IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ベロダイン ライダー, インク.の特許一覧

特許7183046可変照射強度を有するLIDARに基づく三次元撮像
<>
  • 特許-可変照射強度を有するLIDARに基づく三次元撮像 図1
  • 特許-可変照射強度を有するLIDARに基づく三次元撮像 図2
  • 特許-可変照射強度を有するLIDARに基づく三次元撮像 図3
  • 特許-可変照射強度を有するLIDARに基づく三次元撮像 図4
  • 特許-可変照射強度を有するLIDARに基づく三次元撮像 図5
  • 特許-可変照射強度を有するLIDARに基づく三次元撮像 図6
  • 特許-可変照射強度を有するLIDARに基づく三次元撮像 図7
  • 特許-可変照射強度を有するLIDARに基づく三次元撮像 図8
  • 特許-可変照射強度を有するLIDARに基づく三次元撮像 図9
  • 特許-可変照射強度を有するLIDARに基づく三次元撮像 図10
  • 特許-可変照射強度を有するLIDARに基づく三次元撮像 図11
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-11-25
(45)【発行日】2022-12-05
(54)【発明の名称】可変照射強度を有するLIDARに基づく三次元撮像
(51)【国際特許分類】
   G01S 7/484 20060101AFI20221128BHJP
   G01C 3/06 20060101ALI20221128BHJP
   G01S 17/42 20060101ALI20221128BHJP
   G01S 17/89 20200101ALI20221128BHJP
【FI】
G01S7/484
G01C3/06 120Q
G01S17/42
G01S17/89
【請求項の数】 20
(21)【出願番号】P 2018549917
(86)(22)【出願日】2017-03-20
(65)【公表番号】
(43)【公表日】2019-05-16
(86)【国際出願番号】 US2017023262
(87)【国際公開番号】W WO2017165319
(87)【国際公開日】2017-09-28
【審査請求日】2020-03-13
(31)【優先権主張番号】62/311,296
(32)【優先日】2016-03-21
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】15/464,234
(32)【優先日】2017-03-20
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】518183103
【氏名又は名称】ベロダイン ライダー ユーエスエー,インコーポレイテッド
(74)【代理人】
【識別番号】100067736
【弁理士】
【氏名又は名称】小池 晃
(74)【代理人】
【識別番号】100192212
【弁理士】
【氏名又は名称】河野 貴明
(74)【代理人】
【識別番号】100204032
【弁理士】
【氏名又は名称】村上 浩之
(74)【代理人】
【識別番号】100200001
【弁理士】
【氏名又は名称】北原 明彦
(72)【発明者】
【氏名】ホール,デイビッド エス.
(72)【発明者】
【氏名】ケルステンス,ピーター ジェイ.
(72)【発明者】
【氏名】キュイ,ユペン
(72)【発明者】
【氏名】レコー,マシュー ノエル
(72)【発明者】
【氏名】ネスティンガー,スティーブン エス.
【審査官】安井 英己
(56)【参考文献】
【文献】特開平11-094945(JP,A)
【文献】特開2006-322849(JP,A)
【文献】特開2006-308482(JP,A)
【文献】特開2006-021720(JP,A)
【文献】特開2002-333476(JP,A)
【文献】米国特許第06288383(US,B1)
【文献】米国特許第06137566(US,A)
【文献】特開2012-159330(JP,A)
【文献】特開2008-020370(JP,A)
【文献】特開2012-093195(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01S 7/48- 7/51,
G01S 17/00-17/95,
G01C 3/06
(57)【特許請求の範囲】
【請求項1】
光検出及び測距(LIDAR)装置であって、前記LIDAR装置は、
前記LIDAR装置から三次元環境内にパルス強度の第1の繰返しパターンを有する照射光の一連のパルスを出射動作可能なパルス照射源であって、前記第1の繰返しパターンの照射光の1つ以上のパルスが前記第1の繰返しパターンの照射光の他のパルスとは異なる照射強度を有する前記パルス照射源と、
前記照射光の一連のパルスのそれぞれにより照射された前記三次元環境から反射された光の量を検出動作可能で、そして、前記照射光の一連のパルスのそれぞれに関連する光の検出量を示す出力信号を発生するように構成された感光検出器と、
計算システムと、
を有し、
前記計算システムは、前記光の検出量を示す前記出力信号を受信し、前記LIDAR装置からパルスが出射された時間、及び、照射光の前記パルスにより照射された前記三次元環境内の物体から反射された光の量を感光検出器が検出した時間の間の差に基づいて、前記LIDAR装置及び前記三次元環境内の前記物体の間の距離を測定し、そして、少なくとも前記三次元環境内で検出された前記物体の有無に基づいて、前記パルス照射源が前記照射光の一連のパルスを前記第1の繰返しパターンとはパルス強度の異なるパターンを有する第2の繰返しパターンに変更することを引き起こす指令信号を発生するように構成される、ことを特徴とするLIDAR装置。
【請求項2】
前記照射光の一連のパルスのパルス強度の異なるパターンへの変更は疑似ランダムであることを特徴とする請求項1に記載のLIDAR装置。
【請求項3】
前記第2の繰返しパターンの前記照射光の一連のパルスの1つ以上がゼロ値を有することを特徴とする請求項1に記載のLIDAR装置。
【請求項4】
前記パルス照射源及び前記感光検出器は、前記LIDAR装置の基部フレームに対して回転する前記LIDAR装置の回転フレームに取り付けられ、
前記LIDAR装置がさらに、
前記基部フレームに対する前記回転フレームの配向を検出するように構成された配向センサを有し、
前記配向に基づいて、前記照射光の一連のパルスをパルス強度の異なるパターンへ変更することを特徴とする請求項1に記載のLIDAR装置。
【請求項5】
前記LIDAR装置及び前記三次元環境内の物体の間の距離に基づいて、前記照射光の一連のパルスをパルス強度の異なるパターンへ変更することを特徴とする請求項1に記載のLIDAR装置。
【請求項6】
光検出及び測距(LIDAR)装置であって、前記LIDAR装置は、
前記LIDAR装置から三次元環境内にパルス強度の第1の繰返しパターンを有する照射光の一連のパルスを出射するパルス照射源であって、前記第1の繰返しパターンの照射光の1つ以上のパルスが前記第1の繰返しパターンの照射光の他のパルスとは異なる照射強度を有する前記パルス照射源と、
前記照射光の一連のパルスのそれぞれにより照射された前記三次元環境から反射された光の量を検出し、そして、前記照射光の一連のパルスのそれぞれに関連する光の検出量を示す出力信号を発生する感光検出器と、
計算システムと、
を有し、
前記計算システムは、前記光の検出量を示す前記出力信号を受信し、前記LIDAR装置からパルスが出射された時間、及び、照射光の前記パルスにより照射された前記三次元環境内の物体から反射された光の量を感光検出器が検出した時間の間の差に基づいて、前記LIDAR装置及び前記三次元環境内の前記物体の間の距離を測定し、そして、前記パルス照射源が前記照射光の一連のパルスを前記第1の繰返しパターンとはパルス強度の異なるパターンを有する第2の繰返しパターンに変更することを引き起こす指令信号を発生するように構成され、
前記LIDAR装置及び前記三次元環境内の物体の間の距離に基づいて、前記照射光の一連のパルスをパルス強度の異なるパターンへ変更し、
前記照射光の一連のパルスのパルス強度の異なるパターンへの変更は、前記LIDAR装置及び前記三次元環境内の物体の間の距離が所定の閾値よりも短い場合、一定期間の間、パルスの平均強度を減少することを伴うことを特徴とするLIDAR装置。
【請求項7】
光検出及び測距(LIDAR)装置であって、前記LIDAR装置は、
前記LIDAR装置から三次元環境内にパルス強度の第1の繰返しパターンを有する照射光の一連のパルスを出射するパルス照射源であって、前記第1の繰返しパターンの照射光の1つ以上のパルスが前記第1の繰返しパターンの照射光の他のパルスとは異なる照射強度を有する前記パルス照射源と、
前記照射光の一連のパルスのそれぞれにより照射された前記三次元環境から反射された光の量を検出し、そして、前記照射光の一連のパルスのそれぞれに関連する光の検出量を示す出力信号を発生する感光検出器と、
計算システムと、
を有し、
前記計算システムは、前記光の検出量を示す前記出力信号を受信し、前記LIDAR装置からパルスが出射された時間、及び、照射光の前記パルスにより照射された前記三次元環境内の物体から反射された光の量を感光検出器が検出した時間の間の差に基づいて、前記LIDAR装置及び前記三次元環境内の前記物体の間の距離を測定し、そして、前記パルス照射源が前記照射光の一連のパルスを前記第1の繰返しパターンとはパルス強度の異なるパターンを有する第2の繰返しパターンに変更することを引き起こす指令信号を発生するように構成され、
前記LIDAR装置及び前記三次元環境内の物体の間の距離に基づいて、前記照射光の一連のパルスをパルス強度の異なるパターンへ変更し、

前記照射光の一連のパルスのパルス強度の異なるパターンへの変更は、第1の期間において前記出力信号がわずかな値であった場合、一定期間の間、パルスの平均強度を減少することを伴うことを特徴とするLIDAR装置。
【請求項8】
前記照射光の一連のパルスのパルス強度の異なるパターンへの変更は、前記第1の期間直後の第2の期間において前記出力信号が無視できない値であった場合、一定期間の間、パルスの平均強度を増加することを伴うことを特徴とする請求項7に記載のLIDAR装置。
【請求項9】
光検出及び測距(LIDAR)装置であって、前記LIDAR装置は、
前記LIDAR装置から三次元環境内にパルス強度の第1の繰返しパターンを有する照射光の一連のパルスを出射するパルス照射源であって、前記第1の繰返しパターンの照射光の1つ以上のパルスが前記第1の繰返しパターンの照射光の他のパルスとは異なる照射強度を有する前記パルス照射源と、
前記照射光の一連のパルスのそれぞれにより照射された前記三次元環境から反射された光の量を検出し、そして、前記照射光の一連のパルスのそれぞれに関連する光の検出量を示す出力信号を発生する感光検出器と、
計算システムと、
を有し、
前記計算システムは、前記光の検出量を示す前記出力信号を受信し、前記LIDAR装置からパルスが出射された時間、及び、照射光の前記パルスにより照射された前記三次元環境内の物体から反射された光の量を感光検出器が検出した時間の間の差に基づいて、前記LIDAR装置及び前記三次元環境内の前記物体の間の距離を測定し、そして、前記パルス照射源が前記照射光の一連のパルスを前記第1の繰返しパターンとはパルス強度の異なるパターンを有する第2の繰返しパターンに変更することを引き起こす指令信号を発生するように構成され、
前記LIDAR装置がさらに、前記パルス照射源の視野の少なくとも一部の画像を生成するように構成された撮像装置を有し、
前記照射光の一連のパルスのパルス強度の異なるパターンへの変更は、前記パルス照射源の視野内前記物体が検出されない場合、一定期間の間、パルスの平均強度を減少することを伴い、そして、前記照射光の一連のパルスのパルス強度の異なるパターンへの変更は、前記パルス照射源の視野内前記物体が検出された場合、一定期間の間、パルスの平均強度を増加することを伴うことを特徴とするLIDAR装置。
【請求項10】
前記撮像装置は、前記LIDAR装置と通信可能に結合しているカメラであることを特徴とする請求項9に記載のLIDAR装置。
【請求項11】
前記撮像装置は、前記LIDAR装置と通信可能に結合しており、前記撮像装置が、前記LIDAR装置により生成された複数の距離測定値に基づいて周囲の前記三次元環境の一部の前記画像を生成することを特徴とする請求項9に記載のLIDAR装置。
【請求項12】
光検出及び測距(LIDAR)装置であって、前記LIDAR装置は、
前記LIDAR装置から三次元環境内にパルス強度の第1の繰返しパターンを有する照射光の一連のパルスを出射動作可能なパルス照射源であって、前記第1の繰返しパターンの照射光の1つ以上のパルスが前記第1の繰返しパターンの照射光の他のパルスとは異なる照射強度を有する前記パルス照射源と、
前記照射光の一連のパルスのそれぞれにより照射された前記三次元環境から反射された光の量を検出動作可能で、そして、前記照射光の一連のパルスのそれぞれに関連する光の検出量を示す出力信号を発生するように構成された感光検出器と、
コンピュータ可読指令を有する非一時的コンピュータ可読媒体と、
を有し、
前記コンピュータ可読指令が計算システムにより読み込まれると、前記計算システムが、前記光の検出量を示す前記出力信号を受信し、前記LIDAR装置からパルスが出射された時間、及び、照射光の前記パルスにより照射された前記三次元環境の物体から反射された光の量を感光検出器が検出した時間の間の差に基づいて、前記LIDAR装置及び前記三次元環境内の前記物体の間の距離を測定し、そして、少なくとも前記三次元環境内で検出された前記物体の有無に基づいて、前記パルス照射源が前記照射光の一連のパルスを前記第1の繰返しパターンとはパルス強度の異なるパターンを有する第2の繰返しパターンに変更することを引き起こす指令信号を発生する、ことを引き起こすことを特徴とするLIDAR装置。
【請求項13】
前記第2の繰返しパターンの前記照射光の一連のパルスの1つ以上がゼロ値を有することを特徴とする請求項12に記載のLIDAR装置。
【請求項14】
前記パルス照射源及び前記感光検出器は、前記LIDAR装置の基部フレームに対して回転する前記LIDAR装置の回転フレームに取り付けられ、
前記LIDAR装置がさらに、
前記基部フレームに対する前記回転フレームの配向を検出するように構成された配向センサを有し、
前記配向に基づいて、前記照射光の一連のパルスをパルス強度の異なるパターンへ変更することを特徴とする請求項12に記載のLIDAR装置。
【請求項15】
前記LIDAR装置及び前記三次元環境内の物体の間の距離に基づいて、前記照射光の一連のパルスをパルス強度の異なるパターンへ変更することを特徴とする請求項12に記載のLIDAR装置。
【請求項16】
光検出及び測距(LIDAR)装置であって、前記LIDAR装置は、
前記LIDAR装置から三次元環境内にパルス強度の第1の繰返しパターンを有する照射光の一連のパルスを出射するパルス照射源であって、前記第1の繰返しパターンの照射光の1つ以上のパルスが前記第1の繰返しパターンの照射光の他のパルスとは異なる照射強度を有する前記パルス照射源と、
前記照射光の一連のパルスのそれぞれにより照射された前記三次元環境から反射された光の量を検出し、そして、前記照射光の一連のパルスのそれぞれに関連する光の検出量を示す出力信号を発生する感光検出器と、
コンピュータ可読指令を有する非一時的コンピュータ可読媒体と、
を有し、
前記コンピュータ可読指令が計算システムにより読み込まれると、前記計算システムが、前記光の検出量を示す前記出力信号を受信し、前記LIDAR装置からパルスが出射された時間、及び、照射光の前記パルスにより照射された前記三次元環境の物体から反射された光の量を感光検出器が検出した時間の間の差に基づいて、前記LIDAR装置及び前記三次元環境内の前記物体の間の距離を測定し、そして、前記パルス照射源が前記照射光の一連のパルスを前記第1の繰返しパターンとはパルス強度の異なるパターンを有する第2の繰返しパターンに変更することを引き起こす指令信号を発生する、ことを引き起こし、
前記LIDAR装置及び前記三次元環境内の物体の間の距離に基づいて、前記照射光の一連のパルスをパルス強度の異なるパターンへ変更し、
前記照射光の一連のパルスのパルス強度の異なるパターンへの変更は、前記LIDAR装置及び前記三次元環境内の物体の間の距離が所定の閾値よりも短い場合、一定期間の間、パルスの平均強度を減少することを伴うことを特徴とするLIDAR装置。
【請求項17】
光検出及び測距(LIDAR)装置であって、前記LIDAR装置は、
前記LIDAR装置から三次元環境内にパルス強度の第1の繰返しパターンを有する照射光の一連のパルスを出射するパルス照射源であって、前記第1の繰返しパターンの照射光の1つ以上のパルスが前記第1の繰返しパターンの照射光の他のパルスとは異なる照射強度を有する前記パルス照射源と、
前記照射光の一連のパルスのそれぞれにより照射された前記三次元環境から反射された光の量を検出し、そして、前記照射光の一連のパルスのそれぞれに関連する光の検出量を示す出力信号を発生する感光検出器と、
コンピュータ可読指令を有する非一時的コンピュータ可読媒体と、
を有し、
前記コンピュータ可読指令が計算システムにより読み込まれると、前記計算システムが、前記光の検出量を示す前記出力信号を受信し、前記LIDAR装置からパルスが出射された時間、及び、照射光の前記パルスにより照射された前記三次元環境の物体から反射された光の量を感光検出器が検出した時間の間の差に基づいて、前記LIDAR装置及び前記三次元環境内の前記物体の間の距離を測定し、そして、前記パルス照射源が前記照射光の一連のパルスを前記第1の繰返しパターンとはパルス強度の異なるパターンを有する第2の繰返しパターンに変更することを引き起こす指令信号を発生する、ことを引き起こし、
前記LIDAR装置がさらに、前記パルス照射源の視野の少なくとも一部の画像を生成するように構成された撮像装置を有し、
前記照射光の一連のパルスのパルス強度の異なるパターンへの変更は、前記パルス照射源の視野の前記画像内に物体が検出されない場合、一定期間の間、パルスの平均強度を減少することを伴い、そして、前記照射光の一連のパルスのパルス強度の異なるパターンへの変更は、前記パルス照射源の視野の前記画像内に物体が検出された場合、一定期間の間、パルスの平均強度を増加することを伴うことを特徴とするLIDAR装置。
【請求項18】
LIDAR装置に取り付けられたパルス照射源から三次元環境内にパルス強度の第1の繰返しパターンを有する照射光の一連のパルスを出射し、前記第1の繰返しパターンの照射光の1つ以上のパルスが前記第1の繰返しパターンの照射光の他のパルスとは異なる照射強度を有し、
前記照射光の一連のパルスのそれぞれにより照射された前記三次元環境から反射された光の量を検出し、
前記照射光の一連のパルスのそれぞれに関連する光の検出量を示す出力信号を発生し、
前記光の検出量を示す前記出力信号を受信し、
前記LIDAR装置からパルスが出射された時間、及び、照射光の前記パルスにより照射された前記三次元環境の物体から反射された光の量を感光検出器が検出した時間の間の差に基づいて、前記LIDAR装置及び前記三次元環境内の前記物体の間の距離を測定し、
少なくとも前記三次元環境内で検出された前記物体の有無に基づいて、前記パルス照射源が前記照射光の一連のパルスを前記第1の繰返しパターンとはパルス強度の異なるパターンを有する第2の繰返しパターンに変更することを引き起こす指令信号を発生する、
ことを特徴とする方法。
【請求項19】
前記LIDAR装置及び前記三次元環境内の物体の間の距離に基づいて、前記照射光の一連のパルスをパルス強度の異なるパターンへ変更することを特徴とする請求項18に記載の方法。
【請求項20】
LIDAR装置に取り付けられたパルス照射源から三次元環境内にパルス強度の第1の繰返しパターンを有する照射光の一連のパルスを出射し、前記第1の繰返しパターンの照射光の1つ以上のパルスが前記第1の繰返しパターンの照射光の他のパルスとは異なる照射強度を有し、
前記照射光の一連のパルスのそれぞれにより照射された前記三次元環境から反射された光の量を検出し、
前記照射光の一連のパルスのそれぞれに関連する光の検出量を示す出力信号を発生し、
前記光の検出量を示す前記出力信号を受信し、
前記LIDAR装置からパルスが出射された時間、及び、照射光の前記パルスにより照射された前記三次元環境の物体から反射された光の量を感光検出器が検出した時間の間の差に基づいて、前記LIDAR装置及び前記三次元環境内の前記物体の間の距離を測定し、
前記パルス照射源が前記照射光の一連のパルスを前記第1の繰返しパターンとはパルス強度の異なるパターンを有する第2の繰返しパターンに変更することを引き起こす指令信号を発生し、
撮像装置により、前記パルス照射源の視野の少なくとも一部の画像を生成することを含み、
前記照射光の一連のパルスのパルス強度の異なるパターンへの変更は、前記パルス照射源の視野内前記物体が検出されない場合、一定期間の間、パルスの平均強度を減少することを伴い、そして、前記照射光の一連のパルスのパルス強度の異なるパターンへの変更は、前記パルス照射源の視野内前記物体が検出された場合、一定期間の間、パルスの平均強度を増加することを伴うことを特徴とする方法。
【発明の詳細な説明】
【関連出願】
【0001】
本出願は、2017年3月20日に出願された、「可変照射強度を有するLIDARに基づく三次元撮像」という名称の米国特許出願15/464,234の優先権を主張するものであり、同様に、2016年3月21日に出願された、「可変照射強度を有するLIDARに基づく三次元撮像」という名称の米国仮出願62/311,296の優先権を主張するものであり、これらの出願は参照されることにより、本出願に援用される。
【技術分野】
【0002】
本発明は、光検出及び測距(light detection and ranging:LIDAR)に基づく三次元ポイントクラウド測定システムに関する。
【背景技術】
【0003】
LIDARシステムは光パルスを使用し、各光パルスの飛行時間(TOF)に基づいて物体への距離を測定するものである。LIDARシステムの光源から出射された光パルスは遠位の物体と相互作用する。光の一部が物体から反射され、LIDARシステムの検出器に戻る。光パルスの出射から戻り光パルスの検出までに経過した時間に基づいて、距離が推定される。いくつかの例においては、光パルスはレーザー発光器により発生される。光パルスはレンズ又はレンズアセンブリを通して集束される。レーザー光パルスがレーザー発光器の近くに設置された検出器に戻るまでの時間が測定される。高精度の時間測定から距離が得られる。
【0004】
いくつかのLIDARシステムは、単一のレーザー発光器/検出器並びに回転ミラーの組み合わせを使用して、平面を横切って効果的に走査する。そのようなLIDARシステムにより実施された距離測定は実際上二次元(即ち、平面状)であり、捕捉された距離点は二次元(即ち、単一面)のポイントクラウドとしてレンダリングされる。いくつかの例において、回転ミラーは非常に速い速度(例えば、数千rpm)で回転する。
【0005】
多くの動作シナリオにおいて、三次元のポイントクラウドを求められることが多い。三次元で周囲環境に問合せするいくつかの方式が採用されている。いくつかの例においては、二次元装置が、多くの場合ジンバル上で、上下及び/又は前後に作動される。このことは、センサのノッディング又はウィンキングとして当業者には知られている。したがって、単一ビームLIDARユニットを使用して、一度に一点であるにもかかわらず、三次元の距離点列全体を捕捉することができる。関連する例においては、レーザーパルスを多層に分割するためにプリズムが使用され、各層はわずかに異なる鉛直角を有する。これは、センサ自体が作動することはないが、上述のノッディング効果をシミュレートする。
【0006】
全ての上記の例において、単一レーザー発光器/検出器の組み合わせの光路が、単一のセンサよりも広い視野を達成するためにどうにかして変更されている。単一レーザーのパルス繰返し数が限定されていることにより、そのような装置が単位時間毎に発生することができるピクセル数は本質的に限定されている。ミラー、プリズム、又は装置の作動のいずれによるものであっても、より広いカバー領域を達成するためのビーム経路の変更は、ポイントクラウド密度の減少を伴うものである。
【0007】
上述のように、いくつかの構成において三次元ポイントクラウドシステムが存在する。しかしながら、多くの用途において、広い視野を有する必要がある。例えば、自立走行車両用途において、縦視野は車両の前方の地面が見えるまで下に伸びているべきである。また、道路内のくぼみに車両が進入した場合、縦視野は水平線より上に伸びているべきである。また、現実世界で起きている行動とこれらの行動の画像化の間の遅れは最小限である必要がある。いくつかの例においては、毎秒少なくとも5回の完全な画像の更新を提供することが望ましい。これらの要求に応えるために、多重レーザー発光器アレイ及び検出器アレイを備える三次元LIDARシステムが開発された。このシステムは2011年6月28日付で発行された米国特許7969558号に記載されており、この特許は参照されることにより、本出願に援用される。
【0008】
多くの用途において、一連のパルスが出射される。各パルスの方向は、連発で順次変更される。これらの例において、個々のパルスのそれぞれに関連する距離測定値をピクセルとみなすことができ、連発して出射されて捕捉されたピクセルの集合(即ち、ポイントクラウド)は、画像としてレンダリングすることができ、又は、他の理由(例えば、障害物の検出)により分析される。いくつかの例において、結果的に得られたポイントクラウドを使用者に三次元の画像としてレンダリングする為に閲覧ソフトウェアが使用されている。実写カメラで撮影されたような三次元画像として距離測定値を画像化する為に異なる方式を使用することができる。
【0009】
既存のLIDARシステムは、所定の時間で周囲環境の特定体積を問合せする光ビームを使用している。戻り信号の検出は、測定範囲が拡張されると悪化する測定ノイズの大きな原因を含んでいる。多くの用途において、測定信号の信号/ノイズ比は、レーザーパルス強度を増加することにより改善される。
【0010】
また、画像解像度は、LIDARシステムにより生成される三次元ポイントクラウドの密度に依存する。多くの場合、画像解像度を改善する為に、パルス出射及び対応する戻り信号の捕捉の速度を増加することにより、三次元ポイントクラウドの密度が増加される。
【0011】
パルス繰返し数、パルス強度、又はその両方の増加には、発光の増加を必要とし、そして結果として、パワーエレクトロニクス及び光源に関するエネルギー損失による発熱及びエネルギー消費の増加を必要とする。特に、三次元LIDARシステムの寸法が縮小し続けているので、追加の発熱は特に望ましくない。
【発明の概要】
【発明が解決しようとする課題】
【0012】
高水準の画像解像度及び撮影範囲を維持したまま、LIDARシステムの電力管理の改善が望ましい。
【課題を解決するための手段】
【0013】
異なる照射強度を有する三次元LIDAR測定を実施する為の方法及びシステムがここに記載されている。測定パルスの繰返しシークエンスのそれぞれが、LIDARシステムから出射される異なる照射強度パターンを有する。各繰返しシークエンスの1つ以上のパルスが、シークエンス内の他のパルスとは異なる照射強度を有する。照射強度パターンは、LIDARシステムによる発熱及び総エネルギー消費を減少する為に変更される。
【0014】
いくつかのLIDARシステムは、共通の制御装置と一体となって作動する多数のパルス照射システムを有する。更なる側面において、各パルス照射システムから出射される照射光パルスの照射強度パターンは、独立して制御される。
【0015】
いくつかの実施形態において、パルス照射源及び感光検出器は、LIDAR装置の回転フレームに取り付けられている。この回転フレームは、LIDAR装置の基部フレームに対して回転する。更なる側面において、LIDAR装置は、基部フレームに対する回転フレームの配向を測定する配向センサを含んでいる。これらの実施形態において、LIDARシステムの計算システムは、基部フレームに対する回転フレームの配向の表示を定期的に受信し、前記配向に基づいて照射強度パターンを変化させる。
【0016】
いくつかの実施形態において、LIDARシステムは車道で作動している車両に取り付けられる。LIDARシステムは、画像処理システムにポイントクラウドデータを提供し、車道上で車両が作動している間、画像処理システムがポイントクラウドデータに基づいて車両の周囲の環境の画像を生成する。いくつかの動作シナリオにおいて、車両の前方及び車両の側方又は両側方に位置する物体の高解像度画像を得ることが望ましい。しかしながら、車両の後方の物体の高解像度画像を得ることは必要があるわけではない。これらの実施例において、LIDARシステムは、照射ビームが車両の前方及び側方又は両側方に向けられている時は、最大照射強度パターンを使用するように構成される。しかしながら、照射ビームが車両の後方に向けられている時は、平均照射強度を減少する為に、照射強度パターンが変更される。
【0017】
いくつかの実施形態において、LIDAR装置と三次元環境内で検出された物体の間の距離に基づいて、照射強度パターンが変更される。1つの実施例において、LIDAR装置と三次元環境内で検出された物体の間の距離が所定の閾値よりも短い場合、照射強度パターンは一定期間の間平均照射強度を減少するように調整される。この方法により、LIDAR装置に比較的近い物体(例えば、25m以下、10m以下等)は、LIDARシステムにより低周波数でサンプリングされる。回転走査LIDAR装置の視野は放射状に伸びるので、LIDAR装置に比較的近い物体は、LIDAR装置から比較的遠い物体よりも少ない光損失でサンプリングされる。したがって、LIDAR装置に比較的近い物体については、近い物体の十分に正確な画像をレンダリングする為に、高解像度のサンプリングが必要なわけではない。これらの実施例において、比較的近い物体についてのサンプリングの平均照射強度を減少するように、照射強度パターンは調整される。
【0018】
いくつかの実施形態において、照射強度パターンは、三次元環境内で検出された物体の有無に基づいて変化する。1つの実施例において、パルス照射ビームの照射強度パターンは、所定の期間よりも長くパルス照射ビームの視野内に物体が検出されない場合、一定期間の間パルスの平均照射強度を減少するように調整される。例えば、所定の期間にわたってパルス照射ビームに関連する検出器により検出された信号がわずかな値(例えば、閾値より下)であった場合、制御装置がパルス照射源から出射される光の照射強度パターンを減少する。この方法により、照射ビームが物体のない大きな空間(例えば、水平線に向けて、空に向けて等)に向けられている時に、エネルギー消費と発熱が減少される。しかしながら、その後、パルス照射ビームに関連する検出器により検出された信号が閾値より上に増加した場合、制御装置がパルス照射源から出射される光の照射強度パターンの平均照射強度を増加する。いくつかの実施例において、制御装置が平均照射強度を増加する前に、第1の所定の期間後の第2の所定の期間にわたって物体が検出されなければならない。これらの閾値が、スプリアス信号が照射強度に急激な変動をもたらすことを防止する。
【0019】
いくつかの実施形態において、LIDARシステムは、パルス照射源の視野の少なくとも一部の画像を生成するように構成された撮像装置を含むか、又は撮像装置と通信可能にリンクされている。いくつかの実施形態において、撮像装置は、LIDAR装置により生成されたポイントクラウドの多数の点から画像を生成するように構成された計算システムである。これらの実施形態のいくつかにおいて、計算システムはLIDAR装置から分離しており、LIDAR装置と通信可能にリンクしている。他の実施形態においては、LIDARシステムの計算システムが、ポイントクラウドデータから画像を生成するように構成されている。いくつかの他の実施形態において、撮像装置が分離した撮像センサ(例えば、カメラ)を含み、撮像センサがパルス照射源の視野の少なくとも一部の画像を捕捉する。これらの実施形態のいくつかにおいて、撮像センサはLIDAR装置と一体となっている。いくつかの他の実施形態において、撮像センサはLIDAR装置から分離しており、LIDAR装置と通信可能にリンクしている。
【0020】
これらの実施形態において、パルス照射源の照射強度パターンは、パルス照射源の視野の少なくとも一部の画像内に物体が検出されるか否かに基づいて変化する。いくつかの実施例において、パルス照射源の視野の画像内に物体が検出されない場合、照射強度パターンの平均照射強度は減少する。いくつかの他の実施例において、パルス照射源の視野の画像内に物体が検出された場合、照射強度パターンの平均照射強度は増加する。
【0021】
いくつかの実施形態において、パルス照射源の照射強度パターンは、三次元LIDAR装置の動作温度の表示に基づいて変化する。
【0022】
上記は概要であり、したがって、必要に応じて簡略化、一般化、及び詳細の省略を含み、結果として、概要は単に説明的なものであり、限定的なものではないことは当業者には理解できるであろう。ここに記載の装置及び/又は方法の他の側面、発明の特徴、及び利点は、以下に記載の非限定的な詳細な説明により明確になるであろう。
【図面の簡単な説明】
【0023】
図1】少なくとも1つの新規な側面における三次元LIDARシステム100の1つの実施形態を示す簡略図である。
図2】少なくとも1つの新規な側面における三次元LIDARシステム10の他の実施形態を示す簡略図である。
図3】1つの例示的実施形態における三次元LIDARシステム100の分解図である。
図4】三次元LIDARシステム100の発光・集光エンジン112を示す図である。
図5】三次元LIDARシステム100の集光光学系116の詳細図である。
図6】集光された光118の各ビームの整形を示す三次元LIDARシステム100の集光光学系116の断面図である。
図7】パルス照射システム130、光検出システム150、及び制御装置140を含む三次元LIDARシステムの構成要素を示す図である。
図8】パルス測定ビームの出射及び戻り測定パルスの捕捉のタイミングを示す図である。
図9】異なるパルス照射強度を有する異なる繰返しパターンを含むパルス発射信号を示す図である。
図10】16個のパルス照射システムのそれぞれからの発光の強度及びタイミングを示す例示的な図180である。
図11】少なくとも1つの新規な側面における異なるパルス照射強度パターンを有するLIDAR測定を実施する方法200を示すフローチャートである。
【発明を実施するための形態】
【0024】
本発明のいくつかの実施形態と添付の図面に図示されている背景的実施例の詳細について説明する。
【0025】
図1は、1つの例示的動作シナリオにおける三次元LIDARシステム100の実施形態を示す図である。三次元LIDARシステム100は、下部ハウジング101及び赤外光(例えば、700~1700nmのスペクトル領域内の波長を有する光)を透過させる材料から成るドーム状シェル要素103を含む上部ハウジング102を有する。1つの実施例において、ドーム状シェル要素103は、905nmを中心とする波長を有する光を透過させる。
【0026】
図1に図示されているように、三次元LIDARシステム100から複数の光ビーム105が、ドーム状シェル要素103を通って、中心軸104から測定して角度範囲αにわたって、出射される。図1に図示されている実施形態において、各光ビームは、X軸及びY軸により規定された平面上に互いに間隔を置いて複数の異なる位置に投射される。例えば、ビーム106はXY平面上の位置107に投射される。
【0027】
図1に図示されている実施形態において、三次元LIDARシステム100は、中心軸104の周りの複数の光ビーム105のそれぞれを走査するように構成される。XY平面上に投射された各光ビームは、中心軸104とXY平面の交点を中心とする円形パターンを描く。例えば、XY平面上に投射されるビーム106は、時間とともに、中心軸104を中心とする円形軌跡108を描く。
【0028】
図2は、1つの例示的動作シナリオにおける三次元LIDARシステム10の他の実施形態を示す図である。三次元LIDARシステム10は、下部ハウジング11及び赤外光(例えば、700~1700nmのスペクトル領域内の波長を有する光)を透過させる材料から成る円筒形シェル要素13を含む上部ハウジング12を有する。1つの実施例において、円筒形シェル要素13は、905nmを中心とする波長を有する光を透過させる。
【0029】
図2に図示されているように、三次元LIDARシステム10から複数の光ビーム15が、円筒形シェル要素13を通って、角度範囲βにわたって、出射される。図2に図示されている実施形態においては、各光ビームの主光線が図示されている。各光ビームは周囲環境内の異なる方向に外向きに投射される。例えば、ビーム16は周囲環境内の位置17上に投射される。いくつかの実施形態において、三次元LIDARシステム10から出射された各光ビームは少しずつ広がる。1つの実施例において、三次元LIDARシステム10から出射された光ビームは、三次元LIDARシステム10から100mの距離において直径20cmのスポットサイズを照射する。この方法において、各照射光ビームは、三次元LIDARシステム10から出射された照射光錐である。
【0030】
図2に図示されている実施形態において、三次元LIDARシステム10は、中心軸14の周りを、複数の光ビーム15のそれぞれを走査するように構成されている。説明の目的で、複数の光ビーム15が、三次元LIDARシステム10の非回転座標枠に関連する1つの角度配向に図示されており、そして、複数の光ビーム15’が、上記非回転座標枠に関連する他の角度配向に図示されている。複数の光ビーム15は中心軸14の周りを回転するので、周囲環境内に投射された各光ビーム(例えば、各ビームに関連した各照射光錐)は、中心軸14の周りを通過するので、円錐形照射ビームに対応する体積の環境を照射する。
【0031】
図3は、1つの例示的実施形態における三次元LIDARシステム100の分解図である。三次元LIDARシステム100はさらに、中心軸104の周りを回転する発光・集光エンジン112を有する。少なくとも1つの新規な側面において、発光・集光エンジン112の中心光軸117は、中心軸104に対して角度θで傾斜している。図3に図示されているように、三次元LIDARシステム100は、下部ハウジング101に対して固定位置に取り付けられた固定電子基板110を有する。固定電子基板110の上方に回転電子基板111が配置され、回転電子基板111は、固定電子基板110に対して所定の回転速度(例えば、200rpmより速い速度)で回転するように構成されている。電力信号及び電子信号が、固定電子基板110と回転電子基板111の間で、1つ以上のトランス素子、容量素子又は光学素子を通して通信され、これらの信号の非接触送信をもたらす。発光・集光エンジン112は回転電子基板111に対して固定的に配置され、したがって、中心軸104の周りを所定の角速度ωで回転する。
【0032】
図3に図示されているように、発光・集光エンジン112は、発光素子アレイ114及び光検出素子アレイ113を有する。各発光素子から出射された光は、(図示しない)ミラーに向かっていく。ミラーから反射した光は、一連の照明光学系115を通過し、一連の照明光学系115が、出射光を図1に図示されている三次元LIDARシステム100から出射される光ビームアレイ105にコリメートする。一般的に、三次元LIDARシステム100から任意の数の光ビームを同時に出射するために任意の数の発光素子を配置することができる。環境内の物体から反射された光は、集光光学系116により集光される。集光された光は集光光学系116を通過し、光検出素子アレイ113の各光検出素子上に集束される。集光光学系116を通過後、集光された光は(図示しない)ミラーから各光検出素子上に反射される。
【0033】
図4は、発光・集光エンジン112を示すもう1つの図である。もう1つの発明的側面において、発光・集光エンジン112は、発光・集光エンジン112の様々な構成要素と回転電子基板111の間の電気的接続性及び機械的支持を提供する中間電子基板121、122及び123を有する。例えば、光検出素子アレイ113の各光検出素子は中間電子基板121に取り付けられる。次に、中間電子基板121は回転電子基板111に機械的及び電気的に結合される。同様に、発光素子アレイ114の各発光素子は中間電子基板123に取り付けられる。次に、中間電子基板123は回転電子基板111に機械的及び電気的に結合される。もう1つの実施例において、照明光学系115及び集光光学系116は、中間電子基板122に機械的に取り付けられる。この実施例において、中間電子基板122は、照明光学系115を集光光学系116から空間的及び光学的に分離し、集光された光への照射光の混入を防止する。次に、中間電子基板122は、回転電子基板111に機械的及び電気的に結合される。この方法により、中間電子基板は、機械的及び電気的接続性を提供し、三次元LIDARシステム100の動作に必要な電気部品を取り付け可能な追加基板領域を提供する。
【0034】
図5は、集光光学系116の詳細図である。図5に図示されているように、集光光学系116は、光検出素子アレイ113の各光検出素子上に集光された光118を集束するように配置された4つのレンズ素子116A~116Dを有する。集光光学系116を通過した光は、ミラー124により反射され、光検出素子アレイ113の各光検出素子上に配向される。いくつかの実施形態において、集光光学系116の1つ以上の光学素子は、発光素子アレイ114の各発光素子により出射された光の波長を含む所定の波長範囲外の光を吸収する1つ以上の材料から構成される。1つの実施例において、1つ以上のレンズ素子は、発光素子アレイ114の各発光素子により発生された赤外光より低い波長を有する光を吸収する着色剤添加剤を含むプラスチック材料から構成される。1つの実施例において、着色剤は、Aako BV(オランダ)から入手可能なEpolight 7276Aである。一般的に、望まないスペクトルの光を除去するために、集光光学系116の任意のプラスチックレンズ素子に任意の数の異なる着色剤を添加することができる。
【0035】
図6は、集光された光118の各ビームの整形を示す集光光学系116の断面図である。
【0036】
上述のように、集光光学系116の1つ以上の光学素子は、発光素子アレイ114の各発光素子により出射された光の波長を含む所定の波長範囲外の光を吸収する1つ以上の材料から構成される。しかしながら、一般的に、照明光学系115の1つ以上の光学素子も、発光素子アレイ114の各発光素子により出射された光の波長を含む所定の波長範囲外の光を吸収する1つ以上の材料から構成されることができる。
【0037】
図1に図示されている三次元LIDARシステム100、及び図2に図示されている三次元LIDARシステム10のようなLIDARシステムは、LIDAR装置から周囲環境内に照射光のパルスビームを出射するパルス照射源を有している。いくつかの実施形態において、パルス照射源はレーザーベースである。いくつかの実施例において、パルス照射源は1つ以上の発光ダイオードベースである。一般的に、どんな適切なパルス照射源を検討してもよい。
【0038】
1つの側面において、LIDARシステムから出射される照射パルスの繰返しシークエンスの照射強度パターンは、LIDARシステムによる発熱及び総エネルギー消費を減少する為に変更される。
【0039】
図7は、1つの実施形態におけるパルス照射システム130、光検出システム150、及び制御装置140を含む三次元LIDARシステムの構成要素を示す図である。
【0040】
パルス照射システム130は、パルス発光装置137を有する。パルス発光装置137は、パルス発光装置137に提供されるパルス電流信号136に応答してパルス発光を発生する。パルス発光装置137により発生された光は、三次元LIDARシステムの1つ以上の光学素子により、集束されて周辺環境内の特定位置138上に投射される。1つの実施例において、パルス発光装置137により出射された光は、出射光を図2に図示される三次元LIDARシステム10から出射されるパルス光ビーム16にコリメートする照明光学系115により、集束されて特定位置上に投射される。
【0041】
パルス照射システム130は、パルス発光装置137に選択的に結合された電気エネルギー蓄積素子(ESE)132を有する。いくつかの実施例において、電気エネルギー蓄積素子132はコンデンサである。電圧源131は、電気エネルギー蓄積素子132に電気的に結合される。電圧源131は、電気エネルギー蓄積素子132に電気エネルギーを供給する。電気エネルギー蓄積素子132は、スイッチ素子(例えば、スイッチ素子139)によりパルス発光装置137に選択的に結合している。スイッチ素子139は、制御信号(例えば、デジタル制御信号MPC)の状態に応じて、2つの状態の間を切り替えるように構成されている。第1の状態において、スイッチ素子139は実質的に非導電性である。第1の状態において、電気エネルギー蓄積素子132はパルス発光装置137から効果的に切断されている。第1の状態において、電圧源131から電気エネルギー蓄積素子132へ電気エネルギーが流れ、電気エネルギー蓄積素子132を効果的に充電する。第2の状態において、スイッチ素子139は実質的に導電性である。第2の状態において、電気エネルギー蓄積素子132はパルス発光装置137に電気的に結合する。第2の状態において、電気エネルギー蓄積素子132からパルス発光装置137へ電気エネルギーが流れる。
【0042】
図7に図示されているように、電気エネルギー蓄積素子132はパルス発光装置137に選択的に結合している。この方法により、パルス発光装置137に提供される電流信号136の整形及びタイミングは、制御装置140により発生された制御信号MPCにより効果的に制御される。したがって、LIDAR装置から出射される光パルスのタイミングは制御装置140により制御される。
【0043】
一般的に、パルス照射システム130は、パルス発光装置と並列に選択的に結合された任意の数の電気エネルギー蓄積素子を含むことができる。さらに、1つ以上の電気エネルギー蓄積素子は、1つ以上の他の電気エネルギー蓄積素子とは異なるエネルギー蓄積容量を有することができる。この方法により、パルス発光装置137に提供される電流信号136のタイミング及び振幅が、制御信号MPCにより制御される。これらの実施形態において、電流信号136のタイミング及び振幅は、パルス発光装置137に結合される電気エネルギー蓄積素子の数及びタイミングを制御することにより達成される。いくつかの実施形態において、パルス発光装置137に複数の電気エネルギー蓄積素子を連続的に結合することにより、多重パルスが各LIDAR測定の為に出射される。いくつかの他の実施形態において、パルス発光装置137に同時に結合される電気エネルギー蓄積素子の数を選択することにより、電流信号136の振幅が制御される。一般的に、制御信号MPCを通して制御装置140により指令される各パルスは、大きさ及び存続期間を変更することができる。
【0044】
いくつかの実施形態において、照射パルスの繰返しシークエンスがLIDAR装置から出射される。繰返しシークエンスは、繰返しシークエンスの各パルスの照射強度に関連する特定の照射強度パターンによって経時的に繰り返される測定パルスのシークエンスである。1つの側面において、繰返しシークエンスの1つ以上のパルスは、繰返しシークエンス内の他のパルスとは異なる照射強度を有する。即ち、照射強度パターンは、他のパルスとは異なる強度振幅を有する少なくとも1つのパルスを有する。
【0045】
例えば、図9は、制御装置140により発生されたパルス発射信号167(例えば、図7に図示されている制御信号MPC)を示しており、前記パルス発射信号は、期間Tにより周期的である。パルス発射信号167は、照射パルス167A~167Cの3つの異なる繰返しシークエンスを有する。照射パルスのセグメント167Aにおいて、繰返しシークエンスは繰返し期間TREPaを有し、パルス強度は、中央値で6連続パルスにおいて一定である。照射パルスのセグメント167Bにおいて、繰返しシークエンスは繰返し期間TREPbを有し、パルス強度は、高強度設定及び低強度設定を交互に繰り返す。このシークエンスは2回繰り返す。照射パルスのセグメント167Cにおいて、繰返しシークエンスは繰返し期間TREPcを有し、各繰返しシークエンス内で、パルス強度は1つのパルスにおいて高強度であり、その後の2連続パルスにおいて低強度である。このシークエンスは3回繰り返す。一般的に、LIDARシステムは、エネルギーを節約する為にパルス毎に基づいて所望の方法でパルス強度パターンを変更するように構成されることができる。いくつかの実施形態において、パルス強度のパターンは疑似ランダムである。一般的に、制御装置140により指令される各パルスは、大きさ及び存続期間を変更することができる。
【0046】
更なる実施形態において、図2に図示されているLIDARシステム10のようなLIDARシステムは、共通の制御装置(例えば、制御装置140)と一体となって作動する多数のパルス照射システムを有する。図10は、16個のパルス照射システムの各々の発光のタイミングを示す図180である。もう1つの更なる側面において、各パルス照射システムから出射された照射光パルスの繰返しパターンは、独立して制御可能である。したがって、各パルス照射システムに関連する強度パターンは、独立して制御される。
【0047】
図10に図示されているように、測定パルスは第1のパルス照射システムから出射される。遅延時間T遅延経過後に、LIDAR装置の第2のパルス照射システムから測定パルスが出射される。この方法により、測定期間T測定の間に、LIDAR装置から異なる方向に一連の16個の測定パルスが出射される。16個のパルス照射システムのそれぞれに関連する電気エネルギー蓄積素子は、測定期間後に充電期間T充電の間充電される。充電期間後に、その次の測定期間にわたって、もう1つの測定パルスが、各パルス照射システムから出射される。その次の充電期間後に、もう1つの測定期間にわたって、もう1つの測定パルスが、各パルス照射システムから出射され、同様に続く。14番目のパルス照射システムは、図9に図示されているパルス発射信号167のセグメント167Bに従って発射される。したがって、14番目のパルス照射システムは、パルス発射信号167に関連する名目周期性Tとは異なる繰返し期間TREPbを有する強度パターンを示す。図9に図示されているように、セグメント167Bの間、出力強度は高強度値及び低強度値を交互に繰り返す。パルスA、B及びCが、図9及び10の両方に特に参照されている。パルスA及びCが高強度値であり、パルスBが比較的低い強度値である。
【0048】
一般的に、各パルス照射システムに関連するパルス強度パターンは、LIDARシステムの他のパルス照射システムから独立して変化することができる。
【0049】
いくつかの実施形態において、遅延時間T遅延は、LIDAR装置の最大範囲に位置する物体へ向かい、該物体から戻ってくるまでの測定パルスの飛行時間よりも長く設定されている。この方法により、16個のパルス照射システムのいずれの間にもクロストークが生じない。
【0050】
いくつかの他の実施形態において、1つのパルス照射システムから出射された測定パルスがLIDAR装置に戻るまでの時間が経過する前に、もう1つのパルス照射システムから測定パルスを出射することができる。いくつかのこれらの実施形態において、クロストークを避けるために、各ビームにより問合せされた周囲環境の領域の間が十分に空間的に分離されることを確実にするように注意が払われている。
【0051】
図7に図示されているように、特定位置138から反射された光は、光検出器155により検出される。光検出器155は、アナログ相互インピーダンス増幅器152により増幅される出力信号151を発生する。一般的に、出力信号151の増幅は、複数の増幅段を有することができる。この場合、アナログ相互インピーダンス増幅器152は非限定的な実施例として提供されており、多くの他のアナログ信号増幅構成が本出願書類の範囲内に含まれると考えることができる。
【0052】
増幅信号153は、制御装置140に伝達される。制御装置140のアナログ/デジタル変換器(ADC)144が、アナログ信号153を更なる処理において使用されるデジタル信号に変換するために使用される。制御装置140は、制御信号MPCと共同してADC144によるデータ取得のタイミングを制御するために使用されるイネーブル/ディスエーブル信号145を発生する。
【0053】
図8は、測定パルスの出射及び戻り測定パルスの捕捉に関わるタイミングを示す図である。図8に図示されているように、測定は、制御装置140により発生されたパルス発射信号161(例えば、MPC[1])とともに始まる。内部システムの遅延により、パルス発射信号161から時間遅延Tによりずれているパルスインデックス信号162が測定される。時間遅延は、LIDARシステムからの発光に関連する既知の遅延(例えば、信号通信遅延及びスイッチ素子、電気エネルギー蓄積素子及びパルス発光装置に関連する待機時間)と、集光と集光された光を示している信号発生に関連する既知の遅延(例えば、増幅器の待機時間、アナログ/デジタル変換遅延等)と、を含んでいる。
【0054】
図8に図示されているように、戻り信号163は、特定位置の照射に対応してLIDARシステムにより検出される。測定窓(例えば、収集された戻り信号データが特定測定パルスに関連付けられている期間)は、光検出素子150からのイネーブルデータ取得により開始される。制御装置140は、測定パルスの出射に対応する戻り信号が予期される時間の窓に対応するように測定窓のタイミングを制御する。いくつかの実施例において、測定窓は、測定パルスが出射された時点で作動され、LIDARシステムの範囲の2倍の距離にわたる光の飛行時間に対応する時点において停止される。この方法により、測定窓は、LIDARシステムに近接する物体からの戻り光(わずかな飛行時間)からLIDARシステムの最大範囲に位置する物体からの戻り光までを集光するために開かれている。この方法により、有効な戻り信号として貢献することができない他の全ての光は除外される。
【0055】
図8に図示されているように、戻り信号163は、出射された測定パルスに対応する2つの戻り測定パルスを有する。一般的に、信号検出は、全ての検出された測定パルスに実施される。さらに、信号分析が、最も近い信号(例えば、戻り測定パルスの最初のインスタンス)、最も強い信号及び最も遠い信号(例えば、測定窓における戻り測定パルスの最後のインスタンス)を特定するために実施される。これらのインスタンスはどれも、LIDARシステムによる潜在的に有効な距離測定値として報告することができる。例えば、図8に図示されているように、飛行時間TOFは、出射された測定パルスに対応する最も近い(例えば、最も早い)戻り測定パルスから計算することができる。
【0056】
図1及び図2を参照して記載されている実施形態のような、いくつかの実施形態において、パルス照射源及び感光検出器は、LIDAR装置の回転フレームに取り付けられる。この回転フレームは、LIDAR装置の基部フレームに対して回転する。更なる側面において、LIDAR装置は、基部フレームに対する回転フレームの配向を測定する配向センサを含んでいる。これらの実施形態において、LIDARシステムの計算システム(例えば、図7に図示されている制御装置140)は、基部フレームに対する回転フレームの配向の更新された表示を定期的に受信する。これらの実施形態のいくつかにおいて、パルス照射源の照射強度パターンの変化は、前記配向に基づいている。
【0057】
いくつかの実施形態において、LIDARシステムは車道で作動している車両に取り付けられる。LIDARシステムは、画像処理システムにポイントクラウドデータを提供し、車道上で車両が作動している間、画像処理システムがポイントクラウドデータに基づいて車両の周囲の環境の画像を生成する。いくつかの動作シナリオにおいて、車両の前方及び車両の側方又は両側方に位置する物体の高解像度画像を得ることが望ましい。しかしながら、車両の後方の物体の高解像度画像を得ることは必要があるわけではない。これらの実施例において、LIDARシステムは、照射ビームが車両の前方及び側方又は両側方に向けられている時は、高い平均照射強度(即ち、ほとんどのパルスが比較的高い照射強度レベルである)を使用するように構成される。しかしながら、照射ビームが車両の後方に向けられている時は、平均照射強度が低下される(即ち、より多くのパルスが比較的低い、又はゼロ値照射強度レベルである)。
【0058】
いくつかの実施形態において、照射強度パターンの変化は、LIDAR装置と三次元環境内で検出された物体の間の距離に基づいている。1つの実施例において、LIDAR装置と三次元環境内で検出された物体の間の距離が所定の閾値よりも短い場合、照射強度パターンは、一定期間の間平均パルス強度を減少するように調整される。この方法により、LIDAR装置に比較的近い物体(例えば、25m以下、10m以下等)は、LIDARシステムにより低照射強度でサンプリングされる。LIDAR装置の視野は放射状に伸びるので、LIDAR装置に比較的近い物体は、LIDAR装置から比較的遠い物体よりも高い信号/ノイズ比で検出される。したがって、LIDAR装置に比較的近い物体については、近い物体の十分に正確な画像をレンダリングする為に、高照射強度が必要なわけではない。これらの実施例において、比較的近い物体についての平均照射強度を減少するように、パルス照射強度が調整される。
【0059】
いくつかの実施形態において、照射パルスの繰返しシークエンスの照射強度パターンの変化は、三次元環境内で物体が検出されたか否かに基づいている。1つの実施例において、所定の期間よりも長くパルス照射ビームの視野内に物体が検出されない場合、パルス照射ビームの照射強度パターンは、一定期間の間平均照射強度を減少するように調整される。例えば、所定の期間にわたってパルス照射ビームに関連する検出器により検出された信号がわずかな値(例えば、閾値より下)であった場合、制御装置がパルス照射源から出射された光の照射強度パターンの平均照射強度を減少する。この方法により、照射ビームが物体のない大きな空間(例えば、水平線に向けて、空に向けて等)に向けられている時に、エネルギー消費と発熱が減少される。しかしながら、その後、近くのパルス照射ビームに関連する検出器により検出された信号が閾値より上に増加した場合、制御装置が、パルス照射源から出射される照射強度パターンの平均照射強度を増加させる。いくつかの実施例において、制御装置が平均照射強度を増加する前に、第1の所定の期間後の第2の所定の期間にわたって物体が検出されなければならない。これらの閾値が、スプリアス信号が平均照射強度に急激な変動をもたらすことを防止する。
【0060】
いくつかの実施形態において、LIDARシステムは、パルス照射源の視野の少なくとも一部の画像を生成するように構成された撮像装置を含むか、又は撮像装置と通信可能にリンクされている。いくつかの実施形態において、撮像装置は、LIDAR装置により生成されたポイントクラウドの多数の点から画像を生成するように構成された計算システムである。これらの実施形態のいくつかにおいて、計算システムはLIDAR装置から分離しており、LIDAR装置と通信可能にリンクしている。他の実施形態においては、LIDARシステムの計算システムが、ポイントクラウドデータから画像を生成するように構成されている。いくつかの他の実施形態において、撮像装置が分離した撮像センサ(例えば、カメラ)を含み、撮像センサがパルス照射源の視野の少なくとも一部の画像を捕捉する。これらの実施形態のいくつかにおいて、撮像センサはLIDAR装置と一体となっている。いくつかの他の実施形態において、撮像センサはLIDAR装置から分離しており、LIDAR装置と通信可能にリンクしている。
【0061】
これらの実施形態において、パルス照射源から出射された照射パルスの繰返しシークエンスの照射強度パターンは、パルス照射源の視野の少なくとも一部の画像内に物体が検出されるか否かに基づいて変化する。いくつかの実施例において、パルス照射源の視野の画像内に物体が検出されない場合、平均照射強度は減少する(即ち、所定の期間にわたって、照射パルスの繰返しパターンの平均照射強度が減少する)。いくつかの他の実施例において、パルス照射源の視野の画像内に物体が検出された場合、平均照射強度は増加する。
【0062】
いくつかの実施形態において、パルス照射源から出射された照射パルスの繰返しシークエンスの照射強度パターンは、三次元LIDAR装置の動作温度の表示に基づいて変化する。いくつかの実施形態において、動作温度の表示は、周囲環境の測定温度である。いくつかの実施形態において、動作温度の表示は、三次元LIDAR装置上の1つ以上の測定温度に基づいている。例えば、照射源(例えば、レーザーダイオード)、照射源駆動装置、相互インピーダンス増幅器等のような敏感な電子部品の近くの温度は、動作温度の表示に到達する為に、分離して、又は共同して測定することができる。いくつかの実施形態において、照射源(例えば、レーザーダイオード)からの照射出力のスペクトルシフトは、動作温度の表示として測定される。一般的に、三次元LIDAR装置内及びその周囲のいずれかの温度測定、又は、温度測定の組み合わせを、三次元LIDAR装置の動作温度の表示として採用することができ、したがって、三次元LIDAR装置に搭載されたパルス照射源のいずれかの照射強度パターンを変更する基準となる。
【0063】
制御装置140は、プロセッサ141及びメモリ142を有する。プロセッサ141及びメモリ142は、バス147を通じて通信することができる。メモリ142は、プログラムコードを記憶する一定量のメモリ143を含み、前記プログラムコードがプロセッサ141により実行されると、プロセッサ141にここに記載のパルス繰返しパターンを実施させる。非限定的な実施例として、制御装置140は、通信リンクを通して(図示しない)外部計算システムと通信するように動作可能である。1つの実施例において、制御装置140は、外部計算システムへ測定距離146の表示を通信する。
【0064】
図11は、本発明のLIDARシステム10及び100による実施に適している方法200を示す図である。1つの側面において、方法200のデータ処理ブロックは、計算システム140の1つ以上のプロセッサにより実行される事前にプログラムされたアルゴリズムによって実行することができる。LIDAR装置10及び100に関して下記の記載が示されているが、ここで、LIDARシステム10及び100の特定構成は限定を示しているものではなく、単なる実例として解釈されるべきである。
【0065】
ブロック201において、第1の繰返しパターンを有する照射光の一連のパルスが、LIDAR装置から三次元環境内に出射される。
【0066】
ブロック202において、照射光の一連のパルスのそれぞれにより照射された三次元環境から反射された光の量が検出される。
【0067】
ブロック203において、照射光の一連のパルスのそれぞれに関連した光の検出量を示す出力信号が発生される。
【0068】
ブロック204において、光の検出量を示す出力信号は、例えば制御装置140により受信される。
【0069】
ブロック205において、LIDAR装置からパルスが出射された時間、及び、照射光のパルスにより照射された三次元環境内の物体から反射された光の量を感光検出器が検出した時間の間の差に基づいて、LIDAR装置及び三次元環境内の物体の間の距離が測定される。
【0070】
ブロック206において、パルス照射源が照射光の一連のパルスを第1の繰返しパターンとは異なる第2の繰返しパターンに変更することを引き起こす指令信号が発生される。
【0071】
1つ以上の例示的な実施形態において、記載されている機能は、ハードウェア、ソフトウェア、ファームウェア、又はそれらの組み合わせにおいて実施することができる。ソフトウェアにおいて実施される場合、機能は、コンピュータ可読媒体上の1つ以上の指令又はコードとして伝達又は記憶されることができる。コンピュータ可読媒体は、コンピュータ記憶媒体及び通信媒体を含み、1つの場所から他の場所へのコンピュータプログラムの転送を容易にするどの媒体も含むことができる。記憶媒体は、汎用コンピュータ又は専用コンピュータによりアクセスすることができる任意の利用可能な媒体を使用することができる。限定としてではなく、例として、コンピュータ可読媒体は、RAM、ROM、EEPROM、CD-ROM又は他の光ディスク記憶装置、磁気ディスク記憶装置又は他の磁気記憶装置、又は、汎用コンピュータ又は専用コンピュータにより、又は汎用プロセッサ又は専用プロセッサによりアクセスすることができ、データ構造又は指令の形の所望のプログラムコードを記憶又は保持するために使用することができる他の任意の媒体を含むことができる。また、任意の接続もコンピュータ可読媒体と呼ぶのにふさわしい。例えば、同軸ケーブル、光ファイバーケーブル、ツイストペアケーブル、デジタル加入者回線(DSL)、又は赤外線通信、無線通信、及びマイクロ波通信等の無線技術を使用して、ウェブサイト、サーバー、又は他の遠隔供給源からソフトウェアが伝送された場合、同軸ケーブル、光ファイバーケーブル、ツイストペアケーブル、デジタル加入者回線(DSL)、又は赤外線通信、無線通信、及びマイクロ波通信等の無線技術は、媒体の定義内に含まれる。ここで使用されるディスクは、コンパクトディスク(CD)、レーザーディスク、光ディスク、デジタルバーサタイルディスク(DVD)、フロッピーディスク及びブルーレイディスクを含み、ディスクは通常データを磁気的に再生し、また、ディスクはデータをレーザーにより光学的に再生する。上記の組み合わせもコンピュータ可読媒体の範囲内に含まれるものである。
【0072】
説明の目的で特定実施形態が上述されているが、この特許出願書類の教示は汎用性を有し、上記の特定実施形態に限定されるものではない。したがって、特許請求の範囲に記載の本発明の範囲から逸脱することなく、様々な改良、適応、及び上記実施形態の様々な構成の組み合わせを実行することができる。
【符号の説明】
【0073】
10 三次元LIDARシステム
11 下部ハウジング
12 上部ハウジング
13 円筒形シェル要素
14 中心軸
15、15’ 複数の光ビーム
16 ビーム
17 位置
100 三次元LIDARシステム
101 下部ハウジング
102 上部ハウジング
103 ドーム状シェル要素
104 中心軸
105 複数の光ビーム
106 ビーム
107 XY平面上の位置
108 円形軌跡
110 固定電子基板
111 回転電子基板
112 発光・集光エンジン
113 光検出素子アレイ
114 発光素子アレイ
115 照明光学系
116 集光光学系
116A レンズ素子
116B レンズ素子
116C レンズ素子
116D レンズ素子
117 112の中心光軸
118 集光された光
121 中間電子基板
122 中間電子基板
123 中間電子基板
124 ミラー
130 パルス照射システム
131 電圧源
132 電気エネルギー蓄積素子
136 電流信号
137 パルス発光装置
138 特定位置
139 スイッチ素子
140 制御装置
141 プロセッサ
142 メモリ
143 メモリ
144 アナログ/デジタル変換器
145 イネーブル/ディスエーブル信号
146 測定距離
147 バス
150 光検出システム
151 出力信号
152 アナログ相互インピーダンス増幅器
153 増幅信号、アナログ信号
155 光検出器
161 パルス発射信号
162 パルスインデックス信号
163 戻り信号
167 パルス発射信号
167A 照射パルスのセグメント
167B 照射パルスのセグメント
167C 照射パルスのセグメント
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11