(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-12-05
(45)【発行日】2022-12-13
(54)【発明の名称】ツイン駆動装置及びモータ制御方法
(51)【国際特許分類】
H02P 5/46 20060101AFI20221206BHJP
【FI】
H02P5/46 E
H02P5/46 H
(21)【出願番号】P 2019056082
(22)【出願日】2019-03-25
【審査請求日】2021-12-16
(73)【特許権者】
【識別番号】000001270
【氏名又は名称】コニカミノルタ株式会社
(74)【代理人】
【識別番号】110000671
【氏名又は名称】八田国際特許業務法人
(72)【発明者】
【氏名】張 光栄
(72)【発明者】
【氏名】吉田 一充
(72)【発明者】
【氏名】橘 優太
(72)【発明者】
【氏名】吉川 博之
(72)【発明者】
【氏名】宮島 聡司
【審査官】安池 一貴
(56)【参考文献】
【文献】特開2010-066449(JP,A)
【文献】特開2005-287194(JP,A)
【文献】特開平10-215593(JP,A)
【文献】特開2017-184378(JP,A)
【文献】特開2003-299391(JP,A)
【文献】特開2000-330420(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H02P 5/46
G03G 21/00
(57)【特許請求の範囲】
【請求項1】
ステッピングモータと、ブラシレスモータと、前記ステッピングモータと前記ブラシレスモータとを用いて同一の負荷を回転運動させる駆動機構と、前記ステッピングモータ及び前記ブラシレスモータの動作を制御する制御部と、を備え、
前記ブラシレスモータの回転軸又は前記駆動機構の回転軸にエンコーダを有し、
前記制御部は、前記ステッピングモータを駆動するパルス信号と前記エンコーダから出力されるパルス信号とを比較して前記ステッピングモータの角度ずれ量を算出し、前記角度ずれ量に応じて前記ブラシレスモータの出力を増減させる、
ことを特徴とするツイン駆動装置。
【請求項2】
前記制御部は、前記ステッピングモータを駆動するパルス信号の周波数が前記エンコーダから出力されるパルス信号の周波数の整数倍の場合、前記エンコーダから出力されるパルス信号の立ち上がりエッジ及び立ち下がりエッジにおいて、前記ステッピングモータを駆動するパルス信号と前記エンコーダから出力されるパルス信号とを比較して、前記ステッピングモータの角度ずれ量を算出する、
ことを特徴とする請求項1に記載のツイン駆動装置。
【請求項3】
前記制御部は、前記ステッピングモータを駆動するパルス信号の第1の周波数が前記エンコーダから出力されるパルス信号の第2の周波数の整数倍でない場合、前記第1の周波数及び前記第2の周波数の最大公約数を算出し、前記ステッピングモータを駆動するパルス信号の、前記第1の周波数を前記最大公約数で除算した数毎の立ち上がりエッジ又は立ち下がりエッジと、前記エンコーダから出力されるパルス信号の、前記第2の周波数を前記最大公約数で除算した数毎の立ち上がりエッジ又は立下りエッジと、を比較して、前記ステッピングモータの角度ずれ量を算出する、
ことを特徴とする請求項1に記載のツイン駆動装置。
【請求項4】
前記制御部は、前記ステッピングモータと前記ブラシレスモータとを駆動し、前記ブラシレスモータのアシストトルクを変化させたとき、前記ステッピングモータを駆動するパルス信号の位相と前記エンコーダから出力されるパルス信号の位相とが所定の角度以上に変化した場合に、変化する直前の位相を基準として、前記ステッピングモータの角度ずれ量を算出する、
ことを特徴とする請求項1乃至3のいずれか一に記載のツイン駆動装置。
【請求項5】
前記ステッピングモータ及び前記ブラシレスモータは、前記ステッピングモータを駆動するパルス信号と前記エンコーダから出力されるパルス信号との位相差が予め定めた特定の角度になるように調節して組み立てられる、
ことを特徴とする請求項4に記載のツイン駆動装置。
【請求項6】
前記制御部は、前記ステッピングモータの角度ずれ量が予め定めた一定値を超えた場合、前記ブラシレスモータの出力を変化させる、
ことを特徴とする請求項1乃至5のいずれか一に記載のツイン駆動装置。
【請求項7】
前記制御部は、前記エンコーダから出力されるパルス信号が前記ステッピングモータを駆動するパルス信号よりも遅れた時は前記ブラシレスモータの出力を増やし、前記エンコーダから出力されるパルス信号が前記ステッピングモータを駆動するパルス信号よりも進んだ時は前記ブラシレスモータの出力を減らす、
ことを特徴とする請求項6に記載のツイン駆動装置。
【請求項8】
前記制御部は、前記ステッピングモータの角度ずれ量が予め定めた限界値を超えた場合、前記ブラシレスモータの出力を変化させない、
ことを特徴とする請求項1乃至7のいずれか一に記載のツイン駆動装置。
【請求項9】
請求項1乃至8のいずれか一に記載のツイン駆動装置を用いて搬送ローラを駆動する、
ことを特徴とする画像形成装置。
【請求項10】
ステッピングモータと、ブラシレスモータと、前記ステッピングモータと前記ブラシレスモータとを用いて同一の負荷を回転運動させる駆動機構と、を備え、前記ブラシレスモータの回転軸又は前記駆動機構の回転軸にエンコーダを有するツイン駆動装置におけるモータ制御方法であって、
前記ステッピングモータを駆動するパルス信号と前記エンコーダから出力されるパルス信号とを比較して前記ステッピングモータの角度ずれ量を算出する算出ステップと、
前記角度ずれ量に応じて前記ブラシレスモータの出力を増減させる制御ステップと、を実行する、
ことを特徴とするモータ制御方法。
【請求項11】
前記算出ステップでは、前記ステッピングモータを駆動するパルス信号の周波数が前記エンコーダから出力されるパルス信号の周波数の整数倍の場合、前記エンコーダから出力されるパルス信号の立ち上がりエッジ及び立ち下がりエッジにおいて、前記ステッピングモータを駆動するパルス信号と前記エンコーダから出力されるパルス信号とを比較して、前記ステッピングモータの角度ずれ量を算出する、
ことを特徴とする請求項10に記載のモータ制御方法。
【請求項12】
前記算出ステップでは、前記ステッピングモータを駆動するパルス信号の第1の周波数が前記エンコーダから出力されるパルス信号の第2の周波数の整数倍でない場合、前記第1の周波数及び前記第2の周波数の最大公約数を算出し、前記ステッピングモータを駆動するパルス信号の、前記第1の周波数を前記最大公約数で除算した数毎の立ち上がりエッジ又は立ち下がりエッジと、前記エンコーダから出力されるパルス信号の、前記第2の周波数を前記最大公約数で除算した数毎の立ち上がりエッジ又は立下りエッジと、を比較して、前記ステッピングモータの角度ずれ量を算出する、
ことを特徴とする請求項10に記載のモータ制御方法。
【請求項13】
前記算出ステップでは、前記ステッピングモータと前記ブラシレスモータとを駆動し、前記ブラシレスモータのアシストトルクを変化させたとき、前記ステッピングモータを駆動するパルス信号の位相と前記エンコーダから出力されるパルス信号の位相とが所定の角度以上に変化した場合に、変化する直前の位相を基準として、前記ステッピングモータの角度ずれ量を算出する、
ことを特徴とする請求項10乃至12のいずれか一に記載のモータ制御方法。
【請求項14】
前記ステッピングモータ及び前記ブラシレスモータは、前記ステッピングモータを駆動するパルス信号と前記エンコーダから出力されるパルス信号との位相差が予め定めた特定の角度になるように調節して組み立てられる、
ことを特徴とする請求項13に記載のモータ制御方法。
【請求項15】
前記制御ステップでは、前記ステッピングモータの角度ずれ量が予め定めた一定値を超えた場合、前記ブラシレスモータの出力を変化させる、
ことを特徴とする請求項10乃至14のいずれか一に記載のモータ制御方法。
【請求項16】
前記制御ステップでは、前記エンコーダから出力されるパルス信号が前記ステッピングモータを駆動するパルス信号よりも遅れた時は前記ブラシレスモータの出力を増やし、前記エンコーダから出力されるパルス信号が前記ステッピングモータを駆動するパルス信号よりも進んだ時は前記ブラシレスモータの出力を減らす、
ことを特徴とする請求項15に記載のモータ制御方法。
【請求項17】
前記制御ステップでは、前記ステッピングモータの角度ずれ量が予め定めた限界値を超えた場合、前記ブラシレスモータの出力を変化させない、
ことを特徴とする請求項10乃至16のいずれか一に記載のモータ制御方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ツイン駆動装置及びモータ制御方法に関し、特に、ステッピングモータとブラシレスモータとを用いて同一の負荷を回転運動させるツイン駆動装置及び当該ツイン駆動装置におけるモータ制御方法に関する。
【背景技術】
【0002】
近年、MFP(Multi-Functional Peripherals)などの画像形成装置の高速化に伴い、記録媒体を搬送する搬送ローラの加速時間の短縮や目標速度の高速化が要求されている。しかしながら、画像形成装置で使用されている汎用のステッピングモータは出力トルクが不足しているため、脱調が起こり易く、搬送ローラを短時間で加速することができない。また、出力トルクが大きい高価なステッピングモータを使用するような場合には、トルクマージンを確保するために過剰な電流を常時流す必要があり、消費電力が増大してしまうという問題がある。
【0003】
この問題に対して、下記特許文献1には、ステッピングモータと、ブラシレスモータと、前記ステッピングモータの動力を駆動軸に伝達する第1動力伝達部であって、該駆動軸へ動力を伝達する連結状態と、伝達を解除する解除状態に切替え可能な第1動力伝達部と、前記ブラシレスモータの動力を前記駆動軸に伝達する第2動力伝達部と、前記ステッピングモータ、前記ブラシレスモータ、および前記第1動力伝達部を制御し、前記駆動軸への動力の伝達を制御する制御部と、を備え、前記制御部は、所定速度まで前記駆動軸の回転を加速する第1動作フェーズでは、前記ステッピングモータと前記ブラシレスモータの両方の動力を伝達して前記駆動軸を駆動させ、前記第1動作フェーズの後、前記駆動軸を前記所定速度で定速回転させる第2動作フェーズでは、前記第1動力伝達部による前記ステッピングモータの動力の伝達を解除し、前記ブラシレスモータのみで前記駆動軸を駆動させる駆動装置が開示されている。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
上記特許文献1では、ステッピングモータとエンコーダを備えるブラシレスモータの両方を用いて一つのローラ軸を駆動するように構成し(ツイン駆動と呼ぶ。)、ステッピングモータの駆動状況に応じて、ブラシレスモータの駆動軸への連結と解除を切り替えるようにしている。しかしながら、上記技術では、ステッピングモータは駆動パルス信号によって回転が制御され、ブラシレスモータはエンコーダから出力されるパルス信号によって回転が制御されるため、突発的な負荷トルクが発生した場合に、ブラシレスモータがステッピングモータを適切にアシストすることができず、ステッピングモータの脱調を防止することができないという問題がある。
【0006】
本発明は、上記問題点に鑑みてなされたものであって、その主たる目的は、ステッピングモータとブラシレスモータのツイン駆動において、ブラシレスモータのアシスト量を適切に調整して、ステッピングモータの脱調を防止することができるツイン駆動装置及びモータ制御方法を提供することにある。
【課題を解決するための手段】
【0007】
本発明の一側面は、ステッピングモータと、ブラシレスモータと、前記ステッピングモータと前記ブラシレスモータとを用いて同一の負荷を回転運動させる駆動機構と、前記ステッピングモータ及び前記ブラシレスモータの動作を制御する制御部と、を備え、前記ブラシレスモータの回転軸又は前記駆動機構の回転軸にエンコーダを有し、前記制御部は、前記ステッピングモータを駆動するパルス信号と前記エンコーダから出力されるパルス信号とを比較して前記ステッピングモータの角度ずれ量を算出し、前記角度ずれ量に応じて前記ブラシレスモータの出力を増減させることを特徴とする。
【0008】
本発明の一側面は、ステッピングモータと、ブラシレスモータと、前記ステッピングモータと前記ブラシレスモータとを用いて同一の負荷を回転運動させる駆動機構と、を備え、前記ブラシレスモータの回転軸又は前記駆動機構の回転軸にエンコーダを有するツイン駆動装置におけるモータ制御方法であって、前記ステッピングモータを駆動するパルス信号と前記エンコーダから出力されるパルス信号とを比較して前記ステッピングモータの角度ずれ量を算出する算出ステップと、前記角度ずれ量に応じて前記ブラシレスモータの出力を増減させる制御ステップと、を実行することを特徴とする。
【発明の効果】
【0009】
本発明のツイン駆動装置及びモータ制御方法によれば、ステッピングモータとブラシレスモータのツイン駆動において、ブラシレスモータのアシスト量を適切に調整して、ステッピングモータの脱調を防止することができる。
【0010】
その理由は、ツイン駆動装置に、ステッピングモータと、ブラシレスモータと、ステッピングモータとブラシレスモータとを用いて同一の負荷を回転運動させる駆動機構と、ステッピングモータ及びブラシレスモータの動作を制御する制御部と、を備え、ブラシレスモータの回転軸又は駆動機構の回転軸にエンコーダを有し、制御部は、ステッピングモータを駆動するパルス信号とエンコーダから出力されるパルス信号とを比較してステッピングモータの角度ずれ量を算出し、角度ずれ量に応じてブラシレスモータの出力を増減させるからである。
【図面の簡単な説明】
【0011】
【
図1】本発明の一実施例に係る画像形成装置の構成を示す模式図である。
【
図2】本発明の一実施例に係る画像形成装置の構成を示すブロック図である。
【
図3】本発明の一実施例に係るツイン駆動装置の構成を示す模式図である。
【
図4】本発明の一実施例に係るツイン駆動を説明するブロック図である。
【
図5】本発明の一実施例に係るツイン駆動装置におけるステッピングモータのパルス信号とエンコーダのパルス信号とを示す波形図(ステッピングモータのパルス信号の周波数がエンコーダのパルス信号の周波数の整数倍の場合)である。
【
図6】本発明の一実施例に係るツイン駆動装置におけるステッピングモータのパルス信号とエンコーダのパルス信号とを示す波形図(ステッピングモータのパルス信号の周波数がエンコーダのパルス信号の周波数の整数倍でない場合)である。
【
図7】本発明の一実施例に係るツイン駆動装置におけるステッピングモータのパルス信号とエンコーダのパルス信号の位相のキャリブレーションを示す図である。
【
図8】本発明の一実施例に係るツイン駆動装置におけるステッピングモータのパルス信号とエンコーダのパルス信号とのずれとモータの速度との関係を示す図である。
【
図9】本発明の一実施例に係るツイン駆動装置の動作を示すフローチャート図である。
【
図10】本発明の一実施例に係るツイン駆動装置の動作を示すフローチャート図である。
【発明を実施するための形態】
【0012】
背景技術で示したように、画像形成装置で使用されている汎用のステッピングモータは出力トルクが不足しているため、脱調が起こり易く、搬送ローラを短時間で加速することができない。また、出力トルクが大きい高価なステッピングモータを使用する場合は、トルクマージンを確保するために過剰な電流を常時流す必要があり、消費電力が増大してしまう。
【0013】
この問題に対して、特許文献1では、ステッピングモータとエンコーダを備えるブラシレスモータの両方を用いて一つのローラ軸を駆動するツイン駆動を提案しているが、上記技術では、ステッピングモータは駆動パルス信号によって回転が制御され、ブラシレスモータはエンコーダから出力されるパルス信号によって回転が制御されるため、突発的な負荷トルクが発生した場合に、ブラシレスモータがステッピングモータを適切にアシストすることができず、ステッピングモータの脱調を防止することができないという問題がある。
【0014】
そこで、本発明の一実施の形態では、ツイン駆動構成において、ブラシレスモータの回転軸(または駆動機構の回転軸)に設けたエンコーダから出力されるパルス信号を利用して、ステッピングモータの角度ずれ量(ステッピングモータを駆動するパルス信号から推測される角度とエンコーダから出力されるパルス信号に基づいて特定される角度とのずれ量)を監視し、突発的な負荷トルクの変動により角度ずれ量が大きくなった場合に、ブラシレスモータの出力を上げてアシスト量を増やし、ステッピングモータの脱調を防ぐ。
【0015】
具体的には、ツイン駆動装置に、ステッピングモータと、ブラシレスモータと、ステッピングモータとブラシレスモータとを用いて同一の負荷を回転運動させる駆動機構と、ステッピングモータ及びブラシレスモータの動作を制御する制御部と、を備え、ブラシレスモータの回転軸又は駆動機構の回転軸にエンコーダを有し、制御部は、ステッピングモータを駆動するパルス信号とエンコーダから出力されるパルス信号とを比較してステッピングモータの角度ずれ量を算出し、角度ずれ量に応じてブラシレスモータの出力を増減させるように制御する。
【0016】
これにより、ステッピングモータに別途エンコーダを設けなくても、ステッピングモータの脱調を防ぐことができる。また、ステッピングモータではなく、電流制御で駆動するブラシレスモータを制御することにより、より正確かつ簡便にツイン駆動装置の動作を制御することができる。
【実施例】
【0017】
上記した本発明の一実施の形態についてさらに詳細に説明すべく、本発明の一実施例に係るツイン駆動装置及びモータ制御方法について、
図1乃至
図10を参照して説明する。
図1は、本実施例の画像形成装置の構成を示す模式図であり、
図2は、本実施例の画像形成装置の構成を示すブロック図である。また、
図3は、本実施例のツイン駆動装置の構成を示す模式図であり、
図4は、本実施例のツイン駆動を説明するブロック図である。また、
図5乃至
図8は、本実施例のツイン駆動装置におけるステッピングモータの角度ずれを説明する図であり、
図9及び
図10は、本実施例のツイン駆動装置の動作を示すフローチャート図である。
【0018】
本実施例のツイン駆動装置は、駆動機構を備える様々な装置に利用することができるが、本実施例では、ツイン駆動装置を用いて搬送ローラを駆動する画像形成装置について説明する。
【0019】
図1に示すように、本実施例の画像形成装置10は、原稿を読み取って取得した画像データ、又は、通信ネットワークを介して外部の情報機器(例えばクライアント装置)から入力された画像データに基づいて、用紙に色を重ね合わせることにより画像を形成する装置であり、例えば、イエロー(Y)、マゼンタ(M)、シアン(C)、ブラック(K)の4色に対応する感光体としての感光体ドラム83Y、83M、83C、83Kが、被転写体(中間転写ベルト)の走行方向に直列配置されたタンデム方式の画像形成装置である。
【0020】
この画像形成装置10は、
図2(a)に示すように、制御部20、高圧電源部30、表示操作部40、画像読取部50、画像処理部60、搬送部70、画像形成部80などで構成される。
【0021】
制御部20は、CPU(Central Processing Unit)21と、ROM(Read Only Memory)22やRAM(Random Access Memory)23等のメモリと、HDD(Hard Disk Drive)やSSD(Solid State Drive)等の記憶部24と、NIC(Network Interface Card)やモデム等のネットワークI/F部25などで構成される。CPU21は、ROM22又は記憶部24から処理内容に応じたプログラムを読み出し、RAM23に展開して実行することにより、画像形成装置10の各部の動作を集中制御する。記憶部24は、CPU21が各部を制御するためのプログラム、自装置の処理機能に関する情報、画像読取部50が読み取った画像データ、図示しないクライアント装置などから入力された画像データなどを記憶する。ネットワークI/F部25は、画像形成装置10をLAN(Local Area Network)やWAN(Wide Area Network)等の通信ネットワークに接続し、外部の情報機器(例えばクライアント装置)との間で各種データの送受信を行う。
【0022】
高圧電源部30は、帯電や現像、転写の際に利用される高圧を発生する回路であり、後述する帯電装置84や現像装置82、一次転写ローラ86、中間転写ユニット87に交番波形の高圧を出力する。例えば、24Vの直流電圧を転写電圧に変換して、変換した転写電圧を二次転写ローラに出力することにより二次転写が実行される。
【0023】
表示操作部40は、LCD(Liquid Crystal Display)や有機EL(Electro Luminescence)ディスプレイなどの表示部上に、透明電極が格子状に配置された感圧式や静電容量式などの操作部(タッチセンサ)を設けたタッチパネルなどで構成され、表示部及び操作部として機能する。表示部は、制御部20から入力される表示制御信号に従って、各種操作画面、画像の状態表示、各機能の動作状況等の表示を行う。操作部は、ユーザによる各種入力操作を受け付けて、操作信号を制御部20に出力する。
【0024】
画像読取部50は、ADF(Auto Document Feeder)と呼ばれる自動原稿給紙装置51及び原稿画像走査装置(スキャナー)52などで構成される。自動原稿給紙装置51は、原稿トレイに載置された原稿を搬送機構により搬送して原稿画像走査装置52へ送り出す。原稿画像走査装置52は、自動原稿給紙装置51からコンタクトガラス上に搬送された原稿又はコンタクトガラス上に載置された原稿を光学的に走査し、原稿からの反射光をCCD(Charge Coupled Device)センサの受光面上に結像させて原稿画像を読み取る。画像読取部50によって読み取られた画像(アナログ画像信号)は、画像処理部60において所定の画像処理が施される。
【0025】
画像処理部60は、アナログデジタル(A/D)変換処理を行う回路及びデジタル画像処理を行う回路などで構成される。画像処理部60は、画像読取部50からのアナログ画像信号にA/D変換処理を施すことによりデジタル画像データを生成する。また、画像処理部60は、外部の情報機器(例えばクライアント装置)から取得した印刷ジョブを解析し、原稿の各ページをラスタライズしてデジタル画像データを生成する。そして、画像処理部60は、必要に応じて、画像データに対して、色変換処理、補正処理(シェーディング補正等)、及び圧縮処理等の画像処理を施し、画像処理後の画像データを画像形成部80に出力する。
【0026】
搬送部70は、
図1及び
図2(b)に示すように、搬送ローラ71と、搬送ローラ71を駆動するツイン駆動装置と、で構成され、ツイン駆動装置は、ステッピングモータ72と、ブラシレスモータ73と、駆動機構74と、ステッピングモータ72及びブラシレスモータ73の動作を制御するCPU75などの制御部と、で構成される。搬送ローラ71は、用紙搬送経路の所定の位置に配置され、給紙トレイに収容された用紙を画像形成部80に搬送し、画像形成後の用紙を排紙トレイに搬送する。ステッピングモータ72は、駆動パルス信号に同期して動作するモータである。ブラシレスモータ73は、ブラシと整流子を持たないモータ(DCモータのブラシの機能を電子回路で置き換えたDCブラシレスモータ)である。本実施例のブラシレスモータ73は、位相や角度を検出するためのエンコーダ73aを備えており、エンコーダ73aから出力されるパルス信号によってフィードバック制御が行われる。駆動機構74は、搬送ローラ71を回転駆動するためのギアや駆動軸などであり、ステッピングモータ72とブラシレスモータ73とによって回転駆動される。この駆動機構74には、ブラシレスモータ73のエンコーダ73aに代えて、駆動軸の位相や角度を検出するためのエンコーダ74bを備えていてもよい。CPU75は、ツイン駆動の制御に使用されるCPUであり、ステッピングモータ72を制御するステッピングモータ制御部76とブラシレスモータ73を制御するブラシレスモータ制御部77などで構成される。上記ツイン駆動装置の詳細な構成については後述する。
【0027】
画像形成部80は、
図1及び
図2(c)に示すように、異なる色成分Y、M、C、Kに対応して設けられた、露光装置81(81Y、81M、81C、81K)、現像装置82(82Y、82M、82C、82K)、感光体ドラム83(83Y、83M、83C、83K)、帯電装置84(84Y、84M、84C、84K)、クリーニング装置85(85Y、85M、85C、85K)、一次転写ローラ86(86Y、86M、86C、86K)、中間転写ユニット87、定着装置88等を備えて構成される。なお、以下の説明では、必要に応じて、Y、M、C、Kを除いた符号を使用する。
【0028】
各色成分Y、M、C、Kの感光体ドラム83は、アルミ材よりなる円筒状の金属基体の外周面上に、保護層としてのオーバーコート層を設けた有機感光体層(OPC)が形成された像担持体である。感光体ドラム83は、接地された状態で後述する中間転写ベルトに従動して
図1における反時計方向に回転される。
【0029】
各色成分Y、M、C、Kの帯電装置84は、例えば帯電ローラ方式であって、帯電部材(帯電ローラ)が、その長手方向を感光体ドラム83の回転軸方向に沿わせた状態で、対応する感光体ドラム83に近接配設されており、帯電部材に高圧を印加することによって、当該感光体ドラム83の表面に一様な電位を与える。この帯電に際して、必要に応じて、高圧電源部30の出力端子から交番波形の高圧が出力される。
【0030】
各色成分Y、M、C、Kの露光装置81は、例えばポリゴンミラーなどによって感光体ドラム83の回転軸と平行に走査を行い、一様に帯電された対応する感光体ドラム83の表面上に画像データに基づいて像露光を行うことにより静電潜像を形成させる。
【0031】
各色成分Y、M、C、Kの現像装置82は、対応する色成分の小粒径のトナーと磁性体とからなる二成分現像剤を収容しており、トナーを感光体ドラム83の表面に搬送して、当該感光体ドラム83に担持された静電潜像をトナーにより顕像化する。この現像に際して、必要に応じて、高圧電源部30の出力端子から交番波形の高圧が出力される。
【0032】
各色成分Y、M、C、Kの一次転写ローラ86は、中間転写ベルトを感光体ドラム83に圧接し、対応する感光体ドラム83に形成された各色トナー像を順次重ねて中間転写ベルトに一次転写する。この一次転写に際して、必要に応じて、高圧電源部30の出力端子から交番波形の高圧が出力される。
【0033】
各色成分Y、M、C、Kのクリーニング装置85は、一次転写後に対応する感光体ドラム83上に残留した残留トナーを回収する。また、クリーニング装置85の感光体ドラム83の回転方向下流側には図示しない潤滑剤の塗布機構が隣接状態で設けられており、対応する感光体ドラム83の感光面に潤滑剤の塗布を行っている。
【0034】
中間転写ユニット87は、被転写体となる無端状の中間転写ベルト87aと支持ローラ87bと二次転写ローラ87cと中間転写クリーニング部87dなどを備え、複数の支持ローラ87bに中間転写ベルト87aが張架されて構成される。一次転写ローラ86Y、86M、86C、86Kによって各色トナー像が一次転写された中間転写ベルト87aが、二次転写ローラ87cによって用紙に圧接されると、用紙にトナー像が二次転写され、定着装置88に送られる。中間転写クリーニング部87dは、中間転写ベルト87aの表面に摺接されるベルトクリーニングブレード(BCLブレード)を有する。二次転写後に中間転写ベルト87aの表面に残存する転写残トナーは、BCLブレードによって掻き取られ、除去される。この二次転写に際して、必要に応じて、高圧電源部30の出力端子から交番波形の高圧が出力される。
【0035】
定着装置88は、熱源となる加熱ローラ88aと定着ローラ88bとこれらに掛け渡された定着ベルト88cと加圧ローラ88dなどを備え、定着ベルト88cを介して定着ローラ88bに加圧ローラ88dが圧接されており、当該圧接部がニップ部を構成している。そして、加熱ローラ88aで加熱された定着ベルト88cと各ローラとによりニップ部を通過する用紙を加熱加圧し、用紙に形成された未定着のトナー像を定着させる。
【0036】
次に、ツイン駆動装置における搬送ローラ71のツイン駆動について説明する。
図3は、ツイン駆動装置の構成を示す模式図である。ステッピングモータ制御部76によって制御されるステッピングモータ72(STPMと略記する。)とブラシレスモータ制御部77によって制御されるブラシレスモータ73(DCBLMと略記する。)とがギアなどを介して同一の駆動軸74a(回転軸)に接続され、駆動軸74aを回転運動させることにより、駆動軸74aに接続される搬送ローラ(図示せず)を回転させる。なお、
図3はツイン駆動装置の一例であり、ステッピングモータ72とブラシレスモータ73とを用いて同一の駆動軸74aを回転運動させることができる限りにおいて、各構成物の配置、ギアの構成や形状、ギア比などは適宜変更可能である。
【0037】
図4は、本実施例のツイン駆動を説明するブロック図である。CPU75のステッピングモータ制御部76は、ステッピングモータ72をオープンループ制御で駆動する。具体的には、ステッピングモータ制御部76は、ステッピングモータ72にクロック信号(CLK)及びイネーブル信号(ENABLE)などのパルス信号を送信することにより、ステッピングモータ72の回転速度及びトルクを制御する。
【0038】
また、CPU75のブラシレスモータ制御部77は、ブラシレスモータ73をPWM制御(特に、負荷トルクの変化によるモータの抵抗成分の変動の影響を受けにくいPWM電流制御)で駆動する。具体的には、ブラシレスモータ制御部77は、ブラシレスモータ73にPWM信号を送信することにより、ブラシレスモータ73の回転速度及びトルクを制御する。また、ブラシレスモータ制御部77は、電流検出部(図示せず)が検出した電流(シャント電流)及びエンコーダ73aから出力されるパルス信号に基づいてフィードバック制御を実行する。
【0039】
そして、CPU75は、ステッピングモータ制御部76から取得したステッピングモータ72を駆動するパルス信号(以下、ステッピングモータ72のパルスと略記する。)とブラシレスモータ制御部77から取得したエンコーダ73aから出力されるパルス信号(以下、エンコーダ73aのパルスと略記する。)とを比較して、ステッピングモータ72の角度ずれ量(ステッピングモータ72を駆動するパルス信号から推測される角度とエンコーダ73aから出力されるパルス信号に基づいて特定される角度とのずれ量)を算出する。以下、具体例を挙げて説明する。
【0040】
図5は、ステッピングモータ72のパルスの周波数がエンコーダ73aのパルスの周波数の整数倍(ここでは2倍)になる場合の例である。この場合は、エンコーダ73aのパルスの立ち上がりエッジと立ち下がりエッジで、ステッピングモータ72のパルスと比較することによって、ステッピングモータ72の角度ずれ量を算出する。
【0041】
例えば、ステッピングモータ72として、200パルスで1回転する(1ステップ当たりの回転角が1.8°の場合、フルステップモードでは1パルス当たりの回転角は1.8となり、1回転当たりのパルス数は360°/1.8°=200となる。)ものを選択し、エンコーダ73aとして、1回転で100パルスを出力するものを選択した場合、ステッピングモータ72のパルスの周波数がエンコーダ73aのパルスの周波数の2倍になるため、ステッピングモータ72のパルスの2個目毎の立ち上がりエッジ又は立ち下がりエッジと、エンコーダ73aの各パルスの立ち上がりエッジ又は立ち下がりエッジと、を比較して、ステッピングモータ72の角度ずれ量を算出する。
【0042】
図6は、ステッピングモータ72のパルスの周波数がエンコーダ73aのパルスの周波数の整数倍とならない場合の例である。この場合は、2つのパルスの最大公約数を求め、それぞれの最大公約数の倍数ごとに、パルスの立ち上がりエッジ又は立ち下がりエッジを比較して、ステッピングモータ72の角度ずれ量を算出する。
【0043】
例えば、ステッピングモータ72として、上記と同様に、200パルスで1回転する(1ステップ当たりの回転角が1.8°の場合、フルステップモードでは1パルス当たりの回転角は1.8となり、1回転当たりのパルス数は360°/1.8°=200となる。)ものを選択し、エンコーダ73aとして、1回転で80パルスを出力するものを選択した場合、ステッピングモータ72のパルスの周波数がエンコーダ73aのパルスの周波数の整数倍でない(2.5倍となる)ため、200と80の最大公約数(40)を求める。そして、200は40の5倍、80は40の2倍であることから、ステッピングモータ72のパルスの5個目毎の立ち上がりエッジ又は立ち下がりエッジと、エンコーダ73aのパルスの2個目毎の立ち上がりエッジ又は立ち下がりエッジと、を比較して、ステッピングモータ72の角度ずれ量を算出する。
【0044】
図7は、ステッピングモータ72とブラシレスモータ73とを駆動し、ブラシレスモータ73のアシストトルクを変化させたときの、ステッピングモータ72のパルスとエンコーダ73aのパルスの相対位相を示しており、ステッピングモータ72のパルスの位相とエンコーダ73aのパルスの位相とが所定の角度以上に変化した場合(角度ずれ量が所定の値以上になった時)に、変化する直前の位相を基準として角度ずれ量を算出する。
【0045】
例えば、起動時は、駆動軸74aのギアのバックラッシュが詰められて負荷が大きくなるため、ブラシレスモータ73のアシストトルクを増やして駆動軸74aを回転させる。その際、ブラシレスモータ73のトルクが負荷トルクに等しくなった時の、エンコーダ73aのパルスとステッピングモータ72のパルスの位相差を0°基準にして、エンコーダ73aのパルスを検出し、ステッピングモータ72のパルスと比較して、ステッピングモータ72の角度ずれ量を算出する。
【0046】
なお、ツイン駆動機構を組み立てるときに、治具を使用して、ステッピングモータ72を励磁し、駆動軸74aのギアのバックラッシュを詰めて、エンコーダ73aのパルスとステッピングモータ72のパルスとの位相差が予め定めた特定の角度になるように調整することが好ましい。
【0047】
図8は、ステッピングモータ72とブラシレスモータ73の速度とステッピングモータ72の角度ずれ量との関係を示している。ステッピングモータ72の角度ずれ量が予め定めた一定値を超えた場合に、ブラシレスモータ73の出力を変化させる。例えば、
図8の上側に示すように、エンコーダ73aのパルスが遅れた(ブラシレスモータ73の速度がステッピングモータ72の速度よりも小さい)時は、ブラシレスモータ73の出力を増やし、
図8の下側に示すように、エンコーダ73aのパルスが進んだ(ブラシレスモータ73の速度がステッピングモータ72の速度よりも大きい)時は、ブラシレスモータ73の出力を減らすなど、ステッピングモータ72の角度ずれ量に応じて、ブラシレスモータ73の出力を変化させる。
【0048】
具体的には、突発的に負荷がかかったとき、エンコーダ73aのパルスの位相がステッピングモータ72の位相よりも遅れる(プラス位相)。一方、実負荷が低減したとき、エンコーダ73aのパルスの位相がステッピングモータ72のパルスの位相より進む(マイナス位相)。この角度のずれ量(±)により、ブラシレスモータ73を駆動する電流のPWM Dutyを、例えば、下記の表1のように変化させる。
【0049】
【0050】
また、ステッピングモータ72の角度ずれ量が予め定めた限定値を超えた場合は、ブラシレスモータ73を駆動する電流を増やさない(出力を変化させない)ようにする。例えば、ステッピングモータ72の角度ずれ量がフルステップモードで90°を超えると、脱調になるため、角度ずれ量が±45°になったら、ブラシレスモータ73の電流を増やさないようにする。
【0051】
以下、本実施例のツイン駆動装置の動作について、
図9及び
図10のフローチャート図を参照して説明する。
【0052】
図9に示すように、画像形成装置10の電源がONにされ(S101)、制御部20から軸回転指令が出されたら(S102のYes)、CPU75(ステッピングモータ制御部76)は、クロック信号及びイネーブル信号を送信してステッピングモータ72を起動し、CPU75(ブラシレスモータ制御部77)は、PWM信号を送信してブラシレスモータ73を起動する(S103)。
【0053】
次に、CPU75は、
図7に示すように、ブラシレスモータ73のアシストトルクを増やして位相合わせを行う(S104)。そして、CPU75は、エンコーダ73aのパルスを検出すると(S105)、ステッピングモータ72のパルスとエンコーダ73aのパルスとを比較して、ステッピングモータ72の角度ずれ量を算出する(S106)。
【0054】
次に、CPU75は、ステッピングモータ72の角度ずれ量が予め定めた一定値を超えたかを判断し(S107)、ステッピングモータ72の角度ずれ量が一定値を超えていない場合は(S107のNo)、S113に遷移し、ステッピングモータ72の角度ずれ量が一定値を超えた場合は(S107のYes)、ステッピングモータ72の角度ずれ量が予め定めた限界値を超えたかを判断する(S108)。
【0055】
ステッピングモータ72の角度ずれ量が限界値を超えた場合は(S108のYes)、CPU75は、ステッピングモータ72が脱調したと判断し(S109)、CPU75(ブラシレスモータ制御部77)は、ブラシレスモータ73を停止させる(S110)。一方、ステッピングモータ72の角度ずれ量が限界値を超えていない場合は(S108のNo)、CPU75(ブラシレスモータ制御部77)は、
図8及び表1に示すように、ブラシレスモータ73を制御する(S111)。
【0056】
図10は、このステップの詳細を示しており、CPU75(ブラシレスモータ制御部77)は、表1などを参照して、ステッピングモータ72の角度ずれ量からブラシレスモータ73の電流アップ分を算出し(S201)、ブラシレスモータ73の目標電流を修正する(S202)。具体的には、シャント電流によるFB後電流値+STPM角度ずれ量補正値に修正する。そして、CPU75(ブラシレスモータ制御部77)は、ブラシレスモータ73の電流のPWM Dutyを修正し、アシストトルクをアップさせる(S203)。
【0057】
図9に戻って、S111のブラシレスモータ73の制御により、ブラシレスモータ73の出力が変化し、ステッピングモータ72を正常に回転させることができ、駆動軸74aを正常に回転させることができる(S112)。その後、若しくは、ステッピングモータ72の角度ずれ量が一定値を超えていない場合は(S107のNo)、制御部20から軸停止指令が出されたかを判断し(S113)、軸停止指令が出されていなければ(S113のNo)、S105に戻って同様の処理を繰り返し、軸停止指令が出されたら(S113のYes)、CPU75(ステッピングモータ制御部76)はステッピングモータ72を停止させ、CPU75(ブラシレスモータ制御部77)はブラシレスモータ73を停止させる(S114)。
【0058】
以上説明したように、ステッピングモータ72とブラシレスモータ73とを用いて同一の負荷を回転運動させる機構において、ステッピングモータ72のパルス信号と、ブラシレスモータ73に設けたエンコーダ73a(又は、駆動機構74に設けたエンコーダ74b)のパルス信号とを比較することにより、ステッピングモータ72の角度ずれ量を算出し、ステッピングモータ72の角度ずれ量に応じてブラシレスモータ73の出力を増減させる(例えば、突発的なトルク変動によりステッピングモータ72の角度ずれ量が大きくなった場合に、ブラシレスモータ73の出力をアップしてアシスト量を増やす)ことにより、ステッピングモータ72の脱調を防ぐことができる。
【0059】
なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて、その構成や制御は適宜変更可能である。
【0060】
例えば、上記実施例では、画像形成装置10に対して、本発明のモータ制御方法を適用する場合について記載したが、駆動機構を備える任意の装置に対して、本発明のモータ制御方法を同様に適用することができる。
【産業上の利用可能性】
【0061】
本発明は、ステッピングモータとブラシレスモータとを用いて同一の負荷を回転運動させるツイン駆動装置及び当該ツイン駆動装置におけるモータ制御方法に利用可能である。
【符号の説明】
【0062】
10 画像形成装置
20 制御部
21 CPU
22 ROM
23 RAM
24 記憶部
25 ネットワークI/F部
30 高圧電源部
40 表示操作部
50 画像読取部
51 自動原稿給紙装置
52 原稿画像走査装置
60 画像処理部
70 搬送部
71 搬送ローラ
72 ステッピングモータ
73 ブラシレスモータ
73a エンコーダ
74 駆動機構
74a 駆動軸
74b エンコーダ
75 CPU
76 ステッピングモータ制御部
77 ブラシレスモータ制御部
80 画像形成部
81、81Y、81M、81C、81K 露光装置
82、82Y、82M、82C、82K 現像装置
83、83Y、83M、83C、83K 感光体ドラム
84、84Y、84M、84C、84K 帯電装置
85、85Y、85M、85C、85K クリーニング装置
86、86Y、86M、86C、86K 一次転写ローラ
87 中間転写ユニット
87a 中間転写ベルト
87b 支持ローラ
87c 二次転写ローラ
87d 中間転写クリーニング部
88 定着装置
88a 加熱ローラ
88b 定着ローラ
88c 定着ベルト
88d 加圧ローラ