IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ノボキュア ゲーエムベーハーの特許一覧

特許7184774変形可能テンプレートを使用して最適化された電極位置を有するTTフィールドを用いて患者を治療する
<>
  • 特許-変形可能テンプレートを使用して最適化された電極位置を有するTTフィールドを用いて患者を治療する 図1
  • 特許-変形可能テンプレートを使用して最適化された電極位置を有するTTフィールドを用いて患者を治療する 図2
  • 特許-変形可能テンプレートを使用して最適化された電極位置を有するTTフィールドを用いて患者を治療する 図3
  • 特許-変形可能テンプレートを使用して最適化された電極位置を有するTTフィールドを用いて患者を治療する 図4
  • 特許-変形可能テンプレートを使用して最適化された電極位置を有するTTフィールドを用いて患者を治療する 図5
  • 特許-変形可能テンプレートを使用して最適化された電極位置を有するTTフィールドを用いて患者を治療する 図6
  • 特許-変形可能テンプレートを使用して最適化された電極位置を有するTTフィールドを用いて患者を治療する 図7
  • 特許-変形可能テンプレートを使用して最適化された電極位置を有するTTフィールドを用いて患者を治療する 図8
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-11-28
(45)【発行日】2022-12-06
(54)【発明の名称】変形可能テンプレートを使用して最適化された電極位置を有するTTフィールドを用いて患者を治療する
(51)【国際特許分類】
   A61N 1/36 20060101AFI20221129BHJP
   A61N 1/04 20060101ALI20221129BHJP
【FI】
A61N1/36
A61N1/04
【請求項の数】 17
(21)【出願番号】P 2019531698
(86)(22)【出願日】2017-12-13
(65)【公表番号】
(43)【公表日】2020-01-23
(86)【国際出願番号】 IB2017057901
(87)【国際公開番号】W WO2018109691
(87)【国際公開日】2018-06-21
【審査請求日】2020-11-13
(31)【優先権主張番号】62/433,501
(32)【優先日】2016-12-13
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】519275847
【氏名又は名称】ノボキュア ゲーエムベーハー
(74)【代理人】
【識別番号】100108453
【弁理士】
【氏名又は名称】村山 靖彦
(74)【代理人】
【識別番号】100110364
【弁理士】
【氏名又は名称】実広 信哉
(74)【代理人】
【識別番号】100133400
【弁理士】
【氏名又は名称】阿部 達彦
(72)【発明者】
【氏名】ゼーヴ・ボンゾン
(72)【発明者】
【氏名】ノア・ウルマン
【審査官】山口 賢一
(56)【参考文献】
【文献】国際公開第2010/120823(WO,A2)
【文献】米国特許出願公開第2015/0174418(US,A1)
【文献】米国特許出願公開第2016/0055304(US,A1)
【文献】国際公開第2014/174317(WO,A2)
【文献】米国特許出願公開第2011/0288400(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
A61N 1/36
A61N 1/04
(57)【特許請求の範囲】
【請求項1】
腫瘍治療電場(TTフィールド)を送達するために複数の電極を使用する電気療法治療を改善するため方法であって、
コンピュータシステムのプロセッサが、患者の身体領域の3次元画像を受信するステップであって、前記身体領域が、前記患者の頭部を含む、ステップと、
異常組織に対応する前記画像の部分を識別するステップであって、前記異常組織に対応する前記画像の部分が、腫瘍に対応する、ステップと、
前記異常組織がマスクされた前記画像に対応するデータセットを生成するステップと、
前記コンピュータシステムのメモリデバイスからモデルテンプレートを検索するステップであって、前記モデルテンプレートが、前記患者の身体領域に対応する健康な個人の身体領域における複数の組織タイプの位置を特定し、前記モデルテンプレートは、前記健康な個人の身体領域に対応するモデル内の各点が特定の組織タイプに属する確率を表し、前記組織タイプが、白質、灰白質、頭蓋骨、頭皮、脳脊髄液(CSF)、または空気を含む、ステップと、
変形された前記モデルテンプレート内の特徴が前記データセット内の対応する特徴と整列するように、前記モデルテンプレートを空間内で変形させるステップと、
修正された部分が前記異常組織を表すように、前記データセットの前記マスクされた部分に対応する前記変形されたモデルテンプレートの部分を修正するステップと、
(a)前記変形され修正されたモデルテンプレート内の前記複数の組織タイプの位置と、(b)前記変形され修正されたモデルテンプレート内の前記異常組織の位置とに基づいて、前記身体領域内の組織の電気的特性のモデルを生成するステップと、
前記電気的特性のモデルを使用して前記身体領域に対して候補位置の複数の異なるセットにおいて配置されたシミュレートされた電極によって引き起こされる前記身体領域内の電磁場分布をシミュレートし、前記セットのうちの1つを選択することによって、前記異常組織の少なくとも一部分における場の強度を最大化する電極配置レイアウトを決定するステップと、
電気療法治療のために電極を使用する前に前記患者の前記身体領域に対して前記電極を配置するためのガイドとして後に使用するために前記決定された電極配置レイアウトを出力するステップと
を含む、方法。
【請求項2】
前記モデルテンプレートを変形させる前記ステップが、
前記データセットを前記モデルテンプレートの座標空間にマッピングするマッピングを決定するステップと、
前記マッピングの逆を前記モデルテンプレートに適用するステップと、
を含む、請求項1に記載の方法。
【請求項3】
前記マッピングが、前記マスクされた部分の外側にある前記データセット内の点に対して決定される、請求項2に記載の方法。
【請求項4】
前記モデルテンプレートが、組織確率マップを含み、前記マッピングが、前記データセットを前記組織確率マップにマッピングする、請求項2に記載の方法。
【請求項5】
前記組織確率マップが、前記モデルテンプレートが導出された健康な個人の画像から導出される、請求項4に記載の方法。
【請求項6】
前記組織確率マップが、既存の組織確率マップを使用して前記健康な個人の前記画像を同時に位置合わせおよびセグメント化することによって導出され、前記既存の組織確率マップが、複数の個人の画像から導出される、請求項5に記載の方法。
【請求項7】
前記組織確率マップが、複数の個人の画像から導出された既存の組織確率マップである、請求項4に記載の方法。
【請求項8】
前記マッピングの逆が、前記組織確率マップの各々に適用され、逆マッピングされた組織確率マップが、前記変形されたモデルテンプレートを含むセグメント化された画像に組み合わされる、請求項4に記載の方法。
【請求項9】
前記逆マッピングされた組織確率マップを組み合わせることが、前記逆マッピングされた組織確率マップにわたってボクセルを占有する最も高い確率を有する前記組織タイプを各ボクセルに割り当てるステップを含む、請求項8に記載の方法。
【請求項10】
前記逆マッピングされた組織確率マップを組み合わせることが、ルックアップテーブルを使用して、前記逆マッピングされた組織確率マップにわたって1つより多くの組織タイプが割り当てられる各ボクセルに組織タイプを割り当てるステップを含む、請求項8に記載の方法。
【請求項11】
前記異常組織に対応する前記画像の前記部分を識別する前記ステップが、前記画像のセグメント化を実行するステップを含む、請求項1に記載の方法。
【請求項12】
組織の電気的特性の前記モデルが、電気伝導率または電気抵抗率のモデルを含む、請求項1に記載の方法。
【請求項13】
前記画像が、MRI画像またはCT画像を含む、請求項1に記載の方法。
【請求項14】
前記電極配置レイアウトを決定するステップが、
少なくとも2つの電極配置レイアウトの各々において、前記シミュレートされた電極に境界条件を適用するステップと、
前記少なくとも2つの電極配置レイアウトの各々について前記身体領域内の場の分布を解くステップと、
異常領域内で最も強い場をもたらす前記電極配置レイアウトを選択するステップと、
を含む、請求項1に記載の方法。
【請求項15】
前記境界条件が、前記シミュレートされた電極に印加される電圧または電流に対応する、請求項14に記載の方法。
【請求項16】
前記モデルテンプレートが、前記画像と前記モデルテンプレートの各々との間の類似性に基づいて複数のモデルテンプレートから選択される、請求項1に記載の方法。
【請求項17】
電気療法治療を実行するために1つまたは複数のメモリデバイス内に記憶された命令を実行するように構成されたプロセッサを備える電気療法治療デバイスであって、前記電気療法治療デバイスが、腫瘍治療電場(TTフィールド)を送達するための複数の電極を含み、前記命令が、
前記プロセッサが、患者の身体領域の3次元画像を受信することであって、前記身体領域が、前記患者の頭部を含む、前記受信することと、
異常組織に対応する前記画像の部分を識別することであって、前記異常組織に対応する前記画像の部分が、腫瘍に対応する、前記識別することと、
前記異常組織がマスクされた前記画像に対応するデータセットを生成することと、
前記1つまたは複数のメモリデバイスからモデルテンプレートを検索することであって、前記モデルテンプレートが、前記患者の身体領域に対応する健康な個人の身体領域における複数の組織タイプの位置を特定し、前記モデルテンプレートは、前記健康な個人の身体領域に対応するモデル内の各点が特定の組織タイプに属する確率を表し、前記組織タイプが、白質、灰白質、頭蓋骨、頭皮、脳脊髄液(CSF)、または空気を含む、前記検索することと、
変形された前記モデルテンプレート内の特徴が前記データセット内の対応する特徴と整列するように、前記モデルテンプレートを空間内で変形させることと、
修正された部分が前記異常組織を表すように、前記データセットの前記マスクされた部分に対応する前記変形されたモデルテンプレートの部分を修正することと、
(a)前記変形され修正されたモデルテンプレート内の前記複数の組織タイプの位置と、(b)前記変形され修正されたモデルテンプレート内の前記異常組織の位置とに基づいて、前記身体領域内の組織の電気的特性のモデルを生成することと、
前記電気的特性のモデルを使用して前記身体領域に対して候補位置の複数の異なるセットにおいて配置されたシミュレートされた電極によって引き起こされる前記身体領域内の電磁場分布をシミュレートし、前記セットのうちの1つを選択することによって、前記異常組織の少なくとも一部分における場の強度を最大化する電極配置レイアウトを決定することと、
電気療法治療のために電極を使用する前に前記患者の前記身体領域に対して前記電極を配置するためのガイドとして後に使用するために前記決定された電極配置レイアウトを出力することと、
を含む電気療法治療デバイス。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、神経学的障害および脳疾患を治療するための電場および電流の使用に関する。
【0002】
関連出願との相互参照
本出願は、その全体が参照により本明細書に組み込まれる米国仮出願第62/433,501号(2016年12月3日出願)の利益を主張する。
【背景技術】
【0003】
神経学的障害および脳疾患を治療するための電場および電流の使用は、普及してきている。そのような治療の例は、限定はしないが、経頭蓋直流刺激(TDCS:Trans-cranial Direct Current Stimulation)、経頭蓋磁気刺激(TMS:Transcranial Magnetic Stimulation)、および腫瘍治療電場(TTフィールド:TTField)を含む。これらの治療は、脳内の標的領域への低周波電磁場の送達に依存する。例えば、TDCSの技術的側面を概説するWoodsら、Clinical Neurophysiology、127 1031-1048(2016)、および、TMSをシミュレートするための方法を教示するThielscherら、Conference Proceedings、Institute of Electrical and Electronics Engineers(IEEE)、Engineering in Medicine and Biology Society、222-225(2015)を参照されたい。さらに別の例として、Mirandaら、Physics in Medicine and Biology、59、4137-4147(2014)は、磁気共鳴イメージング(MRI:magnetic resonance imaging)データセットを使用してTTフィールドの送達をシミュレートするための健康な個人の計算頭部モデルの作成を教示し、ここで、モデル作成は、半自動で実行される。さらに、Wengerら、Physics in Medicine and Biology、60 7339-7357(2015)は、TTフィールドの送達をシミュレートするための健康な個人の計算頭部モデルを作成する方法を教示し、ここで、モデルは、健康な個人のMRIデータセットから作成される。
【0004】
TDCSおよびTMSの場合、治療は、脳内の標的領域への電磁場の送達を必要とし、そこで電磁場は、特定のニューロンを刺激する。TTフィールドの場合、患者の頭部上のトランスデューサアレイの位置は、最大電場強度を腫瘍の領域に送達するように最適化される。例えば、拡散テンソルイメージング(DTI:Diffusion Tensor Imaging)データが頭部へのTTフィールドの送達をシミュレートするためのモデルにどのように組み込まれ得るかを教示するWengerら、International Journal of Radiation Oncology・Biology・Physics、941137-43(2016)を参照されたい。DTIデータは、頭部モデル内の各ボクセルについての異方性導電率テンソルを導出するために使用される。
【0005】
TTフィールドは、中間周波数範囲(100~300kHz)内の低強度(例えば、1~3V/cm)交番電場であり、これは、例えば、その全体が参照により本明細書に組み込まれる米国特許第7,565,205号に記載のように腫瘍を治療するために使用される。TTフィールド療法は、再発性神経膠芽腫(GBM)に対する承認された単一治療であり、新しく診断された患者に対する化学療法との承認された併用療法である。これらの交番電場は、(例えば、Novocure Optune(商標)システムを使用して)患者の頭皮上に直接配置されたトランスデューサアレイ(すなわち、容量結合電極のアレイ)によって非侵襲的に誘導される。TTフィールドはまた、身体の他の部分における腫瘍を治療するために有益であると思われる。
【0006】
生体内および生体外の研究は、TTフィールド療法の有効性は、標的領域において電場の強度が増加するにつれて増加し、標的領域における強度は、患者の頭皮上のトランスデューサアレイの配置に依存することを示している。
【0007】
トランスデューサアレイの配置を最適化する1つの方法は、コンピュータシミュレーションを使用することである。コンピュータの使用は、本明細書で説明するように、処理される大量の撮像データのため、および、シミュレーション/最適化プロセスが計算集約的で複雑であるため、必要である。典型的には、シミュレーションを実行するとき、解剖学的に正確な計算モデルが構築され、電気的特性が様々な組織タイプに割り当てられる。モデルが構築されると、シミュレートされたモデル電極が頭部のモデル上に配置され、電極上の電圧のような適切な境界条件が適用される。次いで、頭部内の電場が計算される。様々なコンピュータで実施される計算集約的な最適化方式を使用して、頭部(具体的には、標的領域)内に最適な電磁場分布をもたらす電極のレイアウトおよび境界条件を見つけることが可能である。しかしながら、個々の患者は、それらの解剖学的構造の詳細において異なり、それらの変動は、個人の頭部内の場の分布に影響を与える。したがって、シミュレーションを使用して標的領域への電磁場の送達を伴う治療を最適化するために、以前は、個人ごとに個別化された計算モデルを構築する必要があった。
【0008】
頭部モデルを形成するための従来の手法は、以下の通りである。最初に、医用画像のセットが取得される。典型的には、画像は、MRI画像および/またはコンピュータ断層撮影(CT:Computed Tomography)画像を含む。次に、画像は、画像のどの部分が異なる可能な組織タイプ(例えば、白質、灰白質、脳脊髄液(CSF:cerebrospinal fluid)、頭蓋骨など)の各々に対応するかを決定するために、セグメント化される。次に、セグメント化された画像内の各組織タイプに対する一連のメッシュが構築され、モデルに組み込まれ、代表的な導電率値が各組織タイプに割り当てられる。最後に、電極がモデル上に配置され、場の分布は、(様々な組織タイプの3D空間内の位置と、それらの組織タイプの各々に割り当てられた導電率とに基づく)有限要素法または有限差分法のような適切な数値技法を使用して解かれる。
【0009】
上記で説明したプロセスにおける多くのステップは、コンピュータによって実施されるが、頭部の医用画像、特に腫瘍が存在する画像のセグメント化の自動アルゴリズムは、ロバストではなく、信頼できる結果を得るためにユーザの介入をしばしば必要とするので、プロセスは、依然としてかなりの人間の介入を必要とする。例えば、腫瘍の自動セグメント化のための複数のアルゴリズムの性能を調査するMenzeら、IEEE Transactions on Medical Imaging、34 1993-2024(2014)を参照されたい。加えて、例えば、Mirandaら、Physics in Medicine and Biology、59、4137-4147(2014)、Wengerら、Physics in Medicine and Biology、60 7339-7357(2015)、およびWengerら、International Journal of Radiation Oncology・Biology・Physics、941137-43(2016)において記載されているように、メッシュ正規化は、ユーザの監督を必要とする時間のかかるプロセスである。具体的には、ボリュームの有限要素モデルを作成するとき、ボリュームは、ボリューム要素にメッシュ化される。数値解の変換を確実にするために、すべての要素の品質が高いことが望ましい(品質の定義は、作成されるメッシュのタイプに応じて変わる)。加えて、要素が交差しないこと、および、一般に、メッシュの品質が十分であることを確認することが重要である。正規化は、メッシュの要素およびメッシュの全体的な品質の調整を改善するためにメッシュが処理されるプロセスである。基本的な議論については、S. Makarowら、"Low Frequency Electromagnetic Modelling For Electrical and Biological systems Using Matlab"、John Wiley and Sons、2010、36~81頁を参照されたい。
【0010】
セグメント化とメッシュ正規化との間で、単一のモデルを作成するために必要な工数は、画像の品質と作成されるモデルの複雑さとに応じて、数時間から数日まで変動し得る。
【発明の概要】
【課題を解決するための手段】
【0011】
本発明の一態様は、腫瘍治療電場(TTフィールド)を使用する腫瘍の治療を改善するための第1の方法に向けられる。第1の方法は、コンピュータシステムのプロセッサにより、患者の身体領域の3次元画像を受信するステップと、異常組織に対応する画像の部分を識別するステップと、異常組織がマスクされた画像に対応するデータセットを生成するステップと、を含む。第1の方法は、コンピュータシステムのメモリデバイスからモデルテンプレートを検索するステップであって、モデルテンプレートが、患者の身体領域の健康なものにおける複数の組織タイプの位置を特定する組織確率マップを含む、ステップと、変形されたモデルテンプレート内の特徴がデータセット内の対応する特徴と整列するように、モデルテンプレートを空間内で変形させるステップと、をさらに含む。第1の方法はまた、修正された部分が異常組織を表すように、データセットのマスクされた部分に対応する変形されたモデルテンプレートの部分を修正するステップと、(a)変形され修正されたモデルテンプレート内の複数の組織タイプの位置と、(b)変形され修正されたモデルテンプレート内の異常組織の位置とに基づいて、身体領域内の組織の電気的特性のモデルを生成するステップと、をさらに含む。第1の方法は、電気的特性のモデルを使用して身体領域に対して候補位置の複数の異なるセットにおいて配置されたシミュレートされた電極によって引き起こされる身体領域内の電磁場分布をシミュレートし、セットのうちの1つを選択することによって、異常組織の少なくとも一部分における場の強度を最大化する電極配置レイアウトを決定するステップをさらに含む。第1の方法はまた、決定された電極配置レイアウトに基づいて患者の身体領域に対して電極を配置するステップと、配置された電極を使用してTTフィールドを身体領域に印加するステップと、を含む。
【0012】
本発明の別の態様は、電気療法治療を改善するための第2の方法に向けられる。第2の方法は、コンピュータシステムのプロセッサにより、患者の身体領域の3次元画像を受信するステップと、異常組織に対応する画像の部分を識別するステップと、異常組織がマスクされた画像に対応するデータセットを生成するステップと、を含む。第2の方法はまた、コンピュータシステムのメモリデバイスからモデルテンプレートを検索するステップであって、モデルテンプレートが、患者の身体領域の健康なものにおける複数の組織タイプの位置を特定する、ステップと、変形されたモデルテンプレート内の特徴がデータセット内の対応する特徴と整列するように、モデルテンプレートを空間内で変形させるステップと、を含む。第2の方法は、修正された部分が異常組織を表すように、データセットのマスクされた部分に対応する変形されたモデルテンプレートの部分を修正するステップと、(a)変形され修正されたモデルテンプレート内の複数の組織タイプの位置と、(b)変形され修正されたモデルテンプレート内の異常組織の位置とに基づいて、身体領域内の組織の電気的特性のモデルを生成するステップと、をさらに含む。第2の方法は、電気的特性のモデルを使用して身体領域に対して候補位置の複数の異なるセットにおいて配置されたシミュレートされた電極によって引き起こされる身体領域内の電磁場分布をシミュレートし、セットのうちの1つを選択することによって、異常組織の少なくとも一部分における場の強度を最大化する電極配置レイアウトを決定するステップをさらに含む。第2の方法はまた、電気療法治療のために電極を使用する前に患者の身体領域に対して電極を配置するためのガイドとして後に使用するために決定された電極配置レイアウトを出力するステップを含む。
【0013】
第2の方法のいくつかの実施形態において、モデルテンプレートを変形させるステップは、データセットをモデルテンプレートの座標空間にマッピングするマッピングを決定するステップと、マッピングの逆をモデルテンプレートに適用するステップと、を含む。オプションで、これらの実施形態において、マッピングは、マスクされた部分の外側にあるデータセット内の点について決定される。オプションで、これらの実施形態において、モデルテンプレートは、組織確率マップを含み、マッピングは、データセットを組織確率マップにマッピングする。
【0014】
オプションでは、これらの実施形態において、組織確率マップは、モデルテンプレートが導出された健康な個人の画像から導出される。オプションでは、これらの実施形態において、組織確率マップは、既存の組織確率マップを使用して健康な個人の画像を同時に位置合わせおよびセグメント化することによって導出され、既存の組織確率マップは、複数の個人の画像から導出される。
【0015】
オプションでは、これらの実施形態において、組織確率マップは、複数の個人の画像から導出された既存の組織確率マップである。
【0016】
オプションでは、これらの実施形態において、マッピングの逆は、組織確率マップの各々に適用され、逆マッピングされた組織確率マップは、変形されたモデルテンプレートを含むセグメント化された画像に組み合わされる。オプションでは、これらの実施形態において、逆マッピングされた組織確率マップを組み合わせることは、逆マッピングされた組織確率マップにわたってボクセルを占有する最も高い確率を有する組織タイプを各ボクセルに割り当てるステップを含む。オプションでは、これらの実施形態において、逆マッピングされた組織確率マップを組み合わせることは、ルックアップテーブルを使用して、逆マッピングされた組織確率マップにわたって1つより多くの組織タイプが割り当てられる各ボクセルに組織タイプを割り当てるステップを含む。
【0017】
第2の方法のいくつかの実施形態において、異常組織に対応する画像の部分を識別するステップは、画像のセグメント化を実行するステップを含む。第2の方法のいくつかの実施形態において、組織の電気的特性のモデルは、電気伝導率または電気抵抗率のモデルを含む。第2の方法のいくつかの実施形態において、画像は、MRI画像、CT画像、またはMRI画像とCT画像との組合せを含む。第2の方法のいくつかの実施形態において、身体領域は、患者の頭部を含む。第2の方法のいくつかの実施形態において、異常組織に対応する画像の部分は、腫瘍に対応する。第2の方法のいくつかの実施形態において、電気療法治療は、TTフィールドを含む。
【0018】
第2の方法のいくつかの実施形態において、電極配置レイアウトを決定するステップは、少なくとも2つの電極配置レイアウトの各々において、シミュレートされた電極に境界条件を適用するステップと、少なくとも2つの電極配置レイアウトの各々について身体領域内の場の分布を解くステップと、異常領域内で最も強い場をもたらす電極配置レイアウトを選択するステップと、を含む。オプションでは、これらの実施形態において、境界条件は、シミュレートされた電極に印加される電圧または電流に対応する。
【0019】
第2の方法のいくつかの実施形態において、モデルテンプレートは、画像とモデルテンプレートの各々との間の類似性に基づいて複数のモデルテンプレートから選択される。
【0020】
第2の方法のいくつかの実施形態は、決定された電極配置レイアウトに基づいて患者の身体領域に対して電極を配置するステップと、電極を使用してTTフィールドを身体領域に印加するステップと、をさらに含む。
【0021】
本発明の別の態様は、電気療法治療を実行するために1つまたは複数のメモリデバイス内に記憶された命令を実行するように構成されるプロセッサを備える電気療法治療デバイスに向けられる。これらの実施形態において、治療は、プロセッサにより、患者の身体領域の3次元画像を受信することと、異常組織に対応する画像の部分を識別することと、異常組織がマスクされた画像に対応するデータセットを生成することと、を含む。治療は、1つまたは複数のメモリデバイスからモデルテンプレートを検索することであって、モデルテンプレートが患者の身体領域の健康なものにおける複数の組織タイプの位置を特定する、前記検索することと、変形されたモデルテンプレート内の特徴がデータセット内の対応する特徴と整列するように、モデルテンプレートを空間内で変形させることと、修正された部分が異常組織を表すように、データセットのマスクされた部分に対応する変形されたモデルテンプレートの部分を修正することと、をさらに含む。治療は、(a)変形され修正されたモデルテンプレート内の複数の組織タイプの位置と、(b)変形され修正されたモデルテンプレート内の異常組織の位置とに基づいて、身体領域内の組織の電気的特性のモデルを生成することをさらに含む。治療は、電気的特性のモデルを使用して身体領域に対して候補位置の複数の異なるセットにおいて配置されたシミュレートされた電極によって引き起こされる身体領域内の電磁場分布をシミュレートし、セットのうちの1つを選択することによって、異常組織の少なくとも一部分における場の強度を最大化する電極配置レイアウトを決定することをさらに含む。治療はまた、電気療法治療のために電極を使用する前に患者の身体領域に対して電極を配置するためのガイドとして後に使用するために決定された電極配置レイアウトを出力することを含む。
【図面の簡単な説明】
【0022】
図1】変形可能なテンプレートを使用して患者の現実的な頭部モデルを作成することによって電気療法治療を実行する実施形態のフローチャートである。
図2】異常(例えば、腫瘍)を有する患者から得られた元のMRI画像を示す図である。
図3】異常がマスクされた図2のMRI画像を示す図である。
図4図3と健康な個人のモデル変形可能テンプレートとの間のマッピングおよび逆マッピングを生成する正規化/位置合わせプロセスを示す図である。
図5図4の変形可能テンプレートが患者のMRI画像の形状に合うようにどのように変形されるのかを示す図である。
図6】変形されたモデルに異常を埋め戻すことを示す図である。
図7】一実施形態による、電気療法治療のためのシステムを示す図である。
図8】変形可能なテンプレートを使用して患者の現実的な頭部モデルを作成することによって電気療法治療を実行する実施形態の別のフローチャートである。
【発明を実施するための形態】
【0023】
本明細書で説明する実施形態は、既存の現実的な頭部モデルテンプレートに非剛体変形を適用することによって、個々の患者ごとにカスタマイズされた現実的な頭部モデルを生成し、したがって、頭部モデルを作成するために必要な時間と人間労働とを低減する。
【0024】
個々の患者ごとにカスタマイズされた頭部モデルが生成された後、患者の身体上のトランスデューサのための最適な位置を決定するために、従来のシミュレーション手法が使用される。オプションでは、健康な患者についての既存の現実的な頭部モデルテンプレートは、組織確率マップ(TPM:tissue probability map)を含んでもよい。TPMは、各点が、白質、灰白質、CSFなどのような様々な組織タイプに属するその点のそれぞれの確率によって表されるモデルを提供する。
【0025】
オプションでは、患者の画像は、例えば、E.Michel、D.Hernandez、およびS.Y.Lee、"Electrical conductivity and permittivity maps of brain tissues derived from water content based on T 1 -weighted acquisition"、Magnetic Resonance in Medicine、2016によって開示されているように、患者の頭部の導電率のより正確な表現を得るために、拡散テンソルイメージング(DTI)データまたは含水電気インピーダンス断層撮影(Wept:Water Content Electric Impedance Tomography)データのような他のMRIデータを追加されてもよい。DTIまたはWeptのようなMRIイメージング技法は、例えば、その全体が参照により本明細書に組み込まれる米国特許出願第15/336,660号において開示されているように、組織導電率に関する情報を提供することが知られている。
【0026】
図1および図8の実施形態は、ユーザの介入を低減した患者ごとに個別化された現実的な頭部モデルを作成し、患者における腫瘍治療電場(TTフィールド)アレイレイアウトを最適化するためにこれらの頭部モデルを使用するためのワークフローを説明する。現実的なモデルが任意の所与の患者について構築されると、最適化は、本明細書でも説明される一連のアルゴリズムを使用して完全に自動的にまたは半自動的に実行され得る。これらのワークフローは、TTフィールドのコンテキストで説明されているが、それらは、代替のコンテキストでも使用され得る。
【0027】
図1および図8の実施形態は、(実際の患者の現実的な頭部モデルとは対照的に)健康な個人の現実的な頭部モデルである変形可能テンプレートで開始する。この頭部モデルは、任意の従来の手法を使用して取得され得る。例えば、現実的な頭部モデルは、モントリオール神経学研究所(MNI:Montreal Neurological Institute)またはTalairach空間のような標準座標系において作成され得る。例えば、参照により本明細書に組み込まれるHolmesら、Journal of Computer Assisted Tomography、22 324-333(1998)は、MNIの標準空間におけるMRI画像のマッピングおよび平均化を教示している。モデルが所望の標準座標空間内に存在しない場合、標準座標空間から頭部モデルへの変換は、好ましくは既知であり、モデルを標準座標空間にマッピングするために使用され得る。標準座標空間において構築される現実的な頭部モデルの一例は、(参照により本明細書に組み込まれるMirandaら、Physics in Medicine and Biology、59、4137-4147(2014)に記載されているように)Mirandaらによって作成される(Holmesら、Journal of Computer Assisted Tomography、22 324-333(1998)に記載されているように)COLIN27データセットに基づくモデルである。しかし、健康な個人の多種多様な代替の現実的な頭部モデルがMirandaモデルの代わりに使用され得る。モデルが作成されたMRIも、以下に説明する目的のために利用可能であることが望ましい。
【0028】
いくつかの実施形態において、健康な個人の現実的な頭部モデルテンプレートは、組織タイプのTPMを提供する。すなわち、モデル内の各点は、白質、灰白質、CSFなどのような様々な組織タイプに属するその点のそれぞれの確率によって表される。いくつかの実施形態において、健康な個人の現実的な頭部モデルテンプレートは、組織タイプごとに1つのTPM(例えば、白質、灰白質、頭蓋骨、頭皮、CSF、および空気の6つの組織タイプについて6つのTPM)を提供する。
【0029】
図1は、既存の頭部モデルを変形可能テンプレートとして使用することによって任意の所与の患者のための現実的な頭部モデルを作成するために健康な個人の現実的な頭部モデルを使用するためのプロセス100を説明する。
【0030】
プロセス100は、MRI画像の適切なセットの取得であるステップS1において開始する。ステップS1において、個々の患者に関するMRIデータセットが任意の従来の手法を使用して取得される。このデータセットは、好ましくは、(T1またはT2のMRIシーケンスから取得されるような)構造データを担持するMRIを含む。オプションでは、以下に説明するようにモデル作成のために有用であり得る追加情報を担持し得るDTIまたは灌流イメージングのような追加のシーケンスも取得され得る。場合によっては、MRIシーケンスのパラメータは、特定の組織タイプ間のコントラストを高めるために最適化される。コントラストを高めることは、例えば、参照により本明細書に組み込まれるWindhoffら、Human Brain Mapping, 34 923-935(2013)に一連で記載されているように、以下に説明するステップにおいて続く画像セグメント化にとって有用である。
【0031】
好ましくは、MRIは、実用的に可能な最も高い解像度において取得される。通常、1mm×1mm×1mmよりも優れた解像度が望ましい。しかしながら、より低い解像度の画像も使用され得る。
【0032】
オプションでは、DTIまたは拡散強調磁気共鳴イメージング(DWI:Diffusion-weighted magnetic resonance imaging)データが同様に取得される。このデータは、参照により本明細書に組み込まれるWengerら、International Journal of Radiation Oncology・Biology・Physics、941137-43(2016)、およびBasserら、Biophysical Journal、66 259-267(1994)に記載されているように、各ボクセル内の導電率(または導電率テンソル)をマッピングするために使用され得る。代替実施形態において、CT画像、MRI画像とCT画像との組合せなどのような異なる画像診断法がMRI画像の代わりに使用されてもよい。
【0033】
プロセス100は、画像前処理であるステップS2において続く。しかしながら、場合によっては、前処理は、必要なく、ステップS2は、スキップされ得る。ステップS2において、よりきれいな画像を得るために、ステップS1において取得されたデータに対して画像前処理が実行される。図2は、ステップS2において画像前処理を実行した後に得られるMRI画像200の一例を示す。前処理は、任意の従来の手法を使用して実施され得る。いくつかの実施形態において、画像前処理ステップは、画像の整列と歪み補正とを含む。例えば、画像の整列は、任意の従来の手法を使用して、画像から動きによるアーティファクトを除去するために実施され得る。機能的イメージングデータに関する仮説をテストするために使用される空間的に拡張された統計的プロセスの構築および評価のために開発されたSPM8.0ツールボックスにおいて実装される統計的パラメトリックマッピング(SPM:Statistical Parametric Mapping)のような任意の適切な従来の手法を使用して、アフィン位置合わせを使用して、再整列が実行され得る。加えて、(例えば、誘導される渦電流によって引き起こされる)画像に対する歪みがこの段階において補正され得る。モデルを作成するために2つ以上のデータセットが使用されるとき、画像の再整列が必要とされ、その場合、それらの複数のデータセットが整列される必要がある。例えば、アキシャル画像セットとコロナル画像セットとが超解像のために使用されるとき、それらは、整列される必要がある。別の例として、TIデータに加えてDTIデータが使用されるとき、DTIデータとTIデータとは、整列される必要がある場合がある。
【0034】
いくつかの実施形態において、ファイルの原点がテンプレートTPMの原点と一致するように、MRI画像のヘッダを操作する追加の前処理ステップが(例えば、ニューロイメージング情報技術イニシアチブ(NifTI:Neuroimaging Informatics Technology Initiative)フォーマットにおいて)実行される。ファイルの原点は、ファイル内の軸の原点を指す。このステップは、以下のステップS4において説明するように、変形可能な空間へのMRI画像の位置合わせを容易にするのを助ける。いくつかの実装形態において、患者のMRI画像内および変形可能テンプレートに関連するファイル内の軸の原点は、ステップS4の実行を容易にするのを助けるために、同様のボクセルにおいて配置される。
【0035】
オプションでは、単一の患者のいくつかのMRIデータセットを単一の画像に結合する超解像アルゴリズムが使用されてもよい。これらのアルゴリズムは、他のすべてのデータセットが異なる点において頭部を切り捨てるときに患者の完全な頭部を示すデータセットを作成するのに役立ち、または、元のデータがより低い解像度のものであるときに高解像度(またはスライス間隔)で画像を作成するのに役立つ。高解像度データセット、および完全な3D頭部を示すデータセットは、正確な頭部モデルを作成するのに役立つ。超解像アルゴリズムの一例は、Wooら、"Reconstruction of high-resolution tongue volumes from MRI."IEEE Transactions on Biomedical Engineering、59.12(2012)において記載されている。このアルゴリズムは、動き補償と強度正規化とを含むいくつかの前処理ステップを用い、MRIデータセットの3つの直交座標ボリュームを舌の単一の超解像等方性ボリューム再構成に結合するために、領域ベース最大事後確率(MAP:maximum a posteriori)マルコフ確率場(MRF:Markov random field)手法が続く。出力超解像画像は、信号体雑音比(SNR:signal-to-noise ratio)と解像度の両方に関して入力画像よりも優れていた。
【0036】
多くの場合、背景雑音およびエイリアシングが存在する可能性があり、変形可能テンプレートを使用して作成される頭部モデルの品質を低下させる可能性がある。具体的には、背景雑音が存在するとき、モデル作成中に得られる頭蓋骨の輪郭は、しばしば不正確であり、背景の一部を含む。したがって、いくつかの実施形態は、背景雑音とエイリアシングとを除去するために、当業者に知られている様々な閾値化方式を実施してもよい。本明細書で言及されるエイリアシングは、背景内に現れるように画像化されている被写体の弱い「影」をもたらすMRI画像内のアーティファクトに関する(すなわち、影はエイリアシングにより引き起こされる)。影は、典型的には、逆さまにされ、主画像に直接付着する。この場合、背景内の弱い影を除去するために、閾値化方式が使用され得る。画質を向上させるために使用され得る閾値化方式の一例は、ユーザが背景雑音を表す単一の値を選択し、ソフトウェアが、頭皮の輪郭を自動的に検出し、スライスごとに背景雑音の強度をゼロにするために閾値としてこの値を適用する、半自動方法である。当業者によって理解されるように、多種多様な代替手法も使用され得る。
【0037】
代替的にまたは加えて、スキャナ特有の前処理が適用されてもよい。例えば、画像は、医用デジタルイメージングおよび通信(DICOM:Digital Imaging and Communications in Medicine)フォーマットからNifTLに変換されてもよい。
【0038】
プロセス100は、頭部内の異常領域のマスキングであるステップS3において続く。ステップS3は、腫瘍または他の異常(例えば、頭蓋骨の欠陥/フラップ)が患者のMRI画像内に存在する場合にのみ実施される。ステップS3において、これらの異常領域は、図3中の画像300において示されるようにマスクされる。オプションでは、マスクされる領域は、腫瘍または他の欠陥の存在のために脳の正常な構造が著しく乱されたすべての領域を含むように、必要に応じて腫瘍/異常を超えて拡張してもよい。
【0039】
このマスキングステップを達成する1つの方法は、異常な頭部領域を適切にマークするために管理されたセグメント化を使用することである。管理されたセグメント化のこのステップの間、以下に説明するように、最終的なモデルの所望な詳細レベルに達するために、複数のタイプの異常がラベル付けされる。管理されたセグメント化は、例えば、ITK-SNAP(例えば、参照により本明細書に組み込まれるYushkevichら、Neuroimage、31 1116-1128(2006)参照)のようなツールを使用して半自動で実行されてもよい。
【0040】
代替的には、マスキングは、自動セグメント化アルゴリズムを使用して実行され得る。例えば、Porzら、"Multi -modal glioblastoma segmentation:man versus machine."Public Library of Science(PLOS)One、9.5(2014)は、手術前のMRI画像の自動セグメント化のための方法を教示している。状況によっては、腫瘍の正確なマスキングを確実にするために、自動セグメント化プロセスの結果に対する手動補正が必要とされる場合がある。
【0041】
いくつかの実施形態では、マスクされる領域は、手動で決定される。これを達成する1つの方法は、MRIデータをユーザに提示し、データ上の腫瘍の輪郭を描くようにユーザに求めることである。ユーザに提示されるデータは、構造的MRIデータ(例えば、T1、T2データ)を含んでもよい。異なるMRIモダリティは、互いに位置合わせされてもよく、ユーザは、データセットのいずれかを見て腫瘍の輪郭を描くオプションを提示されてもよい。ユーザは、MRIデータの3Dボリューム表現上に腫瘍の輪郭を描くように求められてもよく、または、ユーザは、データの個々の2Dスライスを見て、各スライス上に腫瘍境界をマーキングするオプションを与えられてもよい。境界が各スライス上にマーキングされると、解剖学的ボリューム内の腫瘍は、見つけられ得る。この場合、ユーザによってマーキングされるボリュームは、腫瘍に対応することになる。状況によっては、予め定義された幅(例えば、20mm)のマージンが腫瘍に追加され、結果として生じるボリュームは、マスクされるべき領域として使用される。
【0042】
患者のMRI画像内に腫瘍または他の異常が存在しないとき(例えば、患者が健康であるとき)、ステップS3は省略されることに留意されたい。
【0043】
特定の患者について、セグメント化の結果は、腫瘍が均質ではないことを明らかにすることになり、その場合、本明細書でさらに詳細に説明するように、変形ステップの後に、腫瘍を現実的な頭部モデルにより正確に埋め戻すためにそのようなセグメント化情報が使用され得るように、腫瘍は、いくつかのサブ領域にセグメント化されてもよい。そのようなサブ領域の例は、活性/増強腫瘍、壊死領域、切除腔などである。詳細なGBMセグメント化のために、従来の自動セグメント化アルゴリズムが使用されてもよい。公に利用可能なアルゴリズムの一例は、4つの異なるイメージングモダリティ(T1、T1コントラスト、T2コントラスト、およびFLAIR)を必要としながら、壊死性コア、浮腫、非増強腫瘍、および増強腫瘍を区別する最新の脳腫瘍画像分析(BraTumlA:Brain Tumor Image Analysis)ソフトウェアである。入力としてT1のみを必要とする技法も存在する。腫瘍内のいかなる変動にもかかわらず、腫瘍のすべての領域は、元の患者の画像からマスクされる。頭蓋骨の欠陥が画像内にある場合、これらの領域は、セグメント化され、同様にマスクされる。
【0044】
画像内の異常領域を識別するための様々な手法が上記で説明されているが、多種多様な代替手法が当業者には明らかとなることに留意されたい。
【0045】
プロセス100は、空間正規化/位置合わせであるステップS4において続く。ステップS4において、所与の患者に関するMRI画像の現在のセットをテンプレートモデルの標準空間に歪ませるマッピングが識別される。図4は、患者のMRI画像402(マスクされた異常を有する)と健康な個人の変形可能モデルテンプレート404との間のマッピングおよび逆マッピングを生成する正規化/位置合わせプロセス400を示す。このマッピングの逆も(標準空間から患者のMRIセットの空間にマッピングするために以下のステップS5において使用するために)識別される。
【0046】
例えば、このマッピングを生成するための1つの手法は、患者のMRI画像を、MNI空間またはTalairach空間のような標準座標空間に位置合わせすることである。画像位置合わせは、画像の特定の特徴が別の画像/空間内の対応する特徴と整列するような画像の空間変換を指す。これは、当業者に明らかになる任意の公知の方法によって、例えば、限定はしないが、FSL FLIRT、およびSPMを含む容易に利用可能なソフトウェアパッケージを使用することによって行われ得る。
【0047】
特に、ステップS3においてマスクされた異常領域は、位置合わせプロセスから除外される。マスクされた領域を位置合わせ中に無視することは、標準空間内の特定のボクセルが特定の組織タイプに属する確率を記述するモデルTPMに効率的にマッピングされ得る頭部の健康な領域のみを使用して位置合わせが実行されることを確実にする。有利なことに、異常領域を除外することは、位置合わせプロセスの堅牢性を改善する。いくつかの実施形態において、TPMは、モデルテンプレート空間内に構築される。
【0048】
代替的には、患者のMRI画像を標準座標空間(例えば、健康な個人の現実的なモデルテンプレート)または対応するセグメント化されたモデルテンプレートのボクセル化されたもののいずれかに位置合わせするために、(例えば、参照により本明細書に組み込まれ、相互情報量を使用する画像位置合わせのためのアルゴリズムを教示するZhuangら、IEEE Transactions on Medical Imaging、30 0278-0062(2011)に記載されているような)非剛体位置合わせアルゴリズムが使用され得る。患者のMRI画像を標準空間にマッピングするための様々なアルゴリズムが当業者によく知られることに留意されたい。反対方向に(すなわち、以下に説明するように、標準空間から患者のMRI画像に)移動することは、それらの同じマッピングの逆を使用することになる。
【0049】
上記で説明したマッピングは、マスクされた領域の外側にある患者の頭部内の点について見つけられる。位置合わせの前にマスクされた領域内の変換は、例えば、頭部の残りの部分において見つけられる変形マップをこれらの領域に補間することによって、または、当業者には明らかな様々な代替手法のいずれかを使用することによって推定され得る。いくつかの実施形態において、位置合わせの前にマスクされた領域についての変換を見つける必要はない可能性がある。これは、マスクされた領域に対応する変形可能モデルテンプレートの領域がなんらかの「自然な」構造(例えば、健康な組織)に関連する情報を含むという事実によるものである。したがって、マスクされた領域の外側にある点に関する変形可能モデルテンプレートに上記で説明したマッピングが適用された後、「自然な」構造がこれらの領域において維持されるので、変形されたモデルテンプレートは、これらの領域においてなんらかのモデルデータを既に含む。例えば、患者の画像において球が左半球からマスクされ、マッピングが球の外側にある点についのみ変形可能モデルテンプレートに適用される場合、変形されたモデルテンプレートの左半球における球の内容は、なんらかの自然な構造に似ていることになる。
【0050】
いくつかの実施形態において、標準空間から患者空間へのマッピングを見つけるためにモデルTPMが使用される。いくつかの実施形態において、モデルTPMは、変形可能テンプレートが導出されたMRIデータセットから導出されてもよい。このMRIデータセットから導出されるTPMを使用することは、他のTPMを使用する場合よりも最終モデルにおいて正確な患者の表現をもたらすことができる。この理由は、以下の通りである。TPMは、各組織タイプに属する標準空間内のボクセルの確率を表す。一般に、TPMは、異なる対象の複数のMRIから導出される。したがって、TPMは、個人の集団全体にわたる各組織タイプに属するボクセルの確率を表す。これは、複数の個人から導出されたTPMを使用して位置合わせを実行するとき、出力マッピングは、TPMが導出された個人間の解剖学的変動を定義によって平滑化するなんらかの代表的な空間へのマッピングを表すことを意味する。しかしながら、健康な個人の頭部モデルを変形することによって患者モデルを作成するとき、患者のMRIをTPMに位置合わせするときに計算されるマッピングは、健康な頭部モデルの解剖学的特徴をできるだけ高い正確さで取り込むことが望ましい場合がある。この正確さは、変形可能テンプレートが後に以下のステップS5において患者空間に変形されるとき、結果として得られるモデルができる限り高い正確さで患者に似ることを保証する。したがって、ステップS4における位置合わせが実行されるTPMは、TPMが典型的に導出される個人の集団とは対照的に、健康な頭部モデルが導出された個人を表すことが望ましい。
【0051】
変形可能モデルテンプレートが導出された健康な個人を表すTPMを作成するための1つの手法は、汎用TPM(例えば、複数の個人のデータを使用して標準空間において構築されたTPM)の既存のセットを使用して健康な個人のMRI画像を同時に位置合わせおよびセグメント化することである。これを達成するアルゴリズムの一例は、上記で説明したSPM8.0ツールボックスにおいて実装されるAshburnerおよびFristonによる統一セグメント化アルゴリズム("Unified segmentation."Neuroimage26.3 2005)である。このプロセスからの出力は、(標準空間に位置合わせされたMRI画像の)ボクセルが特定の組織タイプに属する確率を記述する確率マップを含む。このプロセスにおいて生成された確率マップの数は、モデル内の組織タイプの数(典型的には6)に等しく、マップ内の各ボクセルには、ボクセルが特定の組織タイプに属する確率を示す0から1の値が割り当てられる。定義によって、これらの確率マップは、健康な頭部モデル(変形可能テンプレート)が導出された健康な個人を表すTPMである。
【0052】
場合によっては、変形可能テンプレートのよりよい表現を得るために、TPMに対して手動補正が行われる。例えば、頭蓋骨および頭皮の確率マップは、頭蓋骨または頭皮の境界を強調するように修正され得る。これは、例えば、そのボクセルがある組織タイプに属する確率が1に近く、そのボクセルが他の組織タイプに属する確率が0に近くなるように、確率値を特定のボクセルに手動で割り当てることによって行われてもよい。これらの確率マップからTPMを作成する最後のステップは、個々のマップに平滑化フィルタを適用することである。平滑化は、任意の個人のMRIへの調整を可能にするために重要である。平滑化は、例えば、4mm×4mm×4mmFWHM(半値全幅)の平滑化カーネルを有するガウスフィルタを使用して実行され得る。
【0053】
プロセス100は、テンプレートを所望の空間に変形する/歪めることであるステップS5において続く。ステップS5において、ステップS4において見つけられた逆マッピングは、変形可能モデルテンプレートを患者のMRI画像の座標系にマッピングするために、変形可能モデルテンプレートに適用される。図5は、歪まされたモデル504を得るために逆マッピングを変形可能モデルテンプレート502に適用する変形させる/歪ませるプロセス500を示す。いくつかの実施形態において、逆マッピングは、変形可能モデルテンプレート502に3次元変換を適用し、それによって、患者特有の解剖学的属性に適合するように変形可能モデルテンプレート502を歪ませる。
【0054】
歪ませる前、モデルテンプレート502は、健康な参照個人の脳のモデルであり、歪ませた後、歪まされたモデル504は、患者の脳が健康であった場合にどのように見えるのかの近似値を表すことになることに留意すべきである。言い換えれば、このステップは、患者のMRI画像において示される頭部に合うように歪まされているが、腫瘍を欠いている健康な個人のモデルをもたらす。特に、この歪まされたモデルが(各個人の患者の頭部からではなく)モデルテンプレートに由来するという事実にもかかわらず、それは、各個人の患者の頭部内に誘導され得る電場を分析するために依然として有用である。
【0055】
ステップS5における変形は、モデルのボクセル化されたものまたはモデルのメッシュ化されたものに適用され得る。ボクセル化されたものにおいて、各ボクセルは、そのボクセルの座標の位置における組織タイプ(または組織タイプ確率)を示す。メッシュ化されたものにおいて、各メッシュは、異なる組織タイプ間の境界を画定し、変形は、変形可能モデルテンプレート内のこれらのメッシュに適用される。いくつかの実施形態において、各組織タイプのバイナリ画像が作成され、各々の得られたバイナリ画像が別々に変形される。
【0056】
オプションでは、組織タイプの変形画像内に現れる任意の穴が、その画像内に現れる組織タイプのうちの1つに割り当てられてもよい。バイナリマスク間に現れる穴に組織タイプを割り当てるように設計される手順の一例は、Timmonsら、"End-to-end workflow for finite element analysis of tumor treating fields in glioblastomas"、Physics in Medicine & Biology、62.21(2017)において見出され得、ここでは、ソフトウェアScanIPを使用して、収束問題を回避するためにガウスフィルタ関数がマスク間の境界を平滑化する。マスク内の空洞が埋められ、(組織タイプによって異なり得る)閾値を超える島が除去される。現在のマスクは、複製され、次いで(組織マスクに応じて1から3ボクセルだけ)拡張され、すべてのスライスにおいて次のマスクにブール値が追加される。変形画像内に現れる穴を埋めるための様々な代替手法のいずれもが使用されてもよい。
【0057】
それぞれの組織タイプごとの画像の形成後、すべてのバイナリ画像は、変形された頭部モデルのセグメント化された画像を表す単一の画像に結合される。
【0058】
結合されたモデル内のボクセルが2つ以上の組織タイプに割り当てられる場合、最終的な画像内の組織タイプを決定するためにヒューリスティックロジックが使用されてもよい。例えば、ロジックは、結合されたモデル内の灰白質と白質とが重なっているすべてのボクセルが白質のみに割り当てられるかまたはその逆であることを述べてもよい。
【0059】
モデルテンプレートがTMPを含む(すなわち、モデルテンプレート内の各組織が、各ボクセルが特定の組織タイプに属する確率を記述する3D行列によって表される)実施形態において、TPMは、変形され、変形されたTPMは、結合されたモデル内の各ボクセルがなんらかのヒューリスティックロジックに基づいて組織タイプを割り当てられるように、最終的なモデルに結合される。例えば、各ボクセルは、そのボクセルを占有する確率が最も高い組織タイプに割り当てられる。
【0060】
いくつかの実施形態において、異なるTPMによって各ボクセルに割り当てられる確率は、作成されたボクセル化モデルにおける導電率特性の組合せを決定するために使用される。言い換えれば、ボクセルは、必ずしも特定の組織タイプを含まず、最終的な導電率は、すべての組織タイプの導電率の加重合計としてボクセルに割り当てられ、重みは、そのボクセル内の各組織タイプに割り当てられた確率値から導出されると仮定する。
【0061】
いくつかの実施形態において、導電率値は、例えば、その全体が参照により本明細書に組み込まれる米国特許出願第15/336,660号(US2017/0120041として公開されている)において開示されているように組織導電率に関する情報を提供することが知られているDTIまたはWeptのようなMRIイメージング技法から得られる情報を追加的に組み込むことによって、組織マップに割り当てられる。この情報は、例えば、モデル由来の導電率とWept/DTI由来の導電率との加重平均に基づいて各ボクセルに導電率を割り当てることによってモデルに組み込まれ得る。
【0062】
プロセス100は、変形されたテンプレートに異常を埋め戻すことであるステップS6において続く。ステップS6において、変形されたテンプレートは、ステップS3において見つけられたマスクされた領域に対応するテンプレートの各ボクセルが異常組織タイプ(例えば、腫瘍または周囲の領域)に割り当てられるように編集される。図6は、このプロセス600を示し、ここで、患者画像602において識別された異常が、変形されたモデルテンプレート604内に埋め込まれる。いくつかの実施形態において、埋め込みは、ステップS3において実行されたセグメント化に従って異常領域の各々において組織タイプを割り当てることによって実行される。より具体的には、変形後に異常領域内の各点に割り当てられる組織タイプは、変形前のステップS3におけるセグメント化において対応する点について識別された組織タイプに基づく。したがって、ステップS3におけるセグメント化が異常領域内の2つ以上の組織タイプを識別する場合、変形後に異常領域に割り当てられる2つ以上の組織タイプが存在する可能性がある。代替実施形態において、埋め込みは、変形後の異常領域にデフォルトの異常組織タイプを割り当てることによって実行されてもよい。他の代替実施形態において、埋め込みは、異常領域内の点にユーザが手動で組織タイプを割り当てることによって実行されてもよい。
【0063】
プロセス100は、モデル作成であるステップS7において続く。モデル化ステップ(S7)において、導電率および誘電率のような電気的特性が様々な組織タイプに割り当てられる。組織タイプは通常、変形されたテンプレートから取得されることに留意されたい。しかしながら、腫瘍組織に対応する組織タイプは、埋め込まれた異常に対応する各ボクセルに割り当てられることになる。電極のモデル(またはトランスデューサアレイ)がモデルの皮膚上に配置され、適切な境界条件が適用される。いくつかの実施形態において、モデル化ステップS7は、各組織タイプが均質であると仮定し、したがって、(例えば、Mirandaら、Physics in Medicine and Biology、59、4137-4147(2014)、Wengerら、Physics in Medicine and Biology、60 7339-7357(2015)、およびWengerら、International Journal of Radiation Oncology・Biology・Physics、941137-43(2016)において記載されているように)電気的特性についての単一の値が各組織タイプに割り当てられる。他のモデルにおいて、各ボクセルにおける導電率は、画像取得ステップ中に取得されるDTIまたはDWI画像から割り当てられる。DTIは、異方性の電気的特性(3×3テンソル)を各ボクセルに割り当てるが、DWIは、等方性導電率(スカラ)を各ボクセルに割り当てる。最後に、モデルは、例えば、ボクセル化によって、または代替的には、ボリュームメッシュ化によってボリューム要素に分割される。
【0064】
プロセス100は、ステップS8において続く。頭部モデルが作成され、モデル電極が頭部モデルに追加された後、ステップS8においてシミュレーションが実行される。このシミュレーションは、限定はしないが、有限要素法または有限差分法を含む適切な数値技法を使用して、対応する誘導電場を解くことによって、最適な電極アレイレイアウトを見つける。
【0065】
電極アレイレイアウトの最適化は、患者の脳(腫瘍)の患部領域内の電場を最適化するアレイレイアウトを見つけることを意味する。この最適化は、トランスデューサアレイを自動的に配置し、現実的な頭部モデルに対して境界条件を設定し、アレイが現実的な頭部モデル上に配置され、境界条件が適用されたら、現実的な頭部モデル内に発生する電場を計算し、標的ボリューム内の最適な電場分布をもたらすレイアウトを見つけるために最適化アルゴリズムを実行することによって、現実的な頭部モデル内の治療を目的とされるボリューム(標的ボリューム)にわたって実施されてもよい。様々な代替手法が使用され得るが、これらの4つのステップを実施するための一例を以下に提供する。
【0066】
現実的な頭部モデル上のアレイの位置および向きは、所与の反復について自動的に計算されてもよい。Optune(登録商標)デバイス内のTTフィールドの送達のために使用される各トランスデューサアレイは、医療用ゲルの層を介して患者の頭部に結合されるセラミックディスク電極のセットを備える。実際の患者に対してアレイを配置するとき、ディスクは、自然に皮膚と平行に整列し、医療用ゲルが身体の輪郭に合うように変形するので、アレイと皮膚との間の良好な電気的接触が生じる。しかしながら、仮想モデルは、厳密に定義されたジオメトリで構成される。したがって、モデル上にアレイを配置することは、アレイが配置されるべき位置におけるモデル表面の向きと輪郭とを見つけるための正確な方法、ならびに、モデルアレイと現実的な患者のモデルとの良好な接触を保証するために必要なゲルの厚さ/ジオメトリを見つけるための正確な方法を必要とする。場の分布の完全に自動化された最適化を可能にするために、これらの計算は、自動的に実行されなければならない。
【0067】
このタスクを実行するための様々なアルゴリズムが使用されてもよい。この目的のために考案された1つのそのようなアルゴリズムのステップを以下に示す。
a.トランスデューサアレイの中心点がモデル頭部上に配置される位置を画定する。位置は、ユーザによって、または、場最適化アルゴリズムにおけるステップの1つとして画定され得る。
b.ステップ(a)からの入力を、ディスクのジオメトリと、ディスクがアレイ内で配置される方法とに関する知識と組み合わせて使用して、モデル内のトランスデューサアレイ内のすべてのディスクの中心のおおよその位置を計算する。
c.ディスクが配置されるべき位置における現実的なモデルの表面の向きを計算する。計算は、ディスクの指定された中心から1ディスク半径の距離内にある計算ファントム皮膚上のすべての点を見つけることによって実行される。これらの点の座標は、行列の列に配置され、特異値分解が行列に対して実行される。このとき、モデル皮膚の法線は、見つけられた最小の固有値に対応する固有ベクトルである。
d.トランスデューサアレイ内の各ディスクについて、ディスクと患者の身体との間の良好な接触を確実にするために必要とされる医療用ゲルの厚さを計算する。これは、皮膚表面の法線と平行に向けられたその高さを有する円柱に関するパラメータを見つけることによって行われる。円柱は、ディスクの半径に等しい半径を用いて画定され、その高さは、法線を見つけるために使用される皮膚上の点を超えて所定の量(これは、所定の定数である)を拡張するように設定される。これは、少なくとも所定の量だけファントム表面から外に拡張する円柱をもたらす。
e.モデル上に、(d)において説明した円柱を作成する。
f.バイナリ論理演算(例えば、円柱から頭部を減算する)を通して、患者の現実的なモデルに突出する円柱の領域をモデルから除去する。結果として生じる「先端を切った円柱」は、トランスデューサアレイに関連する医療用ゲルを表す。
g.「先端を切った円柱」の外側に、トランスデューサアレイのセラミックディスクを表すディスクを配置する。
【0068】
次いで、電場分布は、所与の反復について頭部モデル内で計算される。頭部ファントムが構築され、場を印加するために使用されるトランスデューサアレイ(すなわち、電極アレイ)が現実的な頭部モデル上に配置されると、有限要素法解析に適したボリュームメッシュが作成され得る。次に、境界条件がモデルに適用され得る。使用され得る境界条件の例は、トランスデューサアレイに対するDirichlet境界(定電圧)条件、トランスデューサアレイに対するNeumann境界条件(定電流)、または、電流密度の法線成分の積分が指定された大きさに等しくなるようにその境界における電位を設定する浮遊電位境界条件を含む。モデルは次いで、適切な有限要素ソルバ(例えば、低周波準静的電磁ソルバ)を用いて、または代替的には有限差分アルゴリズムを用いて解かれ得る。メッシュ化、境界条件の強制、モデルの解決は、Sim4Life、Comsol Multiphysics、Ansys、または Matlabのような既存のソフトウェアパッケージを用いて実行され得る。代替的には、有限要素(または有限差分)アルゴリズムを実現するカスタムコンピュータコードが記述され得る。このコードは、(メッシュを作成するための) C-Gal、またはFREEFEM++(迅速なテストと有限要素シミュレーションのためにC++において記述されたソフトウェア)のような既存のソフトウェアソースを利用することができる。モデルの最終的な解は、所与の反復に関する計算ファントム内の電場分布、または電位のような関連する量を記述するデータセットになる。いくつかの実施形態において、モデルは、ボクセルベースである(すなわち、モデルは、箱状のボリューム要素を含む)。これらの実施形態において、例えば、ZMT Zurich MedTech AGからの「Sim4Life」ソフトウェアパッケージに関連する準静電ソルバを使用してモデル解くために、時間領域有限差分(FDTD:Finite Differences Time Domain)アルゴリズムが使用されてもよい。
【0069】
次いで、両方の適用方向(LRおよびAP)について患者の脳の患部領域(腫瘍)への電場送達を最適化するアレイレイアウトを見つけるために、最適化アルゴリズムが使用される。最適化アルゴリズムは、最適なアレイレイアウトを見つけるために、自動アレイ配置のための方法と、明確に規定された順序で頭部モデル内の電場を解くための方法とを利用することになる。最適なレイアウトは、電場が印加される両方向を考慮して、脳の患部領域内の電場のなんらかの目標関数を最大化または最小化するレイアウトであろう。この目標関数は、例えば、患部領域内の最大強度または患部領域内の平均強度であってもよい。他の目標関数を定義することも可能である。
【0070】
患者にとって最適なアレイレイアウトを見つけるために使用され得るいくつかの手法が存在し、そのうちの3つについて以下に説明する。1つの最適化手法は、しらみつぶしの探索である。この手法では、オプティマイザは、テストされるべき有限数のアレイレイアウトを有するバンクを含むことになる。オプティマイザは、バンク内のすべてのアレイレイアウトのシミュレーションを実行し、腫瘍内の最適な場の強度をもたらすアレイレイアウトを選び取る(最適なレイアウトは、最適化目標関数、例えば、腫瘍に送達される電場強度について最も高い(または最も低い)値をもたらすバンク内のレイアウトである)。
【0071】
別の最適化手法は、反復探索である。この手法は、最低降下最適化法およびシンプレックス探索最適化のようなアルゴリズムの使用をカバーする。この手法を使用して、アルゴリズムは、頭部における異なるアレイレイアウトを反復的にテストし、各レイアウトについて腫瘍内の電場についての目標関数を計算する。各反復において、アルゴリズムは、前の反復の結果に基づいて、テストする構成を自動的に選び取る。アルゴリズムは、腫瘍内の場に対する定義された目標関数を最大化(または最小化)するように収束するように設計される。
【0072】
さらに別の最適化手法は、モデル内の腫瘍の中心に双極子を配置することに基づく。この手法は、異なるアレイレイアウトに対する場の強度を解くことに依存しないので、他の2つの手法とは異なる。むしろ、アレイに関する最適位置は、モデル内の腫瘍の中心において予想される場の方向と整列した双極子を配置し、電磁ポテンシャルを解くことによって見つけられる。電位(または場合によっては電場)が最大となる頭皮上の領域は、アレイが配置される位置となる。この方法の論理は、双極子が腫瘍の中心において最大になる電場を生成するということである。相反性によって、我々が、計算がもたらした頭皮上の場/電圧を生成することができるならば、我々は、(双極子が配置された)腫瘍の中心において最大になる場の分布を得ることを期待することになる。我々の現在のシステムで我々が実際にこれに到達することできる最も近いものは、頭皮上の双極子によって誘発されるポテンシャルが最大になる領域内にアレイを配置することである。
【0073】
脳の患部領域内の電場を最適化するアレイレイアウトを見つけるために、代替の最適化手法が使用され得ることに留意されたい。例えば、上記の様々な手法を組み合わせるアルゴリズム。これらの手法がどのように組み合わされ得るかの一例として、上記で論じた第3の手法(すなわち、モデル内の腫瘍の中心において双極子を配置する)を第2の手法(すなわち、反復的探索)と組み合わせる際のアルゴリズムを考える。この組合せでは、最初に腫瘍の中心における双極子の手法を使用してアレイレイアウトが見つけられる。このアレイレイアウトは、最適なレイアウトを見つける反復的探索への入力として使用される。
【0074】
患者の脳の患部領域内の電場を最適化するレイアウトが(例えば、本明細書で説明する手法のいずれか、または適切な代替手法を使用して)決定されると、電極は、決定された位置において配置される。次いで、疾患を治療するために、(例えば、参照により本明細書に組み込まれる米国特許第7,565,205号に記載されているように)AC電圧が電極に印加される。
【0075】
図7は、本明細書で説明したように電極の位置が最適化された後に使用され得る電気療法治療のための例示的なシステム700を示す。システム700は、決定された位置において患者の頭皮40に固定された容量結合トランスデューサアレイ42、44に電圧を印加することによって患者にTTフィールドを印加するコントローラ702を含む。頭皮40の正面図が図7において示されており、電極の4つのパッチのうちの3つのみが図において見えており、目も耳も表されていないことに留意されたい。
【0076】
オプションでは、システムは、複数のモデルテンプレートとともに機能するように設計され得る。この場合、追加のステップS3.5がステップS3の後でかつステップS4の前に実施される。ステップS3.5において、(例えば、相関性の尺度または相互情報量を使用して)複数のテンプレートの各々に対する患者のMRI画像の類似性が最初に測定される。患者のMRI画像と最も似通った変形可能テンプレートが選択され、その後のすべてのステップにおいて使用される。代替的には、いくつかの実施形態において、患者のMRI画像と最も似通った変形可能テンプレートの選択は、ステップS4における標準空間への患者の画像の位置合わせ後でかつステップS5の前に実行されてもよい。これらの実施形態において、患者のMRI画像と最も似通った変形可能テンプレートは、S4に続くすべてのステップにおいて使用される。
【0077】
オプションでは、システムは、上記で説明したプロセスを使用して作成された各現実的な頭部モデルが将来のモデルのための変形可能テンプレートとして機能する学習システムとして構成されてもよい。ステップS5において作成された変形された健康なモデルと、(ステップS6において作成された)欠陥を含む結果として得られたモデルの両方がデータベースに追加され得る。元の画像スタック内の患者のMRI画像が、腫瘍を有する脳の記憶されたテンプレートと十分に近い程度に似通っている場合、以前に記憶されたテンプレート上の変形を測定することによって患者のMRI画像を表すモデルを作成することが可能である。
【0078】
最後に、本明細書に記載の概念は、患者の頭部のMRI画像のコンテキストで論じられているが、同じ原理は、患者の身体の他の部分および/またはMRI以外のイメージングモダリティに適用されてもよい。
【0079】
図8は、変形可能テンプレートを使用して患者の現実的な頭部モデルを作成することによって電気療法治療を実行するために後に使用されることになる電極の位置を最適化するための方法のフローチャート800である。電気療法治療は、TDCS、TMS、またはTTフィールドであってもよい。
【0080】
S10において、患者の身体領域の1つまたは複数の3D画像が受信される。3D画像は、MRI画像、CT画像、または当該技術分野において知られている任意の他のモダリティにおける画像であってもよい。身体領域は、患者の頭部、または任意の他の身体領域であってもよい。オプションでは、画像は、(例えば、図1のステップS2を参照して本明細書で説明されているように)本明細書で説明する手法のいずれかを使用して前処理されてもよい。
【0081】
S20において、異常組織に対応する画像の部分が識別される。例えば、身体領域が患者の頭部であるとき、そのような部分は、腫瘍または頭蓋骨の異常に対応する場合がある。異常は、本明細書で説明する方法のいずれかに従って、または当業者に明らかである任意の他の適切な方法に従って、手動で、自動的に、または半自動的に識別されてもよい。いくつかの実施形態において、異常組織に対応する画像の部分は、画像のセグメント化によって識別される。
【0082】
S30において、異常組織がマスクされた画像に対応するようにデータセットが生成される。これは、例えば、以下のS50において説明する位置合わせプロセスにおいて異常領域を無視することを含む、異常組織をマスクすることによって達成されてもよい。いくつかの実施形態において、異常領域をマスクすることは、この領域内のデータ点にフラグを立て、以下のS50において説明する位置合わせプロセス中にすべてのフラグが立てられたデータ点を除外することによって実施される。
【0083】
S40において、患者の身体領域の健康なものにおける複数の組織タイプの位置を特定するモデルテンプレートが検索される。たとえぱ、身体領域が患者の頭部であり、異常組織が患者の頭部内の腫瘍に対応するとき、モデルテンプレートは、健康な個人の頭部に対応し、いかなる腫瘍も欠いている。いくつかの実施形態において、モデルテンプレートは、画像と複数のモデルテンプレートの各々との間の類似性に基づいて複数の既存のモデルテンプレートから選択されてもよい。例えば、相互情報量または距離のような類似性の尺度が、(患者の画像内の異常をマスクすることによって導出される)患者データセットと、いくつかのモデルテンプレートのうちの各々1つとの間で決定されてもよく、(例えば、最小距離または最大相互情報量を有する)患者データセットと最も類似するモデルテンプレートは、それに応じて選択されてもよい。いくつかの実施形態において、モデルテンプレートは、TPMを含んでもよく、TPMは、モデルテンプレートが導出された(そして健康な個人の画像から導出された)同じ健康な個人に対応してもよく、または複数の個人に対応してもよい。
【0084】
S50において、モデルテンプレートは、変形されたモデルテンプレート内の特徴がデータセット内の対応する特徴と整列するように空間内で変形される。いくつかの実施形態において、モデルテンプレートは、データセットをモデルテンプレートの座標空間にマッピングするマッピングを決定し、マッピングの逆をモデルテンプレートに適用することによって変形される。いくつかの実施形態において、マッピングは、データセットをモデルテンプレートの座標空間に位置合わせすることによって決定されてもよい。すなわち、マッピングは、データセットをモデルテンプレートに歪ませる。したがって、マッピングの逆は、モデルテンプレートをデータセットに歪ませ、それによって、患者に異常がない場合、患者についての現実的なモデルを提供する。いくつかの実施形態において、データセットからモデルテンプレートへのマッピングは、マスクされた部分の外側にあるデータセット内の点について決定される。モデルテンプレートがTPMSを含む実施形態において、マッピングは、データセットをTPMにマッピングし、マッピングの逆は、TPMの各々1つに適用され、逆マッピングされたTPMは、変形されたモデルテンプレートを含むセグメント化画像に結合される。
【0085】
S60において、データセットのマスクされた部分に対応する変形されたモデルテンプレートの部分は、修正された部分が異常組織を表すように、修正される。修正は、S20において異常部分の識別中に得られた情報に従って実行されてもよい。例えば、S20において識別された1つまたは複数の異常組織タイプが、変形されたモデルテンプレート内の対応する部分に割り当てられてもよい。代替的には、所定の汎用組織タイプが、マスクされた部分に割り当てられてもよい。
【0086】
S70において、(a)変形および修正されたモデルテンプレート内の複数の組織タイプの位置と、(b)変形および修正されたモデルテンプレート内の異常組織の位置とに基づいて、身体領域内の組織の電気的特性のモデルが生成される。電気的特性は、導電率、電気抵抗率、または、身体領域の電気療法治療に関連する任意の他の電気的特性であってもよい。いくつかの実施形態において、例えば、以前に取り込まれたルックアップテーブルに従って、異なる電気的特性値が各組織タイプに割り当てられてもよい。
【0087】
S80において、電気的特性のモデルを使用して身体領域に対して候補位置の複数の異なるセットにおいて配置されたシミュレートされた電極によって引き起こされる身体領域内の電磁場分布をシミュレートし、セットのうちの1つを選択することによって、異常組織の少なくとも一部分における場の強度を最大化する電極配置レイアウトが決定される。いくつかの実施形態において、電極配置レイアウトは、少なくとも2つの電極配置レイアウトの各々1つにおけるシミュレートされた電極に境界条件を適用し、少なくとも2つの電極配置レイアウトの各々1つについて身体領域内の場の分布を解き、異常領域内に最も強い場をもたらす電極配置レイアウトを選択することによって決定される。境界条件は、例えば、シミュレートされた電極に印加される電圧に対応してもよい。いくつかの実施形態において、場の分布は、有限要素法または有限差分法のような数値技術を使用して解かれる。
【0088】
S90において、決定された電極配置レイアウトは、電気療法治療(例えば、TTフィールド)のために電極を使用する前に、患者の身体領域に対して電極を配置するためのガイドとしてその後に使用するために出力される。
【0089】
この方法において構築されたモデルは、頭部内の電場および/または電流分布を計算することが有用であり得る他の用途にも使用され得る。これらの用途は、限定はしないが、直流および交流経頭蓋刺激、埋め込み刺激電極場マップのシミュレーション、埋め込み刺激電極の配置を計画すること、ならびに脳波図(EEG:electroencephalogram)におけるソース定位を含む。
【0090】
最後に、この出願は、頭部上のアレイレイアウトを最適化するための方法を説明しているが、同じステップは、他の身体領域(限定はしないが、胸部または腹部を含む)においてアレイレイアウトを最適化するために使用されてもよい。
【0091】
本発明は、特定の実施形態を参照して開示されているが、添付の特許請求の範囲において定義されているように、本発明の分野および範囲から逸脱することなく、説明した実施形態に対する多くの修正、改変、および変更が可能である。したがって、本発明は、説明した実施形態に限定されず、以下の特許請求の範囲およびその均等物の文言によって定義される全範囲を有することが意図される。
【符号の説明】
【0092】
40 頭皮
42 容量結合トランスデューサアレイ
44 容量結合トランスデューサアレイ
200 MRI画像
300 画像
400 正規化/位置合わせプロセス
402 MRI画像
404 変形可能モデルテンプレート
500 変形させる/歪ませるプロセス
502 変形可能モデルテンプレート、モデルテンプレート
504 歪まされたモデル
600 プロセス
602 患者画像
604 変形されたモデルテンプレート
700 システム
702 コントローラ
図1
図2
図3
図4
図5
図6
図7
図8