(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-11-28
(45)【発行日】2022-12-06
(54)【発明の名称】熱輸送デバイス、熱伝導シート、熱輸送複合体、電子機器、及び、熱輸送デバイスの製造方法
(51)【国際特許分類】
F28D 15/02 20060101AFI20221129BHJP
F28D 20/02 20060101ALI20221129BHJP
H01L 23/427 20060101ALI20221129BHJP
H01L 23/36 20060101ALI20221129BHJP
H05K 7/20 20060101ALI20221129BHJP
【FI】
F28D15/02 102H
F28D15/02 106G
F28D15/02 L
F28D20/02 D
H01L23/46 B
H01L23/36 D
H05K7/20 F
(21)【出願番号】P 2018143545
(22)【出願日】2018-07-31
【審査請求日】2021-05-11
【前置審査】
(73)【特許権者】
【識別番号】000108410
【氏名又は名称】デクセリアルズ株式会社
(74)【代理人】
【識別番号】100147485
【氏名又は名称】杉村 憲司
(74)【代理人】
【識別番号】100195556
【氏名又は名称】柿沼 公二
(74)【代理人】
【識別番号】100165951
【氏名又は名称】吉田 憲悟
(72)【発明者】
【氏名】良尊 弘幸
(72)【発明者】
【氏名】荒巻 慶輔
【審査官】小川 悟史
(56)【参考文献】
【文献】特開平11-202979(JP,A)
【文献】特開2017-122555(JP,A)
【文献】特開2004-203978(JP,A)
【文献】特開2008-277684(JP,A)
【文献】特開2018-115813(JP,A)
【文献】特開2008-051444(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F28D 15/02
F28D 20/02
H01L 23/427
H01L 23/36
H05K 7/20
(57)【特許請求の範囲】
【請求項1】
金属筐体内に、ウィック及び作動液を有する熱輸送デバイス本体と、
金属筐体内に、相転移温度を有する蓄熱材料が充填された蓄熱材料部と、を備え、
前記熱輸送デバイス本体と前記蓄熱材料部とが、一体化しており、
前記蓄熱材料は、相転移温度が、30~100℃の範囲であり、且つ、単位体積当たりの潜熱が150J/cm
3以上の範囲であり、
前記熱輸送デバイスの厚さが1.0mm以下であることを特徴とする、熱輸送デバイス。
【請求項2】
前記蓄熱材料は、単位質量あたりの潜熱が、150J/g以上の範囲であることを特徴とする、請求項1に記載の熱輸送デバイス。
【請求項3】
前記蓄熱材料は、結晶水を有することを特徴とする、請求項1又は2に記載の熱輸送デバイス。
【請求項4】
前記蓄熱材料は、金属塩の水和物であることを特徴とする、請求項3に記載の熱輸送デバイス。
【請求項5】
前記熱輸送デバイスが、ベーパーチャンバー、ヒートパイプ又はヒートスプレッダであることを特徴とする、請求項1~4のいずれか1項に記載の熱輸送デバイス。
【請求項6】
高分子マトリックス成分と、熱伝導性充填剤とを含んだ熱伝導シートであって、
前記熱伝導シートは、請求項1~5のいずれか1項に記載の熱輸送デバイスに隣接して設けられることを特徴とする、熱伝導シート。
【請求項7】
請求項1~5のいずれか1項に記載の熱輸送デバイスと、該熱輸送デバイスに隣接して設けられた熱伝導シートとを備えることを特徴とする、熱輸送複合体。
【請求項8】
熱源と、放熱部材と、該熱源と該放熱部材との間に設けられた熱輸送デバイスと、を備える電子機器であって、
前記輸送デバイスが、請求項1~5のいずれか1項に記載の輸送デバイスであることを特徴とする、電子機器。
【請求項9】
請求項1~5のいずれか1項に記載の熱輸送デバイスの製造方法であって、
金属プレートをエッチングした後、該エッチングを施した金属プレートを重ね合わせ、拡散接合を行うことで、金属筐体を作製する工程と、
前記金属筐体内を真空化した後、作動液となる冷媒を注入し、封止することで、熱輸送デバイス本体を作製する工程と、
前記金属筐体内を真空化した後、蓄熱材料を注入し、封止することで、蓄熱材料部を作製する工程と、
を含むことを特徴とする、熱輸送デバイスの製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、優れた熱輸送特性を有しつつ、表面温度の急激な上昇を抑えることができる熱輸送デバイス、熱伝導シート、熱輸送複合体及び電子機器、並びに、優れた熱輸送特性を有しつつ、表面温度の急激な上昇を抑えることができる熱輸送デバイスを得ることができる熱輸送デバイスの製造方法に関するものである。
【背景技術】
【0002】
近年、電子機器は、小型化の傾向をたどる一方、アプリケーションの多様性のために電力消費量を大きく変化させることができないため、機器内外における放熱対策がより一層重要視されている。
【0003】
上述した電子機器における放熱対策として、銅やアルミ等といった熱伝導率の高い金属材料で作製された放熱板や、ヒートシンク等が広く利用されている。これらの熱伝導性に優れた放熱部品は、放熱効果又は機器内の温度緩和を図るため、電子機器内における発熱部である半導体パッケージ等の電子部品に近接するようにして配置される。また、熱輸送力が高い放熱部品(熱輸送デバイス)の一つとして、ヒートパイプが挙げられる。
【0004】
ヒートパイプの原理は、ヒートシンクのベースを中空構造にし、その中に揮発しやすい液体(作動液)を封入し、熱源からの熱でその液体が気化した蒸気がその空間内を移動し、ヒートシンク側に到達すると熱が放出されて液体に戻る。この繰り返しで、普通のヒートシンクに比べて熱抵抗値が下がるというものである。薄型のモバイル端末に搭載される場合、ヒートパイプを扁平して用いられるが、複雑な内部構造を持った丸型管を扁平するため薄型化には限界がある。
【0005】
そのため、熱輸送デバイスは、さらなる薄型化が要求されており、これに対応する技術としては、薄型の「ベーパーチャンバー」が挙げられる。ベーパーチャンバーは、面型・板型のヒートパイプのような、金属板二枚の間に毛細管現象を起こす構造を作り、それらを貼り合わせたものである。例えば、特許文献1には、平板状の密閉容器の厚さ方向で対向する上面部および下面部の少なくとも一方の内面に毛細管圧を生じさせるウィック材が設けられ、且つ前記上面部と下面部との間に支柱が配置された平板型ヒートパイプ(ベーパーチャンバー)が開示されている。
【先行技術文献】
【特許文献】
【0006】
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかしながら、特許文献1の技術では、一定の熱輸送特性を実現できるものの、ベーパーチャンバーの表面温度が急激に上昇し、電子機器の表面温度の上昇を招くという問題があった。スマートフォン等の電子機器では、安全性の観点から、表面温度が高くなりすぎないことが重要であることから、ベーパーチャンバーの表面温度の急激な上昇を抑えることができる技術の開発が望まれていた。
【0008】
本発明は、かかる事情に鑑みてなされたものであって、優れた熱輸送特性を有しつつ、表面温度の急激な上昇を抑えることができる熱輸送デバイス、熱伝導シート、熱輸送複合体及び電子機器を提供することを目的とする。また、本発明の他の目的は、優れた熱輸送特性を有しつつ、表面温度の急激な上昇を抑えることができる熱輸送デバイスを得ることができる熱輸送デバイスの製造方法を提供することを目的とする。
【課題を解決するための手段】
【0009】
本発明者らは、上記の課題を解決するべく鋭意研究を重ねた結果、熱輸送デバイスについて、ベーパーチャンバーと同じような構成(金属筐体内に、ウィック及び作動液を有する構成)の熱輸送デバイス本体を設けることによって、優れた熱輸送特性を実現し、さらに、金属筐体内に、相転移温度を有する蓄熱材料が充填された蓄熱材料部を設けるとともに、該蓄熱材料部と熱輸送デバイス本体とを一体化させることによって、熱輸送デバイス本体から伝わった熱を高い効率で蓄積させることを可能にし、表面温度の急激な上昇を抑えることができることを見出した。
【0010】
本発明は、上記知見に基づきなされたものであり、その要旨は以下の通りである。
(1)金属筐体内に、ウィック及び作動液を有する熱輸送デバイス本体と、金属筐体内に、相転移温度を有する蓄熱材料が充填された蓄熱材料部と、を備え、前記熱輸送デバイス本体と前記蓄熱材料部とが、一体化していることを特徴とする、熱輸送デバイス。
(2)前記蓄熱材料は、相転移温度が、30~100℃の範囲であることを特徴とする、上記(1)に記載の熱輸送デバイス。
(3)前記蓄熱材料は、単位質量あたりの潜熱が、150/g以上の範囲であることを特徴とする、上記(1)に記載の熱輸送デバイス。
(4)前記蓄熱材料は、単位体積当たりの潜熱が、150J/cm3以上の範囲であることを特徴とする、上記(1)に記載の熱輸送デバイス。
(5)前記蓄熱材料は、結晶水を有することを特徴とする、上記(1)~(4)のいずれかに記載の熱輸送デバイス。
(6)前記蓄熱材料は、金属塩の水和物であることを特徴とする、上記(5)に記載の熱輸送デバイス。
(7)前記熱輸送デバイスが、ベーパーチャンバー、ヒートパイプ又はヒートスプレッダであることを特徴とする、上記(1)~(6)のいずれかに記載の熱輸送デバイス。
(8)高分子マトリックス成分と、熱伝導性充填剤とを含んだ熱伝導シートであって、前記熱伝導シートは、上記(1)~(7)のいずれかに記載の熱輸送デバイスに隣接して設けられることを特徴とする、熱伝導シート。
(9)上記(1)~(7)のいずれかに記載の熱輸送デバイスと、該熱輸送デバイスに隣接して設けられた熱伝導シートとを備えることを特徴とする、熱輸送複合体。
(10)熱源と、放熱部材と、該熱源と該放熱部材との間に設けられた熱輸送デバイスと、を備える電子機器であって、前記輸送デバイスが、上記(1)~(7)のいずれかに記載の熱輸送デバイスであることを特徴とする、電子機器。
(11)上記(1)~(7)のいずれかに記載の熱輸送デバイスの製造方法であって、金属プレートをエッチングした後、該エッチングを施した金属プレートを重ね合わせ、拡散接合を行うことで、金属筐体を作製する工程と、前記金属筐体内を真空化した後、作動液となる冷媒を注入し、封止することで、熱輸送デバイス本体を作製する工程と、前記金属筐体内を真空化した後、蓄熱材料を注入し、封止することで、蓄熱材料部を作製する工程と、を含むことを特徴とする、熱輸送デバイスの製造方法。
【発明の効果】
【0011】
本発明によれば、優れた熱輸送特性を有しつつ、表面温度の急激な上昇を抑えることができる熱輸送デバイス、熱伝導シート、熱輸送複合体及び電子機器を提供することが可能となる。また、本発明によれば、優れた熱輸送特性を有しつつ、表面温度の急激な上昇を抑えることができる熱輸送デバイスを得ることができる熱輸送デバイスの製造方法を提供することが可能となる。
【図面の簡単な説明】
【0012】
【
図1】本発明の熱輸送デバイスの一実施形態を模式的に示した断面図である。
【
図2】本発明の熱輸送デバイスの他の実施形態を模式的に示した断面図である。
【
図3】(a)は、本発明の熱輸送デバイスの他の実施形態を模式的に示した断面図であり、(b)は、本発明の熱輸送デバイスの他の実施形態を模式的に示した断面図である。
【
図4】本発明の熱輸送デバイスの製造方法の一実施形態について、工程の流れを説明した図である。
【
図5】本発明の熱輸送デバイスの製造方法の他の実施形態について、工程の流れを説明した図である。
【
図6】本発明の電子機器の一実施形態を模式的に示した断面図である。
【
図7】実施例における各サンプルの半導体装置について、組立状態を模式的に示した斜視図である。
【
図8】実施例における各サンプルの半導体装置の、時間経過と表面温度との関係を示した図である。
【発明を実施するための形態】
【0013】
以下、本発明の実施形態の一例について、図面を用いて具体的に説明する。なお、図面では、説明の便宜のため、実際の寸法とは異なる比率で、各構成部材の寸法を示している。
<熱輸送デバイス>
まず、本発明の熱輸送デバイスについて説明する。
本発明は、
図1に示すように、金属筐体10内に、ウィック及び作動液を有する熱輸送デバイス本体20と、金属筐体10内に、相転移温度を有する蓄熱材料31が充填された蓄熱材料部30と、を備える、熱輸送デバイス1である。
そして、本発明の熱輸送デバイス1では、前記熱輸送デバイス本体20と、前記蓄熱材料部30とが、一体化していることを特徴とする。
前記熱輸送デバイス本体20と前記蓄熱材料部30とを一体化させることで、熱輸送デバイス本体20が発熱体から吸収した熱を、すぐに外部へ放出するのではなく、高い効率で一旦、蓄熱材料部30へ蓄積させることが可能となり、熱輸送デバイス1自体の表面温度、ひいては半導体装置全体の表面温度の急激な上昇を抑えることができる。
【0014】
一方、ベーパーチャンバーや、ヒートパイプ等の従来の熱輸送デバイスでは、デバイス内に蓄熱材料部が設けられていないため、表面温度の急激な上昇を抑えることができない。
また、従来の熱輸送デバイスの表面に蓄熱ができるシート等を設けた場合には、多少の蓄熱効果が得られるものの、記熱輸送デバイス本体20と前記蓄熱材料部30とを一体化されていないため、蓄熱材料部30への熱輸送効率が低く、十分な蓄熱を行うことができないため、表面温度の急激な上昇を抑えることが難しい。加えて、蓄熱用のシート等を別部材として熱輸送デバイスに設けているため、熱輸送デバイス全体の寸法が大きくなり、省スペース化を阻害するという問題もある。
【0015】
ここで、前記熱輸送デバイス1とは、電子機器内における発熱体(半導体パッケージ等の電子部品)の熱を吸収し、放熱させることで、機器内の温度緩和を図るためのデバイスのことであり、具体的には、ベーパーチャンバー、ヒートパイプ又はヒートスプレッダ等が挙げられる。これらの中でも、本発明の熱輸送デバイス1が、ベーパーチャンバーであることが好ましい。より優れた熱輸送効果を有し、デバイスの表面温度の上昇を抑えることが望まれているためである。
【0016】
なお、前記熱輸送デバイス本体20と、前記蓄熱材料部30とが、一体化しているとは、前記熱輸送デバイス本体20と前記蓄熱材料部30とが結合して、1つの部材(熱輸送デバイス1)を形成している状態のことである。本発明の熱輸送デバイス1では、例えば
図1に示すように、同じ1つの金属筐体10に、前記熱輸送デバイス本体20と前記蓄熱材料部30とが存在するような構成が挙げられる。
【0017】
前記熱輸送デバイス1の厚さT(
図1を参照。)については、特に限定はされず、設計内容等に応じて適宜変更することができる。例えば、省スペース化の観点からは、1.0mm以下であることが好ましく、0.8mm以下であることがより好ましい。また、熱輸送デバイス1の厚さTは、熱輸送デバイス1の熱輸送特性及び蓄熱効率の観点からは、0.1mm以上であることが好ましく、0.2mm以上であることがより好ましい。
【0018】
(熱輸送デバイス本体)
本発明の熱輸送デバイス1は、
図1に示すように、熱輸送デバイス本体20を備える。
熱輸送デバイス本体20は、金属筐体10の内部に、ウィック及び作動液を有し、本発明の熱輸送デバイス1の熱輸送効果を担う部材である。
【0019】
前記熱輸送デバイス本体20を構成する金属筐体10については、特に限定はされず、公知の金属からなる筐体を用いることができる。
金属の種類についても特に限定はされないが、一定の強度があり、熱伝導性が高く、電磁波シールド機能を有する点からは、銅、アルミニウム、チタン、ニッケル、銀、又は、これらの合金を用いることが好ましい。
【0020】
前記金属筐体10内に有するウィック及び作動液については、前記熱輸送デバイス本体20において熱輸送を行うための部材であり、作動液が前記金属筐体10内の蒸発部(発熱体と接している部分)において熱を吸収して蒸発し、気相となった作動液が前記金属筐体10内の冷却部(発熱体と接していない部分)へと移動し、冷却部において熱を放出することで凝縮し、液相となった作動液が再び蒸発部へと移動するサイクルが繰り返される。
【0021】
前記金属筐体10内に有するウィックについては、特に限定はされず、要求される熱輸送性能等に応じて、公知の技術(従来のベーパーチャンバーやヒートパイプの中で用いられている技術)を適宜用いることができる。
例えば、微細凹凸構造、多孔構造、繊維構造、網目構造、溝構造のような、毛細管圧力によって作動液を移動させることができる構造が挙げられる。
【0022】
また、前記ウィックの設置個所についても、特に限定はされない。例えば、作動液を効率的に移動させることができる点からは、前記金属筐体10の内部に連続的に設けられることが好ましい。例えば、前記金属筐体10の内壁面10aのうちの少なくとも一面に設けることができる。
さらに、前記ウィックについては、前記金属筐体10の内壁面10aを、エッチング等によって加工し、凹凸構造を形成することによって得ることもできるし、前記金属筐体10の内壁面10aに、別途作成した繊維や網、凹凸を有する構造体等をコーティングすることによって得ることもできる。
【0023】
前記金属筐体10内に有する作動液についても、特に限定はされず、要求される熱輸送性能等に応じて、公知の技術を適宜用いることができる。例えば、液相と気相との相変化のしやすさの点からは、水、アルコール類、フロン等をとして用いることができる。
【0024】
なお、前記熱輸送デバイス本体20については、前記金属筐体10内に、上述したウィック及び作動液以外の部材を、必要に応じて含むことも可能である。例えば、前記金属筐体10の強度を補助するための部材や、作動液の移動を補助するための部材等が挙げられる。
【0025】
(蓄熱材料部)
本発明の熱輸送デバイス1は、
図1に示すように、蓄熱材料部30を備える。
蓄熱材料部30は、金属筐体10内に、相転移温度を有する蓄熱材料31が充填された部材である。前記熱輸送デバイス本体20と一体化した状態で設けられることで、前記熱輸送デバイス本体20の熱を吸収、蓄積し、表面温度の急激な上昇を抑える効果を奏する。
【0026】
ここで、金属筐体10内に充填される前記蓄熱材料31とは、相転移温度を有する(温度の変化によって相転移を行うことができる)材料のことである。前記蓄熱材料31が相転移温度を有することによって、熱輸送デバイス本体20が発熱した際に、一定量の熱を吸収し、蓄積することが可能となる。
【0027】
また、前記蓄熱材料31は、相転移温度を有するが、その相転移温度は30~100℃の範囲であることが好ましく、30~40℃の範囲又は70~100℃の範囲であることがより好ましい。前記蓄熱材料31の相転移温度が30~100℃の範囲であることによって、熱輸送デバイス本体20が発熱した際の熱吸収を効果的に行うことができ、熱輸送デバイス1が電子機器内で使用される場合の蓄熱効率をより高めることができるためである。
また、前記蓄熱材料31の相転移温度を30~40℃の範囲とすることによって、人体と接する場合における火傷の危険性をより確実減らすことができ、70~100℃の範囲であることによって、CPU(中央処理装置)を保護することができる。
【0028】
さらに、前記蓄熱材料31は、単位質量あたりの潜熱が、150J/g以上の範囲であることが好ましく、200J/gであることがより好ましい。前記蓄熱材料31の単位質量あたりの潜熱が150J/g以上であることによって、前記熱輸送デバイス本体20が発熱した際の熱吸収を効率的に行うことができるためである。また、温度上昇をより長時間抑制でき、熱輸送デバイス1が電子機器内で使用される場合の蓄熱効率をより高めることができるという観点からは、前記蓄熱材料31の単位質量あたりの潜熱を150~300J/gの範囲とすることが好ましく、200~300J/gの範囲とすることがより好ましい。
【0029】
さらにまた、前記蓄熱材料31は、単位体積当たりの潜熱が、150J/cm3以上の範囲であることが好ましく、200J/cm3以上であることがより好ましい。前記蓄熱材料31の単位体積当たりの潜熱が150J/cm3以上であることによって、前記熱輸送デバイス本体20が発熱した際の熱吸収を効率的に行うことができるためである。また、温度上昇をより長時間抑制でき、熱輸送デバイス1が電子機器内で使用される場合の蓄熱効率をより高めることができるという観点からは、前記蓄熱材料31の単位体積あたりの潜熱を、150~600J/cm3の範囲とすることが好ましく、200~600J/cm3の範囲とすることがより好ましい。
【0030】
また、前記蓄熱材料31の種類については、特に限定はされないが、より優れた蓄熱効果が得られる点からは、結晶水を有することが好ましい。前記蓄熱材料31が結晶水を有することによって、蓄熱量を大きくすることができ、表面温度の上昇をより確実に抑制できるためである。
ここで、前記結晶水を有する蓄熱材料31については、特に限定はされないが、蓄熱量が大きく、より優れた蓄熱効果が得られる点からは、金属塩の水和物であることが好ましい。
【0031】
前記金属塩の水和物については、例えば、過塩素酸リチウム三水和物(LiClO3・3H2O)、フッ化カリウム四水和物(KF・4H2O)、硝酸マンガン(II)六水和物(Mn(NO3)2・6 H2O)、塩化カルシウム六水和物(CaCl2・6 H2O)、硝酸リチウム三水和物(LiNO3・3H2O)、硫酸ナトリウム十水和物(Na2SO4・10 H2O)、炭酸ナトリウム十水和物(Na2CO3・10 H2O)、臭化カルシウム四水和物(CaBr2・4 H2O)、臭化リチウム二水和物(LiBr2・2H2O)、リン酸水素二ナトリウム十二水和物(Na2HPO4・12H2O)、硝酸亜鉛六水和物(Zn(NO3)2・6H2O)、フッ化カリウム二水和物(KF・2H2O)、ヨウ化マグネシウム二水和物(MgI2・2H2O)、硝酸カルシウム四水和物(Ca(NO3)2・4H2O)、硝酸鉄(III)九水和物(Fe(NO3)3・9H2O)、メタケイ酸ナトリウム四水和物(Na2SiO3・4H2O)、リン酸水素二カリウム七水和物(K2HPO4・7H2O)、硫酸マグネシウム七水和物(MgSO4・7H2O)、チオ硫酸ナトリウム五水和物(Na2S2O3・5H2O)、硝酸カルシウム三水和物(Ca(NO3)2・3H2O)、塩化鉄(III)二水和物(FeCl3・2H2O)、硝酸ニッケル(II)六水和物(Ni(NO3)2・6H2O)、酢酸ナトリウム三水和物(CH3COONa・3H2O)、塩化マグネシウム四水和物(MgCl2・4H2O)、リン酸三ナトリウム十二水和物(Na3PO4・12H2O)、酢酸リチウム二水和物(CH3COOLi・3H2O)、二リン酸ナトリウム十二水和物(Na2P2O7・12H2O)等が挙げられる。
これらの中でも、蓄熱量が大きく、加工が比較的容易である、腐食が起きにくい等の観点からは、酢酸ナトリウム三水和物、硝酸亜鉛六水和物、炭酸ナトリウム十水和物又はリン酸水素二ナトリウム十二水和物のうちの少なくとも一種を用いることが好ましい。
【0032】
また、前記結晶水を有しない蓄熱材料31については、例えば、パラフィン、二酸化バナジウム、糖アルコール(ソルビトール、キシリトール、アドニトール、トレイトール、D-マンニトール、ペンタエリトリトール、ダルシトール等)が挙げられる。
これらの中でも、蓄熱量が大きいという点からは、パラフィンを用いることが好ましい。
【0033】
なお、蓄熱材料31については、金属筐体10内の全空間に充填されていても良いし、所定の充填率で充填されていても良い。
ただし、優れた蓄熱量を得る観点からは、前記金属筐体10内における前記蓄熱材料31の充填率は、60体積%以上であることが好ましく、70体積%以上であることがより好ましい。また、金属筐体10内が高圧になりすぎないように考慮した場合には、60体積%以上100体積%未満、又は、70体積%以上100体積%未満の範囲とすることが好ましい。
【0034】
さらに、前記蓄熱材料部30では、必要に応じて、前記蓄熱材料31以外の充填材を含むこともできる。例えば、融点調整剤、過冷却防止剤、希釈剤や、前記蓄熱材料31を金属筐体10内へ充填する際の助剤等である。
【0035】
なお、本発明の熱輸送デバイス1において、前記蓄熱材料部30が設けられる位置については、前記熱輸送デバイス本体20と一体化され、熱輸送デバイス本体20の熱を吸収し、蓄積できるような態様できれば特に限定はされない。
例えば、
図1や
図3(b)に示すように、前記熱輸送デバイス本体20と前記蓄熱材料部30とが積層された構造や、
図2及び
図3(a)に示すように、前記熱輸送デバイス本体20と前記蓄熱材料部30とを横に並んだ構造が挙げられる。
これらの中でも、表面温度の急激な上昇をより確実に抑えられる観点からは、前記熱輸送デバイス本体20と前記蓄熱材料部30とが積層された構造(例えば、
図1、
図3(b)に示すような構造)が好ましい。また、熱輸送特性及び表面温度抑制効果をより高いレベルで実現できる点からは、半導体素子等の発熱体と接する位置に前記熱輸送デバイス本体20が設けられ、放熱体やその他の部材と接する位置に前記蓄熱材料部30が設けられることが最も好ましい。さらに、熱輸送デバイス全体の厚さを抑える観点からは、前記熱輸送デバイス本体20と前記蓄熱材料部30とを横に並べて設けること(例えば、
図2及び
図3(a)に示すような構造)が好ましい。
【0036】
さらに、本発明の熱輸送デバイス1において、前記蓄熱材料部30が占める割合(蓄熱材料部30の体積/熱輸送デバイス1の体積×100%)については、表面温度の急激な上昇をより確実に抑えられる観点からは、10体積%以上であることが好ましい。また、本発明の熱輸送デバイス1の省スペース化を図る観点からは、前記蓄熱材料部30が占める割合は、50体積%以下であることが好ましい。
なお、前記蓄熱材料部30が占める割合については、
図2に示すように、前記蓄熱材料部30が複数存在する場合には、合計体積の割合としている。また、前記熱輸送デバイス本体20と、前記蓄熱材料部30との境界部分の金属筐体10については、
図1に示すように、均等に分かれるようにして体積の割合を算出している。
【0037】
なお、前記蓄熱材料31として、強い酸性ものを用いる場合には、前記蓄熱材料部30を構成する金属筐体10については、耐食性のためのコーティングを、内壁に施すことが好ましい。前記金属筐体10の腐食による蓄熱効果の低下を防ぐことができるためである。
【0038】
<熱輸送デバイスの製造方法>
次に、本発明の熱輸送デバイスの製造方法について説明する。
本発明の熱輸送デバイスの製造方法は、例えば
図4に示すように、金属プレートをエッチングした後、該エッチングを施した金属プレートを重ね合わせ、拡散接合を行うことで、金属筐体を作製する工程(
図4(a)及び(b))と、
前記金属筐体内を真空化した後、作動液となる冷媒を注入し、封止することで、熱輸送デバイス本体を作製する工程(
図4(c)及び(d))と、
前記金属筐体内を真空化した後、蓄熱材料を注入し、封止することで、蓄熱材料部を作製する工程(
図4(e)及び(f))と、を含むことを特徴とする。
上述した工程を経ることによって、本発明の熱輸送デバイスを得ることができる。得られた優れた熱輸送デバイスについては、熱輸送特性を有しつつ、表面温度の急激な上昇を抑えることができる。
【0039】
(金属筐体作製工程)
本発明の熱輸送デバイスの製造方法は、金属プレートをエッチングした後、該エッチングを施した金属プレートを重ね合わせ、拡散接合を行うことで、金属筐体を作製する工程(以下、「金属筐体作製工程」という。)を含む。
この金属筐体作製工程では、前記熱輸送デバイス本体20のウィックを形成するためにエッチングを施した金属プレートを含む複数の金属プレートを重ね合わせる。そして、重ね合わせた金属プレートを拡散接合することによって、接合させ1つの金属筐体10を作製する。
【0040】
前記金属筐体作製工程において、重ね合わせる金属プレートの数や、金属プレートに施されたエッチングの形状については、特に限定はされず、要求される性能に応じて適宜変更することができる。
例えば、前記熱輸送デバイス本体20と前記蓄熱材料部30とが積層された熱輸送デバイス1(
図1に示されるような熱輸送デバイス1)に用いる金属筐体10を作製する場合には、
図4(a)に示すように、熱輸送デバイス本体20を構成するためのエッチングが施された金属プレート12と、蓄熱材料部30を構成するための金属プレート13と、蓋となる金属プレート11との、三枚の金属プレートを重ね合わせることができる。
また、前記熱輸送デバイス本体20と前記蓄熱材料部30とが並列して設けられた熱輸送デバイス1(
図2に示されるような熱輸送デバイス1)に用いる金属筐体10を作製する場合には、
図5(a)に示すように、熱輸送デバイス本体20を構成するためのエッチング14a及び蓄熱材料部30を構成するためのエッチング14bが施された金属プレート14と、蓋となる金属プレート11との、二枚の金属プレートを重ね合わせることができる。
【0041】
なお、熱輸送デバイス本体20及び蓄熱材料部30を構成するための金属プレート12、13、14については、後述する作動液及び蓄熱材料を注入できるように、作動液用孔12a及び蓄熱材料用孔13aが設けられている。
【0042】
前記拡散接合については、母材(金属プレート)を密着させ、母材の融点以下の温度条件で、塑性変形を出来るだけ生じない程度に加圧して、接合面間に生じる原子の拡散を利用して接合する方法である。
前記拡散接合の条件については、特に限定はされず、金属プレートの条件に応じて設定することができる。なお、金属の酸化を防ぐ点からは、不活性ガス雰囲気下又は真空下で行うことが好ましい。
【0043】
(熱輸送デバイス本体作製工程)
本発明の熱輸送デバイスの製造方法は、上述した金属筐体作製工程の後、前記金属筐体内を真空化し、作動液となる冷媒を注入し、封止することで、熱輸送デバイス本体を作製する工程(以下、「熱輸送デバイス本体作製工程」という。)を含む。
この熱輸送デバイス本体作製工程では、得られた金属筐体10内に、作動液を注入することによって、本発明の熱輸送デバイス1の前記熱輸送デバイス本体20部分を作製する。
【0044】
注入される作動液については、
図4(c)及び
図5(c)に示すように、前記金属筐体10に設けられた作動液用孔12aを通して注入される。注入の条件については、金属筐体内を真空化した後に行うこと以外は、特に限定はされず、公知の方法によって行うことができる。
【0045】
また、前記熱輸送デバイス本体作製工程における封止(
図4(d)及び
図5(d))の条件についても、前記作動液用孔12aを封止することができる方法であれば特に限定はされない。例えば、レーザー溶接、超音波接合等によって封止する方法が挙げられる。
【0046】
(蓄熱材料部作製工程)
本発明の熱輸送デバイスの製造方法は、上述した熱輸送デバイス本体作製工程の後、前記金属筐体10内を真空化した後、蓄熱材料31を注入し、封止することで、蓄熱材料部30を作製する工程(以下、「蓄熱材料部作製工程」という。)を含む。
この蓄熱材料部作製工程では、得られた金属筐体10内に、蓄熱材料31を注入することによって、本発明の熱輸送デバイス1の蓄熱材料部30部分を作製する。
【0047】
注入される蓄熱材料31ついては、
図4(e)及び
図5(e)に示すように、前記金属筐体10に設けられた蓄熱材料用孔13aを通して注入される。注入の条件については、金属筐体内を真空化した後に行うこと以外は、特に限定はされず、蓄熱材料31の種類に応じて、公知の方法を適宜選択することができる。
【0048】
また、前記蓄熱材料部作製工程の封止(
図4(f)及び
図5(f))の条件についても、前記熱輸送デバイス本体作製工程における封止と同様に、前記蓄熱材料用孔13aを封止することができる方法であれば特に限定はされない。
【0049】
前記蓄熱材料部作製工程の後、本発明の熱輸送デバイス1が得られる。
なお、本発明の熱輸送デバイスの製造方法は、上述した金属筐体作製工程、熱輸送デバイス本体作製工程及び蓄熱材料部作製工程以外の工程を、必要に応じて含むことができる。例えば、得られた熱輸送デバイス1の表面を加工する工程や、得られた熱輸送デバイス1に別の部材を接着する工程等が挙げられる。
【0050】
<熱伝導シート>
次に、本発明の熱伝導シートについて説明する。
本発明の熱伝導シートは、高分子マトリックス成分と、熱伝導性充填剤とを含んだ熱伝導シートであって、上述した本発明の熱輸送デバイスに隣接して設けられることを特徴とする。
高分子マトリックス成分と、熱伝導性充填剤とを含んだ熱伝導シートが、本発明の熱輸送デバイスに隣接して設けられることによって、相乗効果により、さらに優れた熱輸送特性を実現できる。また、本発明の熱輸送デバイスに隣接して設けられているため、本発明の熱伝導シートは、表面温度の急激な上昇が抑えられるという効果も得られる。
【0051】
前記熱伝導シートについては、高分子マトリックス成分と、熱伝導性充填剤とを含むものであれば特に限定はされず、要求される性能に応じて、適宜選択することが可能である。例えば、高分子マトリックス成分及び熱伝導性充填剤に加え、電磁波シールド性を向上させるための磁性金属粉を含むこともできる。
【0052】
例えば、前記高分子マトリックス成分については、本発明の熱伝導シートの基材となる成分であり、公知の樹脂等を適宜選択することができる。例えば、前記高分子マトリックス成分の一つとして、熱硬化性樹脂が挙げられ、熱硬化性樹脂としては、例えば、架橋性ゴム、エポキシ樹脂、ポリイミド樹脂、ビスマレイミド樹脂、ベンゾシクロブテン樹脂、フェノール樹脂、不飽和ポリエステル、ジアリルフタレート樹脂、シリコーン、ポリウレタン、ポリイミドシリコーン、熱硬化型ポリフェニレンエーテル、熱硬化型変性ポリフェニレンエーテル等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
【0053】
さらに、前記熱伝導性充填剤についても、特に限定されず、公知の熱伝導性充填剤を適宜選択することができる。
なお、前記熱伝導性充填剤は、繊維状のものを用いることができる。ここで、「繊維状」とは、アスペクト比の高い(およそ6以上)の形状のことをいう。
さらにまた、前記熱伝導性充填剤の種類については、熱伝導性の高い材料であれば特に限定はされず、例えば、銀、銅、アルミニウム等の金属、アルミナ、窒化アルミニウム、炭化ケイ素、グラファイト等のセラミックス、炭素繊維等が挙げられる。これらの熱伝導性充填剤については、一種単独でもよいし、二種以上を混合して用いてもよい。ただし、前記熱伝導性充填剤の中でも、より高い熱伝導性を得られる点からは、炭素繊維を用いることが好ましい。
【0054】
また、前記磁性金属粉については、例えば、アモルファス金属粉や、結晶質の金属粉末を用いることができる。アモルファス金属粉としては、例えば、Fe-Si-B-Cr系、Fe-Si-B系、Co-Si-B系、Co-Zr系、Co-Nb系、Co-Ta系のもの等が挙げられ、結晶質の金属粉としては、例えば、純鉄、Fe系、Co系、Ni系、Fe-Ni系、Fe-Co系、Fe-Al系、Fe-Si系、Fe-Si-Al系、Fe-Ni-Si-Al系のもの等が挙げられる。さらに、前記結晶質の金属粉としては、結晶質の金属粉に、N(窒素)、C(炭素)、O(酸素)、B(ホウ素)等を微量加えて微細化させた微結晶質金属粉を用いることができる。
【0055】
なお、本発明の熱伝導シートについては、上述した、高分子マトリックス成分及び熱伝導性充填剤、任意成分としての磁性金属粉に加えて、目的に応じてその他の成分を適宜含むことも可能である。
その他の成分としては、例えば、無機物フィラー、チキソトロピー性付与剤、分散剤、硬化促進剤、遅延剤、粘着付与剤、可塑剤、難燃剤、酸化防止剤、安定剤、着色剤等が挙げられる。
【0056】
<熱輸送複合体>
次に、本発明の熱輸送複合体について説明する。
本発明の熱輸送複合体は、上述した本発明の熱輸送デバイスと、該熱輸送デバイスに隣接して設けられた熱伝導シートとを備えることを特徴とする。
本発明の熱輸送複合体では、熱伝導シートと、本発明の熱輸送デバイスとが隣接して設けられることによって、相乗効果により、さらに優れた熱輸送特性を実現できる。また、本発明の熱輸送複合体は、本発明の熱輸送デバイスを備えているため、表面温度の急激な上昇が抑えられるという効果も得られる。
なお、本発明の熱輸送複合体に用いられる熱伝導シートについては、熱伝導特性があるものであれば、特に限定はされない。例えば、上述した本発明の熱伝導シートと同様物を用いることができる。
【0057】
<電子機器>
次に、本発明の電子機器について説明する。
本発明の電子機器は、熱源と、放熱部材と、該熱源と該放熱部材との間に設けられた熱輸送デバイスと、を備える電子機器である。
そして、本発明の電子機器は、前記輸送デバイスが、上述した本発明の熱輸送デバイスであることを特徴とする。
本発明の電子機器は、本発明の熱輸送デバイスを備えているため、優れた熱輸送特性を実現できるとともに、表面温度の急激な上昇を抑えることができる。
【0058】
本発明の電子機器の一例について、
図6(a)及び(b)を用いて説明する。
図6(a)は、本発明の電子機器の一例を示す断面模式図である。
図6(a)で示された電子機器では、熱輸送デバイス1と、熱伝導シート2と、電子部品3と、ヒートシンク5と、配線基板6と、を備える。
なお、電子部品3は、例えば、BGA等の半導体パッケージであり、配線基板6へ実装される。
【0059】
熱輸送デバイス1は、上述した本発明の熱輸送デバイスであり、
図6(a)に示すように、熱伝導シート2と放熱部材であるヒートシンク5との間に設けられる。熱源である電子部品3から発生した熱は、熱伝導シート2及び熱輸送デバイス1を通して、ヒートシンク5へと伝わり放熱される。この際、本発明の熱輸送デバイス1は、蓄熱作用を有するため、電子機器の表面温度の急激な上昇を抑えることができる。
【0060】
図6(b)で示された電子機器では、熱輸送デバイス1と、電子部品3と、ヒートシンク5と、配線基板6と、を備える。
発熱体である電子部品3から発生した熱は、熱輸送デバイス1を通して、ヒートシンク5へと伝わり放熱される。この場合も、本発明の熱輸送デバイス1は、蓄熱作用を有するため、電子機器の表面温度の急激な上昇を抑えることができる。
【0061】
なお、本発明の電子機器は、上述した熱源、放熱部材及び熱輸送デバイスの他にも、必要に応じて、電磁波シールド部材や、電子部品等の他の部材を含むこともできる。
【実施例】
【0062】
次に、本発明を実施例に基づき具体的に説明する。ただし、本発明は下記の実施例に何ら限定されるものではない。
【0063】
図7に示すように、発熱体と、金属板及び/又は蓄熱材料部を有する熱輸送デバイスと、を備える装置のモデルをサンプルとして作製した後、有限要素法解析(FEM解析)によって、蓄熱材料表面(
図7で示す装置のモデルの裏面)の温度について、時間が経過した際の推移を算出した。算出結果を
図8に示す。
【0064】
なお、(1)発熱体については、半導体素子を想定し、消費電力が5.8Wのチップとした。
また、(2)金属板については、0.1mm厚の銅板(熱伝導率:398W/mK)又は0.2mm厚のベーパーチャンバー(金属筐体:銅、作動液:水、熱伝導率:20000W/mK)を用いた。
さらに、(3)蓄熱材料部については、金属筐体内にリン酸水素二ナトリウム十二水和物を充填させた(充填率:75体積%)ものを想定し、厚さ:0.2mm、密度:1.52g/cm3 、質量あたりの蓄熱量:280J/g、充填率を考慮した体積あたりの蓄熱量320J/cm3のシートとした。また、蓄熱材料部のないモデルについても作製した。
なお、実施例の各サンプルとなる装置のモデルにおいては、金属板と蓄熱材料部とは、積層され一体化したものを想定している。
【0065】
図8の結果から、本発明の範囲に含まれる熱輸送デバイスのサンプル(ベーパーチャンバー+蓄熱材料部のモデル)を用いた場合は、表面温度の上昇が長時間(250秒程度)抑えられていることがわかった。一方、その他の熱輸送デバイスのサンプル(銅板+蓄熱材料部、銅板のみ、ベーパーチャンバーのみのモデル)を用いた場合には、いずれもすぐに表面温度の上昇が見られた。
【産業上の利用可能性】
【0066】
本発明によれば、優れた熱輸送特性を有しつつ、表面温度の急激な上昇を抑えることができる熱輸送デバイス、熱伝導シート、熱輸送複合体及び電子機器を提供することが可能となる。また、本発明によれば、優れた熱輸送特性を有しつつ、表面温度の急激な上昇を抑えることができる熱輸送デバイスを得ることができる熱輸送デバイスの製造方法を提供することが可能となる。
【符号の説明】
【0067】
1 熱輸送デバイス
2 熱伝導シート
3 電子部品
5 ヒートシンク
6 配線基板
10 金属筐体
11 蓋となる金属プレート
12 熱輸送デバイス本体を構成するためのエッチングが施された金属プレート
12a 作動液用孔
13 蓄熱材料部を構成するための金属プレート
13a 蓄熱材料用孔
14 熱輸送デバイス本体及び蓄熱材料部を構成するためのエッチングが施された金属プレート
14a 熱輸送デバイス本体を構成するためのエッチング
14b 蓄熱材料部を構成するためのエッチング
20 熱輸送デバイス本体
30 蓄熱材料部
31 蓄熱材料
T 熱輸送デバイスの厚さ