IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社半導体エネルギー研究所の特許一覧

<>
  • 特許-トランジスタ 図1
  • 特許-トランジスタ 図2
  • 特許-トランジスタ 図3
  • 特許-トランジスタ 図4
  • 特許-トランジスタ 図5
  • 特許-トランジスタ 図6
  • 特許-トランジスタ 図7
  • 特許-トランジスタ 図8
  • 特許-トランジスタ 図9
  • 特許-トランジスタ 図10
  • 特許-トランジスタ 図11
  • 特許-トランジスタ 図12
  • 特許-トランジスタ 図13
  • 特許-トランジスタ 図14
  • 特許-トランジスタ 図15
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-11-29
(45)【発行日】2022-12-07
(54)【発明の名称】トランジスタ
(51)【国際特許分類】
   H01L 29/786 20060101AFI20221130BHJP
   H01L 21/8234 20060101ALI20221130BHJP
   H01L 27/06 20060101ALI20221130BHJP
   H01L 27/088 20060101ALI20221130BHJP
   H01L 27/146 20060101ALI20221130BHJP
   H01L 21/8242 20060101ALI20221130BHJP
   H01L 27/108 20060101ALI20221130BHJP
   G11C 11/405 20060101ALI20221130BHJP
【FI】
H01L29/78 616V
H01L29/78 618B
H01L29/78 618C
H01L29/78 616T
H01L27/06 102A
H01L27/088 E
H01L27/088 331E
H01L27/146 C
H01L27/108 321
H01L27/108 671Z
G11C11/405
【請求項の数】 5
(21)【出願番号】P 2020185911
(22)【出願日】2020-11-06
(62)【分割の表示】P 2019221358の分割
【原出願日】2014-05-20
(65)【公開番号】P2021028984
(43)【公開日】2021-02-25
【審査請求日】2020-12-02
(31)【優先権主張番号】P 2013106337
(32)【優先日】2013-05-20
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000153878
【氏名又は名称】株式会社半導体エネルギー研究所
(72)【発明者】
【氏名】山崎 舜平
(72)【発明者】
【氏名】坂倉 真之
(72)【発明者】
【氏名】須澤 英臣
【審査官】岩本 勉
(56)【参考文献】
【文献】特開2012-033836(JP,A)
【文献】特開2008-060440(JP,A)
【文献】特開2013-021313(JP,A)
【文献】特開2009-266938(JP,A)
【文献】特開2009-224357(JP,A)
【文献】特開2012-124296(JP,A)
【文献】米国特許出願公開第2012/0146053(US,A1)
【文献】米国特許出願公開第2008/0054346(US,A1)
【文献】特開2012-256838(JP,A)
【文献】特開2012-191131(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 29/786
H01L 21/8234
H01L 27/088
H01L 27/146
H01L 21/8242
G11C 11/405
(57)【特許請求の範囲】
【請求項1】
チャネル領域に酸化物半導体膜を有し、
前記チャネル領域のチャネル幅方向の断面視において、前記酸化物半導体膜の上辺の長さをWtとし、前記酸化物半導体膜の高さをWsとするとき、0.3Ws≦Wt≦3Wsを満たすトランジスタであって、
前記酸化物半導体膜と接する領域を有するソース電極層又はドレイン電極層は、ルテニウムを含む材料を有し、
前記ソース電極層又は前記ドレイン電極層は、更に、Al、Cr、Cu、Ta、Ti、Mo、Wを含むトランジスタ。
【請求項2】
チャネル領域に酸化物半導体膜を有し、
前記チャネル領域のチャネル幅方向の断面視において、前記酸化物半導体膜の上辺の長さをWtとし、前記酸化物半導体膜の高さをWsとするとき、0.5Ws≦Wt≦1.5Wsを満たし、
前記酸化物半導体膜と接する領域を有するソース電極層又はドレイン電極層は、ルテニウムを含む材料を有し、
前記ソース電極層又は前記ドレイン電極層は、更に、Al、Cr、Cu、Ta、Ti、Mo、Wを含むトランジスタ。
【請求項3】
チャネル領域に酸化物半導体膜を有し、
前記チャネル領域のチャネル幅方向の断面視において、前記酸化物半導体膜の上辺の長さをWtとし、前記酸化物半導体膜の高さをWsとするとき、0.7Ws≦Wt≦1.3Wsを満たし、
前記酸化物半導体膜と接する領域を有するソース電極層又はドレイン電極層は、ルテニウムを含む材料を有し、
前記ソース電極層又は前記ドレイン電極層は、更に、Al、Cr、Cu、Ta、Ti、Mo、Wを含むトランジスタ。
【請求項4】
請求項1乃至請求項3のいずれか一において、
前記ソース電極層又は前記ドレイン電極層の前記酸化物半導体膜と接する領域のチャネル幅方向の断面視において、前記ソース電極層又は前記ドレイン電極層の端部から前記酸化物半導体膜と接する領域までの長さは、50nm以下であるトランジスタ。
【請求項5】
請求項1乃至請求項3のいずれか一において、
前記ソース電極層又は前記ドレイン電極層の前記酸化物半導体膜と接する領域のチャネル幅方向の断面視において、前記ソース電極層又は前記ドレイン電極層の端部から前記酸化物半導体膜と接する領域までの長さは、25nm以下であるトランジスタ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明の一態様は、酸化物半導体を用いた半導体装置に関する。
【0002】
なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する発明の
一態様の技術分野は、物、方法、または、製造方法に関するものである。または、本発明
の一態様は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・
オブ・マター)に関するものである。そのため、より具体的に本明細書で開示する本発明
の一態様の技術分野としては、半導体装置、表示装置、液晶表示装置、発光装置、照明装
置、蓄電装置、記憶装置、それらの駆動方法、または、それらの製造方法、を一例として
挙げることができる。
【0003】
なお、本明細書等において半導体装置とは、半導体特性を利用することで機能しうる装置
全般を指す。トランジスタ、半導体回路は半導体装置の一態様である。また、記憶装置、
表示装置、電子機器は、半導体装置を有する場合がある。
【背景技術】
【0004】
絶縁表面を有する基板上に形成された半導体薄膜を用いてトランジスタ(薄膜トランジス
タ(TFT)ともいう)を構成する技術が注目されている。当該トランジスタは集積回路
(IC)や画像表示装置(表示装置)のような電子デバイスに広く応用されている。トラ
ンジスタに適用可能な半導体薄膜としてシリコン系半導体材料が広く知られているが、そ
の他の材料として酸化物半導体が注目されている。
【0005】
例えば、トランジスタの活性層として、インジウム(In)、ガリウム(Ga)、および
亜鉛(Zn)を含む非晶質酸化物半導体を用いたトランジスタが特許文献1に開示されて
いる。
【先行技術文献】
【特許文献】
【0006】
【文献】特開2006-165528号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
集積化回路の高密度化においてトランジスタの微細化は必須技術である。一方、トランジ
スタの微細化によって、トランジスタの電気特性が悪化することや、ばらつきが生じやす
くなることが知られている。すなわち、トランジスタの微細化によって集積化回路の歩留
まりは低下しやすくなる。
【0008】
したがって、本発明の一態様は、微細化に伴い顕著となる電気特性の低下を抑制できる構
成の半導体装置を提供することを目的の一つとする。または、微細化に伴う歩留まりの低
下を抑えることのできる構造を有する半導体装置を提供することを目的の一つとする。ま
たは、集積度の高い半導体装置を提供することを目的の一つとする。または、オン電流の
悪化を低減した半導体装置を提供することを目的の一つとする。または、低消費電力の半
導体装置を提供することを目的の一つとする。または、信頼性の高い半導体装置を提供す
ることを目的の一つとする。または、電源が遮断されてもデータが保持される半導体装置
を提供することを目的の一つとする。または、新規な半導体装置を提供することを目的の
一つとする。
【0009】
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一
態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題
は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図
面、請求項などの記載から、これら以外の課題を抽出することが可能である。
【課題を解決するための手段】
【0010】
本発明の一態様は、積層された酸化物半導体層を有する半導体装置に関する。
【0011】
本発明の一態様は、絶縁表面上に第1の酸化物半導体層、第2の酸化物半導体層の順で形
成された積層と、当該積層の側面の一部、上面の一部、当該側面と対向する側面の一部を
覆うように形成された第3の酸化物半導体層と、を有し、第3の酸化物半導体層は、積層
と接する第1の層、および当該第1の層上の第2の層を有し、第1の層は微結晶層で形成
され、第2の層は第1の層の表面に対してc軸が垂直方向に配向する結晶層で形成されて
いることを特徴とする半導体装置である。
【0012】
また、本発明の他の一態様は、絶縁表面上に第1の酸化物半導体層、第2の酸化物半導体
層の順で形成された積層と、当該積層の一部と接するソース電極層およびドレイン電極層
と、絶縁表面、積層、ソース電極層およびドレイン電極層のそれぞれの一部と接するよう
に形成された第3の酸化物半導体層と、第3の酸化物半導体層上に形成されたゲート絶縁
膜と、ゲート絶縁膜上に形成されたゲート電極層と、ソース電極層、ドレイン電極層、お
よびゲート電極層上に形成された絶縁層と、を有し、第3の酸化物半導体層は、積層と接
する第1の層、および当該第1の層上の第2の層を有し、第1の層は微結晶層で形成され
、第2の層は第1の層の表面に対してc軸が垂直方向に配向する結晶層で形成されている
ことを特徴とする半導体装置である。
【0013】
なお、本明細書等における「第1」、「第2」などの序数詞は、構成要素の混同を避ける
ために付すものであり、数的に限定するものではないことを付記する。
【0014】
上記第1の酸化物半導体層は、絶縁表面に対して垂直方向にc軸配向する結晶層を有し、
上記第2の酸化物半導体層は第1の酸化物半導体層の上面に対して垂直方向にc軸配向す
る結晶層を有することが好ましい。
【0015】
また、上記積層と第3の酸化物半導体層が接する領域において、第2の酸化物半導体層の
表面は曲面を有していることが好ましい。
【0016】
また、第1の酸化物半導体層および第3の酸化物半導体層は、第2の酸化物半導体層より
も伝導帯下端のエネルギーが0.05eV以上2eV以下の範囲で真空準位に近いことが
好ましい。
【0017】
また、第1の酸化物半導体層乃至第3の酸化物半導体層は、In-M-Zn酸化物層(M
はAl、Ti、Ga、Y、Zr、La、Ce、NdまたはHf)であり、第1の酸化物半
導体層および第3の酸化物半導体層は、Inに対するMの原子数比が第2の酸化物半導体
層よりも大きいことが好ましい。
【発明の効果】
【0018】
本発明の一態様を用いることにより、微細化に伴い顕著となる電気特性の低下を抑制でき
る構成の半導体装置を提供することができる。または、微細化に伴う歩留まりの低下を抑
えることのできる構造を有する半導体装置を提供することができる。または、集積度の高
い半導体装置を提供することができる。または、オン電流の悪化を低減した半導体装置を
提供することができる。または、低消費電力の半導体装置を提供することができる。また
は、信頼性の高い半導体装置を提供することができる。または、電源が遮断されてもデー
タが保持される半導体装置を提供することができる。または、新規な半導体装置を提供す
ることができる。
【0019】
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一
態様は、必ずしも、これらの効果の全てを有する必要はない。なお、これら以外の効果は
、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面
、請求項などの記載から、これら以外の効果を抽出することが可能である。
【図面の簡単な説明】
【0020】
図1】トランジスタの上面図および断面図。
図2】トランジスタの断面図。
図3】酸化物半導体層のバンド構造を説明する図。
図4】酸化物半導体層の積層の一部における結晶構造を説明する図。
図5】トランジスタの拡大断面図。
図6】トランジスタの断面図。
図7】トランジスタの作製方法を説明する図。
図8】トランジスタの作製方法を説明する図。
図9】半導体装置の断面図および回路図。
図10】半導体装置の回路図。
図11】半導体装置の回路図および断面図。
図12】半導体装置の回路図。
図13】半導体装置を適用することができる電子機器を説明する図。
図14】酸化物半導体層の積層状態を観察するためのサンプルの断面図。
図15】酸化物半導体層の断面TEM写真。
【発明を実施するための形態】
【0021】
実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定さ
れず、本発明の趣旨およびその範囲から逸脱することなくその形態および詳細を様々に変
更し得ることは当業者であれば容易に理解される。したがって、本発明は以下に示す実施
の形態の記載内容に限定して解釈されるものではない。なお、以下に説明する発明の構成
において、同一部分または同様な機能を有する部分には同一の符号を異なる図面間で共通
して用い、その繰り返しの説明は省略することがある。
【0022】
なお、本明細書等において、XとYとが接続されている、と明示的に記載する場合は、X
とYとが電気的に接続されている場合と、XとYとが機能的に接続されている場合と、X
とYとが直接接続されている場合とを含むものとする。ここで、X、Yは、対象物(例え
ば、装置、素子、回路、配線、電極、端子、導電膜、層、など)であるとする。したがっ
て、所定の接続関係、例えば、図または文章に示された接続関係に限定されず、図または
文章に示された接続関係以外のものも含むものとする。
【0023】
XとYとが電気的に接続されている場合の一例としては、XとYとの電気的な接続を可能
とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイ
オード、表示素子、発光素子、負荷など)が、XとYとの間に1個以上接続されることが
可能である。なお、スイッチは、オンオフが制御される機能を有している。つまり、スイ
ッチは、導通状態(オン状態)、または、非導通状態(オフ状態)になり、電流を流すか
流さないかを制御する機能を有している。または、スイッチは、電流を流す経路を選択し
て切り替える機能を有している。
【0024】
XとYとが機能的に接続されている場合の一例としては、XとYとの機能的な接続を可能
とする回路(例えば、論理回路(インバータ、NAND回路、NOR回路など)、信号変
換回路(DA変換回路、AD変換回路、ガンマ補正回路など)、電位レベル変換回路(電
源回路(昇圧回路、降圧回路など)、信号の電位レベルを変えるレベルシフタ回路など)
、電圧源、電流源、切り替え回路、増幅回路(信号振幅または電流量などを大きく出来る
回路、オペアンプ、差動増幅回路、ソースフォロワ回路、バッファ回路など)、信号生成
回路、記憶回路、制御回路など)が、XとYとの間に1個以上接続されることが可能であ
る。なお、一例として、XとYとの間に別の回路を挟んでいても、Xから出力された信号
がYへ伝達される場合は、XとYとは機能的に接続されているものとする。
【0025】
なお、XとYとが接続されている、と明示的に記載する場合は、XとYとが電気的に接続
されている場合(つまり、XとYとの間に別の素子または別の回路を挟んで接続されてい
る場合)と、XとYとが機能的に接続されている場合(つまり、XとYとの間に別の回路
を挟んで機能的に接続されている場合)と、XとYとが直接接続されている場合(つまり
、XとYとの間に別の素子または別の回路を挟まずに接続されている場合)とを含むもの
とする。つまり、電気的に接続されている、と明示的に記載する場合は、単に、接続され
ている、とのみ明示的に記載されている場合と同じであるとする。
【0026】
なお、回路図上は独立している構成要素同士が電気的に接続しているように図示されてい
る場合であっても、1つの構成要素が、複数の構成要素の機能を併せ持っている場合もあ
る。例えば配線の一部が電極としても機能する場合は、一の導電膜が、配線の機能、およ
び電極の機能の両方の構成要素の機能を併せ持っている。したがって、本明細書における
電気的に接続とは、このような、一の導電膜が、複数の構成要素の機能を併せ持っている
場合も、その範疇に含める。
【0027】
なお、例えば、トランジスタのソース(又は第1の端子など)が、Z1を介して(又は介
さず)、Xと電気的に接続され、トランジスタのドレイン(又は第2の端子など)が、Z
2を介して(又は介さず)、Yと電気的に接続されている場合や、トランジスタのソース
(又は第1の端子など)が、Z1の一部と直接的に接続され、Z1の別の一部がXと直接
的に接続され、トランジスタのドレイン(又は第2の端子など)が、Z2の一部と直接的
に接続され、Z2の別の一部がYと直接的に接続されている場合では、以下のように表現
することが出来る。
【0028】
例えば、「XとYとトランジスタのソース(又は第1の端子など)とドレイン(又は第2
の端子など)とは、互いに電気的に接続されており、X、トランジスタのソース(又は第
1の端子など)、トランジスタのドレイン(又は第2の端子など)、Yの順序で電気的に
接続されている。」と表現することができる。または、「トランジスタのソース(又は第
1の端子など)は、Xと電気的に接続され、トランジスタのドレイン(又は第2の端子な
ど)はYと電気的に接続され、X、トランジスタのソース(又は第1の端子など)、トラ
ンジスタのドレイン(又は第2の端子など)、Yは、この順序で電気的に接続されている
」と表現することができる。または、「Xは、トランジスタのソース(又は第1の端子な
ど)とドレイン(又は第2の端子など)とを介して、Yと電気的に接続され、X、トラン
ジスタのソース(又は第1の端子など)、トランジスタのドレイン(又は第2の端子など
)、Yは、この接続順序で設けられている」と表現することができる。これらの例と同様
な表現方法を用いて、回路構成における接続の順序について規定することにより、トラン
ジスタのソース(又は第1の端子など)と、ドレイン(又は第2の端子など)とを、区別
して、技術的範囲を決定することができる。なお、これらの表現方法は、一例であり、こ
れらの表現方法に限定されない。ここで、X、Y、Z1、Z2は、対象物(例えば、装置
、素子、回路、配線、電極、端子、導電膜、層、など)であるとする。
【0029】
なお、本明細書等において、様々な基板を用いて、トランジスタを形成することが出来る
。基板の種類は、特定のものに限定されることはない。その基板の一例としては、半導体
基板(例えば単結晶基板またはシリコン基板)、SOI基板、ガラス基板、石英基板、プ
ラスチック基板、金属基板、ステンレス・スチル基板、ステンレス・スチル・ホイルを有
する基板、タングステン基板、タングステン・ホイルを有する基板、可撓性基板、貼り合
わせフィルム、繊維状の材料を含む紙、または基材フィルムなどがある。ガラス基板の一
例としては、バリウムホウケイ酸ガラス、アルミノホウケイ酸ガラス、またはソーダライ
ムガラスなどがある。可撓性基板の一例としては、ポリエチレンテレフタレート(PET
)、ポリエチレンナフタレート(PEN)、ポリエーテルサルフォン(PES)に代表さ
れるプラスチック、またはアクリル等の可撓性を有する合成樹脂などがある。貼り合わせ
フィルムの一例としては、ポリプロピレン、ポリエステル、ポリフッ化ビニル、またはポ
リ塩化ビニルなどがある。基材フィルムの一例としては、ポリエステル、ポリアミド、ポ
リイミド、無機蒸着フィルム、または紙類などがある。特に、半導体基板、単結晶基板、
またはSOI基板などを用いてトランジスタを製造することによって、特性、サイズ、ま
たは形状などのばらつきが少なく、電流能力が高く、サイズの小さいトランジスタを製造
することができる。このようなトランジスタによって回路を構成すると、回路の低消費電
力化、または回路の高集積化を図ることができる。
【0030】
また、基板として、可撓性基板を用い、可撓性基板上に直接、トランジスタを形成しても
よい。または、基板とトランジスタの間に剥離層を設けてもよい。剥離層は、その上に半
導体装置を一部あるいは全部完成させた後、基板より分離し、他の基板に転載するために
用いることができる。その際、トランジスタは耐熱性の劣る基板や可撓性の基板にも転載
できる。なお、上述の剥離層には、例えば、タングステン膜と酸化シリコン膜との無機膜
の積層構造の構成や、基板上にポリイミド等の有機樹脂膜が形成された構成等を用いるこ
とができる。
【0031】
つまり、ある基板を用いてトランジスタを形成し、その後、別の基板にトランジスタを転
置し、別の基板上にトランジスタを配置してもよい。トランジスタが転置される基板の一
例としては、上述したトランジスタを形成することが可能な基板に加え、紙基板、セロフ
ァン基板、アラミドフィルム基板、ポリイミドフィルム基板、石材基板、木材基板、布基
板(天然繊維(絹、綿、麻)、合成繊維(ナイロン、ポリウレタン、ポリエステル)若し
くは再生繊維(アセテート、キュプラ、レーヨン、再生ポリエステル)などを含む)、皮
革基板、またはゴム基板などがある。これらの基板を用いることにより、特性のよいトラ
ンジスタの形成、消費電力の小さいトランジスタの形成、壊れにくい装置の製造、耐熱性
の付与、軽量化、または薄型化を図ることができる。
【0032】
(実施の形態1)
本実施の形態では、本発明の一態様の半導体装置について図面を用いて説明する。
【0033】
図1(A)、(B)、(C)は、本発明の一態様のトランジスタの上面図および断面図で
ある。図1(A)は上面図であり、図1(A)に示す一点鎖線A1-A2の断面が図1
B)に相当する。また、図1(C)は、図1(A)に示す一点鎖線A3-A4の断面図で
ある。なお、図1(A)の上面図では、図の明瞭化のために一部の要素を省いて図示して
いる。また、一点鎖線A1-A2方向をチャネル長方向、一点鎖線A3-A4方向をチャ
ネル幅方向と呼称する場合がある。
【0034】
図1(A)、(B)、(C)および図2に示すトランジスタ100は、基板110上に形
成された下地絶縁膜120と、当該下地絶縁膜上に形成された、第1の酸化物半導体層1
31、第2の酸化物半導体層132の順で形成された積層と、当該積層の一部と接するよ
うに形成されたソース電極層140およびドレイン電極層150と、下地絶縁膜120、
当該積層、ソース電極層140およびドレイン電極層150のそれぞれの一部と接する第
3の酸化物半導体層133と、当該第3の酸化物半導体層上に形成されたゲート絶縁膜1
60、当該ゲート絶縁膜上に形成されたゲート電極層170と、ソース電極層140、ド
レイン電極層150およびゲート電極層170上に形成された絶縁層180を有する。
【0035】
ここで、第1の酸化物半導体層131は下地絶縁膜120の表面に対して垂直方向にc軸
配向する結晶層を有し、第2の酸化物半導体層132は第1の酸化物半導体層131の上
面に対して垂直方向にc軸配向する結晶層を有することが好ましい。
【0036】
また、第3の酸化物半導体層133は、上記積層と接する第1の層と、当該第1の層上の
第2の層を有するように形成される。当該第1の層は微結晶層であり、当該第2の層は当
該第1の層の表面に対してc軸が垂直方向に配向する結晶層で形成されている。
【0037】
また、絶縁層180上に酸化物で形成された絶縁層185が形成されていてもよい。当該
絶縁層185は必要に応じて設ければよく、さらにその上部に他の絶縁層を形成してもよ
い。また、第1の酸化物半導体層131、第2の酸化物半導体層132、および第3の酸
化物半導体層133を総称して酸化物半導体層130と呼称する。
【0038】
なお、トランジスタの「ソース」や「ドレイン」の機能は、異なる極性のトランジスタを
採用する場合や、回路動作において電流の方向が変化する場合などには入れ替わることが
ある。このため、本明細書においては、「ソース」や「ドレイン」の用語は、入れ替えて
用いることができるものとする。
【0039】
また、本発明の一態様のトランジスタは、酸化物半導体層(第1の酸化物半導体層131
および第2の酸化物半導体層132)と重なるソース電極層140またはドレイン電極層
150において、図1(A)の上面図に示す酸化物半導体層の一端部からソース電極層1
40またはドレイン電極層150の一端部までの距離(ΔW)を50nm以下、好ましく
は25nm以下とする。ΔWを小さくすることで、下地絶縁膜120に含まれる酸素のソ
ース電極層140またはドレイン電極層150の構成材料である金属材料への拡散量を抑
えることができる。したがって、下地絶縁膜120に含まれる酸素、特に過剰に含まれて
いる酸素の不必要な放出を抑えることができ、酸化物半導体層に対して下地絶縁膜120
から効率よく酸素を供給することができる。
【0040】
次に本発明の一態様のトランジスタ100の構成要素について詳細を説明する。
【0041】
基板110は、単なる支持基板に限らず、他のトランジスタなどのデバイスが形成された
基板であってもよい。この場合、トランジスタ100のゲート電極層170、ソース電極
層140、およびドレイン電極層150の少なくとも一つは、上記の他のデバイスと電気
的に接続されていてもよい。
【0042】
下地絶縁膜120は、基板110からの不純物の拡散を防止する役割を有するほか、酸化
物半導体層130に酸素を供給する役割を担うことができる。したがって、下地絶縁膜1
20は酸素を含む絶縁膜であることが好ましく、化学量論組成よりも多い酸素を含む絶縁
膜であることがより好ましい。また、上述のように基板110が他のデバイスが形成され
た基板である場合、下地絶縁膜120は、層間絶縁膜としての機能も有する。その場合は
、表面が平坦になるようにCMP(Chemical Mechanical Poli
shing)法等で平坦化処理を行うことが好ましい。
【0043】
また、トランジスタ100のチャネルが形成される領域において酸化物半導体層130は
、基板110側から第1の酸化物半導体層131、第2の酸化物半導体層132、第3の
酸化物半導体層133が積層された構造を有している。また、図1(C)のチャネル幅方
向の断面図に示すように、チャネル形成領域において第3の酸化物半導体層133は、第
1の酸化物半導体層131および第2の酸化物半導体層132からなる積層の側面、上面
、当該側面と対向する側面を覆うように形成される。したがって、チャネル形成領域にお
いて第2の酸化物半導体層132は、第1の酸化物半導体層131および第3の酸化物半
導体層133で取り囲まれている構造となっている。
【0044】
ここで、一例としては、第2の酸化物半導体層132には、第1の酸化物半導体層131
および第3の酸化物半導体層133よりも電子親和力(真空準位から伝導帯下端までのエ
ネルギー)が大きい酸化物半導体を用いる。電子親和力は、真空準位と価電子帯上端との
エネルギー差(イオン化ポテンシャル)から、伝導帯下端と価電子帯上端とのエネルギー
差(エネルギーギャップ)を差し引いた値として求めることができる。
【0045】
第1の酸化物半導体層131および第3の酸化物半導体層133は、第2の酸化物半導体
層132を構成する金属元素を一種以上含み、例えば、伝導帯下端のエネルギーが第2の
酸化物半導体層132よりも、0.05eV、0.07eV、0.1eV、0.15eV
のいずれか以上であって、2eV、1eV、0.5eV、0.4eVのいずれか以下の範
囲で真空準位に近い酸化物半導体で形成することが好ましい。
【0046】
このような構造において、ゲート電極層170に電界を印加すると、酸化物半導体層13
0のうち、伝導帯下端のエネルギーが最も小さい第2の酸化物半導体層132にチャネル
が形成される。すなわち、第2の酸化物半導体層132とゲート絶縁膜160との間に第
3の酸化物半導体層133が形成されていることよって、トランジスタのチャネルがゲー
ト絶縁膜と接しない構造となる。
【0047】
また、第1の酸化物半導体層131は、第2の酸化物半導体層132を構成する金属元素
を一種以上含んで構成されるため、第2の酸化物半導体層132と下地絶縁膜120が接
した場合の界面と比較して、第2の酸化物半導体層132と第1の酸化物半導体層131
の界面に界面準位を形成しにくくなる。該界面準位はチャネルを形成することがあるため
、トランジスタのしきい値電圧が変動することがある。したがって、第1の酸化物半導体
層131を設けることにより、トランジスタのしきい値電圧などの電気特性のばらつきを
低減することができる。また、当該トランジスタの信頼性を向上させることができる。
【0048】
また、第3の酸化物半導体層133は、第2の酸化物半導体層132を構成する金属元素
を一種以上含んで構成されるため、第2の酸化物半導体層132とゲート絶縁膜160が
接した場合の界面と比較して、第2の酸化物半導体層132と第3の酸化物半導体層13
3との界面ではキャリアの散乱が起こりにくくなる。したがって、第3の酸化物半導体層
133を設けることにより、トランジスタの電界効果移動度を高くすることができる。
【0049】
第1の酸化物半導体層131、第2の酸化物半導体層132、第3の酸化物半導体層13
3が、少なくともインジウム、亜鉛およびM(Al、Ti、Ga、Ge、Y、Zr、Sn
、La、CeまたはHf等の金属)を含むIn-M-Zn酸化物層であるとき、第1の酸
化物半導体層131および第3の酸化物半導体層133におけるInまたはZnに対する
Mの原子数比は、第2の酸化物半導体層132のそれよりも高くすることが好ましい。具
体的には、当該原子数比を1.5倍以上、好ましくは2倍以上、さらに好ましくは3倍以
上とする。MはInまたはZnよりも酸素と強く結合するため、酸素欠損が酸化物半導体
層に生じることを抑制する機能を有する。すなわち、第1の酸化物半導体層131および
第3の酸化物半導体層133は、第2の酸化物半導体層132よりも酸素欠損が生じにく
いということができる。
【0050】
なお、第1の酸化物半導体層131、第2の酸化物半導体層132、第3の酸化物半導体
層133が、少なくともインジウム、亜鉛およびM(Al、Ti、Ga、Ge、Y、Zr
、Sn、La、CeまたはHf等の金属)を含むIn-M-Zn酸化物層であるとき、第
1の酸化物半導体層131をIn:M:Zn=x:y:z[原子数比]、第2の酸
化物半導体層132をIn:M:Zn=x:y:z[原子数比]、第3の酸化物半
導体層133をIn:M:Zn=x:y:z[原子数比]とすると、y/x
よびy/xがy/xよりも大きくなることが好ましい。y/xおよびy
はy/xよりも1.5倍以上、好ましくは2倍以上、さらに好ましくは3倍以上
とする。このとき、第2の酸化物半導体層132において、yがx以上であるとトラ
ンジスタの電気特性を安定させることができる。ただし、yがxの3倍以上になると
、トランジスタの電界効果移動度が低下してしまうため、yはxの3倍未満であるこ
とが好ましい。
【0051】
なお、本明細書において酸化物半導体層の組成を説明する原子数比には、母材料の原子数
比を示す意味も含まれる。酸化物半導体材料をターゲットとしてスパッタ法で成膜を行っ
た場合、スパッタガス種やその比率、ターゲットの密度、および成膜条件によって、成膜
される酸化物半導体層の組成が母材料のターゲットとは異なってしまうことがある。した
がって、本明細書では酸化物半導体層の組成を説明する原子数比には、母材料の原子数比
を含めることとする。例えば、成膜方法にスパッタ法を用いた場合に、原子数比が1:1
:1のIn-Ga-Zn酸化物膜とは、原子数比が1:1:1のIn-Ga-Zn酸化物
材料をターゲットに用いて成膜したIn-Ga-Zn酸化物膜と言い換えることができる
【0052】
第1の酸化物半導体層131および第3の酸化物半導体層133におけるZnおよびOを
除いた場合のInとMの原子数比率は、好ましくはInが50atomic%未満、Mが
50atomic%以上、さらに好ましくはInが25atomic%未満、Mが75a
tomic%以上とする。また、第2の酸化物半導体層132におけるZnおよびOを除
いた場合のInとMの原子数比率は、好ましくはInが25atomic%以上、Mが7
5atomic%未満、さらに好ましくはInが34atomic%以上、Mが66at
omic%未満とする。
【0053】
第1の酸化物半導体層131および第3の酸化物半導体層133の厚さは、1nm以上1
00nm以下、好ましくは3nm以上50nm以下とする。また、第2の酸化物半導体層
132の厚さは、1nm以上200nm以下、好ましくは3nm以上100nm以下、さ
らに好ましくは3nm以上50nm以下とする。
【0054】
第1の酸化物半導体層131、第2の酸化物半導体層132、および第3の酸化物半導体
層133には、例えば、インジウム、亜鉛およびガリウムを含んだ酸化物半導体を用いる
ことができる。特に、第2の酸化物半導体層132にインジウムを含ませると、キャリア
移動度が高くなるため好ましい。
【0055】
したがって、酸化物半導体層130を第1の酸化物半導体層131、第2の酸化物半導体
層132、第3の酸化物半導体層133の積層構造とすることで、第2の酸化物半導体層
132にチャネルを形成することができ、高い電界効果移動度および安定した電気特性を
有したトランジスタを形成することができる。
【0056】
第1の酸化物半導体層131、第2の酸化物半導体層132、第3の酸化物半導体層13
3のバンド構造においては、伝導帯下端のエネルギーが連続的に変化する。これは、第1
の酸化物半導体層131、第2の酸化物半導体層132、第3の酸化物半導体層133の
組成が近似することにより、酸素が相互に拡散しやすい点からも理解される。したがって
、第1の酸化物半導体層131、第2の酸化物半導体層132、第3の酸化物半導体層1
33は組成が異なる層の積層体ではあるが、物性的に連続であるということもでき、図面
において、当該積層体のそれぞれの界面は点線で表している。
【0057】
主成分を共通として積層された酸化物半導体層130は、各層を単に積層するのではなく
連続接合(ここでは特に伝導帯下端のエネルギーが各層の間で連続的に変化するU字型の
井戸構造)が形成されるように作製する。すなわち、各層の界面にトラップ中心や再結合
中心のような欠陥準位を形成するような不純物が存在しないように積層構造を形成する。
仮に、積層された酸化物半導体層の層間に不純物が混在していると、エネルギーバンドの
連続性が失われ、界面でキャリアがトラップあるいは再結合により消滅してしまう。
【0058】
例えば、第1の酸化物半導体層131および第3の酸化物半導体層133にはIn:Ga
:Zn=1:3:2、1:3:3、1:3:4、1:3:6、1:6:4または1:9:
6(原子数比)、第2の酸化物半導体層132にはIn:Ga:Zn=1:1:1、5:
5:6、または3:1:2(原子数比)などのIn-Ga-Zn酸化物などを用いること
ができる。
【0059】
酸化物半導体層130における第2の酸化物半導体層132はウェル(井戸)となり、酸
化物半導体層130を用いたトランジスタにおいて、チャネルは第2の酸化物半導体層1
32に形成される。なお、酸化物半導体層130は伝導帯下端のエネルギーが連続的に変
化しているため、U字型井戸(U Shape Well)とも呼ぶことができる。また
、このような構成で形成されたチャネルを埋め込みチャネルということもできる。
【0060】
また、第1の酸化物半導体層131および第3の酸化物半導体層133と、酸化シリコン
膜などの絶縁膜との界面近傍には、不純物や欠陥に起因したトラップ準位が形成され得る
。第1の酸化物半導体層131および第3の酸化物半導体層133があることにより、第
2の酸化物半導体層132と当該トラップ準位とを遠ざけることができる。
【0061】
ただし、第1の酸化物半導体層131および第3の酸化物半導体層133の伝導帯下端の
エネルギーと、第2の酸化物半導体層132の伝導帯下端のエネルギーとの差が小さい場
合、第2の酸化物半導体層132の電子が該エネルギー差を越えてトラップ準位に達する
ことがある。電子がトラップ準位に捕獲されることで、絶縁膜界面にマイナスの固定電荷
が生じ、トランジスタのしきい値電圧はプラス方向にシフトしてしまう。
【0062】
したがって、トランジスタのしきい値電圧の変動を低減するには、第1の酸化物半導体層
131および第3の酸化物半導体層133の伝導帯下端のエネルギーと、第2の酸化物半
導体層132の伝導帯下端のエネルギーとの間に一定以上の差を設けることが必要となる
。それぞれの当該エネルギー差は、0.1eV以上が好ましく、0.15eV以上がより
好ましい。
【0063】
また、第1の酸化物半導体層131、第2の酸化物半導体層132および第3の酸化物半
導体層133には、c軸に配向した結晶層が含まれることが好ましい。当該結晶層が含ま
れる膜を用いることでトランジスタに安定した電気特性を付与することができる。
【0064】
なお、酸化物半導体層130にIn-Ga-Zn酸化物を用いる場合は、Inのゲート絶
縁膜への拡散を防ぐために、第3の酸化物半導体層133は第2の酸化物半導体層132
よりもInが少ない組成とすることが好ましい。
【0065】
本発明の一態様のトランジスタは、上述した埋め込みチャネルであることに加え、図2
示すように第3の酸化物半導体層133が第1の酸化物半導体層131と第2の酸化物半
導体層132の積層および下地絶縁膜120に接する微結晶層133aと、当該微結晶層
の表面に対してc軸が垂直方向に配向する結晶層133bを有する構成となっている。
【0066】
当該構造における酸化物半導体層(図2のB1-B2方向に相当)のバンド構造の詳細を
図3に示す。ここで、Evacは真空準位のエネルギー、EcI1およびEcI2は酸化
シリコン膜の伝導帯下端のエネルギー、EcS1は第1の酸化物半導体層131の伝導帯
下端のエネルギー、EcS2は第2の酸化物半導体層132の伝導帯下端のエネルギー、
EcS3は第3の酸化物半導体層133の伝導帯下端のエネルギーである。
【0067】
EcS1-EcS2間、およびEcS3-EcS2間ではエネルギーが急激に変化するこ
となく、その変化の始めおよび終わりでは、徐々に傾きが変わるように変化する。
【0068】
これは、第1の酸化物半導体層131と第2の酸化物半導体層132の界面、および第3
の酸化物半導体層133と第2の酸化物半導体層132の界面において、組成物が相互拡
散し、第1の酸化物半導体層131と第2の酸化物半導体層132との間の組成、または
第3の酸化物半導体層133と第2の酸化物半導体層132との間の組成となる領域を形
成するためである。
【0069】
このため、図3に示すように、第2の酸化物半導体層132に形成されるチャネルは、第
3の酸化物半導体層133と第2の酸化物半導体層132との界面から膜の中心方向に少
し離れた位置と、第1の酸化物半導体層131と第2の酸化物半導体層132の界面から
膜の中心方向に少し離れた位置との間の領域132bに形成される。したがって、当該い
ずれかの界面に欠陥や不純物が存在していたとしても、キャリアのトラップや再結合を抑
えることができる。
【0070】
また、第3の酸化物半導体層133において、第1の酸化物半導体層131と第2の酸化
物半導体層132の積層に接する領域は微結晶層133aであり、当該微結晶層はその上
部に形成される結晶層133bよりも密度が小さいことなどから、第2の酸化物半導体層
132の組成物が第3の酸化物半導体層133側へ拡散しやすくなる。したがって、第3
の酸化物半導体層133と第2の酸化物半導体層132との間の組成となる領域が増加す
る。そのため、第2の酸化物半導体層132に形成されるチャネルは、第3の酸化物半導
体層133と第2の酸化物半導体層132との界面から膜の中心方向にさらに離れた位置
に形成され、上述した界面に欠陥や不純物がある場合の不具合をより効果的に抑えること
ができる。
【0071】
また、第1の酸化物半導体層131、第2の酸化物半導体層132がc軸に配向した結晶
層で形成されている場合、微結晶層133aは当該結晶層よりも密度が小さいため、比較
的酸素を拡散しやすいといえる。したがって、微結晶層133aをパスとして、下地絶縁
膜120からチャネルとなる第2の酸化物半導体層132に効率よく酸素供給をすること
ができ、酸素欠損に酸素を補填することができる。
【0072】
また、第3の酸化物半導体層133における結晶層133bは、微結晶層133aの表面
に対して垂直方向にc軸配向する。そのため、第2の酸化物半導体層132の表面を曲面
を有するように形成することでc軸配向した結晶で第2の酸化物半導体層132のチャネ
ル領域を密に覆うことができる。
【0073】
図4(A)はトランジスタのチャネル幅方向において、曲面を有するように形成された第
2の酸化物半導体層132、当該第2の酸化物半導体層を覆う微結晶層133a、当該微
結晶層上に形成される結晶層133bの積層の一部における結晶構造を模式化した断面図
である。ここで、第2の酸化物半導体層132は第1の酸化物半導体層131(図示せず
)の表面に対して垂直方向にc軸に配向した結晶層とする。
【0074】
図示するように第2の酸化物半導体層132の表面を曲面を有するように形成することで
、微結晶層133aを介して当該曲面の表面に対して垂直方向にc軸配向した密な結晶層
133bを有する第3の酸化物半導体層133を形成することができる。したがって、第
3の酸化物半導体層133による第2の酸化物半導体層132からの酸素脱離を抑える効
果、または下地絶縁膜120から放出される酸素を閉じ込める効果を高めることができ、
第2の酸化物半導体層132の酸素欠損に効率よく酸素補填を行うことができる。
【0075】
なお、第2の酸化物半導体層132の表面を曲面を有するように形成しない場合は、図4
(B)に示すように第3の酸化物半導体層133において、第2の酸化物半導体層132
の上部に形成される結晶層133bと側部に形成される結晶層133bとが交わる領域に
結晶が疎の領域233が形成される。そのため、第2の酸化物半導体層132が有する酸
素、および下地絶縁膜120から第2の酸化物半導体層132に供給される酸素が領域2
33を通じて放出されやすくなる。したがって、第2の酸化物半導体層132の酸素欠損
に効率よく酸素補填を行うことができなくなる。
【0076】
なお、酸化物半導体層をチャネルとするトランジスタに安定した電気特性を付与するため
には、酸化物半導体層中の不純物濃度を低減し、酸化物半導体層を真性または実質的に真
性にすることが有効である。ここで、実質的に真性とは、酸化物半導体層のキャリア密度
が、1×1017/cm未満であること、好ましくは1×1015/cm未満である
こと、さらに好ましくは1×1013/cm未満であることを指す。
【0077】
また、酸化物半導体層において、水素、窒素、炭素、シリコン、および主成分以外の金属
元素は不純物となる。例えば、水素および窒素はドナー準位の形成に寄与し、キャリア密
度を増大させてしまう。また、シリコンは酸化物半導体層中で不純物準位の形成に寄与す
る。当該不純物準位はトラップとなり、トランジスタの電気特性を劣化させることがある
。したがって、第1の酸化物半導体層131、第2の酸化物半導体層132および第3の
酸化物半導体層133の層中や、それぞれの界面において不純物濃度を低減させることが
好ましい。
【0078】
酸化物半導体層を真性または実質的に真性とするためには、SIMS(Secondar
y Ion Mass Spectrometry)分析において、例えば、酸化物半導
体層のある深さにおいて、または、酸化物半導体層のある領域において、シリコン濃度を
1×1019atoms/cm未満、好ましくは5×1018atoms/cm未満
、さらに好ましくは1×1018atoms/cm未満とする部分を有していることが
好ましい。また、水素濃度は、例えば、酸化物半導体層のある深さにおいて、または、酸
化物半導体層のある領域において、2×1020atoms/cm以下、好ましくは5
×1019atoms/cm以下、より好ましくは1×1019atoms/cm
下、さらに好ましくは5×1018atoms/cm以下とする部分を有していること
が好ましい。また、窒素濃度は、例えば、酸化物半導体層のある深さにおいて、または、
酸化物半導体層のある領域において、5×1019atoms/cm未満、好ましくは
5×1018atoms/cm以下、より好ましくは1×1018atoms/cm
以下、さらに好ましくは5×1017atoms/cm以下とする部分を有しているこ
とが好ましい。
【0079】
また、酸化物半導体層が結晶を含む場合、シリコンや炭素が高濃度で含まれると、酸化物
半導体層の結晶性を低下させることがある。酸化物半導体層の結晶性を低下させないため
には、例えば、酸化物半導体層のある深さにおいて、または、酸化物半導体層のある領域
において、シリコン濃度を1×1019atoms/cm未満、好ましくは5×10
atoms/cm未満、さらに好ましくは1×1018atoms/cm未満とす
る部分を有していればよい。また、例えば、酸化物半導体層のある深さにおいて、または
、酸化物半導体層のある領域において、炭素濃度を1×1019atoms/cm未満
、好ましくは5×1018atoms/cm未満、さらに好ましくは1×1018at
oms/cm未満とする部分を有していればよい。
【0080】
また、上述のように高純度化された酸化物半導体層をチャネル形成領域に用いたトランジ
スタのオフ電流は極めて小さい。例えば、ソースとドレインとの間の電圧を0.1V、5
V、または、10V程度とした場合に、トランジスタのチャネル幅で規格化したオフ電流
を数yA/μm乃至数zA/μmにまで低減することが可能となる。
【0081】
なお、トランジスタのゲート絶縁膜としては、シリコンを含む絶縁膜が多く用いられるた
め、上記理由により酸化物半導体層のチャネルとなる領域は、本発明の一態様のトランジ
スタのようにゲート絶縁膜と接しない構造が好ましいということができる。また、ゲート
絶縁膜と酸化物半導体層との界面にチャネルが形成される場合、該界面でキャリアの散乱
が起こり、トランジスタの電界効果移動度が低くなることがある。このような観点からも
、酸化物半導体層のチャネルとなる領域はゲート絶縁膜から離すことが好ましいといえる
【0082】
ソース電極層140およびドレイン電極層150には、酸素と結合し易い導電材料を用い
ることが好ましい。例えば、Al、Cr、Cu、Ta、Ti、Mo、Wなどを用いること
ができる。上記材料において、特に酸素と結合しやすいTiや、後のプロセス温度が比較
的高くできることなどから、融点の高いWを用いることがより好ましい。なお、酸素と結
合しやすい導電材料には、酸素が拡散しやすい材料も含まれる。
【0083】
酸素と結合しやすい導電材料と酸化物半導体層を接触させると、酸化物半導体層中の酸素
が、酸素と結合しやすい導電材料側に拡散する現象が起こる。当該現象は、温度が高いほ
ど顕著に起こる。トランジスタの作製工程には加熱工程があることから、上記現象により
、酸化物半導体層のソース電極層またはドレイン電極層と接触した近傍の領域に酸素欠損
が発生し、膜中に僅かに含まれる水素と当該酸素欠損が結合することにより当該領域はn
型化する。したがって、n型化した当該領域はトランジスタのソースまたはドレインとし
て作用させることができる。
【0084】
上記n型化した領域は、図5のトランジスタの拡大断面図(チャネル長方向の断面の一部
、ソース電極層140近傍)に示される。第1の酸化物半導体層131中および第2の酸
化物半導体層132中に点線で示される境界135は、真性半導体領域とn型半導体領域
の境界である。第1の酸化物半導体層131および第2の酸化物半導体層132において
、ソース電極層140に接触した近傍の領域がn型化した領域となる。なお、境界135
は模式的に示したものであり、実際には明瞭ではない場合がある。また、図5では、境界
135の一部が第2の酸化物半導体層132中で横方向に延びているように位置している
状態を示したが、第1の酸化物半導体層131および第2の酸化物半導体層132のソー
ス電極層140と下地絶縁膜120で挟まれた領域の膜厚方向全体がn型化することもあ
る。
【0085】
なお、チャネル長が極短いトランジスタを形成する場合、上記酸素欠損の発生によってn
型化した領域がトランジスタのチャネル長方向に延在してしまうことがある。この場合、
トランジスタの電気特性には、しきい値電圧のシフトやゲート電圧でオンオフの制御がで
きない状態(導通状態)が現れる。そのため、チャネル長が極短いトランジスタを形成す
る場合は、ソース電極層およびドレイン電極層に酸素と結合しやすい導電材料を用いるこ
とが必ずしも好ましいとはいえない。
【0086】
このような場合にはソース電極層140およびドレイン電極層150には、上述した材料
よりも酸素と結合しにくい導電材料を用いることもできる。当該導電材料としては、例え
ば、窒化タンタル、窒化チタン、金、白金、パラジウムまたはルテニウムを含む材料など
を用いることができる。なお、当該導電材料が第2の酸化物半導体層132と接触する場
合は、ソース電極層140およびドレイン電極層150を、当該導電材料と前述した酸素
と結合しやすい導電材料を積層する構成としてもよい。
【0087】
ゲート絶縁膜160には、酸化アルミニウム、酸化マグネシウム、酸化シリコン、酸化窒
化シリコン、窒化酸化シリコン、窒化シリコン、酸化ガリウム、酸化ゲルマニウム、酸化
イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウムおよび
酸化タンタルを一種以上含む絶縁膜を用いることができる。また、ゲート絶縁膜160は
上記材料の積層であってもよい。
【0088】
ゲート電極層170には、Al、Ti、Cr、Co、Ni、Cu、Y、Zr、Mo、Ru
、Ag、TaおよびWなどの導電膜を用いることができる。また、当該ゲート電極層は、
上記材料の積層であってもよい。また、当該ゲート電極層には、窒素を含んだ導電膜を用
いてもよい。
【0089】
ゲート絶縁膜160、およびゲート電極層170上には絶縁層180が形成されているこ
とが好ましい。当該絶縁層には、酸化アルミニウムを用いることが好ましい。酸化アルミ
ニウム膜は、水素、水分などの不純物、および酸素の両方に対して膜を透過させない遮断
効果が高い。したがって、酸化アルミニウム膜は、トランジスタの作製工程中および作製
後において、トランジスタの電気特性の変動要因となる水素、水分などの不純物の酸化物
半導体層130への混入防止、酸化物半導体層130を構成する主成分材料である酸素の
酸化物半導体層からの放出防止、下地絶縁膜120からの酸素の不必要な放出防止の効果
を有する保護膜として用いることに適している。また、酸化アルミニウム膜に含まれる酸
素を酸化物半導体層中に拡散させることもできる。
【0090】
また、絶縁層180上には絶縁層185が形成されていることが好ましい。当該絶縁層に
は、酸化マグネシウム、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリ
コン、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ラ
ンタン、酸化ネオジム、酸化ハフニウムおよび酸化タンタルを一種以上含む絶縁膜を用い
ることができる。また、当該絶縁層は上記材料の積層であってもよい。
【0091】
ここで、絶縁層185は過剰酸素を有することが好ましい。過剰酸素を含む絶縁層とは、
加熱処理などによって酸素を放出することができる絶縁層をいう。例えば、表面温度が1
00℃以上700℃以下、好ましくは100℃以上500℃以下の加熱処理で行われる昇
温脱離ガス分光法分析にて、酸素原子に換算しての酸素の放出量が1.0×1019at
oms/cm以上である膜とする。当該絶縁層から放出される酸素はゲート絶縁膜16
0を経由して酸化物半導体層130のチャネル形成領域に拡散させることができることか
ら、チャネル形成領域に酸素欠損が形成された場合においても酸素を補填することができ
る。したがって、安定したトランジスタの電気特性を得ることができる。
【0092】
半導体装置を高集積化するにはトランジスタの微細化が必須である。一方、トランジスタ
の微細化によりトランジスタの電気特性が悪化することが知られており、特にチャネル幅
の縮小に直接起因するオン電流の低下は著しい。
【0093】
しかしながら、本発明の一態様のトランジスタでは、前述したように、第2の酸化物半導
体層132のチャネルが形成される領域を覆うように第3の酸化物半導体層133が形成
されており、チャネル形成層とゲート絶縁膜が接しない構成となっている。そのため、チ
ャネル形成層とゲート絶縁膜との界面で生じるキャリアの散乱を抑えることができ、トラ
ンジスタの電界効果移動度を高くすることができる。
【0094】
また、本発明の一態様のトランジスタは、図2のチャネル幅方向の断面図に示すような、
チャネル幅方向における第2の酸化物半導体層132の上面の長さ(W)が当該酸化物
半導体層の膜厚と同じ程度にまで縮小された構造において、特に電気特性を向上させるこ
とができる。
【0095】
例えば、図2に示すようなトランジスタにおいて、Wが上記のように小さい場合、ゲー
ト電極層170から第2の酸化物半導体層132の側面に印加される電界は第2の酸化物
半導体層132の全体に及ぶため、第2の酸化物半導体層132の側面にも上面に形成さ
れるチャネルと同等のチャネルが形成される。
【0096】
が小さいトランジスタの場合、チャネル幅はWとチャネル幅方向における第2の酸
化物半導体層132の側面の長さ(WS1、WS2)の和(W+WS1+WS2)と定
義することができ、当該トランジスタには当該チャネル幅に応じたオン電流が流れる。ま
た、Wが極めて小さい場合は第2の酸化物半導体層132全体に電流が流れるようにな
る。
【0097】
すなわち、本発明の一態様を用いたWが小さいトランジスタでは、キャリアの散乱を抑
える効果とチャネル幅を拡大する効果を併せ持つことから、従来のトランジスタよりもオ
ン電流を高くすることができる。
【0098】
なお、WS1=WS2=Wとするとき、トランジスタのオン電流を効率よく向上させる
には0.3W≦W≦3W(Wは0.3W以上3W以下)とする。また、好ま
しくはW/W=0.5以上1.5以下とし、より好ましくはW/W=0.7以上
1.3以下とする。W/W>3の場合は、S値やオフ電流が増加することがある。
【0099】
したがって、本発明の一態様のトランジスタは、トランジスタが微細化された場合におい
ても十分に高いオン電流を得ることができる。
【0100】
また、本発明の一態様のトランジスタは、第2の酸化物半導体層132を第1の酸化物半
導体層131上に形成することで界面準位を形成しにくくする効果や、第2の酸化物半導
体層132を三層構造の中間層とすることで上下からの不純物混入の影響を排除できる効
果などを併せて有する。そのため、第2の酸化物半導体層132は第1の酸化物半導体層
131と第3の酸化物半導体層133で取り囲まれた構造となり、上述したトランジスタ
のオン電流の向上に加えて、しきい値電圧の安定化や、S値を小さくすることができる。
したがって、Icut(ゲート電圧VGが0V時の電流)を下げることができ、半導体装
置の消費電力を低減させることができる。また、トランジスタのしきい値電圧が安定化す
ることから、半導体装置の長期信頼性を向上させることができる。
【0101】
また、本発明の一態様のトランジスタは、図6に示すように、酸化物半導体層130と基
板110との間に導電膜172を備えていてもよい。当該導電膜を第2のゲート電極とし
て用いることで、更なるオン電流の増加や、しきい値電圧の制御を行うことができる。オ
ン電流を増加させるには、例えば、ゲート電極層170と導電膜172を同電位とし、デ
ュアルゲートトランジスタとして駆動させればよい。また、しきい値電圧の制御を行うに
は、ゲート電極層170とは異なる定電位を導電膜172に供給すればよい。
【0102】
なお、本実施の形態は、本明細書で示す他の実施の形態および実施例と適宜組み合わせる
ことができる。
【0103】
(実施の形態2)
本実施の形態では、実施の形態1で説明した図1に示すトランジスタ100の作製方法に
ついて、図7および図8を用いて説明する。
【0104】
基板110には、ガラス基板、セラミック基板、石英基板、サファイア基板などを用いる
ことができる。また、シリコンや炭化シリコンなどの単結晶半導体基板、多結晶半導体基
板、シリコンゲルマニウムなどの化合物半導体基板、SOI(Silicon On I
nsulator)基板などを用いることも可能であり、これらの基板上に半導体素子が
設けられたものを用いてもよい。
【0105】
下地絶縁膜120は、プラズマCVD法またはスパッタ法等により、酸化アルミニウム、
酸化マグネシウム、酸化シリコン、酸化窒化シリコン、酸化ガリウム、酸化ゲルマニウム
、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウム
および酸化タンタルなどの酸化物絶縁膜、窒化シリコン、窒化酸化シリコン、窒化アルミ
ニウム、窒化酸化アルミニウムなどの窒化物絶縁膜、または上記材料を混合した膜を用い
て形成することができる。また、上記材料の積層であってもよく、少なくとも酸化物半導
体層130と接する上層は酸化物半導体層130への酸素の供給源となりえる過剰な酸素
を含む材料で形成することが好ましい。
【0106】
また、下地絶縁膜120にイオン注入法、イオンドーピング法、プラズマイマージョンイ
オンインプランテーション法などを用いて酸素を添加してもよい。酸素を添加することに
よって、下地絶縁膜120から酸化物半導体層130への酸素の供給をさらに容易にする
ことができる。
【0107】
なお、基板110の表面が絶縁体であり、後に設ける酸化物半導体層130への不純物拡
散の影響が無い場合は、下地絶縁膜120を設けない構成とすることができる。
【0108】
次に、下地絶縁膜120上に第1の酸化物半導体層131となる第1の酸化物半導体膜3
31および第2の酸化物半導体層132となる第2の酸化物半導体膜332をスパッタリ
ング法、CVD法、MBE法、ALD法またはPLD法を用いて成膜する(図7(A)参
照)。
【0109】
次に、第1の酸化物半導体膜331および第2の酸化物半導体膜332を選択的にエッチ
ングすることで第1の酸化物半導体層131および第2の酸化物半導体層132を形成す
る(図7(B)参照)。このとき、図示するように下地絶縁膜120を若干過度にエッチ
ングしてもよい。下地絶縁膜120を過度にエッチングすることで、後に形成するゲート
電極で第2の酸化物半導体層132を覆いやすくすることができる。また、トランジスタ
のチャネル幅方向における断面においては、第2の酸化物半導体層132の上面から側面
にかけて曲率を有するような形状とする。
【0110】
なお、第1の酸化物半導体膜331および第2の酸化物半導体膜332を選択的にエッチ
ングする際に、フォトレジストのみでなく金属膜等のハードマスクを用いてもよい。また
、当該金属膜上に有機樹脂を形成してもよい。例えば、当該金属膜として、5nm程度の
タングステン膜などを用いることができる。
【0111】
また、上記エッチングの方法としては、第1の酸化物半導体膜331および第2の酸化物
半導体膜332のエッチングレートの差が小さいドライエッチング法を用いることが好ま
しい。
【0112】
第1の酸化物半導体層131および第2の酸化物半導体層132の積層において連続接合
を形成するためには、ロードロック室を備えたマルチチャンバー方式の成膜装置(例えば
スパッタ装置)を用いて各層を大気に触れさせることなく連続して積層することが好まし
い。スパッタ装置における各チャンバーは、酸化物半導体にとって不純物となる水等を可
能な限り除去すべく、クライオポンプのような吸着式の真空排気ポンプを用いて高真空排
気(5×10-7Pa以上1×10-4Pa以下程度まで)できること、かつ、成膜され
る基板を100℃以上、好ましくは500℃以上に加熱できることが好ましい。または、
ターボ分子ポンプとコールドトラップを組み合わせて排気系からチャンバー内に炭素成分
や水分等を含む気体が逆流しないようにしておくことが好ましい。
【0113】
高純度真性酸化物半導体を得るためには、チャンバー内を高真空排気するのみならずスパ
ッタガスの高純度化も必要である。スパッタガスとして用いる酸素ガスやアルゴンガスは
、露点が-40℃以下、好ましくは-80℃以下、より好ましくは-100℃以下にまで
高純度化したガスを用いることで酸化物半導体層に水分等が取り込まれることを可能な限
り防ぐことができる。
【0114】
第1の酸化物半導体層131、第2の酸化物半導体層132、および後の工程で形成され
る第3の酸化物半導体層133には、実施の形態1で説明した材料を用いることができる
。例えば、第1の酸化物半導体層131にIn:Ga:Zn=1:3:6、1:3:4、
1:3:3または1:3:2[原子数比]のIn-Ga-Zn酸化物、第2の酸化物半導
体層132にIn:Ga:Zn=1:1:1、または5:5:6[原子数比]のIn-G
a-Zn酸化物、第3の酸化物半導体層133にIn:Ga:Zn=1:3:6、1:3
:4、1:3:3または1:3:2[原子数比]のIn-Ga-Zn酸化物を用いること
ができる。
【0115】
また、第1の酸化物半導体層131、第2の酸化物半導体層132、および第3の酸化物
半導体層133として用いることのできる酸化物半導体は、少なくともインジウム(In
)もしくは亜鉛(Zn)を含むことが好ましい。または、InとZnの双方を含むことが
好ましい。また、該酸化物半導体を用いたトランジスタの電気特性のばらつきを減らすた
め、それらと共に、スタビライザーを含むことが好ましい。
【0116】
スタビライザーとしては、ガリウム(Ga)、スズ(Sn)、ハフニウム(Hf)、アル
ミニウム(Al)、またはジルコニウム(Zr)等がある。また、他のスタビライザーと
しては、ランタノイドである、ランタン(La)、セリウム(Ce)、プラセオジム(P
r)、ネオジム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(
Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウ
ム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)等がある
【0117】
例えば、酸化物半導体として、酸化インジウム、酸化スズ、酸化亜鉛、In-Zn酸化物
、Sn-Zn酸化物、Al-Zn酸化物、Zn-Mg酸化物、Sn-Mg酸化物、In-
Mg酸化物、In-Ga酸化物、In-Ga-Zn酸化物、In-Al-Zn酸化物、I
n-Sn-Zn酸化物、Sn-Ga-Zn酸化物、Al-Ga-Zn酸化物、Sn-Al
-Zn酸化物、In-Hf-Zn酸化物、In-La-Zn酸化物、In-Ce-Zn酸
化物、In-Pr-Zn酸化物、In-Nd-Zn酸化物、In-Sm-Zn酸化物、I
n-Eu-Zn酸化物、In-Gd-Zn酸化物、In-Tb-Zn酸化物、In-Dy
-Zn酸化物、In-Ho-Zn酸化物、In-Er-Zn酸化物、In-Tm-Zn酸
化物、In-Yb-Zn酸化物、In-Lu-Zn酸化物、In-Sn-Ga-Zn酸化
物、In-Hf-Ga-Zn酸化物、In-Al-Ga-Zn酸化物、In-Sn-Al
-Zn酸化物、In-Sn-Hf-Zn酸化物、In-Hf-Al-Zn酸化物を用いる
ことができる。
【0118】
なお、ここで、例えば、In-Ga-Zn酸化物とは、InとGaとZnを主成分として
有する酸化物という意味である。また、InとGaとZn以外の金属元素が入っていても
よい。また、本明細書においては、In-Ga-Zn酸化物で構成した膜をIGZO膜と
も呼ぶ。
【0119】
また、InMO(ZnO)(m>0、且つ、mは整数でない)で表記される材料を用
いてもよい。なお、Mは、Ga、Y、Zr、La、Ce、またはNdから選ばれた一つの
金属元素または複数の金属元素を示す。また、InSnO(ZnO)(n>0、且
つ、nは整数)で表記される材料を用いてもよい。
【0120】
ただし、実施の形態1に詳細を記したように、第1の酸化物半導体層131および第3の
酸化物半導体層133は、第2の酸化物半導体層132よりも電子親和力が小さくなるよ
うに材料を選択する。
【0121】
なお、酸化物半導体層の成膜には、スパッタ法を用いることが好ましい。スパッタ法とし
ては、RFスパッタ法、DCスパッタ法、ACスパッタ法等を用いることができる。
【0122】
第1の酸化物半導体層131、第2の酸化物半導体層132、第3の酸化物半導体層13
3としてIn-Ga-Zn酸化物を用いる場合、In、Ga、Znの原子数比としては、
例えば、In:Ga:Zn=1:1:1、In:Ga:Zn=2:2:1、In:Ga:
Zn=3:1:2、In:Ga:Zn=5:5:6、In:Ga:Zn=1:3:2、I
n:Ga:Zn=1:3:3、In:Ga:Zn=1:3:4、In:Ga:Zn=1:
3:6、In:Ga:Zn=1:4:3、In:Ga:Zn=1:5:4、In:Ga:
Zn=1:6:6、In:Ga:Zn=2:1:3、In:Ga:Zn=1:6:4、I
n:Ga:Zn=1:9:6、In:Ga:Zn=1:1:4、In:Ga:Zn=1:
1:2のいずれかの材料を用い、第1の酸化物半導体層131および第3の酸化物半導体
層133の電子親和力が第2の酸化物半導体層132よりも小さくなるようにすればよい
【0123】
なお、例えば、In、Ga、Znの原子数比がIn:Ga:Zn=a:b:c(a+b+
c=1)である酸化物の組成が、原子数比がIn:Ga:Zn=A:B:C(A+B+C
=1)の酸化物の組成の近傍であるとは、a、b、cが、(a-A)+(b-B)
(c-C)≦rを満たすことをいう。rとしては、例えば、0.05とすればよい。
他の酸化物でも同様である。
【0124】
また、第2の酸化物半導体層132は、第1の酸化物半導体層131および第3の酸化物
半導体層133よりもインジウムの含有量を多くするとよい。酸化物半導体では主として
重金属のs軌道がキャリア伝導に寄与しており、Inの含有率を多くすることにより、よ
り多くのs軌道が重なるため、InがGaよりも多い組成となる酸化物はInがGaと同
等または少ない組成となる酸化物と比較して移動度が高くなる。そのため、第2の酸化物
半導体層132にインジウムの含有量が多い酸化物を用いることで、高い移動度のトラン
ジスタを実現することができる。
【0125】
以下では、酸化物半導体膜の構造について説明する。
【0126】
なお、本明細書において、「平行」とは、二つの直線が-10°以上10°以下の角度で
配置されている状態をいう。したがって、-5°以上5°以下の場合も含まれる。また、
「垂直」とは、二つの直線が80°以上100°以下の角度で配置されている状態をいう
。したがって、85°以上95°以下の場合も含まれる。
【0127】
また、本明細書において、結晶が三方晶または菱面体晶である場合、六方晶系として表す
【0128】
酸化物半導体膜は、非単結晶酸化物半導体膜と単結晶酸化物半導体膜とに大別される。非
単結晶酸化物半導体膜とは、CAAC-OS(C Axis Aligned Crys
talline Oxide Semiconductor)膜、多結晶酸化物半導体膜
、微結晶酸化物半導体膜、非晶質酸化物半導体膜などをいう。
【0129】
まずは、CAAC-OS膜について説明する。
【0130】
CAAC-OS膜は、複数の結晶部を有する酸化物半導体膜の一つであり、ほとんどの結
晶部は、一辺が100nm未満の立方体内に収まる大きさである。したがって、CAAC
-OS膜に含まれる結晶部は、一辺が10nm未満、5nm未満または3nm未満の立方
体内に収まる大きさの場合も含まれる。
【0131】
CAAC-OS膜を透過型電子顕微鏡(TEM:Transmission Elect
ron Microscope)によって観察すると、明確な結晶部同士の境界、即ち結
晶粒界(グレインバウンダリーともいう。)を確認することができない。そのため、CA
AC-OS膜は、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。
【0132】
CAAC-OS膜を、試料面と概略平行な方向からTEMによって観察(断面TEM観察
)すると、結晶部において、金属原子が層状に配列していることを確認できる。金属原子
の各層は、CAAC-OS膜の膜を形成する面(被形成面ともいう。)または上面の凹凸
を反映した形状であり、CAAC-OS膜の被形成面または上面と平行に配列する。
【0133】
一方、CAAC-OS膜を、試料面と概略垂直な方向からTEMによって観察(平面TE
M観察)すると、結晶部において、金属原子が三角形状または六角形状に配列しているこ
とを確認できる。しかしながら、異なる結晶部間で、金属原子の配列に規則性は見られな
い。
【0134】
断面TEM観察および平面TEM観察より、CAAC-OS膜の結晶部は配向性を有して
いることがわかる。
【0135】
CAAC-OS膜に対し、X線回折(XRD:X-Ray Diffraction)装
置を用いて構造解析を行うと、例えばInGaZnOの結晶を有するCAAC-OS膜
のout-of-plane法による解析では、回折角(2θ)が31°近傍にピークが
現れる場合がある。このピークは、InGaZnOの結晶の(009)面に帰属される
ことから、CAAC-OS膜の結晶がc軸配向性を有し、c軸が被形成面または上面に概
略垂直な方向を向いていることが確認できる。
【0136】
一方、CAAC-OS膜に対し、c軸に概略垂直な方向からX線を入射させるin-pl
ane法による解析では、2θが56°近傍にピークが現れる場合がある。このピークは
、InGaZnOの結晶の(110)面に帰属される。InGaZnOの単結晶酸化
物半導体膜であれば、2θを56°近傍に固定し、試料面の法線ベクトルを軸(φ軸)と
して試料を回転させながら分析(φスキャン)を行うと、(110)面と等価な結晶面に
帰属されるピークが6本観察される。これに対し、CAAC-OS膜の場合は、2θを5
6°近傍に固定してφスキャンした場合でも、明瞭なピークが現れない。
【0137】
以上のことから、CAAC-OS膜では、異なる結晶部間ではa軸およびb軸の配向は不
規則であるが、c軸配向性を有し、かつc軸が被形成面または上面の法線ベクトルに平行
な方向を向いていることがわかる。したがって、前述の断面TEM観察で確認された層状
に配列した金属原子の各層は、結晶のab面に平行な面である。
【0138】
なお、結晶部は、CAAC-OS膜を成膜した際、または加熱処理などの結晶化処理を行
った際に形成される。上述したように、結晶のc軸は、CAAC-OS膜の被形成面また
は上面の法線ベクトルに平行な方向に配向する。したがって、例えば、CAAC-OS膜
の形状をエッチングなどによって変化させた場合、結晶のc軸がCAAC-OS膜の被形
成面または上面の法線ベクトルと平行にならないこともある。
【0139】
また、CAAC-OS膜中の結晶化度が均一でなくてもよい。例えば、CAAC-OS膜
の結晶部が、CAAC-OS膜の上面近傍からの結晶成長によって形成される場合、上面
近傍の領域は、被形成面近傍の領域よりも結晶化度が高くなることがある。また、CAA
C-OS膜に不純物を添加する場合、不純物が添加された領域の結晶化度が変化し、部分
的に結晶化度の異なる領域が形成されることもある。
【0140】
なお、InGaZnOの結晶を有するCAAC-OS膜のout-of-plane法
による解析では、2θが31°近傍のピークの他に、2θが36°近傍にもピークが現れ
る場合がある。2θが36°近傍のピークは、CAAC-OS膜中の一部に、c軸配向性
を有さない結晶が含まれることを示している。CAAC-OS膜は、2θが31°近傍に
ピークを示し、2θが36°近傍にピークを示さないことが好ましい。
【0141】
CAAC-OS膜は、不純物濃度の低い酸化物半導体膜である。不純物は、水素、炭素、
シリコン、遷移金属元素などの酸化物半導体膜の主成分以外の元素である。特に、シリコ
ンなどの、酸化物半導体膜を構成する金属元素よりも酸素との結合力の強い元素は、酸化
物半導体膜から酸素を奪うことで酸化物半導体膜の原子配列を乱し、結晶性を低下させる
要因となる。また、鉄やニッケルなどの重金属、アルゴン、二酸化炭素などは、原子半径
(または分子半径)が大きいため、酸化物半導体膜内部に含まれると、酸化物半導体膜の
原子配列を乱し、結晶性を低下させる要因となる。なお、酸化物半導体膜に含まれる不純
物は、キャリアトラップやキャリア発生源となる場合がある。
【0142】
また、CAAC-OS膜は、欠陥準位密度の低い酸化物半導体膜である。例えば、酸化物
半導体膜中の酸素欠損は、キャリアトラップとなることや、水素を捕獲することによって
キャリア発生源となることがある。
【0143】
不純物濃度が低く、欠陥準位密度が低い(酸素欠損の少ない)ことを、高純度真性または
実質的に高純度真性と呼ぶ。高純度真性または実質的に高純度真性である酸化物半導体膜
は、キャリア発生源が少ないため、キャリア密度を低くすることができる。したがって、
当該酸化物半導体膜を用いたトランジスタは、しきい値電圧がマイナスとなる電気特性(
ノーマリーオンともいう。)になることが少ない。また、高純度真性または実質的に高純
度真性である酸化物半導体膜は、キャリアトラップが少ない。そのため、当該酸化物半導
体膜を用いたトランジスタは、電気特性の変動が小さく、信頼性の高いトランジスタとな
る。なお、酸化物半導体膜のキャリアトラップに捕獲された電荷は、放出するまでに要す
る時間が長く、あたかも固定電荷のように振る舞うことがある。そのため、不純物濃度が
高く、欠陥準位密度が高い酸化物半導体膜を用いたトランジスタは、電気特性が不安定と
なる場合がある。
【0144】
また、CAAC-OS膜を用いたトランジスタは、可視光や紫外光の照射による電気特性
の変動が小さい。
【0145】
次に、微結晶酸化物半導体膜について説明する。
【0146】
微結晶酸化物半導体膜は、TEMによる観察像では、明確に結晶部を確認することができ
ない場合がある。微結晶酸化物半導体膜に含まれる結晶部は、1nm以上100nm以下
、または1nm以上10nm以下の大きさであることが多い。特に、1nm以上10nm
以下、または1nm以上3nm以下の微結晶であるナノ結晶(nc:nanocryst
al)を有する酸化物半導体膜を、nc-OS(nanocrystalline Ox
ide Semiconductor)膜と呼ぶ。また、nc-OS膜は、例えば、TE
Mによる観察像では、結晶粒界を明確に確認できない場合がある。
【0147】
nc-OS膜は、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上
3nm以下の領域)において原子配列に周期性を有する。また、nc-OS膜は、異なる
結晶部間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。し
たがって、nc-OS膜は、分析方法によっては、非晶質酸化物半導体膜と区別が付かな
い場合がある。例えば、nc-OS膜に対し、結晶部よりも大きい径のX線を用いるXR
D装置を用いて構造解析を行うと、out-of-plane法による解析では、結晶面
を示すピークが検出されない。また、nc-OS膜に対し、結晶部よりも大きいプローブ
径(例えば50nm以上)の電子線を用いる電子線回折(制限視野電子線回折ともいう。
)を行うと、ハローパターンのような回折パターンが観測される。一方、nc-OS膜に
対し、結晶部の大きさと近いか結晶部より小さいプローブ径(例えば1nm以上30nm
以下)の電子線を用いる電子線回折(ナノビーム電子線回折ともいう。)を行うと、スポ
ットが観測される。また、nc-OS膜に対しナノビーム電子線回折を行うと、円を描く
ように(リング状に)輝度の高い領域が観測される場合がある。また、nc-OS膜に対
しナノビーム電子線回折を行うと、リング状の領域内に複数のスポットが観測される場合
がある。
【0148】
nc-OS膜は、非晶質酸化物半導体膜よりも規則性の高い酸化物半導体膜である。その
ため、nc-OS膜は、非晶質酸化物半導体膜よりも欠陥準位密度が低くなる。ただし、
nc-OS膜は、異なる結晶部間で結晶方位に規則性が見られない。そのため、nc-O
S膜は、CAAC-OS膜と比べて欠陥準位密度が高くなる。
【0149】
なお、酸化物半導体膜は、例えば、非晶質酸化物半導体膜、微結晶酸化物半導体膜、CA
AC-OS膜のうち、二種以上を有する積層膜であってもよい。
【0150】
CAAC-OS膜は、例えば、多結晶である酸化物半導体スパッタ用ターゲットを用い、
スパッタ法によって成膜することができる。当該スパッタ用ターゲットにイオンが衝突す
ると、スパッタ用ターゲットに含まれる結晶領域がa-b面から劈開し、a-b面に平行
な面を有する平板状またはペレット状のスパッタ粒子として剥離することがある。この場
合、当該平板状またはペレット状のスパッタ粒子は帯電しているためプラズマ中で凝集せ
ず、結晶状態を維持したまま基板に到達し、CAAC-OS膜を成膜することができる。
【0151】
第2の酸化物半導体層132がIn-M-Zn酸化物層(Mは、Ga、Y、Zr、La、
Ce、またはNd)の場合、第2の酸化物半導体層132を成膜するために用いるスパッ
タ用ターゲットにおいて、金属元素の原子数比をIn:M:Zn=a:b:cとす
ると/bは、1/3以上6以下、さらには1以上6以下であって、c/b
、1/3以上6以下、さらには1以上6以下であることが好ましい。なお、c/b
1以上6以下とすることで、第2の酸化物半導体層132としてCAAC-OS膜が形成
されやすくなる。ターゲットの金属元素の原子数比の代表例としては、In:M:Zn=
1:1:1、In:M:Zn=3:1:2、In:M:Zn=5:5:6等がある。
【0152】
第1の酸化物半導体層131および第3の酸化物半導体層133がIn-M-Zn酸化物
層(Mは、Ga、Y、Zr、La、Ce、またはNd)の場合、第1の酸化物半導体層1
31および第3の酸化物半導体層133を成膜するために用いるスパッタ用ターゲットに
おいて、金属元素の原子数比をIn:M:Zn=a:b:cとすると/b
<a/bであって、c/bは、1/3以上6以下、さらには1以上6以下である
ことが好ましい。なお、c/bを1以上6以下とすることで、第1の酸化物半導体層
131および第3の酸化物半導体層133としてCAAC-OS膜が形成されやすくなる
。ターゲットの金属元素の原子数比の代表例としては、In:M:Zn=1:3:2、I
n:M:Zn=1:3:3、In:M:Zn=1:3:4、In:M:Zn=1:3:6
等がある。
【0153】
第2の酸化物半導体層132の形成後に、第1の加熱処理を行ってもよい。第1の加熱処
理は、250℃以上650℃以下、好ましくは300℃以上500℃以下の温度で、不活
性ガス雰囲気、酸化性ガスを10ppm以上含む雰囲気、または減圧状態で行えばよい。
また、第1の加熱処理の雰囲気は、不活性ガス雰囲気で加熱処理した後に、脱離した酸素
を補うために酸化性ガスを10ppm以上含む雰囲気で行ってもよい。第1の加熱処理に
よって、第2の酸化物半導体層132の結晶性を高め、さらに下地絶縁膜120、第1の
酸化物半導体層131から水素や水などの不純物を除去することができる。なお、第2の
酸化物半導体層132を形成するエッチングの前に第1の加熱工程を行ってもよい。
【0154】
次に、第1の酸化物半導体層131および第2の酸化物半導体層132上にソース電極層
140およびドレイン電極層150となる第1の導電膜を形成する。第1の導電膜として
は、Al、Cr、Cu、Ta、Ti、Mo、W、またはこれらを主成分とする合金材料を
用いることができる。例えば、スパッタ法などにより100nmのチタン膜を形成する。
または、CVD法によりタングステン膜を形成してもよい。
【0155】
次に、第1の導電膜を第2の酸化物半導体層132上で分断するようにエッチングし、ソ
ース電極層140およびドレイン電極層150を形成する(図7(C)参照)。このとき
、第1の導電膜の過度のエッチングによって、第2の酸化物半導体層132の一部がエッ
チングされた形状となってもよい。
【0156】
次に、第1の酸化物半導体層131、第2の酸化物半導体層132、ソース電極層140
およびドレイン電極層150上に、第3の酸化物半導体層133となる第3の酸化物半導
体膜333を形成する。このとき、第3の酸化物半導体膜333の第2の酸化物半導体層
132との界面近傍は微結晶層とし、当該微結晶層上はc軸配向した結晶層とする。
【0157】
なお、第3の酸化物半導体膜333の形成後に第2の加熱処理を行ってもよい。第2の加
熱処理は、第1の加熱処理と同様の条件で行うことができる。第2の加熱処理により、第
3の酸化物半導体膜333から水素や水などの不純物を除去することができる。また、第
1の酸化物半導体層131および第2の酸化物半導体層132から、さらに水素や水など
の不純物を除去することができる。
【0158】
次に、第3の酸化物半導体膜333上にゲート絶縁膜160となる絶縁膜360を形成す
る。絶縁膜360には、酸化アルミニウム、酸化マグネシウム、酸化シリコン、酸化窒化
シリコン、窒化酸化シリコン、窒化シリコン、酸化ガリウム、酸化ゲルマニウム、酸化イ
ットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウムおよび酸
化タンタルなどを用いることができる。なお、絶縁膜360は、上記材料の積層であって
もよい。絶縁膜360は、スパッタ法、CVD法、MBE法、ALD法またはPLD法な
どを用いて形成することができる。
【0159】
次に、絶縁膜360上にゲート電極層170となる第2の導電膜370を形成する(図8
(A)参照)。第2の導電膜370としては、Al、Ti、Cr、Co、Ni、Cu、Y
、Zr、Mo、Ru、Ag、Ta、W、またはこれらを主成分とする合金材料を用いるこ
とができる。第2の導電膜370は、スパッタ法やCVD法などにより形成することがで
きる。また、第2の導電膜370としては、窒素を含んだ導電膜を用いてもよく、上記材
料を含む導電膜と窒素を含んだ導電膜の積層を用いてもよい。
【0160】
次に、ゲート電極層170を形成するためのレジストマスクを用いて、第2の導電膜37
0を選択的にエッチングし、ゲート電極層170を形成する。
【0161】
続いて、上記レジストマスクまたはゲート電極層170をマスクとして絶縁膜360を選
択的にエッチングし、ゲート絶縁膜160を形成する。
【0162】
続いて、上記レジストマスクまたはゲート電極層170をマスクとして第3の酸化物半導
体膜333をエッチングし、第3の酸化物半導体層133を形成する(図8(B)参照)
【0163】
上記、第2の導電膜370、絶縁膜360、および第3の酸化物半導体膜333のエッチ
ングは各層毎に行ってもよいし、連続で行ってもよい。また、エッチング方法はドライエ
ッチング、ウエットエッチングのどちらを用いてもよく、各層毎に適切なエッチング方法
を選択してもよい。
【0164】
次に、ソース電極層140、ドレイン電極層150、およびゲート電極層170上に絶縁
層180および絶縁層185を形成する(図8(C)参照)。絶縁層180および絶縁層
185は、下地絶縁膜120と同様の材料、方法を用いて形成することができる。なお、
絶縁層180には酸化アルミニウムを用いることが特に好ましい。
【0165】
また、絶縁層180にイオン注入法、イオンドーピング法、プラズマイマージョンイオン
インプランテーション法などを用いて酸素を添加してもよい。酸素を添加することによっ
て、絶縁層180から酸化物半導体層130への酸素の供給をさらに容易にすることがで
きる。
【0166】
次に、第3の加熱処理を行ってもよい。第3の加熱処理は、第1の加熱処理と同様の条件
で行うことができる。第3の加熱処理により、下地絶縁膜120、ゲート絶縁膜160、
絶縁層180から過剰酸素が放出されやすくなり、酸化物半導体層130の酸素欠損を低
減することができる。
【0167】
以上の工程で、図1に示すトランジスタ100を作製することができる。
【0168】
なお、本実施の形態は、本明細書で示す他の実施の形態および実施例と適宜組み合わせる
ことができる。
【0169】
(実施の形態3)
本実施の形態では、本発明の一態様であるトランジスタを使用し、電力が供給されない状
況でも記憶内容の保持が可能で、かつ、書き込み回数にも制限が無い半導体装置(記憶装
置)の一例を、図面を用いて説明する。
【0170】
図9(A)に半導体装置の断面図、図9(B)に半導体装置の回路図をそれぞれ示す。
【0171】
図9(A)および図9(B)に示す半導体装置は、下部に第1の半導体材料を用いたトラ
ンジスタ3200を有し、上部に第2の半導体材料を用いたトランジスタ3300、およ
び容量素子3400を有している。なお、トランジスタ3300としては、実施の形態1
で説明したトランジスタ100を用いることができる。
【0172】
また、容量素子3400は、一方の電極をトランジスタ3300のソース電極層またはド
レイン電極層、他方の電極をトランジスタ3300のゲート電極層、誘電体をトランジス
タ3300のゲート絶縁膜160および第3の酸化物半導体層133と同じ材料を用いる
構造とすることで、トランジスタ3300と同時に形成することができる。
【0173】
ここで、第1の半導体材料と第2の半導体材料は異なるエネルギーギャップを持つ材料と
することが望ましい。例えば、第1の半導体材料を酸化物半導体以外の半導体材料(シリ
コンなど)とし、第2の半導体材料を実施の形態1で説明した酸化物半導体とすることが
できる。酸化物半導体以外の材料を用いたトランジスタは、高速動作が容易である。一方
で、酸化物半導体を用いたトランジスタは、オフ電流が低い電気特性により長時間の電荷
保持を可能とする。
【0174】
なお、上記トランジスタは、いずれもnチャネル型トランジスタであるものとして説明す
るが、pチャネル型トランジスタを用いることができるのはいうまでもない。また、情報
を保持するために酸化物半導体を用いた実施の形態1に示すようなトランジスタを用いる
他は、半導体装置に用いられる材料や半導体装置の構造など、半導体装置の具体的な構成
をここで示すものに限定する必要はない。
【0175】
図9(A)におけるトランジスタ3200は、半導体材料(例えば、結晶性シリコンなど
)を含む基板3000に設けられたチャネル形成領域と、チャネル形成領域を挟むように
設けられた不純物領域と、不純物領域に接する金属間化合物領域と、チャネル形成領域上
に設けられたゲート絶縁膜と、ゲート絶縁膜上に設けられたゲート電極層と、を有する。
なお、図において、明示的にはソース電極層やドレイン電極層を有しない場合があるが、
便宜上、このような状態を含めてトランジスタと呼ぶ場合がある。また、この場合、トラ
ンジスタの接続関係を説明するために、ソース領域やドレイン領域を含めてソース電極層
やドレイン電極層と表現することがある。つまり、本明細書において、ソース電極層との
記載には、ソース領域が含まれうる。
【0176】
基板3000上にはトランジスタ3200を囲むように素子分離絶縁層3100が設けら
れており、トランジスタ3200を覆うように絶縁層3150が設けられている。なお、
素子分離絶縁層3100は、LOCOS(Local Oxidation of Si
licon)や、STI(Shallow Trench Isolation)などの
素子分離技術を用いて形成することができる。
【0177】
例えば、結晶性シリコン基板を用いた場合、トランジスタ3200は高速動作が可能とな
る。このため、当該トランジスタを読み出し用のトランジスタとして用いることで、情報
の読み出しを高速に行うことができる。
【0178】
絶縁層3150上にはトランジスタ3300が設けられ、そのソース電極層またはドレイ
ン電極層と電気的に接続する配線は、容量素子3400の一方の電極として作用する。ま
た、当該配線は、トランジスタ3200のゲート電極層と電気的に接続される。
【0179】
図9(A)に示すトランジスタ3300は、酸化物半導体層にチャネルが形成されるトッ
プゲート型トランジスタである。トランジスタ3300は、オフ電流が小さいため、これ
を用いることにより長期にわたり記憶内容を保持することが可能である。つまり、リフレ
ッシュ動作を必要としない、或いは、リフレッシュ動作の頻度が極めて少ない半導体記憶
装置とすることが可能となるため、消費電力を十分に低減することができる。
【0180】
また、トランジスタ3300と重畳するように絶縁層3150を介して電極3250が設
けられている。当該電極を第2のゲート電極として適切な電位を供給することで、トラン
ジスタ3300のしきい値電圧を制御することができる。また、トランジスタ3300の
長期信頼性を高めることができる。また、当該電極をトランジスタ3300のゲート電極
と同電位として動作させることでオン電流を増加させることができる。なお、電極325
0を設けない構成とすることもできる。
【0181】
図9(A)に示すように、トランジスタ3200を形成する基板上にトランジスタ330
0および容量素子3400を形成することができるため、半導体装置の集積度を高めるこ
とができる。
【0182】
図9(A)に対応する回路構成の一例を図9(B)に示す。
【0183】
図9(B)において、第1の配線3001はトランジスタ3200のソース電極層と電気
的に接続され、第2の配線3002はトランジスタ3200のドレイン電極層と電気的に
接続されている。また、第3の配線3003はトランジスタ3300のソース電極層また
はドレイン電極層の一方と電気的に接続され、第4の配線3004はトランジスタ330
0のゲート電極層と電気的に接続されている。そして、トランジスタ3200のゲート電
極層、およびトランジスタ3300のソース電極層またはドレイン電極層の他方は、容量
素子3400の電極の一方と電気的に接続され、第5の配線3005は容量素子3400
の電極の他方と電気的に接続されている。なお、電極3250に相当する要素は図示して
いない。
【0184】
図9(B)に示す半導体装置では、トランジスタ3200のゲート電極層の電位が保持可
能という特徴を活かすことで、次のように、情報の書き込み、保持、読み出しが可能であ
る。
【0185】
情報の書き込みおよび保持について説明する。まず、第4の配線3004の電位を、トラ
ンジスタ3300がオン状態となる電位にして、トランジスタ3300をオン状態とする
。これにより、第3の配線3003の電位が、トランジスタ3200のゲート電極層、お
よび容量素子3400に与えられる。すなわち、トランジスタ3200のゲート電極層に
は、所定の電荷が与えられる(書き込み)。ここでは、異なる二つの電位レベルを与える
電荷(以下Lowレベル電荷、Highレベル電荷という)のいずれかが与えられるもの
とする。その後、第4の配線3004の電位を、トランジスタ3300がオフ状態となる
電位にして、トランジスタ3300をオフ状態とすることにより、トランジスタ3200
のゲート電極層に与えられた電荷が保持される(保持)。
【0186】
トランジスタ3300のオフ電流は極めて小さいため、トランジスタ3200のゲート電
極層の電荷は長時間にわたって保持される。
【0187】
次に情報の読み出しについて説明する。第1の配線3001に所定の電位(定電位)を与
えた状態で、第5の配線3005に適切な電位(読み出し電位)を与えると、トランジス
タ3200のゲート電極層に保持された電荷量に応じて、第2の配線3002は異なる電
位をとる。一般に、トランジスタ3200をnチャネル型とすると、トランジスタ320
0のゲート電極層にHighレベル電荷が与えられている場合の見かけのしきい値電圧V
th_Hは、トランジスタ3200のゲート電極層にLowレベル電荷が与えられている
場合の見かけのしきい値電圧Vth_Lより低くなるためである。ここで、見かけのしき
い値電圧とは、トランジスタ3200を「オン状態」とするために必要な第5の配線30
05の電位をいうものとする。したがって、第5の配線3005の電位をVth_HとV
th_Lの間の電位Vとすることにより、トランジスタ3200のゲート電極層に与え
られた電荷を判別できる。例えば、書き込みにおいて、Highレベル電荷が与えられて
いた場合には、第5の配線3005の電位がV(>Vth_H)となれば、トランジス
タ3200は「オン状態」となる。Lowレベル電荷が与えられていた場合には、第5の
配線3005の電位がV(<Vth_L)となっても、トランジスタ3200は「オフ
状態」のままである。このため、第2の配線3002の電位を判別することで、保持され
ている情報を読み出すことができる。
【0188】
なお、メモリセルをアレイ状に配置して用いる場合、所望のメモリセルの情報のみを読み
出せることが必要になる。このように情報を読み出さない場合には、ゲート電極層の状態
にかかわらずトランジスタ3200が「オフ状態」となるような電位、つまり、Vth_
より小さい電位を第5の配線3005に与えればよい。または、ゲート電極層の状態に
かかわらずトランジスタ3200が「オン状態」となるような電位、つまり、Vth_L
より大きい電位を第5の配線3005に与えればよい。
【0189】
本実施の形態に示す半導体装置では、チャネル形成領域に酸化物半導体を用いたオフ電流
の極めて小さいトランジスタを適用することで、極めて長期にわたり記憶内容を保持する
ことが可能である。つまり、リフレッシュ動作が不要となるか、または、リフレッシュ動
作の頻度を極めて低くすることが可能となるため、消費電力を十分に低減することができ
る。また、電力の供給がない場合(ただし、電位は固定されていることが望ましい)であ
っても、長期にわたって記憶内容を保持することが可能である。
【0190】
また、本実施の形態に示す半導体装置では、情報の書き込みに高い電圧を必要とせず、素
子の劣化の問題もない。例えば、従来の不揮発性メモリのように、フローティングゲート
への電子の注入や、フローティングゲートからの電子の引き抜きを行う必要がないため、
ゲート絶縁膜の劣化といった問題が生じにくい。すなわち、開示する発明に係る半導体装
置では、従来の不揮発性メモリで問題となっている書き換え可能回数に制限はなく、信頼
性が飛躍的に向上する。さらに、トランジスタのオン状態、オフ状態によって、情報の書
き込みが行われるため、高速な動作も容易に実現しうる。
【0191】
以上のように、微細化および高集積化を実現し、かつ高い電気的特性を付与された半導体
装置を提供することができる。
【0192】
なお、本実施の形態は、本明細書で示す他の実施の形態および実施例と適宜組み合わせる
ことができる。
【0193】
(実施の形態4)
本実施の形態では、本発明の一態様であるトランジスタを使用し、電力が供給されない状
況でも記憶内容の保持が可能で、かつ、書き込み回数にも制限が無い半導体装置について
、実施の形態3に示した構成と異なる半導体装置の説明を行う。
【0194】
図10は、半導体装置の回路構成の一例である。当該半導体装置において、第1の配線4
500とトランジスタ4300のソース電極層とは電気的に接続され、第2の配線460
0とトランジスタ4300のゲート電極層とは電気的に接続され、トランジスタ4300
のドレイン電極層と容量素子4400の第1の端子とは電気的に接続されている。なお、
当該半導体装置に含まれるトランジスタ4300としては、実施の形態1で説明したトラ
ンジスタ100を用いることができる。なお、第1の配線4500はビット線、第2の配
線4600はワード線としての機能を有することができる。
【0195】
当該半導体装置(メモリセル4250)は、図9に示すトランジスタ3300および容量
素子3400と同様の接続形態とすることができる。したがって、容量素子4400は、
実施の形態3で説明した容量素子3400と同様に、トランジスタ4300の作製工程に
て同時に作製することができる。
【0196】
次に、図10に示す半導体装置(メモリセル4250)に、情報の書き込みおよび保持を
行う場合について説明する。
【0197】
まず、第2の配線4600にトランジスタ4300がオン状態となる電位を供給し、トラ
ンジスタ4300をオン状態とする。これにより、第1の配線4500の電位が、容量素
子4400の第1の端子に与えられる(書き込み)。その後、第2の配線4600の電位
を、トランジスタ4300がオフ状態となる電位として、トランジスタ4300をオフ状
態とすることにより、容量素子4400の第1の端子の電位が保持される(保持)。
【0198】
酸化物半導体を用いたトランジスタ4300は、オフ電流が極めて小さいという特徴を有
している。このため、トランジスタ4300をオフ状態とすることで、容量素子4400
の第1の端子の電位(あるいは、容量素子4400に蓄積された電荷)を極めて長時間に
わたって保持することが可能である。
【0199】
次に、情報の読み出しについて説明する。トランジスタ4300がオン状態となると、浮
遊状態である第1の配線4500と容量素子4400とが導通し、第1の配線4500と
容量素子4400の間で電荷が再分配される。その結果、第1の配線4500の電位が変
化する。第1の配線4500の電位の変化量は、容量素子4400の第1の端子の電位(
あるいは容量素子4400に蓄積された電荷)によって、異なる値をとる。
【0200】
例えば、容量素子4400の第1の端子の電位をV、容量素子4400の容量をC、第1
の配線4500が有する容量成分をCB、電荷が再分配される前の第1の配線4500の
電位をVB0とすると、電荷が再分配された後の第1の配線4500の電位は、(CB×
VB0+C×V)/(CB+C)となる。したがって、メモリセル4250の状態として
、容量素子4400の第1の端子の電位がV1とV0(V1>V0)の2状態をとるとす
ると、電位V1を保持している場合の第1の配線4500の電位(=(CB×VB0+C
×V1)/(CB+C))は、電位V0を保持している場合の第1の配線4500の電位
(=(CB×VB0+C×V0)/(CB+C))よりも高くなることがわかる。
【0201】
そして、第1の配線4500の電位を所定の電位と比較することで、情報を読み出すこと
ができる。
【0202】
このように、図10に示す半導体装置(メモリセル4250)は、トランジスタ4300
のオフ電流が極めて小さいという特徴から、容量素子4400に蓄積された電荷は長時間
にわたって保持することができる。つまり、リフレッシュ動作が不要となるか、または、
リフレッシュ動作の頻度を極めて低くすることが可能となるため、消費電力を十分に低減
することができる。また、電力の供給がない場合であっても、長期にわたって記憶内容を
保持することが可能である。
【0203】
図10に示したメモリセル4250は、メモリセル4250を駆動させるための駆動回路
が形成された基板を積層することが好ましい。メモリセル4250と駆動回路を積層する
ことで、半導体装置の小型化を図ることができる。なお、積層するメモリセル4250お
よび駆動回路の数は限定しない。
【0204】
駆動回路に含まれるトランジスタは、トランジスタ4300とは異なる半導体材料を用い
ることが好ましい。例えば、シリコン、ゲルマニウム、シリコンゲルマニウム、炭化シリ
コン、またはガリウムヒ素等を用いることができ、単結晶半導体を用いることがより好ま
しい。このような半導体材料を用いたトランジスタは、酸化物半導体を用いたトランジス
タよりも高速動作が可能であり、メモリセル4250の駆動回路の構成に用いることが適
している。
【0205】
以上のように、微細化および高集積化を実現し、かつ高い電気的特性を付与された半導体
装置を提供することができる。
【0206】
なお、本実施の形態は、本明細書で示す他の実施の形態および実施例と適宜組み合わせる
ことができる。
【0207】
(実施の形態5)
本実施の形態では、本発明の一態様のトランジスタを利用した回路の一例について、図面
を参照して説明する。
【0208】
図11(A)に半導体装置の回路図を、図11(C)、(D)に半導体装置の断面図をそ
れぞれ示す。図11(C)、(D)はそれぞれ、左側にトランジスタ2100のチャネル
長方向の断面図を示し、右側にチャネル幅方向の断面図を示している。また回路図には、
酸化物半導体が適用されたトランジスタであることを明示するために、「OS」の記載を
付している。
【0209】
図11(C)、(D)に示す半導体装置は、下部に第1の半導体材料を用いたトランジス
タ2200を有し、上部に第2の半導体材料を用いたトランジスタ2100を有する。こ
こでは、第2の半導体材料を用いたトランジスタ2100として、実施の形態1で例示し
たトランジスタ100を適用した例について説明する。
【0210】
ここで、第1の半導体材料と第2の半導体材料は異なるエネルギーギャップを持つ材料と
することが望ましい。例えば、第1の半導体材料を酸化物半導体以外の半導体材料(シリ
コン、ゲルマニウム、シリコンゲルマニウム、炭化シリコン、またはガリウムヒ素等など
)とし、第2の半導体材料を実施の形態1で説明した酸化物半導体とすることができる。
酸化物半導体以外の材料として単結晶シリコンなどを用いたトランジスタは、高速動作が
容易である。一方で、酸化物半導体を用いたトランジスタは、オフ電流が低い。
【0211】
ここでは、トランジスタ2200がpチャネル型のトランジスタであるものとして説明す
るが、nチャネル型のトランジスタを用いて異なる回路を構成できることは言うまでもな
い。また、酸化物半導体を用いた実施の形態1に示すようなトランジスタを用いる他は、
半導体装置に用いられる材料や半導体装置の構造など、半導体装置の具体的な構成をここ
で示すものに限定する必要はない。
【0212】
図11(A)、(C)、(D)に示す構成は、pチャネル型のトランジスタとnチャネル
型のトランジスタを直列に接続し、且つ、それぞれのゲートを接続した、いわゆるCMO
S回路の構成例について示している。
【0213】
本発明の一態様の酸化物半導体が適用されたトランジスタは、オン電流が高められている
ため、回路の高速動作が可能となる。
【0214】
図11(C)に示す構成では、トランジスタ2200の上部に、絶縁層2201を介して
トランジスタ2100が設けられている。また、トランジスタ2200とトランジスタ2
100の間には複数の配線2202が設けられている。また各種絶縁層に埋め込まれた複
数のプラグ2203により、上部と下部にそれぞれ設けられた配線や電極が電気的に接続
されている。また、トランジスタ2100を覆う絶縁層2204と、絶縁層2204上に
配線2205と、トランジスタの一対の電極と同一の導電膜を加工して形成された配線2
206と、が設けられている。
【0215】
このように、2つのトランジスタを積層することにより、回路の占有面積が低減され、よ
り高密度に複数の回路を配置することができる。
【0216】
図11(C)では、トランジスタ2100のソースまたはドレインの一方と、トランジス
タ2200のソースまたはドレインの一方が配線2202やプラグ2203によって電気
的に接続されている。また、トランジスタ2100のゲートは、配線2205、配線22
06、プラグ2203および配線2202などを経由して、トランジスタ2200のゲー
トと電気的に接続されている。
【0217】
図11(D)に示す構成では、トランジスタ2100のゲート絶縁膜にプラグ2203を
埋め込むための開口部が設けられ、トランジスタ2100のゲートとプラグ2203とが
接する構成となっている。このような構成とすることで回路の集積化が容易であるのに加
え、図11(C)に示す構成と比較して経由する配線やプラグの数や長さを低減できるた
め、回路をより高速に動作させることができる。
【0218】
ここで、図11(C)、(D)に示す構成において、トランジスタ2100やトランジス
タ2200の電極の接続構成を異ならせることにより、様々な回路を構成することができ
る。例えば図11(B)に示すように、それぞれのトランジスタのソースとドレインを接
続した回路構成とすることにより、いわゆるアナログスイッチとして機能させることがで
きる。
【0219】
なお、本実施の形態は、本明細書で示す他の実施の形態および実施例と適宜組み合わせる
ことができる。
【0220】
(実施の形態6)
本実施の形態では、本発明の一態様のトランジスタを用いた対象物の情報を読み取るイメ
ージセンサ機能を有する半導体装置について説明する。
【0221】
図12に、イメージセンサ機能を有する半導体装置の等価回路の一例を示す。
【0222】
フォトダイオード610は、一方の電極がフォトダイオードリセット信号線661に、他
方の電極がトランジスタ640のゲートに電気的に接続されている。トランジスタ640
は、ソースまたはドレインの一方がフォトセンサ基準信号線672に、ソースまたはドレ
インの他方がトランジスタ650のソースまたはドレインの一方に電気的に接続されてい
る。トランジスタ650は、ゲートがゲート信号線662に、ソースまたはドレインの他
方がフォトセンサ出力信号線671に電気的に接続されている。
【0223】
フォトダイオード610には、例えば、p型の導電型を有する半導体層と、高抵抗な(i
型の導電型を有する)半導体層と、n型の導電型を有する半導体層を積層するpin型の
フォトダイオードを適用することができる。
【0224】
フォトダイオード610に入射する光を検出することによって、被検出物の情報を読み取
ることができる。なお、被検出物の情報を読み取る際に、バックライトなどの光源を用い
ることもできる。
【0225】
なお、トランジスタ640およびトランジスタ650には、実施の形態1に示した、酸化
物半導体にチャネルが形成されるトランジスタ100を用いることができる。図12では
、トランジスタ640およびトランジスタ650が、酸化物半導体を含むことを明確に判
明できるよう、トランジスタの記号に「OS」と付記している。トランジスタ640およ
びトランジスタ650は、オン電流が高く、電気的特性変動が抑制された電気的に安定な
トランジスタである。該トランジスタを含むことで、図12で示すイメージセンサ機能を
有する半導体装置として信頼性の高い半導体装置を提供することができる。
【0226】
なお、本実施の形態は、本明細書で示す他の実施の形態および実施例と適宜組み合わせる
ことができる。
【0227】
(実施の形態7)
実施の形態1および2で説明したトランジスタは、表示装置、記憶装置、CPU、DSP
(Digital Signal Processor)、カスタムLSI、PLD(P
rogrammable Logic Device)等のLSI、RF-ID(Rad
io Frequency Identification)、インバータ、イメージセ
ンサなどの半導体装置に応用することができる。本実施の形態では、上記半導体装置を有
する電子機器の例について説明する。
【0228】
上記半導体装置を有する電子機器としては、テレビ、モニタ等の表示装置、照明装置、パ
ーソナルコンピュータ、ワードプロセッサ、画像再生装置、ポータブルオーディオプレー
ヤ、ラジオ、テープレコーダ、ステレオ、電話、コードレス電話、携帯電話、自動車電話
、トランシーバ、無線機、ゲーム機、電卓、携帯情報端末、電子手帳、電子書籍、電子翻
訳機、音声入力機器、ビデオカメラ、デジタルスチルカメラ、電気シェーバ、ICチップ
、電子レンジ等の高周波加熱装置、電気炊飯器、電気洗濯機、電気掃除機、エアコンディ
ショナーなどの空調設備、食器洗い機、食器乾燥機、衣類乾燥機、布団乾燥機、電気冷蔵
庫、電気冷凍庫、電気冷凍冷蔵庫、DNA保存用冷凍庫、放射線測定器、透析装置、X線
診断装置等の医療機器、などが挙げられる。また、煙感知器、熱感知器、ガス警報装置、
防犯警報装置などの警報装置も挙げられる。さらに、誘導灯、信号機、ベルトコンベア、
エレベータ、エスカレータ、産業用ロボット、電力貯蔵システム等の産業機器も挙げられ
る。また、燃料を用いたエンジンや、非水系二次電池からの電力を用いて電動機により推
進する移動体なども、電子機器の範疇に含まれるものとする。上記移動体として、例えば
、電気自動車(EV)、内燃機関と電動機を併せ持ったハイブリッド車(HEV)、プラ
グインハイブリッド車(PHEV)、これらのタイヤ車輪を無限軌道に変えた装軌車両、
電動アシスト自転車を含む原動機付自転車、自動二輪車、電動車椅子、ゴルフ用カート、
小型または大型船舶、潜水艦、ヘリコプター、航空機、ロケット、人工衛星、宇宙探査機
や惑星探査機、宇宙船が挙げられる。これらの電子機器の一部の具体例を図13に示す。
【0229】
図13(A)に示すテレビジョン装置8000は、筐体8001に表示部8002が組み
込まれており、表示部8002により映像を表示し、スピーカ部8003から音声を出力
することが可能である。本発明の一態様のトランジスタを有する記憶装置は、表示部80
02を動作するための駆動回路に用いることが可能である。
【0230】
また、テレビジョン装置8000は、情報通信を行うためのCPU8004や、メモリを
備えていてもよい。CPU8004やメモリに、本発明の一態様のトランジスタを有する
CPU、記憶装置を用いることができる。
【0231】
図13(A)に示す警報装置8100は、住宅用火災警報器であり、煙または熱の検出部
8102と、マイクロコンピュータ8101を用いた電子機器の一例である。マイクロコ
ンピュータ8101は、本発明の一態様のトランジスタを有する記憶装置、CPUを含む
【0232】
また、図13(A)に示す室内機8200および室外機8204を有するエアコンディシ
ョナーは、先の実施の形態に示したトランジスタ、記憶装置、またはCPU等を含む電子
機器の一例である。具体的に、室内機8200は、筐体8201、送風口8202、CP
U8203等を有する。図13(A)においては、CPU8203が、室内機8200に
設けられている場合を例示しているが、CPU8203は室外機8204に設けられてい
てもよい。または、室内機8200と室外機8204の両方に、CPU8203が設けら
れていてもよい。本発明の一態様のトランジスタをエアコンディショナーのCPUに用い
ることによって省電力化を図ることができる。
【0233】
また、図13(A)に示す電気冷凍冷蔵庫8300は、先の実施の形態に示したトランジ
スタ、記憶装置、またはCPU等を含む電子機器の一例である。具体的に、電気冷凍冷蔵
庫8300は、筐体8301、冷蔵室用扉8302、冷凍室用扉8303、CPU830
4等を有する。図13(A)では、CPU8304が、筐体8301の内部に設けられて
いる。本発明の一態様のトランジスタを電気冷凍冷蔵庫8300のCPU8304に用い
ることによって省電力化が図れる。
【0234】
図13(B)、(C)には、電子機器の一例である電気自動車の例を示す。電気自動車9
700には、二次電池9701が搭載されている。二次電池9701の電力は、回路97
02により出力が調整されて、駆動装置9703に供給される。回路9702は、図示し
ないROM、RAM、CPU等を有する処理装置9704によって制御される。本発明の
一態様のトランジスタを電気自動車9700のCPUに用いることによって省電力化が図
れる。
【0235】
駆動装置9703は、直流電動機もしくは交流電動機単体、または電動機と内燃機関と、
を組み合わせて構成される。処理装置9704は、電気自動車9700の運転者の操作情
報(加速、減速、停止など)や走行時の情報(上り坂や下り坂等の情報、駆動輪にかかる
負荷情報など)の入力情報に基づき、回路9702に制御信号を出力する。回路9702
は、処理装置9704の制御信号により、二次電池9701から供給される電気エネルギ
ーを調整して駆動装置9703の出力を制御する。交流電動機を搭載している場合は、図
示していないが、直流を交流に変換するインバータも内蔵される。
【0236】
なお、本実施の形態は、本明細書で示す他の実施の形態および実施例と適宜組み合わせる
ことができる。
【実施例
【0237】
本実施例では、実施の形態1で説明した酸化物半導体層の積層状態を観察した結果につい
て詳細を説明する。
【0238】
図14は本実施例で用いたサンプルの構造を示す断面図である。当該サンプルは、基板4
10上の下地絶縁膜420、当該下地絶縁膜上の第1の酸化物半導体層431および第2
の酸化物半導体層432からなる積層、および当該積層上に形成された第3の酸化物半導
体層433を有する。なお、第1の酸化物半導体層431、第2の酸化物半導体層432
、および第3の酸化物半導体層433は、実施の形態1で示した第1の酸化物半導体層1
31、第2の酸化物半導体層132、および第3の酸化物半導体層133にそれぞれ相当
する。
【0239】
次に、図14に示すサンプルの作製方法を説明する。
【0240】
まず、基板410としてシリコンウェハを用い、当該シリコンウェハを熱酸化することに
より下地絶縁膜420となるシリコン酸化膜を形成した。
【0241】
次に、下地絶縁膜420上にIn:Ga:Zn=1:3:4(原子数比)の第1のIn-
Ga-Zn酸化物膜、In:Ga:Zn=1:1:1(原子数比)の第2のIn-Ga-
Zn酸化物膜をスパッタ法により連続成膜した。なお、第1のIn-Ga-Zn酸化物膜
および第2のIn-Ga-Zn酸化物膜の膜厚は、それぞれ20nm、15nmとした。
【0242】
第1のIn-Ga-Zn酸化物膜の成膜条件は、In:Ga:Zn=1:3:4(原子数
比)のφ8インチIn-Ga-Zn酸化物をターゲットとし、スパッタガスをアルゴン:
酸素=2:1(流量比)、成膜圧力を0.4Pa、投入電力を0.5kW(DC)、ター
ゲット-基板間距離を60mm、基板温度200℃とした。
【0243】
また、第2のIn-Ga-Zn酸化物膜の成膜条件は、In:Ga:Zn=1:1:1(
原子数比)のφ8インチIn-Ga-Zn酸化物をターゲットとし、スパッタガスをアル
ゴン:酸素=2:1(流量比)、成膜圧力を0.4Pa、投入電力を0.5kW(DC)
、ターゲット-基板間距離を60mm、基板温度300℃とした。
【0244】
次に、第1のIn-Ga-Zn酸化物膜および第2のIn-Ga-Zn酸化物膜を450
℃、窒素雰囲気で1時間の熱処理を行い、さらに450℃、酸素雰囲気で1時間の熱処理
を行った。
【0245】
次に、第2のIn-Ga-Zn酸化物膜上に5nmのタングステン膜および20nmの有
機樹脂を形成し、電子ビーム露光でレジストマスクを形成した。
【0246】
そして、当該レジストマスクをマスクとして、有機樹脂およびタングステン膜を選択的に
エッチングした。エッチング方法は誘導結合方式のドライエッチング装置を用い、2段階
でエッチングを行った。
【0247】
1段階目のエッチングには、エッチングガスを100%の四フッ化炭素、圧力を0.67
Pa、投入電力を2000W、バイアス電力を50W、基板温度を-10℃、エッチング
時間を12秒の条件を用いた。また、2段階目のエッチングには、エッチングガスを四フ
ッ化炭素:酸素=3:2(流量比)、圧力を2.0Pa、投入電力を1000W、基板バ
イアス電力を25W、基板温度を-10℃、エッチング時間を8秒の条件を用いた。
【0248】
次に、有機樹脂およびタングステン膜をマスクとして、第1のIn-Ga-Zn酸化物膜
および第2のIn-Ga-Zn酸化物膜を選択的にエッチングし、第1の酸化物半導体層
431および第2の酸化物半導体層432の積層を形成した。エッチングには誘導結合方
式のドライエッチング装置を用い、エッチングガスをメタン:アルゴン=1:2(流量比
)、圧力を1.0Pa、投入電力を600W、基板バイアス電力を100W、基板温度を
70℃、エッチング時間を82秒の条件を用いた。
【0249】
次に、有機樹脂およびタングステン膜のエッチングを行った。エッチングには誘導結合方
式のドライエッチング装置を用い、エッチングガスを四フッ化炭素:酸素=3:2(流量
比)、圧力を2.0Pa、投入電力を1000W、基板バイアス電力を25W、基板温度
を-10℃、エッチング時間を6秒の条件を用いた。
【0250】
そして、第1の酸化物半導体層431および第2の酸化物半導体層432の積層上に10
nmの第3の酸化物半導体層433をスパッタ法を用いて形成した。
【0251】
第3の酸化物半導体層433の成膜条件は、In:Ga:Zn=1:3:4(原子数比)
のφ8インチIn-Ga-Zn酸化物をターゲットとし、スパッタガスをアルゴン:酸素
=2:1(流量比)、成膜圧力を0.4Pa、投入電力を0.5kW(DC)、ターゲッ
ト-基板間距離を60mm、基板温度200℃とした。
【0252】
図14において点線で囲まれた領域の断面TEM写真を図15(A)に示す。第1の酸化
物半導体層431の下地絶縁膜420側における数nmの領域では結晶格子が確認されな
いが、その上部では格子縞が確認された。また、第2の酸化物半導体層432では、第1
の酸化物半導体層431と同様の格子縞が確認された。すなわち、第1の酸化物半導体層
431の大部分および第2の酸化物半導体層432の全体は結晶層であり、格子縞の向き
から、成膜面に対して垂直方向にc軸配向しているCAAC-OS膜であることがわかっ
た。
【0253】
また、第3の酸化物半導体層433の第1の酸化物半導体層431または第2の酸化物半
導体層432側における数nmの領域では結晶格子が確認されないが、その上部では格子
縞が確認された。すなわち、第3の酸化物半導体層433は微結晶層433aと結晶層4
33bであることが確認できた。
【0254】
結晶層433bにみられる格子縞は、第2の酸化物半導体層432の上部と、第1の酸化
物半導体層431または第2の酸化物半導体層432の側部ではその向きが異なっており
、成膜面に対して垂直方向にc軸配向しているCAAC-OS膜であることがわかった。
【0255】
また、図15(A)の点線枠の拡大図である図15(B)で明らかであるように、第2の
酸化物半導体層432の端部の曲面を有する領域上には、微結晶層433aを介して当該
曲面に対して垂直方向にc軸配向する結晶層433bの格子縞が確認された。
【0256】
以上の本実施例の結果により、本発明の一態様である酸化物半導体層の積層構成を作製で
きることが確認された。
【0257】
なお、本実施例は、本明細書で示す実施の形態と適宜組み合わせることができる。
【符号の説明】
【0258】
100 トランジスタ
110 基板
120 下地絶縁膜
130 酸化物半導体層
131 第1の酸化物半導体層
132 第2の酸化物半導体層
132b 領域
133 第3の酸化物半導体層
133a 微結晶層
133b 結晶層
135 境界
140 ソース電極層
150 ドレイン電極層
160 ゲート絶縁膜
170 ゲート電極層
172 導電膜
180 絶縁層
185 絶縁層
233 領域
331 第1の酸化物半導体膜
332 第2の酸化物半導体膜
333 第3の酸化物半導体膜
360 絶縁膜
370 第2の導電膜
410 基板
420 下地絶縁膜
431 第1の酸化物半導体層
432 第2の酸化物半導体層
433 第3の酸化物半導体層
433a 微結晶層
433b 結晶層
610 フォトダイオード
640 トランジスタ
650 トランジスタ
661 フォトダイオードリセット信号線
662 ゲート信号線
671 フォトセンサ出力信号線
672 フォトセンサ基準信号線
2100 トランジスタ
2200 トランジスタ
2201 絶縁層
2202 配線
2203 プラグ
2204 絶縁層
2205 配線
2206 配線
3000 基板
3001 配線
3002 配線
3003 配線
3004 配線
3005 配線
3100 素子分離絶縁層
3150 絶縁層
3200 トランジスタ
3250 電極
3300 トランジスタ
3400 容量素子
4250 メモリセル
4300 トランジスタ
4400 容量素子
4500 配線
4600 配線
8000 テレビジョン装置
8001 筐体
8002 表示部
8003 スピーカ部
8004 CPU
8100 警報装置
8101 マイクロコンピュータ
8102 検出部
8200 室内機
8201 筐体
8202 送風口
8203 CPU
8204 室外機
8300 電気冷凍冷蔵庫
8301 筐体
8302 冷蔵室用扉
8303 冷凍室用扉
8304 CPU
9700 電気自動車
9701 二次電池
9702 回路
9703 駆動装置
9704 処理装置
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15