IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 東芝電子管デバイス株式会社の特許一覧

<>
  • 特許-X線管装置 図1
  • 特許-X線管装置 図2
  • 特許-X線管装置 図3
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-12-02
(45)【発行日】2022-12-12
(54)【発明の名称】X線管装置
(51)【国際特許分類】
   H01J 35/12 20060101AFI20221205BHJP
【FI】
H01J35/12
【請求項の数】 4
(21)【出願番号】P 2019165555
(22)【出願日】2019-09-11
(65)【公開番号】P2021044155
(43)【公開日】2021-03-18
【審査請求日】2022-02-24
(73)【特許権者】
【識別番号】503382542
【氏名又は名称】キヤノン電子管デバイス株式会社
(74)【代理人】
【識別番号】110001737
【氏名又は名称】弁理士法人スズエ国際特許事務所
(72)【発明者】
【氏名】渡邉 利巳
(72)【発明者】
【氏名】吉澤 博文
(72)【発明者】
【氏名】曽根 準基
【審査官】右▲高▼ 孝幸
(56)【参考文献】
【文献】特開平6-162974(JP,A)
【文献】米国特許出願公開第2019/0096625(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01J 35/12
(57)【特許請求の範囲】
【請求項1】
電子を放出する陰極と、
前記陰極から放出される電子が衝撃することでX線が発生する陽極ターゲットと、
一端部と、閉塞され前記陽極ターゲットが接合された底部を含む他端部と、を有する第1管部と、
前記第1管部の内部に位置し、冷却液を取入れる取入れ口が形成された第1端部と、前記底部と対向し前記冷却液を前記底部に吐出す吐出し口が形成された第2端部と、を有し、前記第1管部とともに前記冷却液の流路を形成する第2管部と、
前記第1管部の内面を被覆し、硬質金で形成された保護膜と、を備える、
X線管装置。
【請求項2】
前記硬質金は、
99wt%以上の金と、
1wt%以下のコバルト、ニッケル、又はクロムと、を含んでいる、
請求項1に記載のX線管装置。
【請求項3】
前記硬質金は、0.3乃至0.4wt%の範囲内のコバルトを含んでいる、
請求項2に記載のX線管装置。
【請求項4】
前記冷却液は、水系冷却液である、
請求項1に記載のX線管装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明の実施形態は、X線管装置に関する。
【背景技術】
【0002】
蛍光X線分析に使用されるX線管装置は、陰極と、陽極ターゲットと、冷却パイプと、導水パイプと、導水パイプ及び冷却パイプを接続するジョイント接続部(以下、ジョイントと称する)と、を含む。X線管装置は、冷却パイプ、導水パイプ、ジョイント、及びその他の構造体により構成された陽極ターゲットを冷却するための冷却液の流路を備えている。陽極ターゲットは、この流路を構成する構造体の外側の所定の位置に接合されている。導水パイプ及び冷却パイプは、それぞれ、ジョイントに接続されている。導水パイプは、例えば、内側に設けられた内側パイプと、外側に設けられた外側パイプとで構成されている。内側パイプの先端ノズル部は、陽極ターゲットが設置された方向に冷却液を放出するように設置されている。この場合、冷却パイプは、ジョイントを介して内側パイプに接続された第1冷却パイプと、ジョイントを介して外側パイプに接続された第2冷却パイプとで構成される。このX線管装置において、冷却液は、第1冷却パイプを通りジョイントを介して内側パイプに送られ、内側パイプ及び外側パイプの間の流路を通りジョイントを介して第2冷却パイプから排出される。
【0003】
X線管装置では、陰極から放出された電子が陽極ターゲットに衝撃することで、陽極ターゲットや、その周辺部分が、高温となる。陽極ターゲットや、その周辺部分は、近傍に構成された流路を流れる冷却液により冷却される。冷却液が流れる流路内の陽極ターゲットが設置された部分の近傍の流路の壁面では、冷却液のサブクール沸騰や、冷却液の流れの中でキャビテ―ション等が発生し得る。これらサブクール沸騰やキャビテ―ション等により、陽極ターゲットが設置された部分の近傍の流路、すなわち、内側パイプの先端ノズル部の近傍で、気泡が発生する。
【先行技術文献】
【特許文献】
【0004】
【文献】特開平6-162974号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
本実施形態は、製品寿命の長期化を図ることのできるX線管装置を提供する。
【課題を解決するための手段】
【0006】
一実施形態に係るX線管装置は、
電子を放出する陰極と、前記陰極から放出される電子が衝撃することでX線が発生する陽極ターゲットと、一端部と、閉塞され前記陽極ターゲットが接合された底部を含む他端部と、を有する第1管部と、前記第1管部の内部に位置し、冷却液を取入れる取入れ口が形成された第1端部と、前記底部と対向し前記冷却液を前記底部に吐出す吐出し口が形成された第2端部と、を有し、前記第1管部とともに前記冷却液の流路を形成する第2管部と、前記第1管部の内面を被覆し、硬質金で形成された保護膜と、を備える。
【図面の簡単な説明】
【0007】
図1図1は、一実施形態に係るX線管装置を示す断面図であり、図1(a)は、上記X線管装置の全体を示す断面図であり、図1(b)は、上記X線管装置の一部を拡大した部分断面図であり、図1(c)は、上記実施形態のX線管装置の他の一部を拡大した部分断面図である。
図2図2は、上記実施形態の保護膜及び比較例の保護膜の各々を冷却液に曝した時間に対する保護膜の厚みの変化をグラフで示す図である。
図3図3は、硬質金におけるコバルトの含有量に対する、耐食抵抗の変化及び熱伝導率の変化をそれぞれグラフで示す図である。
【発明を実施するための形態】
【0008】
以下に、本発明の一実施形態について、図面を参照しつつ説明する。なお、開示はあくまで一例にすぎず、当業者において、発明の主旨を保っての適宜変更について容易に想到し得るものについては、当然に本発明の範囲に含有されるものである。また、図面は説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。また、本明細書と各図において、既出の図に関して前述したものと同様の要素には、同一の符号を付して、詳細な説明を適宜省略することがある。
【0009】
図1は、一実施形態に係るX線管装置1を示す断面図である。図1(a)は、上記X線管装置1の全体を示す断面図であり、図1(b)は、上記X線管装置1の一部を拡大した部分断面図であり、図1(c)は、上記実施形態のX線管装置1の他の一部を拡大した部分断面図である。図1(a)には、管軸TAを中心に、X線管装置1の一部分の断面が示されている。以下で、管軸TAに平行な方向を軸方向と称する。軸方向において、X線管2側を下方向(下側)と称し、下方向に対して反対方向を上方向(上側)と称する。また、管軸TAに対して垂直な方向を径方向と称する。
【0010】
図1に示すように、X線管装置1は、X線管2と、このX線管2を含む管容器3とを備える。さらに、X線管装置1は、高電圧ケーブルを挿入接続するための高電圧レセプタクル4と、冷却パイプ5と、ジョイント接続部(以下、単に、ジョイントと称する)6と、導水パイプ7と、高電圧レセプタクル4及び導水パイプ7を電気的に接続する導体スプリング8と、高電圧レセプタクル4の外側に設けられる円筒形状の絶縁筒体9と、空盆10と内部空間22とを隔離するベローズ11とを備える。
【0011】
高電圧レセプタクル4は、高電圧ケーブルを接続するために、上端部が開口し、且つ下端部が閉塞した、有底の円筒形状に形成されている。高電圧レセプタクル4は、管軸TAを中心軸として後述する管容器3の上側に液密に設けられている。高電圧レセプタクル4は、内側から外側の底部に貫通する接続端子12を備えている。接続端子12は、高電圧レセプタクル4に挿入される外部電路のブッシングと、端子とを含む。接続端子12は、導体スプリング8を介してジョイント6に接続されている。
絶縁筒体9は、略円筒形状の絶縁体で形成されている。絶縁筒体9は、図示しないが絶縁油が流通可能な構造とされている。絶縁筒体9は、例えば、上端部を管容器3の内側に固定されている。
【0012】
冷却パイプ5は、冷却液、例えば、水系冷却液としての純水を流すための導管である。冷却パイプ5は、高電圧レセプタクル4と絶縁筒体9との間に螺旋状に設けられている。冷却パイプ5は、冷却液が供給される給水口5aを備える第1冷却パイプ5bと、冷却液が排出される排出口5dを備える第2冷却パイプ5cと、で構成されている。第1冷却パイプ5bは、給水口5aが冷却液の供給源である循環冷却装置等(図示せず)に接続され、給水口5aと反対側の端部がジョイント6に接続されている。一方、第2冷却パイプ5cは、排出口5dが循環冷却装置等(図示せず)に接続され、排出口5dと反対側の端部がジョイント6に接続されている。なお、冷却パイプ5は、螺旋状に設けられていなくともよい。
【0013】
ジョイント6は、X線管装置1の中心部、例えば、管軸TA上に設けられ、冷却パイプ5と導水パイプ7とを接続する。ジョイント6は、第1通路6p1と、第1通路6p1に略平行に形成された第2通路6p2と、第1通路6p1及び第2通路6p2に対して垂直に形成された第3通路6p3との3つの孔が形成された本体部6aを有する。
【0014】
例えば、図1(b)に示すように、第1通路6p1は、本体部6aの上部で、管軸TAに略垂直に、側面部(外周部)から第3通路6p3まで連通して形成されている。同様に、第2通路6p2は、本体部6aの第1通路6p1よりも下部で、管軸TAに略垂直に、側面部から第3通路6p3まで連通して形成されている。つまり、第1及び第2通路6p1,6p2は、それぞれ、本体部6aの側面部で、管軸TAに垂直な方向に開口している。また、第1通路6p1には、第1冷却パイプ5bが液密に接続され、第2通路6p2には、第2冷却パイプ5cが液密に接続されている。第3通路6p3は、管軸TAに沿って、本体部6aの下端部から第1通路6p1まで連通して形成され、第2通路6p2に繋がる部分から第1通路6p1に繋がる部分にわたって段差を有している。つまり、第3通路6p3は、管軸TAに沿って下部に向かって開口し、第2通路6p2に繋がる部分の穴径よりも第1通路6p1に繋がる部分の穴径の方が小さく形成されている。以下で、第3通路6p3において、第1通路6p1に繋がっている穴径が小さい部分を小径部と称し、第2通路6p2に繋がっている穴径が大きい部分を大径部と称する。
【0015】
導水パイプ7は、円筒形状に形成された外側パイプ7aと、外側パイプ7aの内側に設けられた円筒形状の内側パイプ7bとを含む。また、導水パイプ7は、内部に、弾性部材23と、支持部材25とを備える。導水パイプ(管部)7は、軸方向、例えば、管軸TAに沿って延在して設けられ、ジョイント6の下部に接続されている。
【0016】
外側パイプ7aは、ジョイント6の本体部6aの下部と後述する陽極ブロック14の上部とのそれぞれに液密に接合されている。外側パイプ7aの内径は、第3通路6p3の小径部と略同一の径で形成されている。
【0017】
内側パイプ7bは、外側パイプ7aの内径よりも小さい外径で形成されている。内側パイプ7bは、管軸TAに沿って延在して設けられ、上端部が第3通路6p3の小径部に嵌合され、中間部が支持部材25に支持され、且つ下端部に先端ノズル部24を備えている。内側パイプ7bは、外径が第1通路6p1の穴径と略同一であり、第1通路6p1との間に所定の公差の嵌合隙間を有している。
【0018】
弾性部材23の形状は、例えば、Oリング状、又はパイプ状である。弾性部材23の断面形状は、円形状であってもよいし、四角形状であってもよい。弾性部材23は、樹脂性のゴム部材で形成されている。弾性部材23は、第3通路6p3の段差部分で、内側パイプ7bの嵌合部近傍の外周部と第3通路6p3の大径部との間に設けられている。弾性部材23の厚さは、内側パイプ7bの外径と第3通路6p3の大径部の径との間の幅と略同一、又はこの幅よりも大きい。また、弾性部材23は、内側パイプ7bの嵌合部近傍において、内側パイプ7bと第3通路6p3との間の少なくとも一部に設けられていればよい。
【0019】
外側パイプ7a及び陽極ブロック14は、第1管部として機能し、上記第1管部は、ジョイント6側の一端部7aeと、閉塞され陽極ターゲット13が接合された底部14bを含む他端部14eと、を有している。なお、陽極ターゲット13は、陽極ブロック14の外側に位置している。
【0020】
内側パイプ7bは、第2管部として機能し、外側パイプ7a及び陽極ブロック14の内部に位置している。内側パイプ7bは、第1端部7be1と、第2端部7be2と、を有し、上記第1管部(外側パイプ7a及び陽極ブロック14)とともに冷却液の流路を形成している。第1端部7be1には、冷却液を取入れる取入れ口ILが形成されている。第2端部7be2は先端ノズル部24に相当し、底部14bと対向している。第2端部7be2には、冷却液を底部14bに吐出す吐出し口OLが形成されている。
【0021】
図1(c)に示すように、保護膜PRは、陽極ブロック14(第1管部)の内面を被覆している。陽極ブロック14の内面は、陽極ブロック14の陽極ターゲット13と対向した側とは反対側の底面S1と、先端ノズル部24と径方向に対向した内周面S2と、を有している。保護膜PRは、底面S1から内周面S2まで連続的に被覆している。
【0022】
保護膜PRは、硬質金で形成されている。硬質金は、添加物にコバルト(Co)を用いている。硬質金は、99wt%以上の金(Au)と、0wt%を超え、かつ、1wt%以下であるコバルトと、を含んでいる。本実施形態において、硬質金は、0.3wt%のコバルトを含んでいる。保護膜PRは、めっき法により形成され、硬質金めっきである。陽極ブロック14の内面に硬質金の膜を形成した後の熱処理温度によって、保護膜PRの硬さ(硬度)は変化するものである。本実施形態において、保護膜PRを形成する際の熱処理温度は700℃であるが、上記温度に限定されるものではない。
【0023】
ここで、底面S1と対向した領域における保護膜PRの厚みをT1とし、内周面S2と対向した領域における保護膜PRの厚みをT2とする。本実施形態において、厚みT1は15乃至25μmの範囲内にあり、厚みT2は25乃至35μmの範囲内にある。厚みT2は、厚みT1より大きくなる傾向にあるが、厚みT1と厚みT2との関係は上記の関係に限定されるものではない。例えば、厚みT1は、厚みT2より大きくともよい。
【0024】
保護膜PRは、冷却液による陽極ブロック14の腐食及び浸食を防止するために設けられている。硬質金で形成された保護膜PRは、軟質金で形成された保護膜の熱伝導率と同等の熱伝導率を有している。硬質金で形成された保護膜PRの硬さ(硬度)は、軟質金で形成された保護膜の硬さの実質的に2倍である。そのため、硬質金で形成された保護膜PRは、腐食及び浸食の耐久性に優れた機能を有するものである。
【0025】
図1に示すように、X線管2は、陽極ターゲット(陽極)13と、陽極ブロック14と、電子を放出する陰極15と、ウェネルト電極16と、第1真空外囲器17と、第2真空外囲器18と、を備えている。高電圧レセプタクル4に高電圧ケーブルが接続された場合、陽極ターゲット13と後述する陰極15との間に、高電圧(管電圧)が印加される。
【0026】
陽極ブロック14は、管軸TAを中心軸とした有底の円筒形状に形成されている。陽極ブロック14の開口部側には、外側パイプ7aの下端部が固定されている。陽極ブロック14の内側には、内側パイプ7bの先端ノズル部24が、配置されている。この先端ノズル部24から陽極ブロック14の底部14b(又は、陽極ターゲット13の設置方向)に向かって、冷却液が放出される。
【0027】
X線管装置1において、前述したジョイント6、導水パイプ7、及び陽極ブロック14は、組み立てられることで、冷却液を流すための流路を構成する。なお、ジョイント6、導水パイプ7、及び陽極ブロック14は、夫々、別体として記載したが、冷却液を流す流路を構成すれば、全て一体に形成されていてもよいし、部分的に一体に形成されていてもよい。冷却液が、ジョイント6、導水パイプ7、及び陽極ブロック14で構成された流路と、冷却パイプ5と、を循環することで、後述する内部空間22に充填された絶縁油や陽極ターゲット13等が冷却される。
【0028】
陽極ターゲット13は、陽極ブロック14の底部14bに接合されている。陽極ターゲット13は、電子が衝撃することによってX線が発生する。このとき、陽極ターゲット13は、電子が衝撃することで温度が上昇するが、陽極ブロック14の内部の流路を流れる冷却液によって冷却される。相対的に、陽極ターゲット13には正の電圧が印加され、陰極15には負の電圧が印加される。例えば、陰極15は、電気的に接地されている。
【0029】
陰極15は、リング状のフィラメントで形成され、陽極ターゲット13(または、陽極ブロック14)から径方向の外側に所定の間隔を空けて設けられている。陰極15から放出される電子は、後述するウェネルト電極16の下端部を越えて陽極ターゲット13上に衝突する。
【0030】
ウェネルト電極16は、円形状に形成され、陽極ターゲット13と陰極15との間に設けられている。ウェネルト電極16は、陰極15から放出された電子を陽極ターゲット13上に集束させる。
第1真空外囲器17は、内側円筒と、外側円筒とで構成されている。第1真空外囲器17は、内側円筒と外側円筒との上端部が互いに接合されている。内側円筒及び外側円筒は、それぞれ、略円筒形状で、例えば、ガラス材、又はセラミックス材で形成されている。第1真空外囲器17は、内側円筒の下端部が陽極ブロック14に真空気密に接続され、外側円筒の下端部がX線管2の壁面の一部としてX線管2の壁部に真空気密に接続されている。
【0031】
第2真空外囲器18は、有底の略円筒形状で形成されている。第2真空外囲器18は、上端部がX線管2の壁面の一部としてX線管の壁部に真空気密に接続されている。第2真空外囲器18は、後述する管容器3ともに電気的に接地される。第2真空外囲器18は、底部の中心付近を貫通する開口部に、X線透過窓(窓部)19が真空気密に接合されている。X線透過窓19は、電子が衝突した際に陽極ターゲット13から発生するX線を透過し、X線をX線管装置1に外部へ放出する。X線透過窓19は、X線を透過する部材、例えば、ベリリウム薄板で形成されている。また、X線管2は、外壁の一部に径方向の外側に突出する第1の凸部20aと、第2の凸部20bとを備えている。
【0032】
管容器3は、X線管装置1の各部を内部に収容する密閉された容器である。管容器3は、管軸TAを中心軸とする略円筒形状に形成されている。管容器3は、例えば、金属部材で形成されている。また、管容器3は、内壁に鉛板21が内貼りされている。管容器3(鉛板21)の内側の内部空間22には、絶縁油が、充填されている。ここで、内部空間22は、例えば、管容器3の内側、X線管2及び高電圧レセプタクル4の外側、且つ空盆10以外の空間である。
【0033】
ベローズ11は、管容器3の下側の所定の部分に、内部空間22と空盆10とを隔離するように備えられている。ベローズ11は、第1の凸部20aに一端部が固定され、他端部が第2の凸部20bに固定されている。ベローズ11は、樹脂性の弾性部材で形成されており、絶縁油の膨張及び収縮等を空盆10で伸縮することによって吸収する。なお、ベローズ11は、伸縮自在な伸縮部材であり、例えばゴムベローズ(ゴム膜)である。
【0034】
本実施形態では、X線管装置1において、冷却液は、第1冷却パイプ5bから取入れ、第1通路6p1を介して上端部から内側パイプ7bに流入する。内側パイプ7bに流入した冷却液は、内側パイプ7bの先端ノズル部24から陽極ターゲット13が設置された方向の陽極ブロック14の底部14bに衝突する。先端ノズル部24から放出された冷却液は、陽極ブロック14の内側表面、又は外側パイプ7aの内側表面と、内側パイプ7bの外周部とで構成された流路を通って、ジョイント6の第3通路6p3に流れる。第3通路6p3に流れた冷却液は、第2通路6p2を介して第2冷却パイプ5cから取り出される。
【0035】
また、X線管装置1は、高電圧レセプタクル4に高電圧ケーブルが接続された場合、陽極ターゲット13に管電圧が印加される。そして、陰極15から放出された電子が陽極ターゲット13に衝撃し、X線が発生する。このとき、陽極ブロック14の内側に構成された流路を流れる冷却液によって、陽極ターゲット13が冷却される。陽極ブロック14の内側の流路を流れる冷却液では、サブクール沸騰やキャビテ―ションにより、気泡が発生する。
【0036】
次に、硬質金で形成された保護膜PR(本実施形態の保護膜PR)と、軟質金で形成された保護膜(比較例の保護膜)の対腐食(対キャビテーション)について、同一の評価条件の下で比較する。図2は、保護膜を冷却液に曝した時間に対する保護膜の厚みの変化をグラフで示す図である。保護膜を冷却液に曝す際は、保護膜を冷却液に浸漬するだけではなく、保護膜に冷却液を吹き付けながら、保護膜の経時変化について実験した。
【0037】
図2に示すように、軟質金で形成された保護膜の厚みは、時間の経過とともに減少する結果となった。例えば、30分後に、軟質金で形成された保護膜の厚みは、実質的に45%まで減少する結果となった。これに対し、硬質金で形成された保護膜PRにおいて、厚みは、ほとんど変化(減少)しない結果となった。上記のことから、保護膜PRを軟質金ではなく硬質金で形成することは、陽極ブロック14を化学的に保護する観点で、大幅な改善効果が得られるものである。
【0038】
上記のように構成された一実施形態に係るX線管装置1によれば、X線管装置1は、陰極15と、陽極ターゲット13と、第1管部(外側パイプ7a及び陽極ブロック14)と、第2管部(内側パイプ7b)と、陽極ブロック14の内面を被覆し保護膜PRと、を備えている。ところで、冷却液の沸騰冷却や冷却液回路内の圧力差などにより泡が発生し、保護膜PRは、泡が消滅するときの衝撃波を繰り返し受けることとなる。
【0039】
そのため、保護膜PRが軟質金で形成されている場合、保護膜PRに腐食が発生することとなる。さらに、保護膜PRにおいて、冷却液による腐食及び浸食が徐々に進行していき、最悪の場合には、陽極ブロック14や、さらにその奥の陽極ターゲット13まで貫通し、X線管2内に冷却液が流入する不具合が生じる恐れがある。保護膜PRにおいて、冷却液による腐食及び浸食を防止するために、泡の発生そのものを抑制することは非常に困難である。
【0040】
そこで、本実施形態において、保護膜PRを硬質金で形成している。硬質金は、99wt%以上の金と、0wt%を超え、かつ、1wt%以下であるコバルトと、を含んでいる。保護膜PRは、コバルトを含有させた硬質金の膜をメッキ法により形成することで得ることができる。軟質金より高い硬さ(硬度)の硬質金で保護膜PRを形成することで、保護膜PRにおける腐食及び浸食の耐久性の向上を図ることができる。
上記のことから、製品寿命の長期化を図ることのできるX線管装置1を得ることができる。
【0041】
次に、上記実施形態の変形例について説明する。図3は、硬質金におけるコバルトの含有量に対する、耐食抵抗の変化及び熱伝導率の変化をそれぞれグラフで示す図である。
図3に示すように、保護膜PRにおいて、コバルトの含有量を増やすほど、保護膜PRの硬さ(硬度)が高まり、腐食抵抗が向上し、腐食しにくくなることが分かる。しかしながら、コバルトの含有量を増やすほど、保護膜PRの熱伝導率の低下を招くことがわかる。
【0042】
保護膜PRの熱伝導率が低下すると、陽極ブロック14及び陽極ターゲット13の冷却効率が低下し、陽極ターゲット13の表面(ターゲット面)が劣化し易く(荒れ易く)なる。そして、X線管装置1の製品寿命が短くなったり、製品信頼性の低下を招いたり、してしまう。上記のことから、硬質金は、0.4wt%以下のコバルトを含んでいた方が望ましい。
硬質金におけるコバルトの添加量が0.4wt%を超えると、保護膜PRの熱伝導率が低下し、陽極ターゲット13の表面の劣化(荒れ)が促進され、X線管装置1の期待(設計的)製品寿命を全うできなくなる確率が高まるためである。
【0043】
一方、硬質金におけるコバルトの添加量が減少するとともに、保護膜PRの腐食抵抗が徐々に低下し、陽極ブロック14の内部の腐食が進行し易くなってしまう。上記のことから、硬質金は、0.3wt%以上のコバルトを含んでいた方が望ましい。
硬質金におけるコバルトの添加量が0.4wt%未満となると、陽極ブロック14の内部の腐食が促進され、X線管装置1の期待(設計的)製品寿命を全うできなくなる確率が高まるためである。
上記のことから、硬質金は、0.3乃至0.4wt%の範囲内のコバルトを含んでいる方がより望ましい。
【0044】
本発明の実施形態を説明したが、上記の実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。上記の新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。上記の実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
【0045】
例えば、保護膜PRを形成するための硬質金は、添加物にコバルト(Co)以外の金属を用いてもよい。例えば、硬質金は、0wt%を超え、かつ、1wt%以下であるニッケル(Ni)を含んでいてもよい。又は、硬質金は、0wt%を超え、かつ、1wt%以下であるクロム(Cr)を含んでいてもよい。
【符号の説明】
【0046】
1…X線管装置、2…X線管、3…管容器、6…ジョイント接続部、7…導水パイプ、
7a…外側パイプ、7b…内側パイプ、13…陽極ターゲット、14…陽極ブロック、
15…陰極、17…第1真空外囲器、18…第2真空外囲器、24…先端ノズル部、
PR…保護膜。
図1
図2
図3