(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-11-30
(45)【発行日】2022-12-08
(54)【発明の名称】センサデータを分析し、異常なバルブ動作を検出するためのデータ主導型教師なしアルゴリズム
(51)【国際特許分類】
G05B 23/02 20060101AFI20221201BHJP
【FI】
G05B23/02 302T
【外国語出願】
(21)【出願番号】P 2018052061
(22)【出願日】2018-03-20
【審査請求日】2021-03-18
(32)【優先日】2017-03-20
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】500520743
【氏名又は名称】ザ・ボーイング・カンパニー
【氏名又は名称原語表記】The Boeing Company
(74)【代理人】
【識別番号】110002077
【氏名又は名称】園田・小林弁理士法人
(72)【発明者】
【氏名】スンダレシュワラ, ラシュミ エヌ.
(72)【発明者】
【氏名】ルー, ツァイ-チン
(72)【発明者】
【氏名】ベッツ, フランツ ディー.
【審査官】黒田 暁子
(56)【参考文献】
【文献】特開2014-211160(JP,A)
【文献】米国特許出願公開第2013/0197739(US,A1)
【文献】米国特許第09915375(US,B1)
【文献】米国特許出願公開第2016/0186890(US,A1)
【文献】特表2017-507064(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G05B 23/02
(57)【特許請求の範囲】
【請求項1】
複数のメンテナンスメッセージ(MMSG)(112)であって、その各々がビークルの複数の遮断バルブ(102
1-N)のうちの少なくとも1つの遮断バルブ(102
N)に関連する複数のMMSG(112)を特定すること、
各MMSG(112)に関連する前記少なくとも1つの遮断バルブに関連する複数のセンサパラメータの分析に基づいて、前記複数のセンサパラメータの第1のセンサパラメータ及び前記第1のセンサパラメータの第1の閾値が、前記少なくとも1つの遮断バルブ(102
N)のそれぞれの異常な動作に関連していると特定すること、
前記複数の遮断バルブ(102
1-N)のうちの第1の遮断バルブ(102
N)に関連する第1のセンサ(103
N)によって、(i)前記第1の遮断バルブ(102
N)の開放に関連する第1の所定の期間中に、及び、(ii)前記第1の遮断バルブ(102
N)の閉鎖に関連する第2の所定の期間中に、前記第1のセンサパラメータの複数の値を捕捉すること、及び、
前記第1の所定の期間中に捕捉した複数のセンサ値の最大値と前記第2の所定の期間中に捕捉した前記複数のセンサ値の最大値との間の差分が、前記第1のセンサパラメータの前記第1の閾値を超えると判断されると、前記第1の遮断バルブ(102
N)は異常な動作をしていると判断すること
を含む、コンピュータに実装される方法。
【請求項2】
前記第1の遮断バルブ(102
N)が異常な動作をしていることを明記する警告表示を生成すること、
ネットワークを介して、前記警告表示をリモートコンピューティングデバイスに送信すること、
前記リモートコンピューティングデバイスの情報受信機(777)によって、前記警告表示を受信すること、及び、
前記情報受信機(777)によって、前記第1の遮断バルブのメンテナンスを計画すること
を更に含む、請求項1に記載のコンピュータに実装される方法。
【請求項3】
前記第1及び第2の所定の期間は第1の長さの時間であり、前記複数のセンサパラメータの前記分析は、前記複数のセンサパラメータの事前に収集された値に基づいており、前記分析は、
前記複数の遮断バルブ(102
1-N)のそれぞれの複数の開放及び閉鎖に関連する前記複数のセンサパラメータの事前に収集された値であって、前記遮断バルブのそれぞれの各開放及び各閉鎖後の前記第1の長さの時間内に発生することが特定されている事前に収集された値を特定すること、及び、
前記複数のセンサパラメータのうちの各センサパラメータに関して、前記遮断バルブのそれぞれで、各開放時の各センサパラメータの最大値と各閉鎖時の各センサパラメータの最大値との間の差分を計算すること
を含む、請求項1又は2に記載のコンピュータに実装される方法。
【請求項4】
前記分析は更に、
前記複数のセンサパラメータのそれぞれについて、前記計算された差分のそれぞれの標準偏差に基づいて、前記計算された差分の複数の百分率閾値の第1の百分率閾値を計算すること、及び、
前記第1の百分率閾値を超える前記第1のセンサパラメータに関連する各計算された差分が、前記MMSGのうちの1つの時刻に近い時刻に発生したと判断すること
を含む、請求項3に記載のコンピュータに実装される方法。
【請求項5】
前記分析は更に、
前記第1のセンサパラメータの複数の百分率閾値の第2の百分率閾値が、他の複数の閾値の各々よりも少ない数の偽陽性MMSG(112)に関連すると判断すること、及び、
前記第2の百分率閾値を前記第1のセンサパラメータの前記第1の閾値として定義すること
を含む、請求項4に記載のコンピュータに実装される方法。
【請求項6】
前記第1の百分率閾値は他の百分率閾値の各々を下回り、前記第1の百分率閾値は、前記複数のセンサパラメータの各々について、前記計算された差分の3標準偏差に関連する値を含む、請求項5に記載のコンピュータに実装される方法。
【請求項7】
一又は複数のコンピュータプロセッサ(704)と、
前記プロセッサによって実行されると、
複数のメンテナンスメッセージ(MMSG)(112)であって、その各々がビークルの複数の遮断バルブ(102
1-N)のうちの少なくとも1つの遮断バルブ(102
N)に関連する複数のMMSG(112)を特定すること、
各MMSG(112)に関連する前記少なくとも1つの遮断バルブ(102
N)に関連する複数のセンサパラメータの分析に基づいて、前記複数のセンサパラメータの第1のセンサパラメータ及び前記第1のセンサパラメータの第1の閾値が、前記少なくとも1つの遮断バルブ(102
N)のそれぞれの異常な動作に関連していると特定すること、
前記複数の遮断バルブのうちの第1の遮断バルブに関連する第1のセンサによって、(i)前記第1の遮断バルブの開放に関連する第1の所定の期間中に、及び、(ii)前記第1の遮断バルブの閉鎖に関連する第2の所定の期間中に、前記第1のセンサパラメータの複数の値を捕捉すること、及び、
前記第1の所定の期間中に捕捉した複数のセンサ値の最大値と前記第2の所定の期間中に捕捉した前記複数のセンサ値の最大値との間の差分が、前記第1のセンサパラメータの前記第1の閾値を超えると判断されると、前記第1の遮断バルブは異常な動作をしていると判断すること
を含む操作を実施するプログラムを保持するメモリ(706)と
を備えるシステム。
【請求項8】
前記第1の遮断バルブが異常な動作をしていることを明記する警告表示を生成すること、
ネットワークを介して、前記警告表示をリモートコンピューティングデバイスに送信すること、
前記リモートコンピューティングデバイスの情報受信機によって、前記警告表示を受信すること、及び、
前記情報受信機によって、前記第1の遮断バルブのメンテナンスを計画すること
を更に含む、請求項
7に記載のシステム。
【請求項9】
プロセッサ(704)によって実行可能なコンピュータ可読プログラムコードであって、
複数のメンテナンスメッセージ(MMSG)(112)であって、その各々がビークルの複数の遮断バルブ(102
1-N)のうちの少なくとも1つの遮断バルブ(102
N)に関連する複数のMMSG(112)を特定すること、
各MMSG(112)に関連する前記少なくとも1つの遮断バルブ(102
N)に関連する複数のセンサパラメータの分析に基づいて、前記複数のセンサパラメータの第1のセンサパラメータ及び前記第1のセンサパラメータの第1の閾値が、前記少なくとも1つの遮断バルブ(102
N)のそれぞれの異常な動作に関連していると特定すること、
前記複数の遮断バルブ(102
1-N)のうちの第1の遮断バルブに関連する第1のセンサによって、(i)前記第1の遮断バルブの開放に関連する第1の所定の期間中に、及び、(ii)前記第1の遮断バルブの閉鎖に関連する第2の所定の期間中に、前記第1のセンサパラメータの複数の値を捕捉すること、及び、
前記第1の所定の期間中に捕捉した複数のセンサ値の最大値と前記第2の所定の期間中に捕捉した前記複数のセンサ値の最大値との間の差分が、前記第1のセンサパラメータの前記第1の閾値を超えると判断されると、前記第1の遮断バルブは異常な動作をしていると判断すること
を含む操作を実施する、具現化されたコンピュータ可読プログラムコードを有するコンピュータ可読記憶媒体(706)
を備えるコンピュータプログラム製品。
【発明の詳細な説明】
【技術分野】
【0001】
本書に記載の態様は、航空機のバルブに関し、より具体的には、センサデータ解析用のデータ主導型(data-driven)教師なしアルゴリズム(unsupervised algorithm)に基づく、異常なバルブ動作を検出するための方法及びシステムに関する。航空機でのバルブの異常な動作は、診断が難しく時間を要することが多い。更には、従来のアプローチは、特定のバルブ又は特定の種類のバルブの異常な動作の診断を目的としている。
【発明の概要】
【0002】
一態様によれば、コンピュータに実装される方法は、複数のメンテナンスメッセージ(MMSG)を特定することを含む。複数のMMSGはそれぞれ、ビークルの複数の遮断バルブのうちの少なくとも1つの遮断バルブに関連している。またこの方法は、各MMSGに関連する少なくとも1つの遮断バルブに関連する複数のセンサパラメータの分析に基づいて、第1のセンサパラメータを特定することを含む。加えて、第1のセンサパラメータの第1の閾値は、少なくとも1つの各遮断バルブの異常な動作に関連していることが特定されている。複数の遮断バルブのうちの第1の遮断バルブに関連する第1のセンサは、(i)第1の遮断バルブの開放に関連する第1の所定の期間中に、また、(ii)第1の遮断バルブの閉鎖に関連する第2の所定の期間中に、第1のセンサパラメータの複数の値を捕捉する。第1の所定の期間中に捕捉した複数のセンサ値の最大値と第2の所定の期間中に捕捉した複数のセンサ値の最大値との間の差分が、第1のセンサパラメータの第1の閾値を超えると判断されると、第1の遮断バルブは異常な動作をしていると判断される。
【0003】
一態様によれば、コンピュータプログラム製品は、これによって具現化されたコンピュータ可読コードを有するコンピュータ可読記憶媒体を備える。コンピュータ可読プログラムコードはプロセッサによって実行可能で、これにより複数のメンテナンスメッセージ(MMSG)を確認することを含む操作を実施する。複数のMMSGの各々は、ビークルの複数の遮断バルブのうちの少なくとも1つの遮断バルブに関連している。この操作は更に、各MMSGに関連する少なくとも1つの遮断バルブに関連する複数のセンサパラメータの分析に基づいて、第1のセンサパラメータを特定することを含む。加えて、第1のセンサパラメータの第1の閾値は、少なくとも1つの各遮断バルブの異常な動作に関連していると特定されている。複数の遮断バルブの第1の遮断バルブに関連する第1のセンサは次いで、(i)第1の遮断バルブの開放に関連する第1の所定の期間中に、また、(ii)第1の遮断バルブの閉鎖に関連する第2の所定の期間中に、第1のセンサパラメータの複数の値を捕捉する。第1の所定の期間中に捕捉した複数のセンサ値の最大値と第2の所定の期間中に捕捉した複数のセンサ値の最大値との間の差分が、第1のセンサパラメータの第1の閾値を超えると判断されると、第1の遮断バルブは異常な動作をしていると判断される。
【0004】
一態様によれば、システムはプロセッサ及びプログラムを含むメモリを備える。このプログラムはプロセッサによって実行可能で、複数のメンテナンスメッセージ(MMSG)を特定することを含む操作を実施する。複数のMMSGの各々は、ビークルの複数の遮断バルブのうちの少なくとも1つの遮断バルブに関連している。操作には更に、各MMSGに関連する少なくとも1つの遮断バルブに関連する複数のセンサパラメータの分析に基づいて、第1のセンサパラメータを特定することが含まれる。加えて、第1のセンサパラメータの第1の閾値は、少なくとも1つの各遮断バルブの異常な動作に関連していると特定されている。複数の遮断バルブの第1の遮断バルブに関連する第1のセンサは次いで、(i)第1の遮断バルブの開放に関連する第1の所定の期間中に、また、(ii)第1の遮断バルブの閉鎖に関連する第2の所定の期間中に、第1のセンサパラメータの複数の値を捕捉する。第1の所定の期間中に捕捉した複数のセンサ値の最大値と第2の所定の期間中に捕捉した複数のセンサ値の最大値との間の差分が、第1のセンサパラメータの第1の閾値を超えると判断されると、第1の遮断バルブは異常な動作をしていると判断される。
【図面の簡単な説明】
【0005】
【
図1】一態様により、センサデータを分析して異常なバルブ動作を検出するためのデータ主導型教師なしアルゴリズムを実装するシステムのコンポーネントを図解するブロック図である。
【
図2A】様々な態様により、センサデータを分析するためのデータ主導型教師なしアルゴリズムに基づいて、バルブの異常な動作を検出する例示的な技術を図解している。
【
図2B】様々な態様により、センサデータを分析するためのデータ主導型教師なしアルゴリズムに基づいて、バルブの異常な動作を検出する例示的な技術を図解している。
【
図3】一態様により、センサデータを分析するためのデータ主導型教師なしアルゴリズムに基づいて、バルブの異常な動作を検出する方法を図解するフロー図である。
【
図4】一態様により、航空機のセンサからのフライトデータを分析する方法を図解するフロー図である。
【
図5】一態様により、関係する変数を決定し、関係する変数の閾値を計算するための方法を図解するフロー図である。
【
図6】一態様により、データ分析、関係する変数、及び計算された閾値に基づいて、航空機の第1のバルブが異常な動作をしていると判断する方法を図解するフロー図である。
【
図7】一態様により、センサデータを分析するためのデータ主導型教師なしアルゴリズムに基づいて、バルブの異常な動作を検出するように構成されたシステムを図解している。
【発明を実施するための形態】
【0006】
本書で開示の態様は、遮断バルブに関連するセンサデータのn秒窓(n-second window)を用いて、航空機(又は他の種類のビークル)の遮断バルブの故障を検出する技術を提供する。センサデータのn秒窓は、パラメトリックフライトデータの一部として捕捉される。一般的に、本書で開示の態様は、遮断バルブが異常な動作をしていることを示すデータ値(及び関連パラメータ)を特定するため、前回のフライト時にセンサによってもたらされたデータを分析する、教師なし学習アルゴリズムを使用する。パラメータ及びデータの値が特定されると、本書に開示の態様は、フライト時のバルブの開放及び/又は閉鎖後、リアルタイムフライトデータのn秒窓を分析する。特定のバルブが異常な動作をしていることが、リアルタイムフライトデータのn秒窓によって示唆される場合には、本書で開示の態様は、異常な動作の表示を生成しうる。幾つかの態様では、異常な動作の表示は、航空機から地上の受信局に送信され、メンテナンス要員及びその他の職員に異常な動作の警告が発せられる。例えば、一態様では、この表示には、異常な動作をしているバルブに対してバルブ交換を命じる要求が含まれる。こうすることで、バルブの実際の故障に先立って、航空機のメンテナンス及び修理が促される。
【0007】
本書で開示する学習アルゴリズムはデータ主導型であるため、この学習アルゴリズムにはモデルがなく、所定の航空機の構造や回路図の仕様に合わせて調整する必要はない。更には、この学習アルゴリズムは、ユーザーが関与してトレーニングデータのラベル付けを手作業で行う必要がないという点で、教師なしアルゴリズムとなっている。そのため、この学習アルゴリズムは柔軟で、あらゆる種類の航空機、航空機サブシステム、及びサブシステムコンポーネントに移植可能である。本書では参照例として航空機が使用されているが、本開示は遮断バルブを含むあらゆる種類のビークルに等しく適用可能である。
【0008】
図1は、一態様により、センサデータを分析して異常なバルブ動作を検出する、データ主導型教師なしアルゴリズムを実装するシステム100のコンポーネントを図解するブロック図である。図示したように、システム100は、複数の航空機サブシステム101
1-N、コンピュータ104、及び複数のデータストア110
1-Nを含む。航空機サブシステム101
1-Nは航空機の種々のサブシステムを表し、複数の遮断バルブ102
1-N及び複数のセンサ103
1-Nを含む。航空機サブシステム101
1-Nの実施例は、エコノミー冷却バルブ(ECV)サブシステム、環境制御システム(ECS)、燃料システム、空気圧システムなどを含む。本書で使用されているように、「遮断バルブ」は、2つの状態、すなわち、開放状態と閉鎖状態のいずれか一方で動作するバルブを意味する。遮断バルブ102
1-Nは、サブシステム101
1-N内の空気、燃料、或いは任意の種類の液体又は気体の流れを調整する。センサ103
1-Nは、各サブシステム101
1-Nの条件、事象、及び変化を検出する物理的な装置で、データストア110
1-Nでの保存に対応するデータを生成する。センサ103
1-Nの実施例は、温度センサ、圧力センサ、対気速度センサ、湿度センサ、高度センサなどを含む。例えば、遮断バルブ102
1が閉じられているときに、温度センサ103
1が気温30°を検出すると、温度センサ103
1は、温度の読取値をデジタルフォーマットに変換し、フライトデータ111に保存するため、検出温度の表示をデータストア110
1-Nに送信する。
【0009】
データストア1101-Nは、フライトデータレコーダ(FDR)、クイックアクセスレコーダ(QAR)、連続パラメータロギングシステム(CPL)、及びエンハンストエアボーンフライトレコーダ(EAFR)など、パラメトリックフライトデータを保存する、任意の種類のシステムを表す。図示したように、各データストア1101-Nは、フライトデータ111のデータストア、及びメンテナンスメッセージ(MMSG)112のデータストアを含む。フライトデータ111は、関連する航空機の動作を記述するパラメトリックフライトデータを保存する。一般的に、パラメトリックフライトデータは、航空機の動作中に収集された時系列データの集まりである。パラメトリックフライトデータのパラメータには、限定するものではないが、航空機の高度、航空機の速度、温度データ、圧力データなどを記述するパラメータが含まれる。より一般的には、フライトデータ111は、各遮断バルブ1021-Nの状態(例えば、開放又は閉鎖)など、センサ1031-Nによって生成される複数のパラメータのデータ値に加えて、温度、圧力、湿度の読取値など、その他のサンプル値を保存する。少なくとも1つの態様では、遮断バルブ1021-Nは、それぞれの状態(例えば、開放又は閉鎖)をフライトデータ111に送信する。
【0010】
MMSG112に保存されるメンテナンスメッセージは、航空機又は航空機コンポーネントの異常な動作に対応して、生成される。例えば、センサ103Nは、遮断バルブ102Nの1つの近傍では、例示的な閾値温度80°Cを超える気温100°Cを記録する。これに応じて、センサ103N及び/又は航空機の指定されたコンポーネントは、記録された温度に基づいてMMSGを生成し、次いでこれをMMSG112に保存する。各MMSG112は、各タイムスタンプ、関連規定を超える一又は複数の記録されたパラメータ(例えば、温度)、航空機の影響を受けたコンポーネント(例えば、一又は複数の遮断バルブ1021-N)などの、メタデータパラメータに関連している。
【0011】
図示したように、コンピュータ104は、異常動作モジュール105及び閾値113を含む。異常動作モジュール105は、遮断バルブ1021-Nの異常な動作を検出するように構成されたアプリケーションである。異常動作モジュール105は、センサ1031-Nによって提供される、遮断バルブ1021-Nの異常な動作の検出に関連したパラメータを特定するため、データストア1101-N中の(一又は複数の航空機の)過去のパラメトリックフライトデータを分析する教師なし学習アルゴリズムを実装する。更に、異常動作モジュール105は、特定された各パラメータに対応して、特定の遮断バルブ1021-Nが異常な動作をしている(或いは、異常な動作を始めている)ことを示す閾値を決定する。異常動作モジュール105は、特定されたパラメータと関連する閾値を、閾値113に保存してもよい。こうすることで、異常動作モジュール105は、その後の(同一の航空機又は同様の航空機での)フライト中にデータストア1101-Nをリアルタイムで分析し、閾値を超えると特定されたパラメータに対して、センサ1031-Nが対応するデータ値を提供しているかどうかを判断することができる。異常動作モジュール105は、特定された閾値のデータ値が対応する閾値を超えていると判断すると、異常動作モジュール105は、関連する遮断バルブ1021-Nが異常な動作をしていると判断する。異常動作モジュール105は次いで、どの遮断バルブ1021-Nが異常な動作をしているかを明記する表示(例えば、警告)を生成する。一態様では、この表示には、遮断バルブ1021-Nが異常な動作をしていることを反映する、データストア1101-Nの関連するパラメトリックデータが含まれる。このように、適切な措置を行いうる関係要員に、異常動作している遮断バルブ1021-Nについて警告を発することで、安全が促進される。例えば、メンテナンス要員は、航空機の着陸前に、異常な動作をしている遮断バルブ1021-Nの修理及び/又は交換に必要な部品を発注することができ、その結果、ターンアラウンドタイムを短縮し、遅延を防止し、コストを削減することができる。
【0012】
一態様では、ユーザーは、異常動作モジュール105への入力として提供される初期設定パラメータを定義する。初期設定パラメータには、QAR、FDL、CPL、及び/又はEAFRのパラメータが含まれる。例えば、このようなパラメータには、センサ1031-Nによって測定される温度パラメータ、圧力パラメータ、気流パラメータが含まれうる。一態様では、ユーザーはまた、異常動作モジュール105への入力として提供される一又は複数のフライトフェーズを定義する。例示的なフライトフェーズには、地上走行、離陸、初期上昇、着陸などが含まれる。このような態様では、異常動作モジュール105は、初期設定パラメータに関して、すべてのパラメトリックフライトデータではなく、特定のフライトフェーズに関連するパラメトリックフライトデータ111を分析する。
【0013】
異常動作モジュール105は、フライトデータ111の分析を実施し、遮断バルブ1021-Nが異常な動作しているとの判断に関連する初期設定パラメータの部分集合を特定する。更に、異常動作モジュール105は、部分集合内の各パラメータに対して閾値を計算する。この計算を行うため、異常動作モジュール105は、特定の遮断バルブ102Nがこれまでにいつ開放及び閉鎖したのかを、フライトデータに基づいて判断する。一般的に、フライトデータ111には、遮断バルブ1021-Nの開放又は閉鎖に対応して、それぞれの時刻を反映した記録が含まれる。異常動作モジュール105は次いで、遮断バルブ102Nの開放及び閉鎖の各事象に対して、初期設定パラメータ中の各パラメータについてn秒窓の値を取得する。n秒窓は、60秒、120秒などの任意の長さであってよく、ユーザーによって指定されてもよく、或いは異常動作モジュール105でコード化された所定の値であってもよい。異常動作モジュール105は次いで、初期設定パラメータ中の各パラメータについて各n秒インターバル中の最大値を特定する。異常動作モジュール105は次いで、各変数に対して、遮断バルブ102Nの開放後のn秒インターバルの最大値と、同一遮断バルブ102Nの次の閉鎖後のn秒窓の最大値との間の差分を計算する。
【0014】
図2Aは、フライトデータ111に保存された例示的な温度値から生成されたグラフを示している。グラフ200のy軸は、遮断バルブ102
Nに関連するセンサ103
Nによって記録された(例えば、初期設定パラメータ中の)温度パラメータの温度値に対応している。グラフのx軸は時間に関連している。図に示したように、遮断バルブ102
Nが開放される時刻0秒には、温度バルブは約155°Cになっている。n秒インターバル(この実施例では120秒間)の最大値は、約169°Cのポイント201で発生する。遮断バルブ102
Nの次の閉鎖後、約174°Cの最大観測温度はポイント202で発生する。したがって、
図2Aに示された遮断バルブ102
Nの開放及び閉鎖の事象に対して、異常動作モジュール105によって計算される120秒窓ごとの最大温度値間の差分は約5°C(例えば、174-169=5)となる。明確となるように、最大パラメータ値間の差分は、本書では「最大差分」値と称する。
【0015】
異常動作モジュール105は、初期設定パラメータ中の各パラメータに対して、また、所定の遮断バルブ102
Nの各開放及び閉鎖に対して、最大差分値を計算する。異常動作モジュール105は次いで、所定の遮断バルブ102
N(及び、同様の又は同一の遮断バルブ102
1-N)の異常動作に関連する初期設定パラメータの部分集合を特定するため、更なる分析を実施する。一般的に、異常動作モジュール105は、初期設定パラメータ中の各パラメータについて、計算された各最大差分値の百分率閾値をそれぞれ計算する。一態様では、百分率閾値は、関連するパラメータについて計算された最大差分値の3標準偏差となる。引き続き、
図2Aに示された温度の例について見ていくと、異常動作モジュール105によって、最大差分値21°Cの例示的な百分率閾値が計算される。21°Cは温度パラメータに対して計算された最大差分値全体の95パーセンタイル(すなわち、3標準偏差)を表している。
【0016】
異常動作モジュール105は次いで、百分率閾値を超える、計算された各最大差分値を特定する。例えば、異常動作モジュール105は、
図2Aに示された例示的な温度パラメータに関して、t=1、t=2、t=3、及びt=4の例示的な時点で、温度の最大差分値がそれぞれ22度、23度、24度、及び25度であることを特定する。遮断バルブ102
1-Nが異常な動作をしていることを示す閾値の最大差分(max_diff)閾値を特定するため、異常動作モジュール105は次いで、最大差分値に到達するまで(例えば、最大差分値の100パーセンタイル)、0.1刻みで各最大差分値をステップスルーする。
【0017】
各最大差分値に対して、異常動作モジュール105は、MMSG112中の遮断バルブ102
1-Nに関連するMMSGを特定する。MMSG112中の特定された各MMSGに対して、異常動作モジュール105は、現在のMMSGの真陽性(true positive)に対する偽陽性(false positive)の比率を計算する。この計算を行うため、異常動作モジュール105は、現在の最大差分値の時間で所定の期間内に(例えば、7日間、14日間、24日間以内に)、現在の最大差分値が発生したかどうかを判断する。したがって、引き続き
図2Aの温度の例を取り上げると、現在の最大差分値が23の場合には、異常動作モジュール105は、t=2の時点の24日間以内に現在のMMSGが発生したかどうかを判断する。現在の最大差分値が所定の期間内に発生した場合には、異常動作モジュール105は、現在の最大差分値が真陽性であるとみなす。そうでない場合には、異常動作モジュール105は、現在の最大差分値が偽陽性であるとみなす。一般的に、異常動作モジュール105は、各最大差分値(例えば、22.0、22.1、22.2、…、24.8、24.9、25.0)について、真陽性に対する偽陽性の比率を計算する。異常動作モジュール105は次いで、パラメータについて閾値を定義する。一態様では、異常動作モジュール105は、真陽性に対する偽陽性の比率として計算された最小値を有する最大差分値として、閾値を定義する。例えば、このような態様で、22.2に対して計算された比率が、計算された比率の中で最小値となる場合には、異常動作モジュール105は、22.2を温度パラメータの閾値として定義しうる。別の態様では、異常動作モジュール105は、遮断バルブ102
1-Nに関連すると特定された各MMSGの所定の期間内に発生する最大差分値として、閾値を定義する。例えば、このような態様で、各MMSGの24日間以内に発生した最大差分値が22.5であった場合には、異常動作モジュール105は、22.5を温度パラメータの閾値として定義する。異常動作モジュール105は次いで、閾値及びパラメータの表示を閾値113に保存する。この中には、初期設定パラメータの部分集合の要素としてパラメータが含まれる。
【0018】
図2Bは、一態様により、計算された最大差分温度値をy軸として、また、時間をx軸として含むグラフ250を示している。図示したように、グラフ250は、上述のように、異常動作モジュール105によって計算された、例示的な閾値の最大差分値251を含む。図示したように、閾値の最大差分値251はおよそ19度である。更に、グラフ250は垂直線252~256を含み、各々はMMSG112中のMMSGに対応している。更には、各MMSGライン252~256の近傍に注目するため、例示的な最大差分値261~266については、グラフ250中にラベルを付した。前述したように、一態様では、異常動作モジュール105は、(所定にMMSGに対する時間的近接性に基づいて、)真陽性に対する偽陽性の最小比率に関連する値として、閾値251を計算する。例えば、異常動作モジュール105が1個の偽陽性と10個の真陽性を検出する場合には、計算される比率は0.1となる。別の態様では、異常動作モジュール105は、すべてのMMSGを捕捉する最大差分値に基づいて、閾値を定義する(例えば、閾値を超える最大差分値の各事例は、所定のMMSG252~256の所定の期間(例えば、24日間)内にある)。
【0019】
一部のパラメータは、遮断バルブ1021-Nの誤動作及び/又は異常な動作の良好な指標ではない。これらのパラメータは、任意の(或いは極めてわずかな)真陽性に関連する最大差分値を有していないことが多いため、異常動作モジュール105はこれらのパラメータを破棄する。したがって、真陽性に対する偽陽性の比率は(ゼロで除算するため)未定義となるか、極めて大きな値となる。そのため、異常動作モジュール105はこのようなパラメータを破棄する。例えば、一態様では、異常動作モジュール105は、真陽性に対する偽陽性の比率が関連閾値を超えるパラメータ、或いは比率が定義されないパラメータを破棄する。したがって、異常動作モジュール105は、初期設定パラメータの部分集合を、パラメータの値とMMSG112中のMMSGとの関係性によって反映される遮断バルブ1021-Nの異常な動作の原因が最大差分値であるパラメータとして定義する。
【0020】
異常動作モジュール105がパラメータの部分集合と対応する閾値を特定すると、異常動作モジュール105は、この部分集合と対応する閾値を使用して、飛行中にリアルタイムで捕捉したフライトデータ111が、遮断バルブ102
1-Nの異常な動作を反映しているかどうかを判断する。一般的に、飛行中(或いは、フライトの所定のフェーズの1つの間)に、センサ103
1-Nはパラメトリックフライトデータをフライトデータ111に提供する。遮断バルブ102
1-Nが開閉するたびに、異常動作モジュール105は、閾値113内で定義されたパラメータの部分集合中のパラメータに対して、パラメトリックフライトデータのn秒窓を特定する。異常動作モジュール105は次いで、開放及び閉鎖(又は、閉鎖及び開放)後の各n秒窓のパラメータの部分集合中の各パラメータに対して、最大差分値を計算する。一実施例では、異常動作モジュール105は、センサ1031-Nによって捕捉されたデータのn秒窓に基づいて、最大差分温度値、圧力値などを計算する。計算された最大差分値が閾値を超える場合には、異常動作モジュール105は、対応する遮断バルブ102
Nが異常な動作をしていると判断する。引き続き前の温度の例を取り上げると、異常動作モジュール105が温度パラメータに関して28度の最大差分を計算した場合には、異常動作モジュール105は、28度の最大差分値が
図2Bに示されている19度の例示的な閾値を超えていると判断する。このように、異常動作モジュール105は、関連する遮断バルブ102
Nが異常な動作をしている(或いは、故障している)と判断する。一態様では、異常動作モジュール105は次いで、遮断バルブ102
Nが故障していることを明記する表示を生成する。一態様では、異常動作モジュール105はこの表示を航空機からリモートシステムに送信し、これによりメンテナンス要員は交換部品を入手することや、修理を計画することなどができる。
【0021】
しかしながら、幾つかの態様では、異常動作モジュール105を実行するコンピュータ104は、(例えば、ネットワーク接続を介して)異なる複数の航空機からフライトデータ111及びMMSG112を受信する外部システムである。したがって、このような実施形態では、異常動作モジュール105は、パラメータの部分集合内の関連パラメータを特定し、所定の遮断バルブが異常な動作をしていることを反映する関連閾値を決定するときには、これらの異なる航空機からフライトデータ111及びMMSG112を利用する。このような態様では、リモートコンピュータ104上で実行される異常動作モジュール105は、複数の異なる航空機からリアルタイムのフライトデータを受信し、所定の航空機が異常な動作をしている遮断バルブ102Nを有するかどうかを判断する。
【0022】
図3は、一態様により、センサデータを分析するためのデータ主導型教師なしアルゴリズムに基づいて、遮断バルブの異常な動作を検出するための方法300を図解するフロー図である。図示したように、方法300は、ユーザーが初期設定パラメータ及び任意の適用可能なフライトフェーズを適用するブロック310から始まる。こうすることで、異常動作モジュール105は、フライトデータ111に保存された数千又は数百万のパラメータの初期の部分集合で動作することができる。ブロック320では、異常動作モジュール105はパラメトリックフライトデータ111を受信する。前述したように、パラメトリックフライトデータ111は遮断バルブ102
1-N及びセンサ103
1-Nによって生成される。一般的に、受信したフライトデータ111は、複数の飛行区間で捕捉されたフライトデータ111を反映している。少なくとも1つの態様では、受信したフライトデータ111は更に、複数の航空機によって捕捉されたフライトデータ111を反映する。
【0023】
ブロック330では、
図4を参照してより詳細に説明されるように、異常動作モジュール105はフライトデータを分析する。一般的に、ブロック330では、異常動作モジュール105は、フライトデータ111のパラメータに対して最大差分値を計算する。一態様では、ブロック330と並行して発生するブロック340では、異常動作モジュール105はMMSG112内のターゲットMMSGを特定する。一般的に、ターゲットMMSGは、遮断バルブ102
1-Nの異常な動作に関連するこれらのMMSGである。ブロック350では、
図5を参照してより詳細に説明されるように、異常動作モジュール105は、遮断バルブ102
1-Nの異常な動作の検出に関連した初期設定パラメータの部分集合を決定し、パラメータの部分集合に対して閾値を計算する。
【0024】
ブロック360では、
図6を参照してより詳細に説明されるように、異常動作モジュール105は、データ分析、パラメータの部分集合、及びパラメータの部分集合の閾値に基づいて、第1の遮断バルブ102
Nが異常な動作をしていることを判断する。一般的に、ブロック360では、異常動作モジュール105はリアルタイムフライトデータを分析し、遮断バルブ102
Nが異常な動作をしていることを判断する。例えば、タービン吸気口の温度パラメータの閾値の最大差分値が40度になったとすると、所定の開閉サイクルでのタービン吸気口の最大差分が50度であるときには、異常動作モジュール105は、対応する遮断バルブ102
Nが異常な動作をしていると判断しうる。ブロック370では、異常動作モジュール105は、第1の遮断バルブ102
Nが異常な動作をしていることを明記した表示を生成し、送信する。
【0025】
図4は、一態様による、航空機のセンサからのフライトデータを分析するブロック330に対応した方法400を説明するフロー図である。図示したように、この方法400は、遮断バルブ102
Nの開放及び/又は閉鎖後に分析されるパラメトリックフライトデータのn秒窓について、ユーザーが随意に時間間隔(例えば、120秒)を定義するブロック410から始まる。しかしながら、少なくとも一態様では、n秒の時間間隔は異常動作モジュール105で事前に定義された値である。ブロック415では、異常動作モジュール105は、フライトデータ111内にデータが存在する各遮断バルブ102
1-Nに対して、ブロック420~460を含むループを実行する。ブロック420では、異常動作モジュール105は、フライトデータ111内で、現在の遮断バルブ102
Nの毎回の開放及び閉鎖を反映する時間インデックスを決定する。ブロック425では、異常動作モジュール105は、決定された各時間インデックスに対して、ブロック430~455を含むループを実行する。
【0026】
ブロック430では、異常動作モジュール105は、初期設定パラメータ中の各パラメータについて、定義された時間間隔(例えば、120秒間)のデータをフライトデータ111から受信する。例えば、異常動作モジュール105は、温度パラメータ及びその関連値、圧力パラメータ及びその関連値、高度パラメータ及びその関連値などを受信しうる。ブロック440では、異常動作モジュール105は初期設定パラメータ中の各パラメータに対して、ブロック440~450を含みループを実行する。ブロック440では、異常動作モジュール105は、現在の時間インデックス(例えば、開放/閉鎖、又は閉鎖/開放のサイクル)に対して、開放及び閉鎖後のデータのn秒窓内での現在のパラメータの最大値を決定する。例えば、異常動作モジュール105は、現在の遮断バルブ102Nの開放後、n秒窓内で210度の最大温度値と、現在の遮断バルブ102Nの閉鎖後、n秒窓内で140度の最大温度値を特定しうる。ブロック445では、異常動作モジュール105は、ブロック450で決定した最大値間の差分を計算する。言い換えるならば、異常動作モジュール105は、現在のパラメータと時間インデックスに対して最大差分値を計算する。引き続き前の実施例を取り上げると、異常動作モジュール105は、現在の温度パラメータと時間インデックスに対して、最大差分値(210-140=70度)を計算する。一態様では、異常動作モジュール105は、その後使用するため、計算した最大差分値を保存する。
【0027】
ブロック450では、異常動作モジュール105は、初期設定パラメータ中にまだ残っているパラメータがないかを判断する。まだ残っているパラメータがある場合には、異常動作モジュール105はブロック435に戻る。残っていない場合には、異常動作モジュール105はブロック455へ進む。ブロック455では、異常動作モジュール105は、まだ残っている時間インデックスがないかを判断する。まだ残っている時間インデックスがある場合には、異常動作モジュール105はブロック425に戻り、残っていない場合には、異常動作モジュール105はブロック460に進む。ブロック460では、異常動作モジュール105は、まだ残っている遮断バルブ1021-Nがないかを判断する。残っている場合には、異常動作モジュール105はブロック415に戻る。残っていない場合には、方法400は終了する。
【0028】
図5は、一態様により、関係する変数を決定し、関係する変数の閾値を計算するためのブロック350に対応する方法500を図解するフロー図である。図示したように、方法500は、最大差分値に対する百分率閾値(例えば、2標準偏差)を随意に定義するブロック505から始まる。しかしながら、少なくとも1つの態様では、百分率閾値は異常動作モジュール105に定義済みである。ブロック510では、異常動作モジュール105は、初期設定パラメータ中の各パラメータに対して、ブロック515~565を含むループを実行する。ブロック515では、異常動作モジュール105は、ブロック510で定義された閾値を超える現在のパラメータについて計算された各最大差分値に対して、ブロック520~555を含むループを実行する。ブロック520では、異常動作モジュール105は、ブロック340で特定されたMMSG112中の各MMSGに対して、ブロック525~530を含むループを実行する。
【0029】
ブロック525では、異常動作モジュール105は、現在のMMSG112が現在の最大差分値に対して偽陽性であるか真陽性であるかを判断する。一般的に、これを行うため、異常動作モジュール105は、現在の最大差分値の所定の期間内(例えば、24日間以内)に、現在のMMSG112が発生したかどうかを判断する。例えば、現在のMMSG112が2017年1月25日に発生し、現在の最大差分値が2017年1月24日に観測された場合には、異常動作モジュール105はMMSG112が真陽性であると判断する。ブロック530では、異常動作モジュール105は、まだ残っているMMSGがないかを判断する。まだ残っているMMSGがある場合には、異常動作モジュール105はブロック520に戻る。残っていない場合には、異常動作モジュール105はブロック535へ進む。
【0030】
ブロック535では、異常動作モジュール105は、現在にパラメータについて、真陽性に対する偽陽性の比率を計算する。ブロック540では、異常動作モジュール105は、ブロック535で計算した比率が現在の最小比率を下回るかどうかを判断する。ブロック535で計算された比率が現在の最小比率を下回らない(或いは、定義されない)場合には、異常動作モジュール105はブロック550に進む。しかしながら、ブロック535で計算された比率が現在の最小比率を下回る(及び、定義されない)場合には、異常動作モジュール105はブロック545に進み、そこで異常動作モジュール105はブロック535で計算された比率を現在の最小比率として設定し、現在の最小比率を現在の最大差分値に関連付ける。
【0031】
ブロック550では、異常動作モジュール105は、現在のパラメータの最大差分値の現在の値を増やしていく。例えば、一態様では、異常動作モジュール105は、最大差分値が分析されるまで、上述のように、現在のパラメータの最大差分値を0.1ずつ増やす。ブロック555では、異常動作モジュール105は、まだ残っている最大差分値がないかを判断する。まだ残っている最大差分値がある場合には、本方法はブロック515に戻り、残っていない場合には、異常動作モジュール105はブロック560に進む。ブロック560では、異常動作モジュール105は、真陽性に対する偽陽性の最小比率に関連する最大差分値を、現在のパラメータの閾値として閾値113に保存する。こうすることによって、現在のパラメータを初期設定パラメータの部分集合の要素として、例えば、遮断バルブ1021-Nの故障の検出に関連するパラメータとして定義する。しかしながら、最小比率が存在しない場合には、異常動作モジュール105は、現在のパラメータを関連性のないものとして破棄する。ブロック565では、異常動作モジュール105は、初期設定パラメータ中に残っているパラメータがないかを判断する。まだ残っているパラメータがある場合には、異常動作モジュール105はブロック510に戻り、残っていない場合には、方法500は終了する。
【0032】
図6は、一態様により、データ分析、関係する変数、及び計算された閾値に基づいて、航空機の第1のバルブが異常な動作をしていると判断するブロック360に対応する方法600を図解するフロー図である。一般的に、異常動作モジュール105は、閾値113に保存されているトレーニングデータに基づいて、所定の遮断バルブ102
Nが異常な動作をしているかどうかを、リアルタイムフライトデータ111が示しているかどうかを判断する方法600を実行する。図示したように、方法600は、異常動作モジュール105が航空機の各遮断バルブ102
Nに対してブロック620~690を含むループを実行するブロック610から始まる。
【0033】
ブロック620では、異常動作モジュール105は、現在の遮断バルブ102Nが開放又は閉鎖されたと判断すると、フライトデータ111からパラメトリックデータを受信する。例えば、異常動作モジュール105は、温度データ、圧力データ、高度データなど、センサ1031-Nによって生成されるデータを受信しうる。加えて、フライトデータ111から受信されるデータは、遮断バルブ102Nの開放及び閉鎖後のn秒窓に限定される。ブロック630では、異常動作モジュール105は、閾値113で定義されたパラメータの部分集合内の各パラメータに対して、ブロック640~680を含むループを実行する。少なくとも1つの態様では、パラメータの部分集合内のパラメータは、現在の遮断バルブ102N(又は、実質的に同様な遮断バルブ)に関連付けられている。
【0034】
ブロック640では、異常動作モジュール105は、遮断バルブ102Nの開放及び閉鎖後、ブロック620で受信したフライトデータのn秒窓で、現在のパラメータの最大値を決定する。ブロック650では、異常動作モジュール105は、ブロック640で特定された最大値間の差分を計算する。言い換えるならば、異常動作モジュール105は、現在のパラメータに対して最大差分値を計算する。ブロック660では、異常動作モジュール105は、ブロック650で計算された最大差分値が(閾値113で定義されているように)現在のパラメータの閾値を超えるかどうかを判断する。最大差分値が閾値を超える場合には、異常動作モジュール105はブロック670に進み、超えない場合には、異常動作モジュール105はブロック680に進む。ブロック670では、異常動作モジュール105は、対応する閾値を超える、計算された最大差分に基づいて、現在の遮断バルブ102Nが異常な動作をしていると判断する。ブロック680では、異常動作モジュール105は、まだ残っているパラメータがないかを判断する。まだ残っているパラメータがある場合には、異常動作モジュール105はブロック630に戻り、残っていない場合には、異常動作モジュール105はブロック690に進む。ブロック690では、異常動作モジュール105は、航空機内にまだ残っている遮断バルブ1021-Nがないかを判断する。その場合、異常動作モジュール105はブロック610に戻り、そうでない場合には方法600は終了する。
【0035】
図7は、一態様により、センサデータを分析するためのデータ主導型教師なしアルゴリズムに基づいて、バルブの異常な動作を検出するように構成されたシステム700を図解している。ネットワークシステム700はコンピュータ104を含む。コンピュータ104はまた、ネットワーク730を介して他のコンピュータに接続されうる。一般的に、ネットワーク730は、通信ネットワーク及び/又はワイドエリアネットワーク(WAN)であってよい。特定の実施形態では、ネットワーク730はインターネットである。
【0036】
コンピュータ104は一般的に、メモリ706及び/又は記憶装置708からバス720を介して命令及びデータを取得するプロセッサ704を含む。コンピュータ104はまた、バス720に接続された一又は複数のネットワークインターフェース装置718、入力装置722、及び出力装置724を含む。コンピュータ104は一般的に、オペレーティングシステム(図示せず)の制御下にある。オペレーティングシステム例には、UNIXオペレーティングシステム、Microsoft Windowsオペレーティングシステムの各バージョン、Linuxオペレーティングシステムの各ディストリビューションが含まれる(UNIXは米国及びその他の国々におけるThe Open Groupの登録商標である。 Microsoft及びWindowsは米国、その他の国々、或いはその両方におけるMicrosoft Corporationの商標である。Linuxは米国、その他の国々、或いはその両方におけるLinus Torvaldsの登録商標である)。より一般的に、本書で開示の機能をサポートする任意のオペレーティングシステムが使用されうる。プロセッサ704は、命令、論理、及び数学的処理を実行するプログラム可能な論理装置で、一又は複数のCPUを代表しうる。ネットワークインターフェース装置718は、コンピュータ104がネットワーク730を介して他のコンピュータと通信するのを可能にする任意の種類のネットワーク通信装置であってよい。
【0037】
記憶装置708は、ハードディスクドライブ、フラッシュメモリ装置、光学媒体などを代表するものである。一般的に、記憶装置708は、コンピュータ104によって使用されるアプリケーションプログラム及びデータを保存する。加えて、メモリ706及び記憶装置708は、物理的に別の場所、例えば、バス720を介してコンピュータ104に接続された別のコンピュータに配置されたメモリを含むとみなされうる。
【0038】
入力装置722は、コンピュータ104に入力を提供する任意の装置であってよい。例えば、キーボード及び/又はマウスが使用されうる。入力装置722は、キーボード、マウス、コントローラなどを含む様々な入力装置を代表している。更には、入力装置722は、コンピュータ104を制御するためのボタン、スイッチ又は他の物理的な装置機構の組を含みうる。出力装置724は、モニタ、タッチスクリーンディスプレイなどの出力装置を含みうる。
【0039】
図示したように、メモリ706は異常動作モジュール105を含み、一方、記憶装置708はフライトデータ111、MMSG112、及び閾値113を含む。一般的に、システム700は、
図1~
図6を参照して上述されているすべての機能を実装するように構成されている。
【0040】
図示したように、システム700は更に、複数の航空機7501-N及び、ネットワーク730を介してコンピュータ104に通信可能に接続されたメンテナンスシステム7601-Nを含む。図示したように、航空機7501-Nは、複数の遮断バルブ1021-N、複数のセンサ1031-N、フライトデータ111、及びMMSG112を含む。少なくとも1つの態様では、所定の航空機7501-Nは、航空機地上間データ通信システム(ACARS)を使用してネットワーク上で通信する。図示したように、メンテナンスシステム7601-Nは、航空機7501-Nの異常な動作をしている遮断バルブ1021-Nの表示を、異常動作モジュール105から受信するように構成された情報受信機777を含む。
【0041】
例えば、一態様では、情報受信機777は、一又は複数の航空機7501-Nで、一又は複数の遮断バルブ1021-Nが異常な動作をしていることを示す警告メッセージを、異常動作モジュール105から受信する。一態様では、情報受信機777は、警告メッセージに応じて、対応する航空機750Nのメンテナンスを計画する。加えて、情報受信機777は、故障した遮断バルブ1021-Nを修理するための交換部品を自動発注する。更に、情報受信機777は、確認のための(適切な部品が情報受信機777によって自動発注されたかどうかを確認することを含む)警告メッセージをメカニックに出力して、メカニックがメンテナンスを計画できるようにする。幾つかの態様では、航空機750Nが着陸すると、メカニックは故障した遮断バルブ1021-Nを修理することができる。
【0042】
有利には、本書で開示した態様は、教師なし学習アルゴリズムに基づいて、遮断バルブが故障しているか、異常な動作をしていることを判断する技術を提供する。教師なし学習アルゴリズムはモデルを持たず、関連パラメータと対応する閾値を特定する学習フェーズを含む。学習フェーズ中に生成されたデータは次いで、リアルタイムフライトデータの分析に使用される。リアルタイムフライトデータが所定の閾値を超える場合には、本書で開示の態様は、関連する遮断バルブが異常な動作をしている、或いは故障していると判断する。
【0043】
前述では、本開示で提示される態様について言及した。しかしながら、本開示の範囲は、説明されている具体的な態様に限定されない。その代わりに、想定される態様を実装し、実践するために、列挙した特徴及び要素の任意の組み合わせが、種々の態様に関連しているか否かに関わらず、想定される。更に、本書で開示されている態様は他の可能な手法又は従来技術を凌駕する利点を実現しうるが、特定の利点が所定の態様によって達成されるかどうかによって、本開示の範囲が限定されることはない。したがって、列記した態様、特徴、及び利点は、単なる例示であり、かつ、請求項(複数可)に明記されない限り、付随する特許請求の範囲の要素であるとも、付随する特許請求の範囲を限定するとも、見なされない。同様に、「本発明」への言及は、本書で開示されている発明のあらゆる主題を一般化するものと解釈すべきではなく、かつ、請求項(複数可)に明記されない限り、付随する特許請求の範囲の要素であるとも、付随する特許請求の範囲を限定するとも、見なすべきではない。
【0044】
本書に記載の態様は、専らハードウェアである態様、専らソフトウェアである態様(ファームウェア、常駐ソフトウェア、マイクロコードなどを含む)、又は、ソフトウェア態様とハードウェア態様とを組み合わせた態様の形式をとりうる。本書では、これらはすべて「回路」、「モジュール」又は「システム」と一般に称されうる。
【0045】
態様は、システム、方法、及び/又はコンピュータプログラム製品であってもよい。コンピュータプログラム製品は、本書に記載の態様をプロセッサに実行させるためのコンピュータ可読プログラム命令を有する、コンピュータ可読記憶媒体(複数可)を含みうる。
【0046】
コンピュータ可読記憶媒体は、命令実行装置によって使用される命令を保持及び記憶することが可能な、有形の装置であってよい。コンピュータ可読記憶媒体は、例えば、限定するものではないが、電子記憶装置、磁気記憶装置、光記憶装置、電磁記憶装置、半導体記憶装置、又はこれらの任意の好適な組み合わせであってよい。コンピュータ可読記憶媒体のより具体的な非網羅的リストには、ポータブルコンピュータディスケット、ハードディスク、ランダムアクセスメモリ(RAM)、読み出し専用メモリ(ROM)、消去可能プログラマブル読出し専用メモリ(EPROMまたはフラッシュメモリ)、スタティックランダムアクセスメモリ(SRAM)、ポータブルコンパクトディスク読出し専用メモリ(CD-ROM)、デジタル多用途ディスク(DVD)、メモリースティック、フロッピーディスク、パンチカード又は記録された命令を有する溝内の隆起構造などの機械的にエンコードされた装置、及びこれらの任意の適切な組み合わせ、が含まれる。コンピュータ可読記憶媒体は、本書で使用しているように、それ自体が、電波又はその他の自由に伝播する電磁波、導波管又は他の伝送媒体を通って伝播する電磁波(光ファイバケーブルを通過する光パルスなど)、或いは、ワイヤを通って伝送される電気信号といった、一時的信号であると解釈すべきではない。
【0047】
本書に記載のコンピュータ可読プログラム命令は、コンピュータ可読記憶媒体からそれぞれのコンピューティング/処理装置に、或いは、例えばインターネット、ローカルエリアネットワーク、ワイドエリアネットワーク、及び/又は無線ネットワークなどのネットワークを介して、外部コンピュータ又は外部記憶装置に、ダウンロードされうる。ネットワークは、銅の伝送ケーブル、光伝送ファイバ、無線伝送、ルータ、ファイアウォール、スイッチ、ゲートウェイコンピュータ及び/又はエッジサーバを含みうる。各コンピューティング/処理装置内のネットワークアダプタカード又はネットワークインターフェースは、ネットワークからコンピュータ可読プログラム命令を受信し、このコンピュータ可読プログラム命令を、それぞれのコンピューティング/処理装置の中のコンピュータ可読記憶媒体内に記憶するために転送する。
【0048】
本書に記載の操作を実行するためのコンピュータ可読プログラム命令は、アセンブラ命令、命令セットアーキテクチャ(ISA)命令、機械命令、機械依存命令、マイクロコード、ファームウェア命令、状態設定データ、或いは、スモールトークやC++などといったオブジェクト指向型プログラミング言語、及び、「C」プログラミング言語又は類似のプログラミング言語などの従来の手続き型プログラミング言語を含む、一又は複数のプログラミング言語の任意の組み合わせで書かれた、ソースコード若しくはオブジェクトコードでありうる。コンピュータ可読プログラム命令は、完全にユーザーのコンピュータ上で、スタンドアロンのソフトウェアパッケージとして部分的にユーザーのコンピュータ上で、部分的にユーザーのコンピュータ上且つ部分的にリモートコンピュータ上で、または完全にリモートのコンピュータ若しくはサーバー上で、実行されうる。後者の場合、リモートコンピュータがローカルエリアネットワーク(LAN)又はワイドエリアネットワーク(WAN)を含む任意の種類のネットワークを通じてユーザーのコンピュータに接続されうるか、或いは、(例えば、インターネットサービスプロバイダを使用してインターネットを通じて)外部コンピュータへの接続がなされうる。幾つかの態様では、例えば、プログラマブル論理回路、フィールドプログラマブルゲートアレイ(FPGA)、又はプログラマブル論理アレイ(PLA)などを含む電子回路は、本書に記載の態様を実施する目的で、この電子回路をカスタマイズするために、コンピュータ可読プログラム命令の状態情報を利用することによって、コンピュータ可読プログラム命令を実行しうる。
【0049】
態様は、本書において、本書に記載の態様による方法、装置(システム)、及びコンピュータプログラム製品のフロー図及び/又はブロック図を参照して説明されている。フロー図及び/又はブロック図の各ブロック、並びに、フロー図及び/又はブロック図における複数のブロックの組み合わせは、コンピュータ可読プログラム命令によって実行可能であると、理解されよう。
【0050】
上記のコンピュータ可読プログラム命令は、機械を生産するために、汎用コンピュータ又は特殊用途コンピュータのプロセッサ、或いは他のプログラマブルデータ処理装置に提供されてよく、これにより、コンピュータのプロセッサ又は他のプログラマブルデータ処理装置を介して実行されるこれらの命令が、フロー図及び/又はブロック図のブロック(複数可)内に特定されている機能/作用を実行するための手段を創出する。上記のコンピュータ可読プログラム命令は更に、特有の方法で機能するために、コンピュータ、プログラマブルデータ処理装置、及び/又はその他の装置に命令を下すことが可能なコンピュータ可読記憶媒体に記憶されてよく、これにより、命令が記憶されているコンピュータ可読記憶媒体は、フロー図及び/又はブロック図のブロック(複数可)内に特定されている機能/作用の態様を実装する命令を含む製品を含む。
【0051】
コンピュータ可読プログラム命令はまた、一連の動作ステップをコンピュータ、他のプログラマブル装置、又はコンピュータ実装プロセスを生成する他のデバイスで実行させるために、コンピュータ、他のプログラマブルデータ処理装置、又は他の装置にロードされてよく、これにより、コンピュータ、他のプログラマブル装置、又は他の装置で実行される命令が、フロー図及び/又はブロック図のブロック(複数可)で特定される機能/作用を実装する。
【0052】
図面のフロー図及びブロック図は、本書に記載の様々な態様によるシステム、方法及びコンピュータプログラム製品の可能な実装のアーキテクチャ、機能性、及び動作を示している。そのため、フロー図又はブロック図における各ブロックは、特定の論理機能(複数可)を実装するための一又は複数の実行可能命令を含む、命令のモジュール、セグメント、又は部分を表しうる。一部の代替的な実行形態では、ブロック内に記載された機能は、図に記載されている順序を逸脱して発現しうる。例えば、連続して示されている2つのブロックは、実際には、関連する機能に応じて、実質的に同時に実行されるか、又は、時には逆順に実行されることがある。ブロック図及び/又はフロー図の各ブロック、並びに、ブロック図及び/又はフロー図におけるブロックの組み合わせは、特定の機能又は作用を実施する特殊用途のハードウェアベースのシステムによって実装されうるか、或いは、特殊用途ハードウェアとコンピュータ命令との組み合わせによって実装されうることにも、留意されたい。
【0053】
本書に記載の態様は、クラウドコンピューティングのインフラストラクチャを介して、エンドユーザーに提供されうる。クラウドコンピューティングは一般的に、スケーラブルなコンピューティングリソースを、ネットワークを介したサービスとして提供することを指す。より正式には、クラウドコンピューティングは、最低限の管理労力で、或いはサービスプロバイダとの最低限のやりとりで、迅速に準備・提供される可変なコンピューティングリソースの共用施設への簡便なオンデマンドネットワークアクセスを可能にする、コンピューティングリソースと基本的な技術アーキテクチャ(例えば、サーバー、記憶装置、ネットワーク)との間の抽象的な概念を提供するコンピューティング機能と定義されうる。したがって、クラウドコンピューティングにより、ユーザーは、コンピューティングリソースを提供するために使用される基本的な物理システム(或いは、これらのシステムの配置場所)を意識することなく、「クラウド」内の仮想的なコンピューティングリソース(例えば、記憶装置、データ、アプリケーション、並びに完全に仮想化されたコンピューティングシステム)にアクセスすることができる。
【0054】
典型的には、クラウドコンピューティングリソースは、ユーザーがコンピューティングリソース(例えば、ユーザーによって消費された記憶空間の容量、又はユーザーによってインスタンスが作成される仮想システムの数)を実際に使用したときにのみ課金される従量制課金でユーザーに提供される。ユーザーは、クラウド内に配置された任意のリソースに、インターネットを介していつでも、どこからでもアクセスすることができる。少なくとも1つの態様の状況では、ユーザーはクラウド内で利用可能なアプリケーション又は関連データにアクセスしうる。例えば、異常動作モジュール105は、クラウド内のコンピューティングシステム上で実行され、閾値113内のパラメータの部分集合及び関連する閾値を定義しうる。こうすることによって、ユーザー又はアプリケーションは、クラウドに接続されたネットワーク(例えば、インターネット)に取り付けられた任意のコンピューティングシステムからこの情報にアクセスすることができる。様々な態様の説明は、例示を目的として提示されており、網羅的であること、又は開示されている態様に限定することを意図するものではない。当業者には、記載されている態様の範囲及び本質から逸脱することなく、多数の修正例及び変形例が明白になろう。本書で使用されている用語は、態様の原理、市場に見られる技術を凌駕する実用的応用又は技術的改善を最もよく解説するため、或いは、本書で開示されている態様を他の当業者にも理解可能にするために、選ばれたものである。
【0055】
更に、本開示は、以下の条項による実施形態を含む。
【0056】
条項1. 複数のメンテナンスメッセージ(MMSG)であって、その各々がビークルの複数の遮断バルブのうちの少なくとも1つの遮断バルブに関連する複数のMMSGを特定すること、
各MMSGに関連する前記少なくとも1つの遮断バルブに関連する複数のセンサパラメータの分析に基づいて、前記複数のセンサパラメータの第1のセンサパラメータ及び前記第1のセンサパラメータの第1の閾値が、前記少なくとも1つの遮断バルブのそれぞれの異常な動作に関連していると特定すること、
前記複数の遮断バルブのうちの第1の遮断バルブに関連する第1のセンサによって、(i)前記第1の遮断バルブの開放に関連する第1の所定の期間中に、また、(ii)前記第1の遮断バルブの閉鎖に関連する第2の所定の期間中に、前記第1のセンサパラメータの複数の値を捕捉すること、及び、
前記第1の所定の期間中に捕捉した複数のセンサ値の最大値と前記第2の所定の期間中に捕捉した前記複数のセンサ値の最大値との間の差分が、前記第1のセンサパラメータの前記第1の閾値を超えると判断されると、前記第1の遮断バルブは異常な動作をしていると判断すること
を含む、コンピュータに実装される方法。
【0057】
条項2. 前記第1の遮断バルブが異常な動作をしていることを明記する警告表示を生成すること、
ネットワークを介して、前記警告表示をリモートコンピューティングデバイスに送信すること、
前記リモートコンピューティングデバイスの情報受信機によって、前記警告表示を受信すること、及び、
前記情報受信機によって、前記第1の遮断バルブのメンテナンスを計画すること
を更に含む、条項1に記載のコンピュータに実装される方法。
【0058】
条項3. 前記第1及び第2の所定の期間は第1の長さの時間であり、前記複数のセンサパラメータの前記分析は、前記複数のセンサパラメータの事前に収集された値に基づいており、前記分析は、
前記複数の遮断バルブのそれぞれの複数の開放及び閉鎖に関連する前記複数のセンサパラメータの事前に収集された値であって、前記遮断バルブのそれぞれの各開放及び各閉鎖後の前記第1の長さの時間内に発生することが特定されている事前に収集された値を特定すること、及び、
前記複数のセンサパラメータのうちの各センサパラメータに関して、前記遮断バルブのそれぞれで、各開放時の各センサパラメータの最大値と各閉鎖時の各センサパラメータの最大値との間の差分を計算すること
を含む、条項1又は2に記載のコンピュータに実装される方法。
【0059】
条項4. 前記分析は更に、
前記複数のセンサパラメータのそれぞれについて、計算された差分のそれぞれの標準偏差に基づいて、前記計算された差分の複数の百分率閾値の第1の百分率閾値を計算すること、及び、
前記第1の百分率閾値を超える前記第1のセンサパラメータに関連する各計算された差分が、前記MMSGの1つの時刻に近い時刻に発生したと判断すること
を含む、条項3に記載のコンピュータに実装される方法。
【0060】
条項5. 前記分析は更に、
前記第1のセンサパラメータの複数の百分率閾値の第2の百分率閾値が、他の複数の閾値の各々よりも少ない数の偽陽性MMSGに関連すると判断すること、及び、
前記第2の百分率閾値を前記第1のセンサパラメータの前記第1の閾値として定義すること
を含む、条項4に記載のコンピュータに実装される方法。
【0061】
条項6. 前記第1の百分率閾値は他の百分率閾値を下回り、前記第1の百分率閾値は、前記複数のセンサパラメータの各々について、前記計算された差分の3標準偏差に関連する値を含む、条項5に記載のコンピュータに実装される方法。
【0062】
条項7. 前記複数のMMSGは、前記複数のMMSGの各々が発生した個々の日付が第3の所定の期間内であるとの判断に基づいて特定される、条項1から6のいずれか一項に記載の方法。
【0063】
条項8. 一又は複数のコンピュータプロセッサと、
前記プロセッサによって実行されると、
複数のメンテナンスメッセージ(MMSG)であって、その各々がビークルの複数の遮断バルブのうちの少なくとも1つの遮断バルブに関連する複数のMMSGを特定すること、
各MMSGに関連する前記少なくとも1つの遮断バルブに関連する複数のセンサパラメータの分析に基づいて、前記複数のセンサパラメータの第1のセンサパラメータ及び前記第1のセンサパラメータの第1の閾値が、前記少なくとも1つの遮断バルブのそれぞれの異常な動作に関連していると特定すること、
前記複数の遮断バルブのうちの第1の遮断バルブに関連する第1のセンサによって、(i)前記第1の遮断バルブの開放に関連する第1の所定の期間中に、また、(ii)前記第1の遮断バルブの閉鎖に関連する第2の所定の期間中に、前記第1のセンサパラメータの複数の値を捕捉すること、及び、
前記第1の所定の期間中に捕捉した複数のセンサ値の最大値と前記第2の所定の期間中に捕捉した前記複数のセンサ値の最大値との間の差分が、前記第1のセンサパラメータの前記第1の閾値を超えると判断されると、前記第1の遮断バルブは異常な動作をしていると判断すること
を含む操作を実施するプログラムを保持するメモリと
を備えるシステム。
【0064】
条項9. 前記第1の遮断バルブが異常な動作をしていることを明記する警告表示を生成すること、
ネットワークを介して、前記警告表示をリモートコンピューティングデバイスに送信すること、
前記リモートコンピューティングデバイスの情報受信機によって、前記警告表示を受信すること、及び、
前記情報受信機によって、前記第1の遮断バルブのメンテナンスを計画すること
を更に含む、条項8に記載のシステム。
【0065】
条項10. 前記第1及び第2の所定の期間は第1の長さの時間であり、前記複数のセンサパラメータの前記分析は、前記複数のセンサパラメータの事前に収集された値に基づいており、前記分析は、
前記複数の遮断バルブのそれぞれの複数の開放及び閉鎖に関連する前記複数のセンサパラメータの事前に収集された値であって、前記遮断バルブのそれぞれの各開放及び各閉鎖後の前記第1の長さの時間内に発生することが特定されている事前に収集された値を特定すること、及び、
前記複数のセンサパラメータのうちの各センサパラメータに関して、前記遮断バルブのそれぞれで、各開放時の各センサパラメータの最大値と各閉鎖時の各センサパラメータの最大値との間の差分を計算すること
を含む、条項8又は9に記載のコンピュータに実装されるシステム。
【0066】
条項11. 前記複数のセンサパラメータのそれぞれについて、計算された差分のそれぞれの標準偏差に基づいて、前記計算された差分の複数の百分率閾値の第1の百分率閾値を計算すること、及び、
前記第1の百分率閾値を超える前記第1のセンサパラメータに関連する各計算された差分が、前記MMSGの1つの時刻に近い時刻に発生したと判断すること
を含む、条項10に記載のシステム。
【0067】
条項12. 前記分析は更に、
前記第1のセンサパラメータの複数の百分率閾値の第2の百分率閾値が、他の複数の閾値の各々よりも少ない数の偽陽性MMSGに関連すると判断すること、及び、
前記第2の百分率閾値を前記第1のセンサパラメータの前記第1の閾値として定義すること
を含む、条項8から11のいずれか一項に記載のシステム。
【0068】
条項13. 前記第1の百分率閾値は他の百分率閾値の各々を下回り、前記第1の百分率閾値は、前記複数のセンサパラメータの各々について、前記計算された差分の3標準偏差に関連する値を含む、条項12に記載のシステム。
【0069】
条項14. 前記複数のMMSGは、前記複数のMMSGの各々が発生した個々の日付が第3の所定の期間内であるとの判断に基づいて特定される、条項8から13のいずれか一項に記載のシステム。
【0070】
条項15. プロセッサによって実行可能なコンピュータ可読プログラムコードであって、
複数のメンテナンスメッセージ(MMSG)であって、その各々がビークルの複数の遮断バルブのうちの少なくとも1つの遮断バルブに関連する複数のMMSGを特定すること、
各MMSGに関連する前記少なくとも1つの遮断バルブに関連する複数のセンサパラメータの分析に基づいて、前記複数のセンサパラメータの第1のセンサパラメータ及び前記第1のセンサパラメータの第1の閾値が、前記少なくとも1つの遮断バルブのそれぞれの異常な動作に関連していると特定すること、
前記複数の遮断バルブのうちの第1の遮断バルブに関連する第1のセンサによって、(i)前記第1の遮断バルブの開放に関連する第1の所定の期間中に、また、(ii)前記第1の遮断バルブの閉鎖に関連する第2の所定の期間中に、前記第1のセンサパラメータの複数の値を捕捉すること、及び、
前記第1の所定の期間中に捕捉した複数のセンサ値の最大値と前記第2の所定の期間中に捕捉した前記複数のセンサ値の最大値との間の差分が、前記第1のセンサパラメータの前記第1の閾値を超えると判断されると、前記第1の遮断バルブは異常な動作をしていると判断すること
を含む操作を実施する、具現化されたコンピュータ可読プログラムコードを有するコンピュータ可読記憶媒体
を備えるコンピュータプログラム製品。
【0071】
条項16. 前記動作は更に、
前記第1の遮断バルブが異常な動作をしていることを明記する警告表示を生成すること、
ネットワークを介して、前記警告表示をリモートコンピューティングデバイスに送信すること、
前記リモートコンピューティングデバイスの情報受信機によって、前記警告表示を受信すること、及び、
前記情報受信機によって、前記第1の遮断バルブのメンテナンスを計画すること
を更に含む、条項15に記載のコンピュータプログラム製品。
【0072】
条項17. 前記第1及び第2の所定の期間は第1の長さの時間であり、前記複数のセンサパラメータの前記分析は、前記複数のセンサパラメータの事前に収集された値に基づいており、前記分析は、
前記複数の遮断バルブのそれぞれの複数の開放及び閉鎖に関連する前記複数のセンサパラメータの事前に収集された値であって、前記遮断バルブのそれぞれの各開放及び各閉鎖後の前記第1の長さの時間内に発生することが特定されている事前に収集された値を特定すること、及び、
前記複数のセンサパラメータのうちの各センサパラメータに関して、前記遮断バルブのそれぞれで、各開放時の各センサパラメータの最大値と各閉鎖時の各センサパラメータの最大値との間の差分を計算すること
を含む、条項15又は16に記載のコンピュータプログラム製品。
【0073】
条項18. 前記分析は更に、
前記複数のセンサパラメータのそれぞれについて、計算された差分のそれぞれの標準偏差に基づいて、前記計算された差分の複数の百分率閾値の第1の百分率閾値を計算すること、及び、
前記第1の百分率閾値を超える前記第1のセンサパラメータに関連する各計算された差分が、前記MMSGの1つの時刻に近い時刻に発生したと判断すること
を含む、条項17に記載のコンピュータプログラム製品。
【0074】
条項19. 前記分析は更に、
前記第1のセンサパラメータの複数の百分率閾値の第2の百分率閾値が、他の複数の閾値の各々よりも少ない数の偽陽性MMSGに関連すると判断すること、及び、
前記第2の百分率閾値を前記第1のセンサパラメータの前記第1の閾値として定義すること
を含む、条項18に記載のコンピュータプログラム製品。
【0075】
条項20. 前記第1の百分率閾値は前記他の百分率閾値の各々を下回り、前記第1の百分率閾値は、前記複数のセンサパラメータの各々について、前記計算された差分の3標準偏差に関連する値を含む、条項19に記載のコンピュータプログラム製品。
【0076】
ここまでの記述は本書に記載の態様を対象としているが、その基本的な範囲から逸脱しなければ他の態様及び更なる態様が考案されてよく、その範囲は、以下の特許請求の範囲によって決定される。