IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社ガスターの特許一覧

<>
  • 特許-給湯装置及び給湯装置の制御方法 図1
  • 特許-給湯装置及び給湯装置の制御方法 図2
  • 特許-給湯装置及び給湯装置の制御方法 図3
  • 特許-給湯装置及び給湯装置の制御方法 図4
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-11-28
(45)【発行日】2022-12-06
(54)【発明の名称】給湯装置及び給湯装置の制御方法
(51)【国際特許分類】
   F24H 15/104 20220101AFI20221129BHJP
   F24H 15/215 20220101ALI20221129BHJP
   F24H 15/219 20220101ALI20221129BHJP
   F24H 15/269 20220101ALI20221129BHJP
【FI】
F24H15/104
F24H15/215
F24H15/219
F24H15/269
【請求項の数】 7
(21)【出願番号】P 2018181578
(22)【出願日】2018-09-27
(65)【公開番号】P2020051686
(43)【公開日】2020-04-02
【審査請求日】2021-09-24
(73)【特許権者】
【識別番号】000129231
【氏名又は名称】株式会社ガスター
(74)【代理人】
【識別番号】100098796
【弁理士】
【氏名又は名称】新井 全
(74)【代理人】
【識別番号】100121647
【弁理士】
【氏名又は名称】野口 和孝
(74)【代理人】
【識別番号】100187377
【弁理士】
【氏名又は名称】芳野 理之
(74)【代理人】
【識別番号】100172524
【弁理士】
【氏名又は名称】長田 大輔
(72)【発明者】
【氏名】浦川 理乃
(72)【発明者】
【氏名】内山 翼
【審査官】古川 峻弘
(56)【参考文献】
【文献】特開平07-219648(JP,A)
【文献】特開平07-091741(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F24H 1/00-15/493
(57)【特許請求の範囲】
【請求項1】
バーナと、
前記バーナが発生する熱により内部を流通する水を加熱する熱交換器と、
前記熱交換器へ低温水を供給する入口管と、
前記熱交換器から高温水を排出する出口管と、
前記入口管と前記出口管とを接続するとともに前記熱交換器を通過させずに前記入口管から前記出口管へ前記低温水を導くバイパス管と、
前記入口管へ供給される前記低温水の温度を検出する給水温度検出部と、
前記出口管から排出される前記高温水の温度を検出する出湯温度検出部と、
前記出口管から排出される前記高温水と前記バイパス管から前記出口管へ導かれる前記低温水とを混合した混合水の温度を検出する給湯温度検出部と、
前記入口管から前記バイパス管へ導かれる前記低温水の流量を調整する調整弁と、
前記調整弁を制御する制御部と、
前記給湯温度検出部が所定時刻に検出する前記混合水の温度と、前記出湯温度検出部が前記所定時刻よりも第1時間遡った第1時刻に検出する前記高温水の温度と、前記給水温度検出部が前記所定時刻よりも第2時間遡った第2時刻に検出する前記低温水の温度に基づいて、前記熱交換器へ導かれる前記低温水の流量の異常を判定する判定部と、を備え、
前記第1時間は、前記出湯温度検出部を通過した前記高温水が前記給湯温度検出部へ到達するまでの時間であり、
前記第2時間は、前記給水温度検出部を通過した前記低温水が前記バイパス管を介して前記給湯温度検出部へ到達するまでの時間であることを特徴とする給湯装置。
【請求項2】
前記判定部は、バイパス比演算値に基づいて前記熱交換器へ導かれる前記低温水の流量の異常を判定し、
前記バイパス比演算値は、前記出湯温度検出部が前記第1時刻に検出する前記高温水の温度から前記給湯温度検出部が前記所定時刻に検出する前記混合水の温度を減算した第1温度を、前記給湯温度検出部が前記所定時刻に検出する前記混合水の温度から前記給水温度検出部が前記第2時刻に検出する前記低温水の温度を減算した第2温度で除した値であることを特徴とする請求項1に記載の給湯装置。
【請求項3】
前記判定部は、前記バイパス比演算値からバイパス比指示値を減算した値が所定の閾値以上となる場合に、前記低温水の流量が異常であると判定し、
前記バイパス比指示値は、前記調整弁の開度から算出される値であって、前記熱交換器へ供給される前記低温水の流量に対する前記バイパス管へ導かれる前記低温水の流量の比率を示す値であることを特徴とする請求項2に記載の給湯装置。
【請求項4】
前記制御部は、前記判定部が前記熱交換器に導かれる前記低温水の流量が異常であると判定した場合に、前記バーナによる燃焼動作を停止させるよう制御することを特徴とする請求項1から請求項3のいずれか一項に記載の給湯装置。
【請求項5】
前記調整弁は、ステッピングモータを回転させることにより開度を調整可能であり、
前記制御部は、前記判定部が前記熱交換器に導かれる前記低温水の流量が異常であると判定した場合に、前記ステッピングモータが所定の初期状態となるように制御することを特徴とする請求項1から請求項4のいずれか一項に記載の給湯装置。
【請求項6】
前記給湯温度検出部が前記所定時刻に検出する前記混合水の温度と、前記出湯温度検出部が前記第1時刻に検出する前記高温水の温度と、前記給水温度検出部が前記第2時刻に検出する前記低温水の温度とに基づいて、前記調整弁の異常を判定することを特徴とする請求項1から請求項5のいずれか一項に記載の給湯装置。
【請求項7】
給湯装置の制御方法であって、
前記給湯装置は、
バーナと、
前記バーナが発生する熱により内部を流通する水を加熱する熱交換器と、
前記熱交換器へ低温水を供給する入口管と、
前記熱交換器から高温水を排出する出口管と、
前記入口管と前記出口管とを接続するとともに前記熱交換器を通過させずに前記入口管から前記出口管へ前記低温水を導くバイパス管と、
前記入口管へ供給される前記低温水の温度を検出する給水温度検出部と、
前記出口管から排出される前記高温水の温度を検出する出湯温度検出部と、
前記出口管から排出される前記高温水と前記バイパス管から前記出口管へ導かれる前記低温水とを混合した混合水の温度を検出する給湯温度検出部と、
前記入口管から前記バイパス管へ導かれる前記低温水の流量を調整する調整弁と、を有し、
前記給湯温度検出部が所定時刻に検出する前記混合水の温度と、前記出湯温度検出部が前記所定時刻よりも第1時間遡った第1時刻に検出する前記高温水の温度と、前記給水温度検出部が前記所定時刻よりも第2時間遡った第2時刻に検出する前記低温水の温度に基づいて、前記熱交換器へ導かれる前記低温水の流量の異常を判定する判定工程と、を備え、
前記第1時間は、前記出湯温度検出部を通過した前記高温水が前記給湯温度検出部へ到達するまでの時間であり、
前記第2時間は、前記給水温度検出部を通過した前記低温水が前記バイパス管を介して前記給湯温度検出部へ到達するまでの時間であることを特徴とする給湯装置の制御方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、給湯装置及び給湯装置の制御方法に関する。
【背景技術】
【0002】
従来、給水配管から熱交換器へ導かれる水の流量と、給水配管からバイパス通路へ導かれる水の流量をバイパス弁により制御し、熱交換器で加熱された水とバイパス弁を通過した水を混合して所望の設定温度の湯を出湯する給湯装置が知られている(例えば、特許文献1参照)。このような給湯装置においては、バイパス弁が故障すると出湯する湯を所望の設定温度に調整することができず、高温の湯が出湯されてしまう危険性がある。
【0003】
特許文献1に開示される給湯装置は、給水配管のバイパス通路への分岐位置よりも熱交換器側に流量センサを設け、流量センサが検知する水の流量から給湯温度の演算値を求める。給湯装置は、給湯温度の演算値と温度センサが検出する給湯温度とのずれが大きい場合にバイパス弁が故障であると判断する。
【先行技術文献】
【特許文献】
【0004】
【文献】特許第2560578号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
特許文献1に開示される給湯装置は、給水配管のバイパス通路への分岐位置よりも熱交換器側に流量センサを設けている。しかしながら、給水配管へ供給される水の全流量を検知するために、給水配管のバイパス通路への分岐位置よりも上流側に流量センサを設ける場合がある。この場合、熱交換器へ流入する水の流量を検出できないため、バイパス弁の故障を判断することができない。
【0006】
また、温度センサが検出する給湯温度が急速に上昇した場合に、バイパス弁の故障を判断する方法が考えられる。しかしながら、バイパス弁の故障に応じて給湯温度が緩やかに上昇する場合もあり、このような場合にはバイパス弁が異常であると判断することができない。また、バイパス弁が異常であると判断する時点で給湯温度が高温(例えば、90℃)となっている場合があり、バイパス弁の異常を早期に検出することができない。
【0007】
本発明は、前記課題を解決するためになされたものであり、熱交換器へ導かれる低温水の流量の異常を早期かつ確実に判定することが可能な給湯装置及びその制御方法を提供することを目的とする。
【課題を解決するための手段】
【0008】
前記課題は、本発明によれば、バーナと、前記バーナが発生する熱により内部を流通する水を加熱する熱交換器と、前記熱交換器へ低温水を供給する入口管と、前記熱交換器から高温水を排出する出口管と、前記入口管と前記出口管とを接続するとともに前記熱交換器を通過させずに前記入口管から前記出口管へ前記低温水を導くバイパス管と、前記入口管へ供給される前記低温水の温度を検出する給水温度検出部と、前記出口管から排出される前記高温水の温度を検出する出湯温度検出部と、前記出口管から排出される前記高温水と前記バイパス管から前記出口管へ導かれる前記低温水とを混合した混合水の温度を検出する給湯温度検出部と、前記入口管から前記バイパス管へ導かれる前記低温水の流量を調整する調整弁と、前記調整弁を制御する制御部と、前記給湯温度検出部が所定時刻に検出する前記混合水の温度と、前記出湯温度検出部が前記所定時刻よりも第1時間遡った第1時刻に検出する前記高温水の温度と、前記給水温度検出部が前記所定時刻よりも第2時間遡った第2時刻に検出する前記低温水の温度に基づいて、前記熱交換器へ導かれる前記低温水の流量の異常を判定する判定部と、を備え、前記第1時間は、前記出湯温度検出部を通過した前記高温水が前記給湯温度検出部へ到達するまでの時間であり、前記第2時間は、前記給水温度検出部を通過した前記低温水が前記バイパス管を介して前記給湯温度検出部へ到達するまでの時間であることを特徴とする給湯装置により解決される。
【0009】
本発明に係る給湯装置によれば、熱交換器へ導かれる低温水の流量の異常を、混合水の温度だけでなく、入口管に供給される低温水の温度及び熱交換器から排出される高温水の温度を考慮して判定している。そのため、混合水の温度が緩やかに上昇する場合であっても、熱交換器へ導かれる低温水の流量の異常を確実に判定することができる。また、入口管に供給される低温水の温度はバイパス管を介して給湯温度検出部へ到達するまでの時間遅れを考慮した温度となっており、熱交換器から排出される高温水の温度は高温水が給湯温度検出部へ到達するまでの時間遅れを考慮した温度となっている。そのため、熱交換器へ導かれる低温水の流量の異常を、時間遅れを考慮して早期に判定することができる。
【0010】
本発明に係る給湯装置において、好ましくは、前記判定部は、バイパス比演算値に基づいて前記低温水の流量の異常を判定し、前記バイパス比演算値は、前記出湯温度検出部が前記第1時刻に検出する前記高温水の温度から前記給湯温度検出部が前記所定時刻に検出する前記混合水の温度を減算した第1温度を、前記給湯温度検出部が前記所定時刻に検出する前記混合水の温度から前記給水温度検出部が前記第2時刻に検出する前記低温水の温度を減算した第2温度で除した値であることを特徴とする。
【0011】
本構成の給湯装置によれば、第1温度を第2温度で除した値から、入口管から熱交換器へ供給される低温水の流量に対する入口管からバイパス管へ導かれる低温水の流量の比率を示すバイパス比演算値が得られる。このバイパス値演算値は、熱交換器へ導かれる低温水の流量の異常がない場合と異常がある場合とで異なった値となる。したがって、バイパス比演算値に基づいて熱交換器へ供給される低温水の流量の異常を判定することができる。
【0012】
本発明に係る給湯装置において、好ましくは、前記判定部は、前記バイパス比演算値からバイパス比指示値を減算した値が所定の閾値以上となる場合に、前記低温水の流量が異常であると判定し、前記バイパス比指示値は、前記調整弁の開度から算出される値であって、前記熱交換器へ供給される前記低温水の流量に対する前記バイパス管へ導かれる前記低温水の流量の比率を示す値であることを特徴とする。
【0013】
本構成の給湯装置によれば、調整弁の開度によりバイパス管へ導かれる低温水の流量が調整されるため、調整弁の開度から熱交換器へ供給される低温水の流量に対するバイパス管へ導かれる低温水の流量の比率を示すバイパス比指示値が得られる。このバイパス比指示値は、熱交換器へ導かれる低温水の流量の異常がある場合には、バイパス比演算値と異なる値となる。したがって、バイパス比演算値からバイパス比指示値を減算した値から、熱交換器へ供給される低温水の流量の異常を判定することができる。
【0014】
本発明に係る給湯装置において、好ましくは、前記制御部は、前記判定部が前記熱交換器に導かれる前記低温水の流量が異常であると判定した場合に、前記バーナによる燃焼動作を停止させるよう制御することを特徴とする。
本構成の給湯装置によれば、例えば、小流量の低温水が熱交換器内で沸騰して内圧が上昇し、沸騰した高温水が給湯温度検出部まで導かれる不具合を抑制することができる。
【0015】
本発明に係る給湯装置において、好ましくは、前記調整弁は、ステッピングモータを回転させることにより開度を調整可能であり、前記制御部は、前記判定部が前記熱交換器に導かれる前記低温水の流量が異常であると判定した場合に、前記ステッピングモータが所定の初期状態となるように制御することを特徴とする。
本構成の給湯装置によれば、熱交換器に導かれる前記低温水の流量が異常であると判定された場合に、ステッピングモータが所定の初期状態となるため、脱調や断線による調整弁の開度の異常を適切に補正することができる。
【0016】
本発明に係る給湯装置において、好ましくは、前記給湯温度検出部が前記所定時刻に検出する前記混合水の温度と、前記出湯温度検出部が前記第1時刻に検出する前記高温水の温度と、前記給水温度検出部が前記第2時刻に検出する前記低温水の温度とに基づいて、前記調整弁の異常を判定することを特徴とする。
本構成の給湯装置によれば、混合水の温度が緩やかに上昇する場合であっても、調整弁の異常を確実に判定することができる。また、調整弁の異常を、時間遅れを考慮して早期に判定することができる。
【0017】
前記課題は、本発明によれば、給湯装置の制御方法であって、前記給湯装置は、バーナと、前記バーナが発生する熱により内部を流通する水を加熱する熱交換器と、前記熱交換器へ低温水を供給する入口管と、前記熱交換器から高温水を排出する出口管と、前記入口管と前記出口管とを接続するとともに前記熱交換器を通過させずに前記入口管から前記出口管へ前記低温水を導くバイパス管と、前記入口管へ供給される前記低温水の温度を検出する給水温度検出部と、前記出口管から排出される前記高温水の温度を検出する出湯温度検出部と、前記出口管から排出される前記高温水と前記バイパス管から前記出口管へ導かれる前記低温水とを混合した混合水の温度を検出する給湯温度検出部と、前記入口管から前記バイパス管へ導かれる前記低温水の流量を調整する調整弁と、を有し、前記給湯温度検出部が所定時刻に検出する前記混合水の温度と、前記出湯温度検出部が前記所定時刻よりも第1時間遡った第1時刻に検出する前記高温水の温度と、前記給水温度検出部が前記所定時刻よりも第2時間遡った第2時刻に検出する前記低温水の温度に基づいて、前記熱交換器へ導かれる前記低温水の流量の異常を判定する判定工程と、を備え、前記第1時間は、前記出湯温度検出部を通過した前記高温水が前記給湯温度検出部へ到達するまでの時間であり、前記第2時間は、前記給水温度検出部を通過した前記低温水が前記バイパス管を介して前記給湯温度検出部へ到達するまでの時間であることを特徴とする給湯装置の制御方法により解決される。
本構成の給湯装置の制御方法によれば、熱交換器へ導かれる低温水の流量の異常を早期かつ確実に判定することができる。
【発明の効果】
【0018】
本発明によれば、熱交換器へ導かれる低温水の流量の異常を早期かつ確実に判定することが可能な給湯装置及びその制御方法を提供することができる。
【図面の簡単な説明】
【0019】
図1】本発明の一実施形態に係る給湯装置を示す概略構成図である。
図2】給湯装置の制御構成を示す概略構成図である。
図3】制御装置が実行する処理を示すフローチャートである。
図4】温度とバイパス比の時刻変化の一例を示すグラフである。
【発明を実施するための形態】
【0020】
以下に、本発明の好ましい実施形態を、図面を参照して詳しく説明する。なお、以下に説明する実施形態は、本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの態様に限られるものではない。また、各図面中、同様の構成要素には同一の符号を付して詳細な説明は適宜省略する。
【0021】
以下、本発明に係る給湯装置101の一実施形態について、図面を参照して説明する。
図1は、本実施形態に係る給湯装置101を示す概略構成図である。
給湯装置101の燃焼室102には、第1バーナ103と、第2バーナ104と、給湯潜熱熱交換器105と、給湯熱交換器106と、が設けられている。また、給湯装置101には、点火プラグ115と、フレームロッド116と、過熱防止装置(温度ヒューズ)117と、が取り付けられている。
【0022】
第1バーナ103および第2バーナ104は、給湯熱交換器106の近傍に設けられ、給湯熱交換器106を加熱する。給湯熱交換器106は、多数のフィンを有し、第1バーナ103および第2バーナ104の少なくともいずれかが発生する熱により内部を流通する水を加熱する。給湯潜熱熱交換器105は、給湯熱交換器106の上側に設けられ、燃焼室102の排ガスに含まれる潜熱により、内部を流通する水を加熱する。すなわち、給湯潜熱熱交換器105は、第1バーナ103および第2バーナ104の少なくともいずれかの燃焼により給湯熱交換器106が熱交換を行った後の燃焼排気と接触する位置に設けられている。このようにして、給湯装置101は、第1バーナ103および第2バーナ104の少なくともいずれかの燃焼により、供給された水を加熱することができる。
【0023】
燃焼室102には、燃焼ファン108と、ガス管201と、が接続されている。ガス管201は、第1のガス分岐管202および第2のガス分岐管203を介して燃焼室102に接続されている。
【0024】
燃焼ファン108は、第1バーナ103および第2バーナ104の燃焼に必要な空気を燃焼室102に送る。ガス管201は、第1のガス分岐管202と、第2のガス分岐管203と、に分岐している。ガス管201は、第1のガス分岐管202を介して、第1バーナ103に対して燃焼に必要なガスを導く。また、ガス管201は、第2のガス分岐管203を介して、第2バーナ104に対して燃焼に必要なガスを導く。
【0025】
ガス管201には、元ガス電磁弁111と、ガス比例弁112と、が設けられている。第1のガス分岐管202には、第1のガス電磁弁113が設けられている。第2のガス分岐管203には、第2のガス電磁弁114が設けられている。元ガス電磁弁111は、第1バーナ103および第2バーナ104に対するガスの供給および停止を制御する。ガス比例弁112は、対応する第1バーナ103および第2バーナ104への供給燃料量を弁開度でもって制御する。第1のガス電磁弁113および第2のガス電磁弁114は、対応する第1バーナ103および第2バーナ104への燃料供給・停止を制御する。
【0026】
給湯装置101の燃焼室102には、ドレン(水)の受け部としての給湯受け皿125がさらに設けられている。燃焼室102において燃焼排気中に存在する水蒸気が比較的低い温度の給湯潜熱熱交換器105の表面で結露し滴下すると、滴下したドレンは、給湯受け皿125に溜められる。給湯受け皿125は、ドレン排出管(図示略)を通して中和器(図示略)に接続されている。
【0027】
給湯潜熱熱交換器105の入口管204は、給湯潜熱熱交換器105及び給湯熱交換器106へ水(低温水)を供給する配管である。入口管204には、給水サーミスタ(給水温度検出部)120と、水量センサ121と、バイパスサーボ(調整弁)122と、が設けられている。給水サーミスタ120は、入口管204へ供給される水(低温水)の温度を検出する。水量センサ121は、給湯潜熱熱交換器105の入口管204を流れる水(低温水)の流量を検出する。
【0028】
バイパスサーボ122は、給湯潜熱熱交換器105の入口管204と、バイパス管211と、の接続部に設けられ、入口管204からバイパス管211に導かれる水(低温水)の量を制御する。バイパス管211は、給湯潜熱熱交換器105の入口管204と、給湯熱交換器106の出口管207とを接続する配管である。バイパス管211は、給湯潜熱熱交換器105及び給湯熱交換器106を通過させずに入口管204から出口管207へ水(低温水)を導く。
【0029】
給湯潜熱熱交換器105の入口管204は、給湯潜熱熱交換器105の出口管205に接続されている。給湯潜熱熱交換器105の出口管205の端部には、水抜き栓127が設けられている。また、給湯潜熱熱交換器105の出口管205には、給湯潜熱熱交換器105の出口管205から分岐した給湯熱交換器106の入口管206が接続されている。給湯熱交換器106の入口管206には、水管サーミスタ118が設けられている。水管サーミスタ118は、給湯熱交換器106の入口管206を流れる水の温度を検出する。
【0030】
給湯熱交換器106の入口管206は、給湯熱交換器106の出口管207に接続されている。出口管207は、給湯熱交換器106から加熱された水(高温水)を排出する配管である。給湯熱交換器106の出口管207には、熱交換サーミスタ(出湯温度検出部)119と、給湯サーミスタ(給湯温度検出部)123と、湯量サーボ124と、が設けられている。
【0031】
熱交換サーミスタ119は、給湯熱交換器106の出口管207から排出される水であって、給湯熱交換器106を通過した直後の水(高温水)の温度を検出する。給湯サーミスタ123は、給湯熱交換器106の出口管207から排出される水(高温水)とバイパス管211から出口管207へ導かれる水(低温水)とを混合した水(混合水)の温度を検出する。湯量サーボは、給湯管212及び給湯管213に導かれる湯の量を制御する。
【0032】
給湯装置101は、給湯装置101の各部を制御する制御装置130を備える。図2は、給湯装置101の制御構成を示す概略構成図である。図2に示すように、制御装置130は、CPU等の演算処理装置で構成される制御部131と、判定部132と、記憶部133と、を備える。判定部132は、例えば、制御装置130が実行するプログラムとして実装されている。
【0033】
制御部131は、給湯装置101の各部を制御するものである。制御部131は、入口管204からバイパス管211へ導かれる水(低温水)の流量が所定の目標流量となるようにバイパスサーボ122を制御する。バイパスサーボ122は、ステッピングモータ(図示略)を正回転または逆回転させることにより開度を調整する弁である。制御部131は、バイパスサーボ122にステッピングモータを回転させるためのパルス信号を送信することにより、バイパスサーボ122の開度を調整する。
【0034】
判定部132は、入口管204から給湯潜熱熱交換器105及び給湯熱交換器106へ導かれる水の流量の異常を判定するものである。給湯潜熱熱交換器105及び給湯熱交換器106へ導かれる水の流量の異常とは、例えば、バイパスサーボ122の故障等により、給湯潜熱熱交換器105及び給湯熱交換器106へ導かれる水の流量が極端に少なくなる異常である。給湯潜熱熱交換器105及び給湯熱交換器106へ導かれる水の流量が極端に少なくなると、給湯熱交換器106で加熱された水が蒸発して給湯熱交換器106の内圧が上昇し、沸騰した高温水が給湯サーミスタまで導かれてしまう。この場合、上昇した内圧によりバイパス管211から出口管207へ水(低温水)が流入しない状態が発生し、給湯管212及び給湯管213へ沸騰した高温水が導かれる可能性がある。
【0035】
本実施形態の給湯装置101は、水量センサ121により入口管204へ供給される水の全量を測定できるが、給湯潜熱熱交換器105及び給湯熱交換器106へ導かれる水の流量を測定することはできない。そこで、本実施形態の給湯装置101は、バイパス比演算値Bpcalcとバイパス比指示値Bpnowを算出して、給湯潜熱熱交換器105及び給湯熱交換器106へ導かれる水の流量の異常を判定する。
【0036】
判定部132は、バイパス比演算値Bpcalcとバイパス比指示値Bpnowを算出し、これらに基づいて、入口管204から給湯潜熱熱交換器105及び給湯熱交換器106へ導かれる水の流量の異常を判定する。ここで、バイパス比は、入口管204から給湯潜熱熱交換器105及び給湯熱交換器106へ供給される水(低温水)の流量に対する入口管204からバイパス管211へ導かれる水(低温水)の流量の比率をいう。
【0037】
バイパス比指示値Bpnowは、バイパスサーボ122の開度から算出される値である。バイパスサーボ122の開度が0(全閉)である場合、バイパス管211に水(低温水)が導かれない。そのため、バイパス比指示値Bpnowは0となる。バイパスサーボ122の開度が全開である場合、バイパス管211に給湯装置101で予め定められた流量の水(低温水)が導かれる。この場合、バイパス比指示値Bpnowは、例えば、3~4程度の予め定められた値となる。判定部132は、バイパスサーボ122の開度とバイパス比との関係を示すテーブルを記憶部133から読み出して、現在のバイパスサーボ122の開度と対比することにより、バイパス比指示値Bpnowを算出する。
【0038】
バイパス比演算値Bpcalcは、水の温度に基づいて演算により算出されるバイパス比である。判定部132は、給水サーミスタ120が検出する入口管204を流通する水(低温水)の温度と、熱交換サーミスタ119が検出する給湯熱交換器106により加熱された水(高温水)の温度と、給湯サーミスタ123が検出する水(混合水)の温度とに基づいて、バイパス比演算値Bpcalcを算出する。
【0039】
具体的に、判定部132は、以下の式(1)によりバイパス比演算値Bpcalcを算出する。
Bpcalc=(Thex(Δ1)‐Tout)/(Tout-Tin(Δ2)) (1)
ここで、Toutは、給湯サーミスタ123が所定時刻Tnowに検出する水(混合水)の温度である。Thex(Δ1)は、熱交換サーミスタ119が所定時刻Tnowよりも第1時間Δ1遡った時刻(第1時刻)に検出する水(高温水)の温度である。Tin(Δ2)は、給水サーミスタ120が所定時刻Tnowよりも第2時間Δ2遡った時刻(第2時刻)に検出する水(低温水)の温度である。
【0040】
第1時間Δ1は、熱交換サーミスタ119を通過した水(高温水)が給湯サーミスタ123へ到達するまでの時間である。第2時間Δ2は、給水サーミスタ120を通過した水(低温水)がバイパス管211を介して給湯サーミスタ123へ到達するまでの時間である。第1時間Δ1及び第2時間Δ2は、それぞれ以下の式(2),(3)により判定部132が算出する。
Δ1=U1/(W/(1+Bpnow)) (2)
Δ2=Z1/(W・Bpnow/(1+Bpnow)) (3)
【0041】
ここで、U1は、熱交換サーミスタ119から給湯サーミスタ123に至るまでの領域で出口管207が保持する水(高温水)の容積である。Z1は、給水サーミスタ120から給湯サーミスタ123に至るまでの領域で入口管204とバイパス管211と出口管207が保持する水(低温水)の容積である。U1及びZ1の値は、予め測定しておいて記憶部133に記憶させておくものとする。Wは、入口管204へ供給される水(低温水)の流量[L/sec]である。Wは、水量センサ121により検出される。
【0042】
判定部132は、記憶部133に記憶されたU1及びZ1と、水量センサ121から得たWと、予め算出したバイパス比指示値Bpnowと、に基づいて、式(2),(3)から第1時間Δ1及び第2時間Δ2を算出する。判定部132は、第1時間Δ1から、熱交換サーミスタ119が所定時刻Tnowよりも第1時間Δ1遡った時刻(第1時刻)に検出する水(高温水)の温度Thex(Δ1)を得る。同様に、判定部132は、第2時間Δ2から、給水サーミスタ120が所定時刻Tnowよりも第2時間Δ2遡った時刻(第2時刻)に検出する水(低温水)の温度Tin(Δ2)を得る。
【0043】
熱交換サーミスタ119が検出した温度は、温度を検出した時刻を示す時刻情報とともに現在時刻から所定期間(例えば、20秒間)まで遡って記憶部133に記憶させておく。同様に、給水サーミスタ120が検出した温度は、温度を検出した時刻を示す時刻情報とともに現在時刻から所定期間まで遡って記憶部133に記憶させておく。判定部132は、記憶部133に記憶された複数の時刻の温度の中から、所定時刻Tnowよりも第1時間Δ1遡った時刻(第1時刻)に検出する水(高温水)の温度Thex(Δ1)を得る。また、判定部132は、記憶部133に記憶された複数の時刻の温度の中から、所定時刻Tnowよりも第2時間Δ2遡った時刻(第2時刻)に検出する水(低温水)の温度Tin(Δ2)を得る。そして、判定部132は、式(1)からバイパス比演算値Bpcalcを算出する。
【0044】
次に、制御装置130が実行する処理について、図3のフローチャートを参照して説明する。
ステップS301で、判定部132は、バイパスサーボ122の開度とバイパス比との関係を示すテーブルを記憶部133から読み出して、現在のバイパスサーボ122の開度と対比することにより、バイパス比指示値Bpnowを算出する。
ステップS302で、判定部132は、式(1)によりバイパス比演算値Bpcalcを算出する。
【0045】
ステップS303で、判定部132は、バイパス比演算値Bpcalcからバイパス比指示値Bpnowを減算した値がバイパス比閾値Bpth以上であるかどうかを判断する。判定部132は、YESであればステップS304へ処理を進め、NOであれば再びステップS301を実行する。バイパスサーボ122のバイパス比が3.8である場合にバイパス比指示値Bpnowが0(ゼロ)であるにもかかわらずバイパス比演算値Bpcalcが3.8である場合には脱調等制御系部品の破損が考えられるが、バイパス比演算値Bpcalcが4(バイパス比演算値Bpcalcからバイパス比指示値Bpnowを減算した値が4)である場合には明らかに異常な状態である。そこでバイパス比閾値Bpthとして、例えば3~5の任意の値を設定することができる。
【0046】
ここで、バイパス比閾値Bpthの中央値である4は、バイパスサーボ122の開度を最大とした場合(例えば、制御系部品の破損等によって最大となってしまった場合)のバイパス比の値(バイパス比の最大値)である。バイパス比演算値Bpcalcからバイパス比指示値Bpnowを減算した値が、バイパス比の最大値である4を超える場合、破損以外の異なる要因により、給湯熱交換器106で加熱された水が沸騰する現象が発生していることが明らかである。そこで、入口管204から給湯潜熱熱交換器105及び給湯熱交換器106へ導かれる水の流量が異常であることを判定するために、給湯熱交換器106で加熱された水が沸騰する現象が発生している、あるいはそのような現象が発生する可能性が高いことを示すバイパス比閾値Bpthを設定している。
【0047】
例えば、比例-積分-微分制御(PID制御)の積分制御を用いて(特に、過去のデータを重視した積分動作を用いて、たとえバイパス比閾値Bpthが3以下であったとしても)、バイパス比閾値Bpthが4を超える現象(沸騰発生)を予測したときに、バイパス比閾値Bpth以上であると判断してもよい。
【0048】
また、以上の説明では、バイパス比閾値Bpthとして、バイパス比の最大値を中心とした範囲の値を採用したが、他の態様であってもよい。例えば、入口管204から給湯潜熱熱交換器105及び給湯熱交換器106へ導かれる水の流量の異常によって沸騰現象が起きていること、沸騰現象が起きる可能性が高いこと、沸騰現象が起きると予測されること等、沸騰現象を示す他の閾値をバイパス比閾値Bpthとして採用してもよい。
また、ステップS303において、判定部132は、バイパス比演算値Bpcalcをバイパス比指示値Bpnowで除算した値をもってバイパス比閾値Bpth以上であるかどうかを判断するようにしてもよい。
【0049】
また、以上の説明では、バイパス比の最大値(湯水混合比の最大値)が4である場合について説明したが、バイパス比の最大値(給湯装置の湯水混合比の最大値)が他の値である給湯装置においては、その給湯装置のバイパス比の最大値(湯水混合比の最大値)に適したバイパス比閾値Bpthを設定する。例えば、バイパス比の最大値(湯水混合比の最大値)が10である場合、バイパス比閾値Bpthとして10を中心とした範囲(例えば、8~12)から任意の値を採用するものとする。
【0050】
判定部132は、バイパス比演算値Bpcalcからバイパス比指示値Bpnowを減算した値がバイパス比閾値Bpth以上であるか場合に、入口管204から給湯潜熱熱交換器105及び給湯熱交換器106へ導かれる水の流量が異常であると判定している。入口管204から給湯潜熱熱交換器105及び給湯熱交換器106へ導かれる水の流量に異常がなければ、バイパス比演算値Bpcalcとバイパス比指示値Bpnowは同程度となる。
【0051】
バイパスサーボ122が全開状態で故障した場合、制御部131がバイパスサーボ122を全閉となるように制御すると、バイパス比指示値Bpnowは0となる。この場合、バイパスサーボ122が全開状態であるため、入口管204から給湯潜熱熱交換器105及び給湯熱交換器106へ導かれる水の流量が少なくなり、バイパス比演算値Bpcalcの値が大きくなる。
【0052】
ここでは、入口管204から給湯潜熱熱交換器105及び給湯熱交換器106へ導かれる水の流量の異常は、バイパスサーボ122の故障によるものとしたが、他の要因も考えられる。例えば、入口管204、出口管207、バイパス管211の一部が凍結して水が流通不能となることも異常の要因となる。
【0053】
ステップS304で、制御部131は、入口管204から給湯潜熱熱交換器105及び給湯熱交換器106へ導かれる水の流量に異常があるため、第1バーナ103の燃焼動作を停止させる。
ステップS305で、制御部131は、入口管204から給湯潜熱熱交換器105及び給湯熱交換器106へ導かれる水の流量に異常があるため、第2バーナ104の燃焼動作を停止させる。
【0054】
ステップS306で、制御部131は、バイパスサーボ122を駆動するステッピングモータが所定の初期状態となるように制御する。所定の初期状態とは、ステッピングモータが原点位置を確実に認識した状態をいう。給湯潜熱熱交換器105及び給湯熱交換器106へ導かれる水の流量の異常が、ステッピングモータの脱調や断線等を原因としたものである場合、ステッピングモータを所定の初期状態とすることで不具合を解消することができる。
【0055】
ここで、温度とバイパス比の時刻変化の一例について、図4を参照して説明する。図4は、本実施形態の図3に示す処理を行わずに、入口管204から給湯潜熱熱交換器105及び給湯熱交換器106へ導かれる水を加熱した例を示す。図4に示す例は、バイパスサーボ122が全開状態で故障している例である。
【0056】
給湯装置101が動作を開始して第1バーナ103及び第2バーナ104による燃焼動作を行うと、熱交換サーミスタ119が検出する温度と、給湯サーミスタ123が検出する温度が上昇する。時刻t2に至るまでは、バイパス比指示値Bpnowが0である。これは、制御部131がバイパスサーボ122の開度を0(全閉)とするように制御していることを示す。
【0057】
しかしながら、実際にはバイパスサーボ122が全開状態で故障しているため、バイパス比演算値Bpcalcが時刻t1から急上昇する。これは、バイパスサーボ122が全開状態であり、入口管204から給湯潜熱熱交換器105及び給湯熱交換器106へ導かれる水の流量が少なくなっているためである。
【0058】
図4に示す例では、バイパス比演算値Bpcalcからバイパス比指示値Bpnowを減算した値がバイパス比閾値Bpth以上となっても第1バーナ103及び第2バーナ104による燃焼動作を停止させていない。そのため、時刻t2を過ぎた直後に熱交換サーミスタ119が検出する温度と、給湯サーミスタ123が検出する温度が最大値となる。熱交換サーミスタ119の温度は、内部で水が沸騰する温度まで上昇してしまう。
【0059】
本実施形態では、判定部132は、バイパス比演算値Bpcalcからバイパス比指示値Bpnowを減算した値がバイパス比閾値Bpth以上であるか場合に、入口管204から給湯潜熱熱交換器105及び給湯熱交換器106へ導かれる水の流量が異常であると判定している。そのため、図4で時刻t1から時刻t2に至るまでの時点で異常であると判定し、第1バーナ103及び第2バーナ104による燃焼動作を停止させることができる。よって、時刻t2を過ぎた直後に熱交換サーミスタ119が検出する温度と、給湯サーミスタ123が検出する温度が最大値となる不具合が生じることがない。
【0060】
以上説明した本実施形態の給湯装置101が奏する作用および効果について説明する。
本実施形態の給湯装置101によれば、給湯潜熱熱交換器105及び給湯熱交換器106へ導かれる水(低温水)の流量の異常を、給湯サーミスタ123が検出する水(混合水)の温度だけでなく、入口管204に供給される水(低温水)の温度及び給湯熱交換器106から排出される水(高温水)の温度を考慮して判定している。そのため、給湯サーミスタ123が検出する水(混合水)の温度が緩やかに上昇する場合であっても、給湯潜熱熱交換器105及び給湯熱交換器106へ導かれる水(低温水)の流量の異常を確実に判定することができる。
【0061】
また、入口管204に供給される水(低温水)の温度はバイパス管211を介して給湯サーミスタ123へ到達するまでの時間遅れを考慮した温度となっており、給湯潜熱熱交換器105及び給湯熱交換器106から排出される水(高温水)の温度は水が給湯サーミスタ123へ到達するまでの時間遅れを考慮した温度となっている。そのため、給湯潜熱熱交換器105及び給湯熱交換器106へ導かれる水(低温水)の流量の異常を、時間遅れを考慮して早期に判定することができる。
【0062】
本実施形態の給湯装置101によれば、式(1)により、入口管204から給湯潜熱熱交換器105及び給湯熱交換器106へ供給される水(低温水)の流量に対する入口管204からバイパス管211へ導かれる水(低温水)の流量の比率を示すバイパス比演算値Bpcalcが得られる。このバイパス値演算値Bpcalcは、給湯潜熱熱交換器105及び給湯熱交換器106へ導かれる水(低温水)の流量の異常がない場合と異常がある場合とで異なった値となる。したがって、バイパス比演算値Bpcalcに基づいて給湯潜熱熱交換器105及び給湯熱交換器106へ供給される水(低温水)の流量の異常を判定することができる。
【0063】
本実施形態の給湯装置101によれば、バイパスサーボ122の開度によりバイパス管211へ導かれる水(低温水)の流量が調整されるため、バイパスサーボ122の開度から給湯潜熱熱交換器105及び給湯熱交換器106へ供給される水(低温水)の流量に対するバイパス管211へ導かれる水(低温水)の流量の比率を示すバイパス比指示値Bpnowが得られる。このバイパス比指示値Bpnowは、給湯潜熱熱交換器105及び給湯熱交換器106へ導かれる水(低温水)の流量の異常がある場合には、バイパス比演算値Bpcaclと異なる値となる。したがって、バイパス比演算値Bpcalcからバイパス比指示値Bpnowを減算した値から、給湯潜熱熱交換器105及び給湯熱交換器106へ供給される水(低温水)の流量の異常を判定することができる。
【0064】
本実施形態の給湯装置101によれば、制御部131は、判定部132が給湯潜熱熱交換器105及び給湯熱交換器106に導かれる水(低温水)の流量が異常であると判定した場合に、第1バーナ103及び第2バーナ104による燃焼動作を停止させるよう制御する。そのため、例えば、小流量の水が給湯潜熱熱交換器105及び給湯熱交換器106の内部で沸騰して内圧が上昇し、沸騰した水が給湯サーミスタ123まで導かれる不具合を抑制することができる。
【0065】
本実施形態の給湯装置101によれば、給湯潜熱熱交換器105及び給湯熱交換器106に導かれる水(低温水)の流量が異常であると判定された場合に、ステッピングモータが所定の初期状態となる。そのため、脱調や断線によるバイパスサーボ122の開度の異常を適切に補正することができる。
【0066】
ここで、本実施形態と特許文献1との差異について説明する。
特許文献1には、「熱交換器を有する給湯路と、熱交換器の入口側及び出口側をバイパスするよう給湯路に接続されたバイパス通路と、バイパス通路に設けたバイパス弁及びバイパス弁の開度を制御する弁制御装置と、熱交換器を通過する流量を検出する流量検知器と、入水温度を検知する入水温度検知器と、熱交換器からの出湯温度を検出する湯温検知器と、熱交換器から出湯された湯とバイパス通路を通過した水との混合温度を検出するミキシング温度検知器と、流量検知器、入水温度検知器、湯温検知器の各検出値及び弁制御装置によるバイパス弁の制御量から給湯温度を演算し、給湯温度の演算値とミキシング温度検知器で検知した給湯温度とを比較することによってバイパス弁の故障を検出する故障検出部とを備えたバイパスミキシング方式の給湯装置」が開示されている。
【0067】
FF制御部16へは疑似設定温度演算部18の演算出力や入水温度センサ6及び流量センサ7の検知信号が出力されており、FF制御部16は流量検知器、入水温度検知器のセンサ出力に基づいて熱交換器2からの出湯温度が疑似設定温度Tps(例えば80℃)となるよう能力制御装置14によりガスバーナ13の燃焼力をフィードフォワード制御する。
【0068】
特許文献1において、バイパス弁8に故障が発生すると、例えばQcc/Qh=α(N)=1(Tps=80℃ Tc=20℃)であるにもかかわらずQc/Qh=α(N)=0.2の場合には熱湯が出湯され(例えば70℃が出湯され)、Qc/Qh=α(N)=5の場合には湯とならない(例えば30℃が出湯される)。
【0069】
例えばQc/Qh=α(N)=0.2の場合において、ミキシング温度検知器で検知した給湯温度がないと(ミキシング温度検知器で想定外の給湯温度が検知されないと)、故障検出部でバイパス弁の故障を検出、判断できないので、たとえ、バイパス弁に故障が発生した時に、直ちに熱交換器2の能力を小さくしたり(熱交換器2からの出湯温度を下げようとしても)、例えば給湯を中止(燃焼を中止)したりしても、すでに、熱交換器2の出口からミキシング温度センサ間の配管には高温の湯が満たされている結果、カランやシャワー等の給湯栓から、前記配管の湯が出終わるまで、高温の湯が吐出されるのを防止することができないという問題があった。
【0070】
そもそも、ミキシング温度検知器で想定外の給湯温度が検知されないと、故障検出部でバイパス弁の故障を検出、判断できないのであるから、設定温度Tsに対して想定外の混合温度Tmが検出された場合に、異常と判断すれば良いだけであって、特許文献1の利点としては、修理員に対して、バイパス弁の交換指示ができるに止まっていた。
【0071】
本実施形態は特許文献1の問題点を解決するために、給湯装置を通過する流量を検出する流量検知器を用いると共に、FF制御部は流量検知器、入水温度検知器のセンサ出力に基づいて給湯装置からの出湯温度が、設定温度Tsとなるよう能力制御装置によりガスバーナ13の燃焼力をフィードフォワード制御するようにした。このような構成とすれば、バイパス弁に故障が発生し、例えばQc/Qh=α(N)=1であってもQc/Qh=α(N)=0.2の場合であってもQc/Qh=α(N)=5の場合であっても、熱交換器からの出湯温度が異なるのみで、給湯装置からの給湯温度は設定温度Tsである為に、カランやシャワー等の給湯栓から、高温の湯が吐出されるのを確実に防止することができた。
【0072】
ところが、本願発明者が前記バイパス弁の故障確認試験において、熱交換器からの出湯できない位にQc/Qhを変えた(例えばQhが0のように極端に少なくした)場合に、熱交換器からの湯の供給は極端に少なくミキシング温度に至ろうとする。しかし、次の瞬間に爆発的な速度で蒸気が発生し、そのエネルギーで、熱交換器からの湯の供給が極端に増加、減少する現象らしき事象が捉えられたため、熱交換器内でこのような事象が発生しているものと推定した。
【0073】
本実施形態は、定常的な状態(熱交換器内でどんなに高温であろうとも湯が作られる状態)で安全に出湯するものにおいて、すなわち、FF制御部が給湯装置を通過する流量を検出する流量検知器、入水温度検知器、設定温度Tsに基づいてフィードフォワード制御するが故にバイパス弁が故障しても支障が生じない機器・制御において、熱交換器内において蒸気が生成され、そのエネルギーで、熱交換器からの湯の供給が極端に増加、減少する現象を捉えようとするものであり、バイパス弁の故障程度が極端な故障状態であることを検知しようとするものである。
【0074】
本願発明者はこのような極端な故障状態を把握する方法として、まず、バイパスサーボ開故障検知に熱交出湯温の温度勾配を使用することを試みた。そして、熱交出湯温が急速に上昇した場合、バイパスサーボ開故障によって熱交流量が少なくなり、高温になったと判断して燃焼を止めた。しかし、以下の点が問題点として挙げられた。
1.熱交出湯温度が緩やかに上昇し、異常を検知できない使用条件が存在すること。
2.異常時出湯直後はある程度まで通常出湯と同様の熱交温度遷移をするため、高温出湯される前までに異常を検知できないことがあること。
【0075】
すなわち、鍋で湯を沸かしている時に、いきなり沸騰が生じる現象(突沸)が生じれば、熱交出湯温度が急激に上昇することがあるものの、通常は、鍋の底で小さい気泡が発生しては消え、発生しては消える現象が続き、その段階を経てやがて作られる気泡が大きくなり、気泡消失する時間がながくなり、そして、液面上に気泡がたどり着いて、沸騰が始まる。すなわち、熱交換器内の湯と気泡の総体積は徐々に大きくなり、そして、沸騰が始まってから蒸気が押し寄せて来るものと推定される。蒸気が押し寄せて来る前段階として、熱交換器内の湯と気泡(すぐに消失する小さな気泡)の総体積は徐々に大きくなると思われる。
【0076】
つまり、与えた熱量(流量×(設定温度Ts-入水温度))に対して給湯装置からの出湯熱量(流量×(出湯温度-入水温度))が次第に大きくなる現象が、蒸気が押し寄せて来る前段階として起きるものと思われる。そこで、(流量×(設定温度Ts-入水温度))<<出湯熱量(流量×(出湯温度-入水温度))の条件の時に異常が生じているものとして蒸気が押し寄せて来る前段階として検知ができそうであったが、下記の理由により正確な判断が出来ないことが判明した。例えば燃焼開始時には熱交換器自体(銅)に熱を蓄えなければいけない為に(流量×(設定温度Ts-入水温度))>>出湯熱量(流量×(出湯温度-入水温度))の状態が続き、やがて(流量×(設定温度Ts-入水温度))=出湯熱量(流量×(出湯温度-入水温度))となる。
【0077】
この時、例えばQc/Qh=α(N)=1の状態であったとすると、Qc/Qh=α(N)=0.2に変更すると、熱交換器内で作られつつあった湯、ないしは、熱交換器の出口からミキシング温度センサ間の配管が一時的に大量供給され、熱交換器内で新たに作られた温度の低い湯がミキシング温度センサに至るまで、(流量×(設定温度Ts-入水温度))<<出湯熱量(流量×(出湯温度-入水温度))の状態が生じる。
【0078】
すなわち、単純に(流量×(設定温度Ts-入水温度))<<出湯熱量(流量×(出湯温度-入水温度))の状態が生じたからと言って異常であるとは言えない。そこで、本願発明者は、Qc/Qh=α(N)の許容動作範囲と、その動作範囲以内の(流量×(設定温度Ts-入水温度))<<出湯熱量(流量×(出湯温度-入水温度))であるか否かに基づいて、バイパス弁の故障程度が極端な故障状態(許容動作範囲外=バイパス比指示値Bpnowから大きく逸脱した状態)であることを検知する本実施形態に至った。
【0079】
以上、本発明の実施形態について説明した。しかし、本発明は、上記実施形態に限定されず、特許請求の範囲を逸脱しない範囲で種々の変更を行うことができる。上記実施形態の構成は、その一部を省略したり、上記とは異なるように任意に組み合わせたりすることができる。
【0080】
以上の説明において、判定部132は、バイパス比演算値Bpcalcからバイパス比指示値Bpnowを減算した値がバイパス比閾値Bpth以上であるか場合に、入口管204から給湯潜熱熱交換器105及び給湯熱交換器106へ導かれる水の流量が異常であると判定するものとしたが、他の態様であってもよい。例えば、バイパス比演算値Bpcalcが所定の閾値以上である場合に、入口管204から給湯潜熱熱交換器105及び給湯熱交換器106へ導かれる水の流量が異常であると判定してもよい。
【符号の説明】
【0081】
101・・・給湯装置、 103・・・第1バーナ、 104・・・第2バーナ、 105・・・給湯潜熱熱交換器、 106・・・給湯熱交換器、 119・・・熱交換サーミスタ、 120・・・給水サーミスタ、 121・・・水量センサ、 122・・・バイパスサーボ、 123・・・給湯サーミスタ、 130・・・制御装置、 131・・・制御部、 132・・・判定部、 133・・・記憶部、 204・・・入口管、 207・・・出口管、 211・・・バイパス管、 Bpcalc・・・バイパス比演算値、 Bpnow・・・バイパス比指示値、 Bpth・・・バイパス比閾値
図1
図2
図3
図4