカM1を複数個のマーカM1~M3から選択することができる。なお、複数個のマーカM1~M3のうちのいずれか1個のマーカM1を画像処理の対象としても良いし、2個以上のマーカM1~M3を画像処理の対象としても良い。2個以上のマーカを対象とする場合、ボクセル値の合計が小さい順に2本の直線を特定し、それに対応するマーカを対象とすれば良い。
【0042】
なお、このマーカMの特定は、前述の通りに3次元ボリューム画像のボクセルの値に基づいて行っても良いし、DRR画像46のコントラストの評価に基づいて行っても良い。さらに、これらの評価を組み合わせて用いても良い。
【0043】
特定生成部22がDRR画像46のコントラストの評価を行う場合は、DRR画像46に写るマーカM1~M3の像のうち、周囲とのコントラストが最も高いものを特定する。周囲とのコントラストさえ評価できれば良いので、DRR画像46の全体を生成する必要はない。マーカM1~M3の周辺の部分画像のみを生成すれば、周囲とのコントラストを計算できる。
【0044】
また、特定設定情報は、患者Pの呼吸を監視する呼吸監視装置8を用いて取得される患者Pの呼吸の状態に応じて特定範囲45を変更する情報を含むようにしても良い。例えば、
図7に示すように、患者Pが横隔膜を下げることで肺の容積を広げて息を吸ったときには、マーカMがX線画像40の下方側に移動し、患者Pが横隔膜を上げることで肺の容積を狭めて息を吐いたときには、マーカMがX線画像40の上方側に移動する。この場合、息を吐くときの後半期間から息を吸うときの前半期間までは、マーカMの軌跡42の上部側のみを特定範囲45aとし、息を吸うときの後半期間から息を吐くときの前半期間までは、マーカMの軌跡42の下部側のみを特定範囲45bとなるよう、特定範囲45を変更しても良い。
【0045】
このようにすれば、患者Pの呼吸の状態に応じて特定範囲45a,45bを設定し、マーカMが写るX線画像40の撮影を適切に行うことができる。また、必要最小限度の面積の特定範囲45a,45bにすることができるので、特定範囲45a,45bを狭めて画像処理の負荷を低減させることができる。さらに、呼吸監視装置8の呼吸情報に応じた特定範囲45a,45bを利用した方が、ノイズをマーカMとして誤って追跡するリスクを軽減できる。なお、患者Pの呼吸の状態に応じて特定範囲を2つ設定する例を説明したが、3以上設定しても構わない。その方が追跡画像処理の負荷が小さく済む。
【0046】
また、X線画像40を用いて複数個のマーカM1~M3を複合的に追跡しても良い。例えば、
図8に示すように、複数個のマーカM1~M3の各軌跡42の一部が、骨47などの像49に隠れてしまう場合がある。このような場合は、息を吐くときの後半期間から息を吸うときの前半期間までは、所定のマーカM1の軌跡42の上部側のみを特定範囲45cとし、息を吸うときの後半期間から息を吐くときの前半期間までは、他のマーカM2の軌跡42の下部側のみを特定範囲45dとする。なお、マーカM2における息を吐いたときの終点位置43を特定位置41aとする。このようにすれば、呼吸周期のいずれの時点でも、いずれかのマーカMを追跡することができる。
【0047】
なお、医師または放射線技師などのユーザは、DRR画像46または治療前のリハーサル時にX線撮影装置7を用いて撮影した患者PのX線画像40を参照しながら、特定設定情報の変更を行うことができる。例えば、ユーザは、動体追跡装置4において追跡の対象となるマーカMの選択、特定範囲45c,45dの変更、または特定位置41aの変更を行うことができる。
【0048】
図2に示すように、医用画像処理装置3は、ユーザによるマーカMの選択指示を受け付ける選択受付部24と、選択指示を受け付けたマーカMを追跡対象として設定するマーカ設定部25と、ユーザによる特定範囲45または特定位置41の変更指示を受け付ける範囲受付部26と、変更指示を受け付けた特定範囲45または特定位置41に基づいて特定設定情報を変更する範囲変更部27と、治療前のリハーサル時にX線撮影装置7(動体追跡装置4)を用いて撮影した患者PのX線画像40を取得するリハーサル画像取得部28(透視画像取得部)と、このX線画像40を表示するリハーサル画像表示部29(透視画像表示部)と、を備える。
【0049】
なお、前述のDRR画像表示部21またはリハーサル画像表示部29は、一体的なモニタとして構成され、DRR画像46またはX線画像40を切り換えて表示するものであっても良いし、DRR画像46とX線画像40を上下、左右などに並べて表示するものであっても良い。また、それぞれが別体のモニタとして構成されても良い。
【0050】
さらに、DRR画像表示部21またはリハーサル画像表示部29は、特定設定情報記憶部23に記憶された特定設定情報に基づいて、DRR画像46またはX線画像40に特定範囲45を設定する。そして、DRR画像表示部21またはリハーサル画像表示部29は、DRR画像46またはX線画像40を表示するときに、特定範囲45を示す範囲表示52を画像に重ねて表示する(
図5から
図8参照)。
【0051】
この範囲表示52は、例えば、画像中のマーカMの軌跡42を囲むように表示される。このようにすれば、DRR画像46またはX線画像40にマーカMが写る範囲を範囲表示52によってユーザが把握することができる。また、特定範囲45a,45b,45c,45dなどを範囲表示52によってユーザが把握するようにしても良い。
【0052】
そして、ユーザによるマーカMの選択指示を選択受付部24が受け付ける。また、マーカ設定部25は、受け付けた選択指示を特定生成部22に送り、特定設定情報の生成に反映させる。さらに、ユーザによる特定範囲45または特定位置41の変更指示を範囲受付部26が受け付ける。また、範囲変更部27は、受け付けた変更指示に基づいて、特定設定情報記憶部23の特定設定情報を変更する。なお、選択受付部24および範囲受付部26は、キーボードやマウスやタッチパネルなどのユーザが操作可能なユーザインターフェース(入力部)を備える。なお、範囲受付部26は、ユーザからの修正指示を受け付けるものでなくても良く、例えば、特定範囲45が正しいか否かを判断する外部プログラムにより修正指示が入力されるものであっても良い。
【0053】
さらに、マーカ設定部25は、DRR画像生成部20が生成したDRR画像46に基づいて、複数個のマーカMから自動的に適切なマーカMを選択しても良い。例えば、患部Tに最も近い位置にあるマーカMを選択しても良いし、周囲とのコントラストが高いマーカMを選択しても良い。ここで、マーカ設定部25は、特定設定情報記憶部23に記憶された特定設定情報に基づいて、適切なマーカMを選択しても良いし、新規に適切なマーカMを選択し、その情報を特定生成部22に送るようにしても良い。
【0054】
なお、マーカ設定部25が自動的に選択したマーカMをユーザが変更するものでも良い。例えば、複数個のマーカMがある場合に、マーカ設定部25が候補となるマーカMを範囲表示52で囲み(
図6参照)、これらの範囲表示52のうちからユーザが適切と判断した範囲表示52を選択するようにしても良い。
【0055】
このようにすれば、ユーザの判断でマーカMが写る特定範囲45を適宜修正することができる。さらに、リハーサル時にX線撮影装置7を用いて撮影した実際のX線画像40をユーザが見ながら、X線画像40の撮影または画像処理に適切なマーカMを複数個のマーカMから選択することができる。
【0056】
図3に示すように、第1実施形態の動体追跡装置4は、医用画像処理装置3から特定設定情報を取得する設定情報取得部30と、患者PのX線画像40を撮影するX線撮影装置7と、X線撮影装置7で撮影したX線画像40を取得するX線画像取得部31と、特定設定情報に基づいてX線画像40にマーカMが写る範囲を示す特定範囲45を設定する範囲設定部32と、X線画像40を表示するX線画像表示部33とを備える。
【0057】
ここで、設定情報取得部30が取得した特定設定情報がX線撮影装置7に入力される。このX線撮影装置7は、特定設定情報を用いてマーカMが写るX線画像40を撮影する。例えば、X線撮影装置7は、特定設定情報に基づいて、X線照射部9およびX線検出部10の配置などを設定する。この設定に応じて、X線照射部9およびX線検出部10が動作する。そして、リハーサル時の撮影および治療時のX線撮影を行う。さらに、X線撮影装置7は、特定設定情報に基づいて、マーカMが存在する可能性が高い範囲に照射されるX線の出力を増加させても良い。あるいは、マーカMが存在しない可能性が高い範囲に照射されるX線の出力を低下させても良い。
【0058】
なお、治療前のリハーサル時にX線撮影装置7が撮影したX線画像40は、医用画像処理装置3に出力される。また、治療中にX線撮影装置7が撮影したX線画像40は、X線画像表示部33(モニタ)に表示される。このX線画像表示部33は、X線画像40を表示するときに、特定範囲45を示す範囲表示52を画像に重ねて表示する(
図5から
図8参照)。
【0059】
さらに、動体追跡装置4は、X線画像40に写るマーカの位置を、特定設定情報を用いて追跡する画像処理を行う追跡部35と、マーカMの位置に基づいて放射線Rの照射タイミングであるか否かを判定する照射判定部36と、照射タイミングであると判定された場合に照射タイミング信号を出力する照射信号出力部37とを備える。
【0060】
ここで、動体追跡装置4は、追跡部35を用いてX線画像40に写るマーカMを追跡する。そして、このマーカMが特定位置41に存在するとき、つまり、放射線Rの照射タイミングであると照射判定部36が判定したときに、照射信号出力部37が照射タイミング信号を照射制御部12に出力する。そして、照射制御部12は、動体追跡装置4から出力される照射タイミング信号を受信したときに、放射線照射装置5から放射線Rを照射する。
【0061】
さらに、動体追跡装置4は、X線画像40において位置を検出したマーカMの濃淡値と予め定められた閾値との大小関係を評価する評価部38と、追跡部35を用いたマーカMの検出が失敗した可能性がある場合に警告信号を出力する警告出力部39とを備える。
【0062】
なお、追跡部35は、X線画像40の特定範囲45の画像処理を行うことで、マーカMを検出する。この画像処理には、様々な技術が適用可能である。本実施形態では、画像処理の一部において、X線画像40に写るマーカMを特定範囲45の各画素の濃淡値に基づいて検出する処理を行っている。例えば、特定範囲45において円形の像があり、その像が周囲より暗い部分には、球状のマーカMが写っていると推定される。
【0063】
なお、本実施形態では、マーカMなどのX線を透過し難い部分がX線画像40上で暗く写るものとして説明する。さらに、X線画像において、明るい部分の画素の濃淡値が大きく、暗い部分の画素の濃淡値が小さくなる。また、X線画像40は、白黒反転させることが可能である。白黒反転した場合には、X線を透過し難い部分がX線画像40上で明るく写る場合もあり、以下の説明で述べる「明るい」と「暗い」の文言、および濃淡値の大小は、X線画像40の白黒反転に応じて任意に変更可能である。
【0064】
また、X線画像40には、患者Pの内臓などの様々な像が写るのでマーカMを誤検出してしまう場合がある。このような追跡の失敗が発生した状態で、放射線照射を行ってしまうと、患者Pの適切な位置に放射線照射を行うことができないおそれがある。
【0065】
そこで、本実施形態の評価部38は、特定範囲45の各画素の濃淡値の評価を、予め設定された閾値に基づいて行う。マーカMは、体組織よりもX線を通し難いので、マーカMの像の濃淡値は、周辺の生体組織の像またはノイズにより生じる像と比較して大きく異なる値となる。そこで閾値としては、例えば、マーカMとしてあり得る濃淡値の中で比較的明るいことを表す値が事前に設定される。そして、評価部38は、X線画像40においてマーカMとして検出した位置の濃淡値が閾値に対して大きいか小さいかを評価する。閾値に対して大きかった場合は、マーカMとしては明る過ぎるため、マーカMが写っていない位置を誤ってマーカMとして検出した可能性が高い。
【0066】
そして、評価部38が評価した大小関係に応じて、警告出力部39が、警告信号を照射制御部12に出力する。警告信号は、検出位置の濃淡値が閾値に対して大きかった場合にのみ出力すれば良い。なお、動体追跡装置4は、警告信号の出力とともに、表示または音声により警告の報知を行っても良い。報知を行うことで、ユーザがその危険に気づき、治療を素早く中断できるようになる。さらに、警告の履歴を記憶しても良い。
【0067】
このようにすれば、マーカMの検出が失敗した可能性がある場合、つまり、患者Pの適切な位置に放射線照射を行うことができない可能性がある場合に、その警告を行うことができる。なお、照射制御部12は、前述の照射タイミング信号が入力されたときに、警告信号が入力されると、放射線照射装置5を用いた放射線Rの照射を行わないように制御する。
【0068】
つまり、本発明の動体追跡装置4は、X線画像40にマーカMが写る範囲を示す特定範囲45を、特定設定情報を用いて設定する範囲設定部32と、特定範囲45においてマーカMとして検出された位置の濃淡値が予め定められた閾値に対する大小関係を評価する評価部38と、を備え、警告出力部39は、閾値に対して検出位置の濃淡値が大きい場合に警告信号を出力する。このようにすれば、マーカMの検出が失敗した可能性の有無を予め定められた閾値に基づいて定量的に評価することができる。
【0069】
なお、本実施形態では、警告信号を照射制御部12に出力するが、この警告信号を動体追跡装置4の外部に出力しなくても良い。例えば、警告信号が照射信号出力部37に入力されるようにしても良い。そして、警告信号の入力がある場合は、照射信号出力部37から照射タイミング信号を出力しないようにしても良い。
【0070】
本実施形態の放射線照射装置5は、動体追跡装置4を用いて追跡されるマーカMが特定位置41に存在するときに患部Tに放射線Rを照射する。このようにマーカMを追跡することで、患部Tの動きを把握することができ、患部Tが適切な位置にあるときに放射線Rを照射することができる。
【0071】
次に、医用画像処理装置3が実行する特定設定情報生成処理(医用画像処理方法)について
図9から
図10を用いて説明する。なお、フローチャートの各ステップの説明にて、例えば「ステップS11」と記載する箇所を「S11」と略記する。また、以下に説明する画像処理は、動画の処理を含むが、理解を助けるために、静止画の処理を例示して説明する。
【0072】
まず、治療計画を立てる際に、マーカMが留置された患者Pを医用検査装置2で検査することで3次元ボリューム画像が生成される。そして、医用画像処理装置3において、第1取得部15は、医用検査装置2から3次元ボリューム画像を取得する(S11:第1取得ステップ)。次に、第2取得部17は、X線撮影装置7のX線照射部9およびX線検出部10のジオメトリ情報を取得する(S12:第2取得ステップ)。
【0073】
次に、位置情報取得部19は、3次元ボリューム画像を構成する各ボクセルの値に基づいて、患者Pの体内に留置されたマーカMの3次元的な位置情報を取得する(S13)。次に、DRR画像生成部20は、患者Pの3次元ボリューム画像とX線撮影装置7のジオメトリ情報とに基づいて、DRR画像46を生成する(S14)。
【0074】
次に、特定生成部22は、3次元ボリューム画像を構成する各ボクセルの値、および/または、DRR画像46のマーカMの像のコントラストの評価を行う(S15)。
【0075】
次に、特定生成部22は、その評価結果に応じて、マーカM1~M3のうち、X線画像40において高いコントラストで写るものを動体追跡装置4で行われる画像処理の対象として設定する(S16)。次に、特定生成部22は、X線画像40およびDRR画像46の特定範囲45(
図5参照)の設定を行う(S17)。次に、特定生成部22は、患者Pの呼吸に応じて特定範囲45が変更される場合(
図7および
図8参照)に、その特定範囲45の変更の設定を行う(S18)。
【0076】
次に、特定生成部22は、X線画像40およびDRR画像46の特定位置41の設定を行う(S19)。次に、特定生成部22は、各種設定を含む特定設定情報を生成する(S20:特定生成ステップ)。次に、DRR画像表示部21は、DRR画像46と特定範囲45の範囲表示52とを表示する(S21)。なお、追跡の対象となるマーカMの候補が複数個ある場合は、それぞれのマーカMに対応する範囲表示52を表示する。
【0077】
次に、選択受付部24は、治療計画時に、ユーザによるマーカMの選択指示を受け付ける(S22)。次に、範囲受付部26は、ユーザによる特定範囲45または特定位置41の変更指示を受け付ける(S23)。次に、マーカ設定部25は、受け付けた選択指示を特定生成部22に送り、特定設定情報の生成に反映させる。さらに、範囲変更部27は、受け付けた変更指示に基づいて、特定設定情報記憶部23の特定設定情報を変更する(S24)。
【0078】
次に、リハーサル画像取得部28は、治療前のリハーサル時にX線撮影装置7(動体追跡装置4)を用いて撮影した患者PのX線画像40を取得する(S25)。次に、リハーサル画像表示部29は、X線画像40と特定範囲45の範囲表示52とを表示する(S26)。なお、追跡の対象となるマーカMの候補が複数個ある場合は、それぞれのマーカMに対応する範囲表示52を表示する。
【0079】
次に、選択受付部24は、治療前のリハーサル時に、ユーザによるマーカMの選択指示を受け付ける(S27)。次に、範囲受付部26は、ユーザによる特定範囲45または特定位置41の変更指示を受け付ける(S28)。次に、マーカ設定部25は、受け付けた選択指示を特定生成部22に送り、特定設定情報の生成に反映させる。さらに、範囲変更部27は、受け付けた変更指示に基づいて、特定設定情報記憶部23の特定設定情報を変更する(S29)。
【0080】
次に、医用画像処理装置3は、生成した特定設定情報を動体追跡装置4に出力する(S30)。なお、特定設定情報の出力は、ネットワークを介して動体追跡装置4に出力するものでも良いし、特定設定情報を記憶媒体に出力した後に、動体追跡装置4に入力するものでも良い。医用画像処理装置3と動体追跡装置4が一体となって同一のパソコンなどで構成されていることもあり得る。そして、医用画像処理装置3は、特定設定情報生成処理を終了する。
【0081】
次に、動体追跡装置4が実行するマーカ追跡処理(医用画像処理方法)について
図11から
図12を用いて説明する。
【0082】
まず、動体追跡装置4において、設定情報取得部30は、特定設定情報を医用画像処理装置3から取得する(S31)。次に、放射線治療が開始され、X線撮影装置7は、患者PのX線画像40を撮影する。そして、X線画像取得部31がX線撮影装置7からX線画像40を取得する(S32)。次に、追跡部35および範囲設定部32は、患者PのX線画像40の撮影時刻に対応する呼吸情報を呼吸監視装置8から取得する(S33)。
【0083】
次に、範囲設定部32は、特定設定情報に基づいて、X線画像40における特定範囲45の設定を行う。ここで、患者Pの呼吸に応じて特定範囲45が変更される場合(
図7および
図8参照)に、呼吸監視装置8から入力される呼吸情報に基づいて、患者Pの呼吸に対応する特定範囲45を設定する(S34)。
【0084】
次に、X線画像表示部33は、X線画像40と特定範囲45の範囲表示52とを表示する(S35)。次に、追跡部35は、X線画像40内の特定範囲45の中から、マーカMの位置を検出する(S36)。次に、評価部38は、マーカMが検出された位置の濃淡値と閾値との大小関係を評価する処理を開始する(S37)。つまり、評価部38は、特定範囲45の各画素の濃淡値を検出する処理を開始する。
【0085】
次に、評価部38は、マーカMが検出された位置の濃淡値が閾値より大きいか否かを判定する(S38)。ここで、マーカMが検出された位置の濃淡値が閾値より大きい場合(マーカMが検出された位置が明るかった場合)、警告出力部39が、警告信号を照射制御部12に出力し(S39)、S40に進む。一方、マーカMが検出された位置の濃淡値が閾値より小さい場合(マーカMが検出された位置が暗かった場合)、警告信号を出力せずに、S40に進む。
【0086】
S40にて照射判定部36は、マーカMが検出された位置が特定位置41(
図5参照)に含まれるか否かを判定する。ここで、マーカMが検出された位置が特定位置41に含まれる場合、照射信号出力部37が、照射タイミング信号を照射制御部12に出力し(S41)、S42に進む。一方、マーカMが検出された位置が特定位置41に含まれない場合、照射タイミング信号を出力せずに、S42に進む。
【0087】
S42にて照射制御部12は、照射タイミング信号が入力され、かつ、警告信号が入力されていない場合、放射線照射装置5を用いた放射線Rの照射を行うように制御する。それ以外の場合、放射線Rの照射を行わないように制御する。その後、S43に進む。
【0088】
S43にて動体追跡装置4は、放射線治療が終了したか否かを判定する。なお、放射線治療の終了条件は、治療計画で予め決められている。ここで、放射線治療が終了していない場合は、前述のS32に戻る。一方、放射線治療が終了した場合は、マーカ追跡処理を終了する。
【0089】
なお、本発明のマーカが写る画像の撮影または画像処理の設定には、透視画像の撮影の設定と、デジタル再構成画像の生成(仮想空間内における撮影)の設定と、透視画像の画像処理の設定と、デジタル再構成画像の画像処理の設定とが含まれる。
【0090】
(第2実施形態)
次に、第2実施形態の動体追跡装置(医用画像処理装置)について
図13から
図15を用いて説明する。なお、前述した実施形態に示される構成部分と同一構成部分については同一符号を付して重複する説明を省略する。なお、第2実施形態では、動体追跡装置と医用画像処理装置とが一体的に構成されている。
【0091】
図13に示すように、第2実施形態の動体追跡装置4Aは、特定設定情報を生成する特定設定情報生成装置53と、インターロック装置54とを備える。本実施形態におけるインターロックとは、正常状態を特定し、それ以外の異常状態での放射線照射を禁止することである。なお、第2実施形態では、特定設定情報生成装置53で生成された特定設定情報に基づいて、X線画像40(
図5参照)の撮影およびマーカMの追跡が行われる。また、その他の構成は、第1実施形態の動体追跡装置4(
図3参照)とほぼ同一構成である。なお、
図13では、評価部38および警告出力部39を省略して図示しているが、これらの構成が設けられていても良い。さらに、第2実施形態における特定設定情報生成装置53の構成は、第1実施形態における医用画像処理装置3と同様の構成とすることができる。
【0092】
第2実施形態の動体追跡装置4Aが備えるインターロック装置54は、状態が正常でないときに、放射線照射装置5が放射線Rの照射を行ってしまうことを防止するための安全装置である。
【0093】
例えば、放射線照射に適したタイミングが、患者Pが息を吐き切ったタイミングであるとする。この場合に状態が正常でないとは、例えば、患者が咳またはくしゃみなどしている正常でない状態、すなわち、異常な状態がある。あるいは、マーカMの追跡に失敗した正常でない状態(異常状態)である。このような異常状態で放射線照射をしてしまうと、放射線Rが患部Tから外れた位置に当たってしまうおそれがある。
【0094】
そこで、インターロック装置54は、X線画像40を用いて正常な状態かを判定する。そして、正常だと判断した場合には、放射線の照射を禁止しない。正常でないと判定した場合には、放射線照射を禁止する制御を行う。なお、判定には、X線画像40の全体を利用しても良いし、特定位置41(
図5参照)の部分画像、その周辺の部分画像、患部Tの近傍の部分画像などを利用しても良い。
【0095】
このインターロック装置54は、治療前のリハーサル時に撮影された患者P(被検体)のX線画像40(透視画像)である第1画像を取得する第1画像取得部55と、リハーサル時に呼吸監視装置8を用いて取得された患者Pの呼吸情報(動作情報)を取得する動作情報取得部56と、放射線照射に適したタイミングを呼吸情報に基づいて特定し、この特定されたタイミング(時刻)に撮影された第1画像を取得する特定部57と、この第1画像の特徴量を取得し、正常な状態を表す特徴量の範囲である正常範囲を計算する特徴量取得部58と、計算された正常範囲を表すパラメータを記憶する正常範囲記憶部59と、第1画像取得時とは別の時刻(例えば放射線治療中)に撮影される患者PのX線画像40である第2画像を取得する第2画像取得部60と、第2画像から特徴量を取得して、その特徴量が正常範囲に含まれるか否かを正常範囲記憶部59から読み出したパラメータが表す正常範囲を用いて判定する画像判定部61と、判定の結果から、正常な状態であるか否かを表す判定信号を出力する判定信号出力部62とを備える。
【0096】
ここで、正常範囲を表すパラメータは、例えば、識別器のパラメータである。識別器としては、例えば、1クラスサポートベクターマシーン、2クラスサポートベクターマシーン、ニューラルネットワーク、ディープニューラルネットワーク、決定木などを利用できる。他の識別器を利用しても構わない。判定は識別器でなされる。識別器のパラメータは、正常な状態を表す特徴量を用いて、機械学習によって学習できる。
【0097】
なお、リハーサル時に時系列に沿って連続して撮影された複数のX線画像40(第1画像)は、時系列に沿って連続して撮影されるので、この複数のX線画像40により動画像を生成することができる。また、動作情報取得部56が取得する呼吸情報(動作情報)は、放射線照射の対象となる患部T(ターゲット部)の動きと相関のある情報となっている。さらに、呼吸情報は、X線画像40の撮影時刻に対応付けて取得される。
【0098】
本実施形態では、呼吸監視装置8が取得した患者Pの呼吸状態が息を吐いたことを表しているとき、前述の特定位置41にマーカMが在るとき、および、インターロック装置54の画像判定部61が、X線画像40が正常な状態のものだと判定したとき、の全てを満たす場合に、放射線Rを照射するようにしている。
【0099】
また、インターロック装置54の特徴量取得部58は、治療前のリハーサル時に撮影されたX線画像40(第1画像)の特徴量を取得する。特徴量としては、例えば画素値を並べたベクトルが利用される。なお、学習に用いられるX線画像40は、例えば、数呼吸分の画像である。患者が咳またはくしゃみをしていない状態を正常な状態と定義しているため、これらの画像のうちから患者Pが咳またはくしゃみをしていないときの画像を選択して学習に用いる。正常な状態の画像を正常画像(特定画像)と呼ぶ。さらに、X線画像40は、1方向から撮影した画像であっても、複数方向から撮影した画像であっても良い。特徴量は、複数方向のX線画像40(第1画像)の画素値を並べたベクトルであっても良い。なお、画像の選択は、ユーザが行っても良いし、インターロック装置54が呼吸情報に応じて自動的に行うものであっても良い。
【0100】
なお、正常な状態の定義を変更する場合、学習に用いる正常画像も変える。例えば、特定位置41にマーカMが写っている状態を正常と定義する場合、その状態のX線画像40(第1画像)を学習に用いる正常画像とすれば良い。この正常状態の定義において、インターロック装置54に動作情報取得部56は必要ない。正常範囲は、例えば、特徴空間において正常状態の特徴量を包含する超球である。超球のサイズが大きいほど、異常状態の検知感度が下がる。正常状態の特徴量であるベクトルをすべて含むという条件の下に、できるだけ半径を小さくする最適化方法として1クラスサポートベクターマシーンが知られている。この1クラスサポートベクターマシーンを用いて超球を自動で設定できる。ベクトルの次元は、主成分分析で圧縮しても良い。X線画像40(第1画像)のうち、正常でない状態のものを異常画像(非特定画像)とし、正常画像と異常画像から、任意の教師付き学習で識別器を学習しても良い。教師付き学習の識別器としては、例えば、2クラスサポートベクターマシーン、ニューラルネットワーク、ディープニューラルネットワーク、決定木などを利用できる。
【0101】
そして、インターロック装置54は、放射線治療中に撮影されるX線画像40(第2画像)から、正常な状態か否かを判定する。具体的には、X線画像40(第2画像)から特徴量を取得して、その特徴量が正常範囲に含まれるか否かを正常範囲記憶部59から読み出したパラメータが表す識別器を用いて判定する。
【0102】
動体追跡装置4A(インターロック装置54)は、機械学習に基づく人工知能を含む。なお、正常画像のみから設定した正常範囲と、正常画像と異常画像の組から設定した正常範囲のAND領域を正常範囲として設定しても良い。
【0103】
次に、第2実施形態の動体追跡装置4Aが実行するインターロック処理(医用画像処理方法)について
図14から
図15を用いて説明する。このインターロック処理は、前述の第1実施形態のマーカ追跡処理(
図11および
図12参照)と並列に実行される。
【0104】
まず、動体追跡装置4AのX線撮影装置7を用いて患者PのX線撮影のリハーサルを開始する(S51)。次に、第1画像取得部55は、X線画像40である第1画像を取得する(S52:第1画像取得ステップ)。次に、動作情報取得部56は、患者Pの呼吸情報(動作情報)を取得する(S53:動作情報取得ステップ)。次に、特定部57は、第1画像の撮影タイミング(時刻)であって、放射線照射に適したタイミングを呼吸情報に基づいて特定する(S54:特定ステップ)。
【0105】
次に、特定部57は、特定されたタイミングに撮影された第1画像に含まれる特定位置41(
図5参照)の画像に基づいて、正常画像(特定画像)を決定する(S55)。次に、特徴量取得部58は、正常画像の特徴量を取得し、正常な状態を表す特徴量の範囲である正常範囲を表すパラメータを計算する(S56:特徴量取得ステップ)。次に、正常範囲記憶部59は、計算された正常範囲を表すパラメータを記憶する(S57)。ここで、リハーサルを終了する。
【0106】
次に、放射線照射装置5を用いた放射線治療を開始する(S58)。次に、第2画像取得部60は、X線画像40である第2画像を取得する(S59:第2画像取得ステップ)。次に、画像判定部61は、正常範囲記憶部59に記憶されたパラメータが表す正常範囲に基づいて、第2画像の判定を行う(S60)。この判定では、第2画像から特徴量を取得して、正常範囲記憶部59から読み出したパラメータが表す正常範囲に特徴量が含まれるか否かが判定される(S61:画像判定ステップ)。
【0107】
ここで、第2画像の特徴量が正常範囲に含まれた場合(正常だと判定された場合)には、判定信号出力部62が照射非禁止信号(判定信号)を照射制御部12に出力する(S62:信号出力ステップ)。一方、第2画像の特徴量が正常範囲に含まれなかった場合(正常でないと判定された場合)には、判定信号出力部62が照射禁止信号(判定信号)を照射制御部12に出力する(S63:信号出力ステップ)。
【0108】
なお、照射制御部12は、照射タイミング信号と照射非禁止信号との両方が入力されたことを条件として、放射線照射装置5を用いた放射線Rの照射を行う。また、照射制御部12は、照射タイミング信号が入力されても、照射禁止信号が入力された場合は、放射線照射装置5を用いた放射線Rの照射を行わないように制御する。
【0109】
次に、動体追跡装置4Aは、放射線治療が終了したか否かを判定する(S64)。ここで、放射線治療が終了していない場合は、前述のS59に戻る。一方、放射線治療が終了した場合は、インターロック処理を終了する。
【0110】
なお、第2実施形態では、照射非禁止信号および照射禁止信号を照射制御部12に出力する場合を例として説明したが、照射非禁止信号および照射禁止信号を動体追跡装置4Aの外部に出力しなくても良い。例えば、照射非禁止信号および照射禁止信号が照射信号出力部37に入力されるようにしても良い。そして、照射非禁止信号の入力がある場合(照射禁止信号の入力信号がない場合)は、照射信号出力部37から照射タイミング信号を出力し、照射禁止信号の入力がある場合(照射非禁止信号の入力がない場合)は、照射信号出力部37から照射タイミング信号を出力しないようにしても良い。このように、動体追跡装置4Aとして照射非禁止信号および照射禁止信号を照射信号出力部37に入力する形態のものを採用する場合、照射制御部12は、照射信号出力部37から照射タイミング信号が入力されたことを条件として、放射線照射装置5を用いた放射線Rの照射を行う。
【0111】
なお、第2実施形態では、インターロック装置54が動体追跡装置4Aと一体的に構成されているが、インターロック装置54と動体追跡装置4Aとが個別に設けられても良い。
【0112】
以上、第2実施形態の動体追跡装置(医用画像処理装置)では、撮影装置を用いて撮影された被検体の透視画像である第1画像を取得する第1画像取得部と、前記被検体における放射線照射の対象となるターゲット部の動きと相関のある動作情報を取得する動作情報取得部と、前記放射線照射に適したタイミングを前記動作情報に基づいて特定する特定部と、前記特定されたタイミングに撮影された前記第1画像の特徴量を取得して前記特徴量から前記放射線照射を禁止しない正常な状態の前記特徴量の範囲を表す正常範囲を計算する特徴量取得部と、前記撮影装置を用いて撮影された前記被検体の透視画像であって判定対象の第2画像を取得する第2画像取得部と、前記第2画像の前記特徴量が前記正常範囲に含まれるか否かを判定する画像判定部と、前記判定の結果を識別可能な判定信号を出力する信号出力部と、を備えることを特徴とする。
【0113】
また、第2実施形態の動体追跡方法(医用画像処理方法)では、撮影装置を用いて撮影された被検体の透視画像である第1画像を取得する第1画像取得ステップと、前記被検体における放射線照射の対象となるターゲット部の動きと相関のある動作情報を取得する動作情報取得ステップと、前記放射線照射に適したタイミングを前記動作情報に基づいて特定する特定ステップと、前記特定されたタイミングに撮影された前記第1画像の特徴量を取得して前記特徴量から前記放射線照射を禁止しない正常な状態の前記特徴量の範囲を表す正常範囲を計算する特徴量取得ステップと、前記撮影装置を用いて撮影された前記被検体の透視画像であって判定対象の第2画像を取得する第2画像取得ステップと、前記第2画像の前記特徴量が前記正常範囲に含まれるか否かを判定する画像判定ステップと、前記判定の結果を識別可能な判定信号を出力する信号出力ステップと、を含むことを特徴とする。
【0114】
このようにすれば、放射線治療中に撮影装置で撮影される第2画像に含まれる特定領域に対応する領域の画像を、特徴量を用いて判定することで、正常でない状態(異常状態)での放射線照射を回避できる。また、治療計画時に撮影装置で撮影された第1画像の特徴量を機械学習させることで、治療計画時の正常範囲の設定の手間を省力化することができる。
【0115】
(第3実施形態)
次に、第3実施形態の動体追跡装置(医用画像処理装置)について
図16から
図18を用いて説明する。なお、前述した実施形態に示される構成部分と同一構成部分については同一符号を付して重複する説明を省略する。なお、第3実施形態では、動体追跡装置と医用画像処理装置とが一体的に構成されている。
【0116】
図16に示すように、第3実施形態の動体追跡装置4Bは、特定設定情報を生成する特定設定情報生成装置53と、マーカ学習装置63とを備える。なお、第3実施形態では、特定設定情報生成装置53で生成された特定設定情報に基づいて、X線画像40(
図5参照)の撮影およびマーカMの追跡が行われる。また、その他の構成は、第1実施形態の動体追跡装置4(
図3参照)とほぼ同一構成である。
【0117】
なお、前述の実施形態では、球状のマーカMを例示しているが、実際の治療では、留置される体内の部位に応じて様々な形状のマーカMが用いられる。また、サイズも様々なものがある。例えば、直径0.5mm、長さ5mmの棒形状(コイル形状)のマーカM、クリップ形状のマーカM、または楔形状のマーカMなどがある。
【0118】
そして、これらの形状のマーカMをX線撮影すると、マーカMの向きまたは患者Pの姿勢などに応じてX線画像40に写るマーカMの像が異なる(
図17参照)。例えば、棒状のマーカMは、画像面に対する法線方向に平行になるように留置された場合に円形の像となり、その位置から傾くに連れて徐々に長い棒状となる。このように、追跡部35でX線画像40に写るマーカMの位置を検出するためには、予めマーカMの像を学習させておくと良い。
【0119】
マーカ学習装置63は、マーカM(学習対象物)が写っているマーカ画像64(対象物画像、
図17(A)参照)を取得するマーカ画像取得部66(対象物画像取得部)と、マーカMの像が写っていない非マーカ画像65(非対象物画像、
図17(B)参照)を取得する非マーカ画像取得部67(非対象物画像取得部)と、画像においてマーカMが写っている位置を特定するために利用する識別器のパラメータを機械学習に基づいて算出するパラメータ算出部68と、算出したパラメータを記憶するパラメータ記憶部69とを備える。
【0120】
なお、動体追跡装置4Bでは、放射線治療中にX線撮影装置7を用いて撮影した患者P(被検体)のX線画像40(透視画像)を、X線画像取得部31(透視画像取得部)が取得する。そして、このX線画像40に写るマーカMの位置を、追跡部35(位置検出部)がパラメータ記憶部69に記憶されたパラメータが表す識別器を用いて検出する。
【0121】
図17に示すように、機械学習を行うために多量のマーカ画像64および非マーカ画像65を予め用意する。ここで、マーカ画像64には、様々な向きのマーカMと、生体組織70が写っている。一方、非マーカ画像65には、マーカMが写っておらず、生体組織70のみが写っている。マーカ学習装置63は、これらのマーカ画像64と非マーカ画像65から、両者を識別する識別器を機械学習で生成する。識別器は、画像中にマーカMが写っているか否かを表す0と1の2値の尤度を出力するものでも、0から1の尤度を出力するものでも良い。
【0122】
なお、マーカ画像64は、実際に患者PのX線撮影を行って取得した画像であっても良い。また、マーカ画像64は、マーカMの仮想像をCG(Computer Graphics)により作成した画像であっても良い。さらに、マーカ画像64は、マーカMが留置された患者Pの3次元ボリューム画像とX線撮影装置7のジオメトリ情報に基づいて生成したDRR画像46であっても良い。また、マーカ画像64は、治療前のリハーサル時に撮影した患者PのX線画像40であっても良いし、それ以外に撮影された第3者のX線画像40であっても良い。第3者の3次元ボリューム画像から生成したDRR画像46であっても良い。
【0123】
また、パラメータ算出部68は、機械学習によってマーカ画像64と非マーカ画像65とを識別する識別器を作成する。そして、作成した識別器を表すパラメータ群をマーカ検出用のパラメータとしてパラメータ記憶部69に記憶させる。
【0124】
ここで、識別器は、任意の教師付き学習の識別器を利用できる。例えば、識別器として、サポートベクターマシーン、ニューラルネットワーク、決定木などを利用できる。ニューラルネットワークとしては、ディープニューラルネットワークを利用しても良い。ディープニューラルネットワークとしては、畳み込みニューラルネットワークを利用しても良い。つまり、動体追跡装置4Bは、機械学習に基づく人工知能を含む。
【0125】
なお、追跡部35は、パラメータ記憶部69に記憶されたパラメータを取得し、かつX線画像取得部31からX線画像40を取得する。そして、パラメータよって定まる識別器にX線画像40を入力し、識別器から得られる尤度に基づいて、X線画像40に写るマーカMの位置を特定する。
【0126】
次に、第3実施形態の動体追跡装置4Bが実行するマーカ追跡処理(医用画像処理方法)について
図18を用いて説明する。なお、第1実施形態のマーカ追跡処理と重複するステップを一部省略する。
【0127】
まず、放射線治療開始前において、マーカ画像取得部66は、マーカMの像が写っているマーカ画像64(
図17(A)参照)を取得する(S71:マーカ画像取得ステップ)。次に、非マーカ画像取得部67は、マーカMの像が写っていない非マーカ画像65(
図17(B)参照)を取得する(S72:非マーカ画像取得ステップ)。
【0128】
次に、パラメータ算出部68は、画像におけるマーカMの位置を特定するのに利用する識別器のパラメータを機械学習で算出する(S73:パラメータ算出ステップ)。次に、パラメータ記憶部69は、算出されたパラメータを記憶する(S74)。
【0129】
次に、放射線照射装置5を用いた放射線治療を開始する(S75)。次に、X線撮影装置7は、患者PのX線画像40を撮影する。そして、X線画像取得部31がX線撮影装置7からX線画像40を取得する(S76:透視画像取得ステップ)。次に、追跡部35は、X線画像40に写るマーカMの位置をパラメータ記憶部69に記憶されたパラメータから定まる識別器を用いて検出する(S77:位置検出ステップ)。
【0130】
次に、追跡部35は、検出されたマーカMが特定位置41(
図5参照)にあるか否かを判定する(S78)。ここで、マーカMが特定位置41にない場合は、後述のS80に進む。一方、マーカMが特定位置41にある場合は、照射信号出力部37が照射タイミング信号を照射制御部12に出力し(S79)、その後、S80に進む。
【0131】
S80にて動体追跡装置4Bは、放射線治療が終了したか否かを判定する。ここで、放射線治療が終了していない場合は、前述のS76に戻る。一方、放射線治療が終了した場合は、マーカ追跡処理を終了する。
【0132】
なお、第3実施形態では、マーカ学習装置63が動体追跡装置4Bと一体的に構成されているが、マーカ学習装置63と動体追跡装置4Bとが個別に設けられても良い。第3実施形態では、画像中にマーカMが写っているか否かを表す尤度を出力する識別器を学習するために、マーカMが写っている画像(マーカ画像64)と写っていない画像(非マーカ画像65)を学習時の教師データとして利用する例を示したが、識別器で何を識別するかに応じて教師データを変更して構わない。例えば、画像の中心付近にマーカMが写っているか否かを表す尤度を出力する識別器を生成する場合、マーカMが画像の中心付近に写っている画像をマーカ画像64として準備し、それ以外の画像を非マーカ画像65として準備しても良い。この場合の非マーカ画像65には、マーカMが写っていないものもあれば、マーカMが画像の端に写っているものもある。
【0133】
なお、第3実施形態では、放射線治療向けのマーカM(学習対象物)を追跡するために、マーカMが写っている画像を学習するようにしているが、その他の実施態様に適用しても良い。例えば、カテーテル治療におけるガイドワイヤ(学習対象物)を追跡するために、ガイドワイヤが写っている画像を学習することにも応用できる。
【0134】
なお、カテーテルは、医療用に用いられる器具で、中空の管である。また、カテーテル治療では、カテーテルを患者の体内(血管内、臓器内など)に挿入し、体液を排出したり、血管拡張用のステントバルーンを送り込んだりする。また、カテーテルの操作では、ガイドワイヤが利用される。
【0135】
例えば、ガイドワイヤを先行して体内に挿入し、このガイドワイヤに導かれてカテーテルが進行される。ここで、患者のX線画像を撮影し、そのガイドワイヤの位置を医師が確認しながら、カテーテルを進行させる。なお、ガイドワイヤは、金属で構成されるので、第3実施形態のマーカMと同様に、X線画像において体組織よりも明瞭に写る。そして、ワイヤ形状であるため、その先端部分の像は、棒形状のマーカMの像と類似する。そのため、第3実施形態と同様に、ガイドワイヤの像を識別器に機械学習させることで、X線画像中のガイドワイヤの先端の位置を自動で追跡できる。
【0136】
以上、第3実施形態の動体追跡装置(医用画像処理装置)では、対象物の像または仮想像が写っている対象物画像を取得する対象物画像取得部と、前記対象物画像を用いて、画像に前記対象物が写っている位置を特定するために利用するパラメータを機械学習に基づいて算出するパラメータ算出部と、前記対象物が設けられた被検体を撮影装置で撮影した透視画像を取得する透視画像取得部と、前記透視画像に写る前記対象物の位置を前記パラメータに基づいて検出する位置検出部と、を備えることを特徴とする。
【0137】
また、第3実施形態の動体追跡方法(医用画像処理方法)では、対象物の像または仮想像が写っている対象物画像を取得する対象物画像取得ステップと、前記対象物画像を用いて、画像に前記対象物が写っている位置を特定するために利用するパラメータを機械学習に基づいて算出するパラメータ算出ステップと、前記対象物が設けられた被検体を撮影装置で撮影した透視画像を取得する透視画像取得ステップと、前記透視画像に写る前記対象物の位置を前記パラメータに基づいて検出する位置検出ステップと、を含むことを特徴とする。
【0138】
例えば、従来技術の医用画像処理装置にあっては、マーカを様々な角度から見たときのテンプレート画像を大量に登録しておき、これらのテンプレート画像と放射線治療中に撮影される透視画像とを比較しなければならず、その画像処理の負荷が増大してしまうという課題があるが、第3実施形態ではこのような課題を解決することができる。また、機械学習を利用することで、放射線治療前の設定の手間が省力化される。
【0139】
本実施形態に係る医用画像処理装置を第1実施形態から第3実施形態に基づいて説明したが、いずれか1の実施形態において適用された構成を他の実施形態に適用しても良いし、各実施形態において適用された構成を組み合わせても良い。例えば、第2実施形態のインターロック処理または第3実施形態のマーカ追跡処理の少なくとも一部を、第1実施形態の医用画像処理装置または動体追跡装置で実行しても良い。
【0140】
なお、医用画像処理装置3および動体追跡装置4は、専用のチップ、FPGA(Field Programmable Gate Array)、GPU(Graphics Processing Unit)、またはCPU(Central Processing Unit)などのプロセッサを高集積化させた制御装置と、ROM(Read Only Memory)やRAM(Random Access Memory)などの記憶装置と、HDD(Hard Disk Drive)やSSD(Solid State Drive)などの外部記憶装置と、ディスプレイなどの表示装置と、マウスやキーボードなどの入力装置と、通信I/Fとを、備えており、通常のコンピュータを利用したハードウエア構成で実現できる。
【0141】
なお、医用画像処理装置3および動体追跡装置4で実行されるプログラムは、ROMなどに予め組み込んで提供される。もしくは、このプログラムは、インストール可能な形式または実行可能な形式のファイルでCD-ROM、CD-R、メモリカード、DVD、フレキシブルディスク(FD)などのコンピュータで読み取り可能な記憶媒体に記憶されて提供するようにしても良い。
【0142】
また、医用画像処理装置3および動体追跡装置4で実行されるプログラムは、インターネットなどのネットワークに接続されたコンピュータ上に格納し、ネットワーク経由でダウンロードさせて提供するようにしても良い。また、医用画像処理装置3および動体追跡装置4は、構成要素の各機能を独立して発揮する別々のモジュールを、ネットワークまたは専用線で相互に接続し、組み合わせて構成することもできる。
【0143】
なお、本実施形態では、被検体として人間である患者Pを例示しているが、犬、猫などの動物を被検体とし、これらの動物に放射線治療を行う際に、医用画像処理装置3を用いても良い。
【0144】
なお、本実施形態では、呼吸センサ11を用いて患者Pの呼吸を監視しているが、その他の態様で患者Pの呼吸を監視しても良い。例えば、患者Pの体表面に赤外線を反射する反射マーカを取り付け、この反射マーカに赤外線レーザを照射し、その反射波を取得することにより、患者Pの呼吸を監視しても良い。
【0145】
なお、本実施形態では、リハーサル時に撮影した患者PのX線画像40を医用画像処理装置3で表示し、マーカMの選択、特定範囲45の変更、または特定位置41の変更をユーザが行うようにしているが、リハーサル時に動体追跡装置4において、マーカMの選択、特定範囲45の変更、または特定位置41の変更をユーザが行うようにしても良い。
【0146】
なお、本実施形態では、複数個のマーカMを患者Pの体内に留置し、これらのマーカMをX線撮影により追跡しているが、1個のマーカMを患者Pの体内に留置し、このマーカMをX線撮影により追跡するものでも良い。
【0147】
なお、本実施形態では、2組のX線照射部9およびX線検出部10が設けられているが、1組のX線照射部9およびX線検出部10によりマーカMを追跡しても良い。さらに、3組以上のX線照射部9およびX線検出部10を用いて3方向以上からX線画像を取得し、この画像を用いてマーカMを追跡しても良い。
【0148】
なお、本実施形態では、DRR画像46を生成してマーカMが写る位置を特定することで、特定設定情報を生成しているが、DRR画像46を生成せずに特定設定情報を生成しても良い。特定設定情報の生成に必要な情報は、マーカMの位置であるので、3次元ボリューム画像とジオメトリ情報とが取得できれば、特定設定情報を生成することができる。
【0149】
なお、本実施形態の医用画像処理装置3または動体追跡装置4では、X線画像40またはDRR画像46などを表示する表示部(モニタ)を備えているが、表示部の構成を省略しても良く、特定設定情報を生成してその出力を行う医用画像処理装置3として構成しても良い。
【0150】
なお、本実施形態の各フローチャートにおいて、各ステップが直列に実行される形態を例示しているが、必ずしも各ステップの前後関係が固定されるものでなくても良い。例えば、一部のステップが他のステップと並列に実行されても良い。
【0151】
以上説明した実施形態によれば、3次元ボリューム画像およびジオメトリ情報に基づいて、マーカが写る画像の撮影または画像処理の設定に用いる特定設定情報を生成する特定生成部を備えることにより、マーカが写る画像の撮影または画像処理の設定に関するユーザの手間を省力化することができる。
【0152】
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更、組み合わせを行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
【符号の説明】
【0153】
1…放射線治療システム、2…医用検査装置、3…医用画像処理装置、4(4A,4B)…動体追跡装置、5…放射線照射装置、6…ベッド、7…X線撮影装置、8…呼吸監視装置、9…X線照射部、10…X線検出部、11…呼吸センサ、12…照射制御部、13…投影データ撮影部、14…3次元ボリューム画像生成部、15…第1取得部、16…3次元ボリューム画像記憶部、17…第2取得部、18…ジオメトリ情報記憶部、19…位置情報取得部、20…DRR画像生成部、21…DRR画像表示部、22…特定生成部、23…特定設定情報記憶部、24…選択受付部、25…マーカ設定部、26…範囲受付部、27…範囲変更部、28…リハーサル画像取得部、29…リハーサル画像表示部、30…設定情報取得部、31…X線画像取得部、32…範囲設定部、33…X線画像表示部、35…追跡部、36…照射判定部、37…照射信号出力部、38…評価部、39…警告出力部、40…X線画像、41…特定位置、42…軌跡、43…息を吐いたときの終点位置、44…息を吸ったときの終点位置、45…特定範囲、46…DRR画像、47…骨、48…内臓、49…像、52…範囲表示、53…特定設定情報生成装置、54…インターロック装置、55…第1画像取得部、56…動作情報取得部、57…特定部、58…特徴量取得部、59…正常範囲記憶部、60…第2画像取得部、61…画像判定部、62…判定信号出力部、63…マーカ学習装置、64…マーカ画像、65…非マーカ画像、66…マーカ画像取得部、67…非マーカ画像取得部、68…パラメータ算出部、69…パラメータ記憶部、70…生体組織。