IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 独立行政法人 宇宙航空研究開発機構の特許一覧

<>
  • 特許-流体制御システム 図1
  • 特許-流体制御システム 図2
  • 特許-流体制御システム 図3A
  • 特許-流体制御システム 図3B
  • 特許-流体制御システム 図4
  • 特許-流体制御システム 図5
  • 特許-流体制御システム 図6
  • 特許-流体制御システム 図7
  • 特許-流体制御システム 図8
  • 特許-流体制御システム 図9
  • 特許-流体制御システム 図10
  • 特許-流体制御システム 図11
  • 特許-流体制御システム 図12
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-11-29
(45)【発行日】2022-12-07
(54)【発明の名称】流体制御システム
(51)【国際特許分類】
   G01P 5/26 20060101AFI20221130BHJP
   G01F 1/661 20220101ALI20221130BHJP
   G01F 1/663 20220101ALI20221130BHJP
【FI】
G01P5/26 A
G01F1/661
G01F1/663
【請求項の数】 6
(21)【出願番号】P 2018195193
(22)【出願日】2018-10-16
(65)【公開番号】P2020063954
(43)【公開日】2020-04-23
【審査請求日】2021-08-04
(73)【特許権者】
【識別番号】503361400
【氏名又は名称】国立研究開発法人宇宙航空研究開発機構
(74)【代理人】
【識別番号】110003339
【氏名又は名称】弁理士法人南青山国際特許事務所
(74)【代理人】
【識別番号】100104215
【弁理士】
【氏名又は名称】大森 純一
(74)【代理人】
【識別番号】100196575
【弁理士】
【氏名又は名称】高橋 満
(74)【代理人】
【識別番号】100168181
【弁理士】
【氏名又は名称】中村 哲平
(74)【代理人】
【識別番号】100117330
【弁理士】
【氏名又は名称】折居 章
(74)【代理人】
【識別番号】100160989
【弁理士】
【氏名又は名称】関根 正好
(74)【代理人】
【識別番号】100168745
【弁理士】
【氏名又は名称】金子 彩子
(74)【代理人】
【識別番号】100176131
【弁理士】
【氏名又は名称】金山 慎太郎
(74)【代理人】
【識別番号】100197398
【弁理士】
【氏名又は名称】千葉 絢子
(74)【代理人】
【識別番号】100197619
【弁理士】
【氏名又は名称】白鹿 智久
(72)【発明者】
【氏名】市川 賀康
(72)【発明者】
【氏名】小池 俊輔
(72)【発明者】
【氏名】中北 和之
【審査官】岡田 卓弥
(56)【参考文献】
【文献】特開2009-222716(JP,A)
【文献】特開平2-120666(JP,A)
【文献】米国特許第4997272(US,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01P 5/00- 5/26
G01F 1/00- 9/02
(57)【特許請求の範囲】
【請求項1】
航空機の翼の所定の位置に配置され、前記翼の表面上を流れる流体に運動量を付加することで当該流体の流れに影響を与える影響付与部と、
2本のレーザ光を出射する出射部と、電圧制御で焦点距離を制御可能な液体レンズからなり、前記出射部より出射された2本のレーザ光を交差させる可変焦点レンズ系と、計測対象である流体中を流れる粒子が前記2本のレーザ光が交差する領域で形成される干渉縞を通過した際に生じる散乱光を観察するための観察部とを有し、前記出射部より出射された2本のレーザ光が交差する領域が前記影響付与部より上流又は下流の前記翼の表面上に位置するように、前記翼内に埋め込まれた流速計測装置と、
前記流速計測装置より、時系列的に前記2本のレーザ光が交差する領域で生じる粒子の散乱光の光信号を取得し、その信号に基づいて、前記翼の表面上における流れの剥離の抑制を行うように、前記影響付与部により流体に付加される運動量を制御して前記翼の表面上の流れをリアルタイムに制御する制御部と
を具備する流体制御システム。
【請求項2】
前記出射部が、レーザ光源と、レーザ光源からのレーザ光を分岐するビームスプリッタと、前記ビームスプリッタにより分岐された一方のレーザ光を反射するプリズムとを有し、前記レーザ光源から出射したレーザ光を、前記ビームスプリッタ及び前記プリズムを介して前記2本のレーザ光に分岐して出射する請求項に記載の流体制御システム
【請求項3】
前記観察部が、前記可変焦点レンズ系を介した前記散乱光を集光する集光レンズと、集光レンズの焦点位置に受光口が位置し、前記受光口を介して前記散乱光を受光するフォトディテクタを有する
請求項1又は2に記載の流体制御システム
【請求項4】
前記散乱光の周波数に基づき前記流体の流速を推定する演算部
を更に具備する請求項1、2又は3に記載の流体制御システム
【請求項5】
輸送機器の所定の位置に配置され、前記輸送機器の表面上を流れる流体に運動量を付加することで当該流体の流れに影響を与える影響付与部と、
2本のレーザ光を出射する出射部と、電圧制御で焦点距離を制御可能な液体レンズからなり、前記出射部より出射された2本のレーザ光を交差させる可変焦点レンズ系と、計測対象である流体中を流れる粒子が前記2本のレーザ光が交差する領域で形成される干渉縞を通過した際に生じる散乱光を観察するための観察部とを有し、前記出射部より出射された2本のレーザ光が交差する領域が前記影響付与部より上流又は下流の前記輸送機器の表面上に位置するように、前記輸送機器内に埋め込まれた流速計測装置と、
前記流速計測装置より、時系列的に前記2本のレーザ光が交差する領域で生じる粒子の散乱光の光信号を取得し、その信号に基づいて、前記輸送機器の表面上における流れの剥離の抑制を行うように、前記影響付与部により流体に付加される運動量を制御して前記輸送機器の表面上の流れをリアルタイムに制御する制御部と
を具備する流体制御システム。
【請求項6】
前記輸送機器は、自動車又は鉄道である
請求項5に記載の流体制御システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、流速計測装置、流速分布計測システム、流体制御システム及び流速計測方法に関する。
【背景技術】
【0002】
気体や液体などの流体中を流れる微小な粒子が、2本のレーザ光が交差した領域で形成される干渉縞を通過する際、散乱光が生じる。この散乱光の周波数は、光のドップラー効果により元のレーザ光の周波数に対して変位が生じている。周波数の変位は粒子の通過速度に比例することが知られており、散乱光の周波数をフォトディテクタ(フォトダイオード)等に代表される受光素子を通じて光信号を電気信号に変換し、オシロスコープやデータ収集用ボードを使用して取得すれば、粒子の速度を推定可能になる。
これがレーザドップラー流速計(LDV:Laser Doppler Velocimetry)を使用した速度計測の原理である。LDVは光を使用する方法であるため、高い時間分解能を持つ計測方法であり、絶対校正が不要という特徴を持つ。また、計測対象とする流路や風路内にセンサ等を挿入することなく、光のみを照射して速度を取得できるため、非侵襲(非接触)な計測方法である。
以上の特徴から、LDVは、自動車や鉄道等の輸送機器周りの大規模スケール流れ場から、micro-total analysis systems (μTAS)やlab-on-a-chipに代表される生物化学分析用のマイクロチップ内における微小なスケールの流れ場まで、幅広いスケールの流れ場における速度計測に使用されている、代表的な速度計測方法の1つである。
【0003】
通常、LDVの装置としては、レーザ光を流路に向けて照射する照射プローブと、散乱光を受光するための受光素子を組み込んだプローブの、2つのプローブで構成されるものが多い。また、照射プローブ中に受光素子を組込み、1つのプローブでレーザ光照射からデータ取得まで行うものも開発されている。
【0004】
一方、LDVは2本のレーザ光が交差する領域のみにおいて速度を計測する方法(点計測)であるため、流れ場に関して取得できる情報量が少ない。
計測対象とする流れ場において、流れ方向や高さ方向、そして奥行き方向における速度など、速度を分布として取得するためには、装置を機械的に走査(トラバース)させる必要がある。
また、2本のレーザは、照射プローブのレーザ照射口に取り付けられたレンズにより集光され、交差する。そのため、この交差位置もレンズの焦点距離によって決定され、装置によっては照射口から交差位置までの距離(作動距離)が非常に大きくなってしまうものもある。
更に、計測対象によっては装置そのもののトラバース量や作動距離を考慮する必要があり、装置の設置空間の自由度が制限されてしまうこと、そして、それに伴って適用先とする計測対象が限定されてしまうという課題があった。
【0005】
奥行き方向に対してプローブをトラバースさせることなく、LDVによって流れ場における奥行き方向の速度分布を取得可能な技術は、例えば非特許文献1及び非特許文献2などに開示されている。
【先行技術文献】
【非特許文献】
【0006】
【文献】"Monochromatic heterodyne fiber-optic profile sensor for spatially resolved velocity measurements with frequency division multiplexing", Applied Optics, 44(13), pp. 2501-2510, 2005.
【文献】"Axial scanning laser Doppler velocimeter using wavelength change without moving mechanism in sensor probe", Optics Express, 19(7), pp. 5960-5969, 2011.
【発明の概要】
【発明が解決しようとする課題】
【0007】
これらの文献には、非常に高価な音響光学素子等の装置を複数使用し、複数のレーザ光の周波数とその通過位置を適切に調整しないといけないことや(非特許文献1)、複数の回折格子から生じる回折光のうち、適切な光を選択的に交差させるため、光学系を厳密に調整しないといけないこと(非特許文献2)などが記載されている。
そのため、特殊な装置を使用しないといけないだけでなく、レーザ光の位置調整等には非常に熟練した技術が必要であり、誰でも簡単に扱える装置や技術になっているとは言い難い。
【0008】
以上のような事情に鑑み、本発明の目的は、簡単な構成で、しかも取り扱いも容易で、奥行き方向に対してプローブをトラバースさせることなく、流れ場における奥行き方向の速度分布を取得できる流速計測装置、流速分布計測システム、流体制御システム及び流速計測方法を提供することにある。
【課題を解決するための手段】
【0009】
上記目的を達成するため、本発明の一形態に係る流速計測装置は、2本のレーザ光を出射する出射部と、焦点距離を変化でき、前記出射部より出射された2本のレーザ光を交差させる可変焦点レンズ系と、計測対象である流体中を流れる粒子が前記2本のレーザ光が交差する領域で形成される干渉縞を通過した際に生じる散乱光を観察するための観察部とを有する。
【0010】
本発明の一形態に係る流速分布計測システムは、壁近傍の流体の流速分布を計測する流速分布計測システムである。このシステムは、上記構成の流速計測装置を、前記出射部より出射された2本のレーザ光が交差する領域が前記壁近傍に位置するように、前記壁内に埋め込んで構成される。
【0011】
本発明の一形態に係る流体制御システムは、影響付与部と、上記構成の流速計測装置と、制御部とを有する。影響付与部は、壁近傍を流れる流体に当該流体の流れに影響を与える。流速計測装置は、前記出射部より出射された2本のレーザ光が交差する領域が前記壁近傍に位置するように、前記影響付与部の周囲で前記壁内に埋め込まれて構成される。制御部は、前記流速計測装置により計測された流体の流速に基づき、前記影響付与部による前記流体の流れに与える影響を制御する。
【0012】
本発明の一形態に係る流速計測方法は、2本のレーザ光を出射し、焦点距離を変化できる可変焦点レンズ系を介して前記出射された2本のレーザ光を交差させ、計測対象である流体中に存在する粒子が、前記2本のレーザ光が交差する領域で形成される干渉縞を通過したときに生じる散乱光を観察する。
【発明の効果】
【0013】
本発明により、簡単な構成で、しかも取り扱いも容易で、奥行き方向に対してプローブをトラバースさせることなく、流れ場における奥行き方向の速度分布を取得できる。
【図面の簡単な説明】
【0014】
図1】本発明の一実施形態に係る流速計測装置1の概略構成を示すブロック図である。
図2】本実施形態に係る出射部10、可変焦点レンズ系20及び観察部30の具体的な構成の一例を示す図である。
図3A】レーザドップラー流速計の原理を説明するための概略的斜視図である。
図3B】レーザドップラー流速計の原理を説明するための概略的正面図である。
図4】液体レンズ21の作用を説明するための図である。
図5】焦点距離の変化に対する空間分解能の変化を説明するための図(その1)である。
図6】焦点距離の変化に対する空間分解能の変化を説明するための図(その2)である。
図7】焦点距離の変化に対する空間分解能の変化の一例を示すグラフである。
図8】本発明の他の実施形態に係る流速分布計測システム100の構成を示す概略図である。
図9】壁からの距離と流速との関係を示すグラフである。
図10】本発明の更に別の実施形態に係る流体制御システム200の構成を示す概略図である。
図11】航空機の母翼301及び母翼301に対して展開可能に設けられるフラップ302の概略的斜視図を示している。
図12】本実施形態に係る流速計測装置の応用例を説明するための図であり、液体レンズ21を通して出射部及び観察部をみた状態を示している。
【発明を実施するための形態】
【0015】
以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。
【0016】
<一実施形態に係る流速計測装置>
図1は本発明の一実施形態に係る流速計測装置1の概略構成を示すブロック図である。図1に示すように、流速計測装置1は、出射部10及び可変焦点レンズ系20を含むプローブ2と、観察部30と、制御部40からその主要部が構成され、流れ場Ffにおける奥行き方向Ddの流速分布Vpを取得するものである。なお、本実施形態に係る流速計測装置1のプローブ2は、照光プローブと受光プローブとを共用するが、本発明はこれに限定されず、照光プローブと受光プローブがそれぞれ別であってもよい。
出射部10は、奥行き方向Ddと直交する方向に所定の間隔をおいて、平行に2本のレーザ光L1、L2を出射する。2本のレーザ光L1、L2は、典型的には同一光源で周波数及び位相が等しい。
【0017】
可変焦点レンズ系20は、焦点距離fを変化でき、出射部10より出射された2本のレーザ光L1、L2を焦点距離fで交差させる。可変焦点レンズ系20は、バリフォーカルレンズとも言い、典型的には、電圧制御で焦点距離を制御可能な液体レンズである。なお、本実施形態に係る可変焦点レンズ系20は、焦点距離fを変化できる光学系であれば、液体レンズ以外であっても構わない。例えば、可変焦点レンズ系20は、複数のレンズにより構成し、その一部を光軸に沿って移動することで、連続して焦点距離を変化するようにした光学系でもよい。
観察部30は、計測対象である流体中の粒子P、典型的には粒子が2本のレーザ光L1、L2が交差する領域、つまり焦点距離fの領域で形成される干渉縞を通過した際に生じる散乱光Lsを、可変焦点レンズ系20を介して観察するためのものである。
制御部40は、演算部として機能し、観察部30により観察された散乱光Lsの周波数に基づき流体の流速を推定する。また、制御部40は、出射部10、可変焦点レンズ系20及び観察部30の動作を制御する。例えば、制御部40は、出射部10よりレーザ光L1、L2を出射するように制御し、可変焦点レンズ系20を電気的に制御して可変焦点レンズ系20の焦点距離を制御し、観察部30より散乱光Lsを受光するように制御する。制御部40は、典型的には、PC(パーソナルコンピュータ)によって構成することができる。
【0018】
図2は本実施形態に係る出射部10、可変焦点レンズ系20及び観察部30の具体的な構成の一例を示す図である。なお、本実施形態に係る流速計測装置1は、この構成に限定されるものではない。
図2において、符号11は半導体レーザなどのレーザ光源、符号12はレーザ光源11からのレーザ光Lを分岐するビームスプリッタ、符号13はビームスプリッタ12により分岐された一方のレーザ光L2を反射するプリズムである。なお、プリズムに代えミラーを用いてもよい。出射部10は、これらレーザ光源11、ビームスプリッタ12、プリズム13から構成され、レーザ光源11から出射されたレーザ光Lを、ビームスプリッタ12及びプリズム13を介して2本のレーザ光L1、L2に分岐して出射する。レーザ光源11が発光するレーザ光の周波数は、特に限定されない。
符号21は液体レンズであり、本実施形態に係る流速計測装置1では、可変焦点レンズ系20はこの液体レンズ21により構成される。液体レンズ21の焦点距離fは、上記したように制御部40(図1参照)を使用して電圧制御により制御される。
符号31は液体レンズ21を介した散乱光Lsを集光する集光レンズ、符号32は液体レンズ21の焦点位置に受光口が位置する光ファイバ、33は光ファイバ32を介して散乱光Lsを受光するフォトディテクタである。本実施形態に係る流速計測装置1では、観察部30は、少なくとも、これら集光レンズ31、光ファイバ32及びフォトディテクタ33により構成される。
【0019】
このように構成された流速計測装置1は、レーザドップラー流速計(LDV:Laser Doppler Velocimetry)として機能する。このレーザドップラー流速計の原理を図3A及び図3Bに基づき簡単に説明する。
図3A及び図3Bに示すように、2本のレーザ光L1、L2の干渉によって生じる干渉縞Frを、流れ場Ff中の粒子Pが通過する際に、干渉縞の明暗に対応した散乱光Lsが生じる。このとき、光のドップラー効果によって散乱光Lsに強弱が生じる。散乱光Lsの光信号を観察部30のフォトディテクタ33で電気信号に変換し、制御部40において干渉縞通過時の周波数を得る。この方法は光を使用するため、光信号が発せられた瞬間の信号を取得できる。そのため、時間分解能が高い。
粒子Pの流速Uは、ドップラー周波数fdpと干渉縞Frの間隔dによって以下の式で決定される。
U=fdp
従って、LDVを採用した実施形態に係る流速計測装置1は、非侵襲(非接触)で、時間分解能の高い計測方法といえる。
【0020】
ここで、本実施形態に係る流速計測装置1は、図4に示すように、液体レンズ21を採用し、制御部40の制御のもとで、液体レンズ21の焦点距離fを奥行き方向Ddに可変できる。例えば、図4中の点線は焦点距離が長くなるように液体レンズ21を制御したときのレーザ光L1、L2を示している。また、図4中の二点鎖線は焦点距離が短くなるように液体レンズ21を制御したときのレーザ光L1、L2を示している。
従来構成のLDVでは、固定焦点であるためプローブに対して奥行き方向Ddの流速を取得するために、プローブを奥行き方向Ddに対して動かす必要があった。つまり、従来構成のLDVでは、装置そのものを動かす必要があるので、装置に空間的な制約が生じる。これに対して、本実施形態に係る流速計測装置1では、液体レンズ21を使用した構成のLDVであるので、焦点距離を電気的に制御でき、計測する位置を、プローブを動かすことなく変更することができる。従って、奥行き方向Ddに対する空間的な制約が少なくなる。また、装置を空間的に動かすことが困難な場でも、装置を動かすことなく奥行き方向Ddに対する流速分布Vpを取得することが可能となる。更には、流れ場Ffにおける奥行き方向Ddの流速分布を瞬時にしてその場で計測可能となる。
【0021】
<空間分解能について>
本実施形態に係る流速計測装置1は、液体レンズ21を用いたことで焦点距離を変化させることが可能であるが、焦点距離の変化に対して空間分解能が変化する。
【0022】
図5に示すように、レーザ光L1、L2の波長をλ、レーザ光L1、L2の間隔とδ、液体レンズ21の焦点距離をf、液体レンズ21を介した後のレーザ光L1、L2の各ビーム径をDとすると、図6に示すレーザ光L1、L2の交差幅であるビームウエスト径φは、
φ=4λf/πnD=4λf/πD (nは屈折率であり、空気中を想定するとn=1)
であり、φは計測体積の径(x*y)に相当する。
【0023】
ビームの交差角度θは、
θ=tan―1(0.5δ/f)
であり、フリンジスペース(干渉縞間隔)Δxは、
Δx=λ(2nsinθ)=λ(2sinθ)
であり、プローブボリューム長さ(レーザ光L1、L2が交差している部分の長さ)lは、
l=φ/sinθ
である。
プローブボリュームlの大きさが、すなわち、空間分解能になる。焦点の変化に伴いθの値も変化するため、ボリューム長さlも焦点変化に合わせて変化するといえる。そのため、lが小さくなると、その分空間を細かく計測できるようになるため、空間分解能が上がる。逆にlが大きくなると、空間をあまり細かく計測できないので、空間分解能が低下する。
【0024】
<空間分解能と不確かさについて>
本実施形態に係る流速計測装置1では、液体レンズ21を使って焦点距離を変化させる構成を採用する。従って、例えば液体レンズ21の焦点距離fを変化させながら計測を行う場合には、プローブボリューム長さlの値が小さいほど奥行き方向Ddの空間分解能が高くなる。つまり、焦点距離fの値が小さくなるとθの値が大きくなり、それに伴いsinθの値が大きくなるためプローブのボリューム長さlは小さくなる。つまり、焦点距離fが短くなる奥行き方向Ddの空間分解能が高く、プローブに近い部分の流速を高精度に取得可能である。
一方、図7に示した通り、焦点距離fが大きくなることによって、プローブボリュームが大きくなる。すなわち、分解能が低下する。このとき、計測している任意の位置において、プローブボリューム内で流速は一意に定まるため、プローブボリューム内で流速が分布を持つ場合、その分布は、計測している点における流速の平均値に対する不確かさとして表現される。
焦点距離fの変化に対する空間分解能の変化は、図7に示すように、10mm程度焦点が変化しても高々2%程度である。従って、本実施形態に係る流速計測装置1のごとく液体レンズ21を使って焦点距離を変化させる構成を採用しても、計測中に焦点距離を大幅に変化させない限りは,計測そのものの不確かさは大して大きくならないと考えられる。なお、図7は、前提条件として元のビーム径D=1mm、ビーム間隔δ=15mmとして算出している。
【0025】
また、焦点距離に応じて空間分解能が変化することを以下に示すように積極的に利用してもよい。
【0026】
<一実施形態に係る流速分布計測システム>
図8は本発明の他の実施形態に係る流速分布計測システム100の構成を示す概略図である。
図8に示すように、流速分布計測システム100は、壁101近傍の気体などの流体の流速分布Vpを計測する。
【0027】
流速分布計測システム100は、上記の実施形態に係る流速計測装置1を、出射部10(図1参照)より出射された2本のレーザ光L1、L2が交差する領域が壁101近傍に位置するように、壁101内に埋め込んで構成される。
【0028】
ここで、流速分布Vpは、壁101近傍に近いほど小さい値となるが、壁101近傍に近いほど焦点距離fが短くなってlが小さくなるため空間分解能は高くなり、図9に示すように壁101近傍における流速の不確かさは小さくなる.すなわち、エラーバーの幅は小さくなる。一方、流速分布Vpは、壁101近傍から離れるほど大きい値となるが、壁101近傍から離れるほど焦点距離fが長くなってlが大きくなるため空間分解能は低くなり、図9に示すように壁101近傍における流速の不確かさは大きくなる。すなわち,エラーバーの幅は大きくなる。なお、図9において、プロットした点は壁101近傍から所定距離(z)離れた各点の流速(u)であり、プロット点から生えている上下左右の細線がエラーバーの幅を示している。上下方向のエラーバーはlの大きさに伴う計測位置のエラーバーであり、左右方向のエラーバーが流速のエラーバーである。
【0029】
また、従来構成のLDVでは、壁101近傍の流速分布Vpを取得するために、装置を動かすための高精度な位置決め装置が必要だった。また、プローブボリューム長さlの値よりも小さなサイズのセンサは従来から存在するが、流路の中にセンサを挿入する必要があり、流れを乱してしまっていた。
【0030】
これに対して、本実施形態に係る流速分布計測システム100では、可変焦点レンズ系を使用するため、流速計測装置1を動かすことなく、そして非侵襲な計測方法であるため流れを乱すことなく、壁101近傍の流速分布Vpを計測できる。なお、本実施形態に係る流速分布計測システム100では、焦点距離の調整が1mm以下の精度で可能であることが確認されている。
【0031】
<一実施形態に係る流体制御システム>
図10は本発明の更に別の実施形態に係る流体制御システム200の構成を示す概略図である。ここでは、典型的には航空機の翼に当該流体制御システム200を採用した例を示す。
図10において、符号201は壁の一態様である翼を示し、符号202は翼201の上面を示している。また、図中左側が翼201の前縁側である。
翼201の内部には本実施形態に係る流体制御システム200の主要部が搭載されている。
【0032】
流体制御システム200は、翼201近傍を流れる流体に当該流体の流れに影響を与える影響付与部210と、上記の実施形態に係る流速計測装置1とから主要部が構成され、更に影響付与部210と流速計測装置1との動作の同期を図るためのシンクロナイザ220と、制御部230とを有する。
【0033】
ここで、影響付与部210は、例えば翼201内に埋め込まれ、流体を翼201の表面から高速で上方に吹き出す吹き出しデバイスにより構成することができる。なお、影響付与部210は、吹き出しデバイスだけでなく、例えばvortex generatorに代表される突起型デバイスや誘電体バリア放電プラズマアクチュエータ等により構成することができる。
流速計測装置1のプローブ2は、影響付与部210よりも翼201の後端側で、出射部10より出射された2本のレーザ光L1、L2が交差する領域が翼201近傍に位置するように、翼201内に埋め込んで構成される。なお、流速計測装置1は、影響付与部210より下流でなく、上流の翼201内に埋め込んでもよい。
制御部230は、例えばPCにより構成され、流速計測装置1により計測された流体の流速に基づき、影響付与部210による流体の流れに与える影響を制御する。シンクロナイザ220や制御部230は機体の胴体に配置してもよい。
【0034】
このように構成された流体制御システム200では、流速計測装置1が、翼201の表面上において速度変動が大きな流れに追従する粒子より生じる散乱光をリアルタイムで計測し、制御部230は、ドップラー信号があるしきい値を超えたとき、影響付与部210より、例えば高速の気体を吹き出して翼201表面上の流れに運動量を付加することで、流れを制御する。これにより、翼201の表面上の流れで生じている大きな変動を抑制することができる。そして、本実施形態に係るシステムでは、時系列的にL1およびL2が交差する領域で生じる粒子の散乱光の光信号を取得し、その信号に基づいて吹き出し等を行うことで、翼201の表面上の流れをリアルタイムに制御することが可能となる。リアルタイムの制御を可能とすることで、より精度よく翼201表面上における流れの剥離の抑制を行うことができるようになる。
【0035】
<本実施形態に係る流速計測装置の使用例>
図11は航空機の母翼301及び母翼301に対して展開可能に設けられるフラップ302の概略的斜視図を示している。図11はフラップ302が展開された状態を表している。
符号300は、上記の流速計測装置1そのものを微細加工(MEMS)により作成し、それらを複数並べて一つのMEMSセンサモジュールに構成したものである。MEMSセンサモジュール300は、例えばフラップ302表面の前縁側に前縁と平行になるように埋め込まれる。この位置は、フラップ302が母翼301に収納された状態、或いはフラップ302が母翼301から展開された状態であってもその周囲から直接観察できない場合がある。
【0036】
典型的には、風洞試験室のような環境であり、かつ、壁に囲まれて計測窓もない場所で、フラップ302にMEMSセンサモジュール300を埋め込むことで母翼301とフラップ302の間を通過する気流の速度分布を取得することができる。
【0037】
なお、本実施形態に係る流速計測装置1では、内視鏡のようなものを作成し、プローブを通して人の手が届かないような部分の流速の計測を実施することができる。
また、本実施形態に係る流速計測装置1を走行中の自動車の燃焼機関に挿し込んで、燃焼機関内における微粒子の動きから燃焼の様子を計測することができる。
更に、本実施形態に係る流速計測装置1を人間の皮膚から体内に挿入し、血管壁と面を合わせ、例えば、血管内を流れる赤血球の干渉縞通過時における散乱光を取得して、血流の速度分布を計測することができる。
【0038】
<本実施形態に係る流速計測装置の応用例>
図12は本実施形態に係る流速計測装置の応用例を説明するための図であり、液体レンズ21を通して出射部及び観察部をみた状態を示している。
この応用例に係る流速計測装置401は、出射部としての第1及び第2の出射部10a、10bと、観察部としての第1及び第2の観察部30a、30bと、を有する。
第1の出射部10aは、2本のレーザ光L1、L2を出射し、第2の出射部10bは、2本のレーザ光L1、L2を結ぶ第1の直線l1と直交する第2の直線l2上より、2本のレーザ光L1、L2が交差する領域と同じ領域で交差する他の2本のレーザ光L3、L4を出射する。第1の観察部30aは、2本のレーザ光L1、L2に由来する散乱光を観察し、第2の観察部30bは、他の2本のレーザ光L3、L4に由来する散乱光を観察する。
【0039】
例えば、第1及び第2の出射部10a、10bが出射するレーザ光を異なる波長とし、第1の観察部30aは、レーザ光L1、L2だけを入光するフィルタを設け、第2の観察部30bはレーザ光L3、L4だけを入光するフィルタを設けることで、それぞれ別個に、干渉縞を通過する粒子から発せられる散乱光を観察することが可能である。
【0040】
この応用例に係る流速計測装置401では、制御部40(図1参照)における演算で壁の表面を流れる流体の方向とその方向に対する流体の流速分布を計測できる。
【0041】
<その他>
本発明は、上記の実施形態に限定されず、その技術思想の範囲内で変形して実施することができ、また応用して実施することもできる。そして、これらの実施の範囲も本発明は技術的範囲に属することは勿論である。
【符号の説明】
【0042】
1 :流速計測装置
10 :出射部
11 :レーザ光源
12 :ビームスプリッタ
13 :プリズム
20 :可変焦点レンズ系
21 :液体レンズ
30 :観察部
31 :集光レンズ
33 :フォトディテクタ
40 :制御部
100 :流速分布計測システム
101 :壁
200 :流体制御システム
210 :影響付与部
230 :制御部
401 :流速計測装置
D :ビーム径
Dd :奥行き方向
Ff :流れ場
Fr :干渉縞
L :レーザ光
L1 :レーザ光
L2 :レーザ光
L3 :レーザ光
L4 :レーザ光
Ls :散乱光
P :粒子
U :流速
Vp :流速分布
f :焦点距離
fdp :ドップラー周波数
l :プローブボリューム
l1 :第1の直線
l2 :第2の直線
λ :レーザ光L1、L2の波長
θ :交差角度
δ :ビーム間隔
φ :ビームウエスト径
図1
図2
図3A
図3B
図4
図5
図6
図7
図8
図9
図10
図11
図12