(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-12-05
(45)【発行日】2022-12-13
(54)【発明の名称】金属-繊維強化樹脂材料複合体、金属-繊維強化樹脂複合ユニット、金属-繊維強化樹脂材料複合体の製造方法、及び自動車部品
(51)【国際特許分類】
B32B 15/08 20060101AFI20221206BHJP
B32B 3/04 20060101ALI20221206BHJP
F16B 5/02 20060101ALI20221206BHJP
F16B 5/04 20060101ALI20221206BHJP
F16B 11/00 20060101ALI20221206BHJP
【FI】
B32B15/08 105Z
B32B3/04
F16B5/02 E
F16B5/04 A
F16B11/00 D
(21)【出願番号】P 2021551632
(86)(22)【出願日】2020-10-02
(86)【国際出願番号】 JP2020037662
(87)【国際公開番号】W WO2021066183
(87)【国際公開日】2021-04-08
【審査請求日】2021-11-15
(31)【優先権主張番号】P 2019183475
(32)【優先日】2019-10-04
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000006655
【氏名又は名称】日本製鉄株式会社
(74)【代理人】
【識別番号】100099759
【氏名又は名称】青木 篤
(74)【代理人】
【識別番号】100123582
【氏名又は名称】三橋 真二
(74)【代理人】
【識別番号】100187702
【氏名又は名称】福地 律生
(74)【代理人】
【識別番号】100162204
【氏名又は名称】齋藤 学
(74)【代理人】
【識別番号】100195213
【氏名又は名称】木村 健治
(72)【発明者】
【氏名】茨木 雅晴
(72)【発明者】
【氏名】禰宜 教之
【審査官】市村 脩平
(56)【参考文献】
【文献】特開2013-159019(JP,A)
【文献】特開2007-196545(JP,A)
【文献】特開2010-255178(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B32B1/00-43/00
F16B5/00-5/12
9/00-11/00
(57)【特許請求の範囲】
【請求項1】
第1の金属部材と、
第2の金属部材と、
前記第1の金属部材と前記第2の金属部材との間に挟まれた繊維強化樹脂材料とを有し、
前記繊維強化樹脂材料は、前記第1の金属部材と前記第2の金属部材の重なった部分の少なくとも一部に配置され、
前記第1の金属部材または第2の金属部材の少なくとも一方と前記繊維強化樹脂材料との間が
全面的に接合されていない、金属-繊維強化樹脂複合体。
【請求項2】
前記繊維強化樹脂材料と、前記接合されていない第1の金属部材または第2の金属部材との間のせん断剥離強度が1N/mm
2以下、及び180°引き剥がし粘着力が5N/10mm以下である、請求項1に記載の金属-繊維強化樹脂複合体。
【請求項3】
前記第1の金属部材または前記第2の金属部材の少なくとも一方と前記繊維強化樹脂材料との間に中間部材を備え、前記中間部材を介して前記繊維強化樹脂材料が前記第1の金属部材と第2の金属部材との間に挟まれる、請求項1または2に記載の金属-繊維強化樹脂複合体。
【請求項4】
前記中間部材が金属材料、ゴム材料、発泡材料及び板バネから選択される1つまたは2つ以上からなる、請求項3に記載の金属-繊維強化樹脂複合体。
【請求項5】
前記第1の金属部材及び前記第2の金属部材が鋼材である、請求項1~4のいずれか1
項に記載の金属-繊維強化樹脂複合体。
【請求項6】
前記第1の金属部材と前記第2の金属部材とが、前記繊維強化樹脂材料が配置されていない部分で接合されている、請求項1~5のいずれか1
項に記載の金属-繊維強化樹脂複合体。
【請求項7】
前記第1の金属部材と前記第2の金属部材との接合が、機械締結、もしくは溶接、またはこれらの組み合わせである、請求項6に記載の金属-繊維強化樹脂複合体。
【請求項8】
請求項1~7のいずれか1
項に記載の金属-繊維強化樹脂複合体を有する自動車用部品。
【請求項9】
前記第1の金属部材及び前記第2の金属部材の少なくとも1つが自動車のインナーまたはレインフォースである、請求項8に記載の自動車部品。
【請求項10】
請求項1~7のいずれか1
項に記載の金属-繊維強化樹脂複合体に用いる金属-繊維強化樹脂複合ユニットであって、
第1の金属部材と、
前記第1の金属部材の少なくとも片側に配置された繊維強化樹脂材料を有する、金属-繊維強化樹脂複合ユニット。
【請求項11】
前記第1の金属部材と前記繊維強化樹脂材料との間に、発泡材料、金属材料、ゴム材料及び板バネから選択される少なくとも1つの中間部材を有し、
前記中間部材は、前記第1の金属部材の表面内の少なくとも一部に配置される、請求項10に記載の金属-繊維強化樹脂複合ユニット。
【請求項12】
前記第1の金属部材が自動車部品におけるインナーもしくはレインフォースである、請求項10または11に記載の金属-繊維強化樹脂複合ユニット。
【請求項13】
前記第1の金属部材が鋼材である、請求項10~12のいずれか1項に記載の金属-繊維強化樹脂複合ユニット。
【請求項14】
請求項1~7のいずれか1項に記載の金属-繊維強化樹脂複合体の製造方法であって、
第1の金属部材の表面上に繊維強化樹脂材料を配置して金属-繊維強化樹脂複合ユニットを形成する複合ユニット形成工程、及び
前記金属-繊維強化樹脂複合ユニットの前記繊維強化樹脂材料を、第2の金属部材の表面内に配置するように押し付けて金属-繊維強化樹脂複合体を形成する複合化工程を含む金属-繊維強化樹脂複合体の製造方法。
【請求項15】
前記複合ユニット形成工程が、前記第1の金属部材の表面上に、発泡材料、金属材料、ゴム材料及び板バネから選択される少なくとも1つからなる中間部材を配置し、その上に前記繊維強化樹脂材料を配置する、請求項14に記載の金属-繊維強化樹脂複合体の製造方法。
【請求項16】
前記複合化工程が、前記第2の金属部材と前記金属-繊維強化樹脂複合ユニットの間に発泡材料、金属材料、ゴム材料及び板バネから選択される少なくとも1つからなる中間部材を配置してから、前記金属-繊維強化樹脂複合ユニットを前記第2の金属に対し押し付けることを含む、請求項14または15に記載の金属-繊維強化樹脂複合体の製造方法。
【請求項17】
前記中間部材が発泡材料である、請求項14~16のいずれか1項に記載の金属-繊維強化樹脂複合体の製造方法。
【請求項18】
前記第1の金属部材及び前記第2の金属部材が鋼材である、請求項14~17のいずれか1項に記載の金属-繊維強化樹脂複合体の製造方法。
【請求項19】
前記複合化工程が、前記第1の金属部材と前記第2の金属部材とを、機械締結、接着もしくは溶接、またはこれらの組み合わせから選択される方法で接合することを含む、請求項14~18のいずれか1
項に記載の金属-繊維強化樹脂複合体の製造方法。
【請求項20】
前記複合化工程が、前記金属-繊維強化樹脂複合ユニットを前記第2の金属に対し押し付けた後、前記第1の金属部材と前記第2の金属部材とを、接合することを含む、請求項19に記載の金属-繊維強化樹脂複合体の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、金属-繊維強化樹脂材料複合体、金属-繊維強化樹脂複合ユニット、金属-繊維強化樹脂材料複合体の製造方法、及び自動車部品に関する。
【背景技術】
【0002】
熱可塑性樹脂等をマトリクス樹脂として炭素繊維等の繊維材料で強化された繊維強化樹脂材料(FRP:Fiber Reinforced Plastics)は、軽量であり、引張強度等の力学特性に優れるため、民生分野から産業用途まで広く利用されている。一方、FRPは加工性が制限されることと、価格などの経済的理由から、従来の金属材料を代替するものにはなっていない。特に、自動車は高強度化や軽量化が求められている反面、複雑形状の部品が多く、その加工性や、経済性が求められており、自動車用部材へのFRPの適用は限界がある。及びそこで、従来の金属部材とFRPのいいところを組合せて複合した金属-繊維強化樹脂材料複合体(金属-FRP複合体)の適用が検討されている。
【0003】
金属部材とFRPとを複合化する方法としては、金属部材とFRP間に接着樹脂層を設けることが知られている(例えば、特許文献1~4)。また、その他の方法としては、金属部材とFRPとを、ボルトやリベットで機械締結する方法が知られている。
【先行技術文献】
【特許文献】
【0004】
【文献】国際公開第2018/124215号
【文献】特開2019-119212号公報
【文献】特開2019-119213号公報
【文献】特開2013-159019号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
金属部材とFRPを複合化する場合、金属部材とFRPの熱膨張差により生じる内部応力(熱応力)が問題となる。即ち、鋼材等の金属部材と、熱可塑性樹脂等の樹脂を主成分とするFRPとでは、線膨張係数が大きく異なる。したがって、接着や機械締結により金属部材とFRPが強固に接合された金属-FRP複合体(以下、本明細書において単に「複合体」という場合がある。)は、温度が上昇した場合、両部材間の熱膨張係数のミスフィットによる内部応力が発生する。内部応力が発生すると、複合体に大きな熱歪みが生じる。接着により接合された複合体の場合は、この熱歪みの発生により接着層が破壊しFRPが金属部材から剥離するおそれがある。機械締結により複合化した場合は、FRPに大きな引張応力が発生しFRPが破断するおそれがある。そうすると、金属-FRP複合体として設計通りの特性が担保できないだけでなく、金属部材の表面に凹凸やしわ等の外観不良(面ひずみ(面歪))が発生し、問題となる。この問題は材料の両端で部分的に金属部材とFRPとを接合する場合においても同様である。
【0006】
他方で、部品を金属部材のみ、あるいはFRPのみで構成した場合、当該部品には温度変化による内部応力は発生しないが、軽量化及び高強度化の両立や加工性という観点において、金属-FRP複合体に比べて劣る。また、炭素繊維は非常に高価なため、炭素繊維を用いたFRP(CFRP:Carbon Fiber Reinforced Plastics)のみで部品を製造した場合、当該部品は非常に高価なものとなるため、例えば一般量産自動車のコストレンジに入らなくなり現実的ではない。CFRPよりも安価な金属を用いた金属-FRP複合体で部品を製造することで、これを改善することができる。
【0007】
本発明は、このような問題に鑑みてなされたものであり、金属-繊維強化樹脂材料複合体(金属-FRP複合体)において、複合体としての力学特性を担保しつつ、内部応力(熱応力)を緩和して複合体の外観不良(面ひずみ)の発生を抑制することを課題とする。そして、そのような金属-繊維強化樹脂材料複合体、金属-繊維強化樹脂複合ユニット、金属-繊維強化樹脂材料複合体の製造方法、及び、そのような複合体を有する自動車部品を提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明者らは、金属-繊維強化樹脂材料複合体(金属-FRP複合体)において、金属部材とFRPとの間の内部応力(熱応力)を抑制するために、金属部材とFRPとが互いに拘束されていない状態で複合化することが有効であると考えた。そのために、金属部材にFRPを接着または機械締結などで接合するのではなく、ただ押し付けて疑似的な複合状態にすることを見出した。即ち、金属部材にFRPを強固に接合するのではなく、ただ押し付けて疑似的な複合状態にすることで、外部応力に対しては従来の金属-FRP複合体と同様に機能するが、温度上昇により熱膨張が生じた際でも金属-FRP界面で相互拘束されていないため、内部応力(熱応力)が緩和された状態になることを見出した。その結果、複合体の外観不良(面ひずみ)の発生を抑制できることを見出して、本発明を成すに至った。
【0009】
本発明は、上記知見を基になされたものであり、その主旨は以下のとおりである。
[1]
第1の金属部材と、
第2の金属部材と、
前記第1の金属部材と前記第2の金属部材との間に挟まれた繊維強化樹脂材料とを有し、前記繊維強化樹脂材料は、前記第1の金属部材と前記第2の金属部材の重なった部分の少なくとも一部に配置され、
前記第1の金属部材または第2の金属部材の少なくとも一方と前記繊維強化樹脂材料との間が全面的に接合されていない、金属-繊維強化樹脂複合体。
[2]
前記繊維強化樹脂材料と、前記接合されていない第1の金属部材または第2の金属部材との間のせん断剥離強度が1N/mm2以下、及び180°引き剥がし粘着力が5N/10mm以下である、[1]に記載の金属-繊維強化樹脂複合体。
[3]
前記第1の金属部材または前記第2の金属部材の少なくとも一方と前記繊維強化樹脂材料との間に中間部材を備え、前記中間部材を介して前記繊維強化樹脂材料が前記第1の金属部材と第2の金属部材との間に挟まれる、[1]または[2]に記載の金属-繊維強化樹脂複合体。
[4]
前記中間部材が金属材料、ゴム材料、発泡材料及び板バネから選択される1つまたは2つ以上からなる、[3]に記載の金属-繊維強化樹脂複合体。
[5]
前記第1の金属部材及び前記第2の金属部材が鋼材である、[1]~[4]のいずれか1つに記載の金属-繊維強化樹脂複合体。
[6]
前記第1の金属部材と前記第2の金属部材とが、前記繊維強化樹脂材料が配置されていない部分で接合されている、[1]~[5]のいずれか1つに記載の金属-繊維強化樹脂複合体。
[7]
前記第1の金属部材と前記第2の金属部材との接合が、機械締結、もしくは溶接、またはこれらの組み合わせである、[6]に記載の金属-繊維強化樹脂複合体。
[8]
上記[1]~[7]のいずれか1つに記載の金属-繊維強化樹脂複合体を有する自動車用部品。
[9]
前記第1の金属部材及び前記第2の金属部材の少なくとも1つが自動車のインナーまたはレインフォースである、[8]に記載の自動車部品。
ここで、インナーとは自動車の内部にある部品であり、レインフォースとは補強部品のことである。ともに自動車の外面に面しない部品である。
[10]
前記[1]~[7]のいずれか1つに記載の金属-繊維強化樹脂複合体に用いる金属-繊維強化樹脂複合ユニットであって、
第1の金属部材と、
前記第1の金属部材の少なくとも片側に配置された繊維強化樹脂材料を有する、金属-繊維強化樹脂複合ユニット。
[11]
前記第1の金属部材と前記繊維強化樹脂材料との間に、発泡材料、金属材料、ゴム材料及び板バネから選択される少なくとも1つの中間部材を有し、
前記中間部材は、前記第1の金属部材の表面内の少なくとも一部に配置される、[10]に記載の金属-繊維強化樹脂複合ユニット。
[12]
前記第1の金属部材が自動車部品におけるインナーもしくはレインフォースである、[10]または[11]に記載の金属-繊維強化樹脂複合ユニット。
[13]
前記第1の金属部材が鋼材である、[10]~[12]のいずれか1つに記載の金属-繊維強化樹脂複合ユニット。
[14]
[1]~[7]のいずれか1つに記載の金属-繊維強化樹脂複合体の製造方法であって、
第1の金属部材の表面上に繊維強化樹脂材料を配置して金属-繊維強化樹脂複合ユニットを形成する複合ユニット形成工程、及び
前記金属-繊維強化樹脂複合ユニットの前記繊維強化樹脂材料を、第2の金属部材の表面内に配置するように押し付けて金属-繊維強化樹脂複合体を形成する複合化工程を含み、前記第1の金属部材または第2の金属部材の少なくとも一方と前記繊維強化樹脂材料との間を接合しない金属-繊維強化樹脂複合体の製造方法。
[15]
前記複合ユニット形成工程が、前記第1の金属部材の表面上に、発泡材料、金属材料、ゴム材料及び板バネから選択される少なくとも1つからなる中間部材を配置し、その上に前記繊維強化樹脂材料を配置する、[14]に記載の金属-繊維強化樹脂複合体の製造方法。
[16]
前記複合化工程が、前記第2の金属部材と前記金属-繊維強化樹脂複合ユニットの間に発泡材料、金属材料、ゴム材料及び板バネから選択される少なくとも1つからなる中間部材を配置してから、前記金属-繊維強化樹脂複合ユニットを前記第2の金属に対し押し付けることを含む、[14]または[15]に記載の金属-繊維強化樹脂複合体の製造方法。
[17]
前記中間部材が発泡材料である、[14]~[16]のいずれか1つに記載の金属-繊維強化樹脂複合体の製造方法。
[18]
前記第1の金属部材及び前記第2の金属部材が鋼材である、[14]~[17]のいずれか1つに記載の金属-繊維強化樹脂複合体の製造方法。
[19]
前記複合化工程が、前記第1の金属部材と前記第2の金属部材とを、機械締結、接着もしくは溶接、またはこれらの組み合わせから選択される方法で接合することを含む、[14]~[18]のいずれか1つに記載の金属-繊維強化樹脂複合体の製造方法。
[20]
前記複合化工程が、前記金属-繊維強化樹脂複合ユニットを前記第2の金属に対し押し付けた後、前記第1の金属部材と前記第2の金属部材とを、接合することを含む、[19]に記載の金属-繊維強化樹脂複合体の製造方法。
【発明の効果】
【0010】
本発明によれば、外部応力に対しFRPと金属部材が接着または機械締結された複合体と同等程度の力学特性(強度、剛性等)を得つつ、金属部材と繊維強化樹脂材料との線膨張係数の差異による内部応力の発生を抑制することができる。また、本発明によれば、金属部材と繊維強化樹脂材料との間に接着樹脂層を設ける必要がないため、工程コスト(例えば、塗布、加熱硬化、養生工程等に関するコスト)の増加を抑制し、さらに既存の製造ライン、特に、自動車用部材の製造ラインに適用することができる。
【図面の簡単な説明】
【0011】
【
図1】本発明に係る例示の複合体(中間部材なし)の断面を示す概要図である。
図1(a)はハット型断面の部品に適用した例を、
図1(b)は平板状の部品に適用した例の概要図である。
【
図2】本発明に係る例示の複合体(中間部材:発泡材料)の断面を示す概要図である。
【
図3】本発明に係る例示の複合体(中間部材:金属材料)の断面を示す概要図である。
【
図4】本発明に係る例示の複合体(中間部材:板バネ材料)の断面を示す概要図である。
【
図5】本発明におけるせん断剥離強度の測定の概要図である。
【
図6】本発明における180°引き剥がし粘着力の測定の概要図である。
【
図7】実施例で使用した試料及び3点曲げ試験の概要図である。
【
図8】実施例における代表的な例のストローク-曲げ荷重の関係を示す図である。
【
図9】本発明に係る異なる例示の複合体の断面の概要図を示す。
図9(a)は中間部材がない場合の、
図9(b)は発泡材料の中間部材を備えた場合の、
図9(c)は金属材料の中間部材を備えた場合の、それぞれの断面を示す概要図である。
【
図10】従来の金属-FRP複合体の一例の断面を示す概要図である。
【発明を実施するための形態】
【0012】
[従来の金属-FRP複合体]
従来の金属-FRP複合体は、金属部材とFRP間に樹脂による接着層を設け、両部材を複合化している。
図10に従来の金属-FRP複合体の一例を示す。2つの金属部材101,102の間にFRP103が接着層106を介して配置されている。FRP103は接着層106により、強固に金属部材101,102と接着せれている。当該接着層106の接着強度の改善や、機能の付与等の目的で様々な開発が行われている。また図示はしていないが、金属部材101,102とFRP103とをボルトやリベット等により機械締結する方法もある。これらの複合化の方法は、複合体の用途または要求される機能等に応じて適宜選択される。
【0013】
しかし、例えば自動車用部材(例えばピラーもしくはサイドシル等の骨格部材、またはルーフ、ボンネットもしくはドア等の外板部材)に従来の複合体を使用した場合、当該複合体の温度が上昇すると、金属部材及びFRPの線膨張係数のミスフィットによる内部応力(熱応力)が発生する。内部応力の発生により、接着層やFRP自体に大きな力が発生し、接着層が破壊し金属部材からFRPが剥離するか、またはFRPに細かい破断や亀裂が発生することがある。そのような場合、複合体としての力学特性が得られない(例えば、強度低下、剛性低下)だけでなく、複合体の外観に凹凸やしわ(これらを総括して面ひずみという。)が容易に生じる。また、複合体の力学的特性が得られないと鋼材を補強することができず、小径の固形物(例えば小石)の衝突により複合体の表面に凹部が生じやすくなる(耐デント性が低下する)。特に、自動車用部材は優れた外観性も要求されるため、このような外観上の問題は看過できない。この内部応力の発生に起因する複合体が有する問題は、接着及び機械締結のいずれの場合においても、金属部材とFRPとが水平方向(積層方向と垂直な方向。即ち、金属部材とFRPの界面の面内方向)に強固に拘束されているために起こるものである。
【0014】
また、複合体を形成するための接着層においては、通常、複合体としての形態を維持するために強力かつ耐久性の高い接着剤が必要となるので、コスト増加の原因となる。場合によっては十分な密着性を担保する接着剤が存在しない可能性すらある。また、接着剤は、一般的に、塗布工程、加熱硬化工程及び/または養生工程などを要するため、工程上の時間もコストも増大することが懸念される。さらに、そのため接着剤の導入は、既存の製造ライン(例えば自動車用部材の製造ライン)に適用することが困難な場合がある。
【0015】
[本発明に係る金属-FRP複合体]
本発明に係る金属-FRP複合体は、2つの金属部材(第1の金属部材と第2の金属部材)のうち少なくとも一方とFRPを接合することなく、2つの金属部材の間にFRPを挟むことにより構成される。これによりFRPが接合されていない金属部材とFRPの界面面内方向の拘束をなくすことができるので、金属とFRP間に生じる内部応力を緩和し、一方で外部応力に対しては複合体としての機能を発揮することができる。
【0016】
FRPは2つの金属部材が重なった部分の少なくとも一部に配置される。2つの金属部材が重なった部分とは、一方の金属部材表面の垂直上方から見た時に、2つの金属部材が重なって投影される部分(以下、「重なった部分」という場合がある。)を指す。FRPは、この重なった部分の全部と重なるように配置してもよい。しかし、後で説明するように、2つの金属部材同士を接合する場合、FRPが配置されていないところで接合することが好ましい。このため、2つの金属部材が重なった部分は、FRPが配置されていない部分が存在する方が好ましい。
【0017】
本発明に係る金属-FRP複合体は、FRPと金属部材の間は接合(接着、溶接、機械締結など総称して接合という。)されないことが特徴である。つまり、FRPと金属部材の界面には接着層などは存在しない。FRPは、2つの金属部材の間に挟まれることにより、金属部材に押し付けられ、金属部材に接触することになる。この時、FRPと金属部材との間には、界面に垂直方向に押し付け力が作用することになる。このことにより、FRPは、金属部材から拘束されることはないないが、疑似的な複合状態を確保することができる。
【0018】
このような構成にすることで、たとえ温度が上昇した場合であっても、金属部材とFRPとが水平方向(積層方向と垂直な方向。金属部材とFRPの界面の面内方向。)に互いに自由に動けるため、内部応力が緩和される。一方、当該複合体では、FRPが金属部材に押し付けられることで疑似的に金属-FRPの複合化状態が得られるため、金属部材がFRPにより補強・補剛され、従来の複合体同等程度の力学特性を有することができる。
【0019】
詳しいことは解明されていないが、FRPが金属部材に押し付けられることによりFRPと金属部材間の密接面の摩擦力が働く。このため、外部応力に対しては、両金属部材とFRPが一体的になって力が作用するものと考えられる。一方、内部応力(熱応力)に対しては、金属部材とFRP間とが水平方向に互いに自由に動けるため、摩擦限度を超えると界面でスリップし、内部応力が緩和されると考えられる。
【0020】
一方の金属部材とFRPを接合しない場合、補強・補剛(以下、これらを合わせて補強という。)したい金属部材をFRPと接合しないようにするとよい。補強したい金属部材とFRP間の拘束がなくなるので、金属-FRP複合体の内部応力が緩和されつつ、外部応力には複合体としての効果が期待できるからである。FRPに対してどちらの金属部材を非接合接触させるかは、金属部材ごとに熱や力の条件を考慮して適宜選択するとよい。特に、FRPと接合しない金属部材は内部応力が抑制されるため面ひずみが生じにくい。そのため、例えば自動車の外板(外側に面した部材)をFRPと接合しない金属部材にするとよい。
【0021】
2つの金属部材ともFRPと接合しなくてもよい。金属-FRP複合体は一つの部品として同一温度環境下に置かれる場合が多いので、両金属部材ともにFRPとの間で内部応力が発生する場合が多いからである。この場合、製造中の取り扱いを容易にするため、製造中に剥離しない程度にFRPをどちらかの金属部材と軽度に接合して固定してもよい。
【0022】
ここで、金属部材とFRPが接合されていないということは、例えば、FRPと金属部材の間のせん断剥離強度が1N/mm2以下、及び180°引き剥がし粘着力が5N/10mm以下であるとよい。
【0023】
両金属部材は、一方の金属部材表面の垂直上方から見た時にFRPが配置されていない領域で接合されていることが好ましい。両金属部材同士が接合されることにより、FRPと金属部材間に作用する押し付け力を維持することができるからである。一方、両金属部材の間にFRPが配置されている領域で両金属部材を接合すると、FRPが両金属部材に接合されてしまう。このためFRPが両金属部材に拘束されてしまい、金属-FRP複合体の内部応力を緩和することができない。そのため、一方の金属部材表面の垂直上方から見た時に両金属部材が重なった部分であって、かつ、FRPが配置されていない領域で両金属部材を接合するとよい。接合方法は、機械締結(リベット、ボルトナットなど)や溶接(アーク溶接、スポット溶接、レーザー溶接など)を適宜選択可能であり、その方法は限定されない。
【0024】
本発明に係る金属-FRP複合体は、例えば第1の金属部材上にFRPを配置し、第2の金属部材に押し付けるようにして複合化(両金属部材でFRPを挟み固定)すれば得られるため、製造工程が非常に単純であり、製造コストを大きく低減でき、なおかつ既存の製造ラインを適用することができる。
【0025】
以下、図を基に説明する。 説明の便宜上補強したい金属部材を第2の金属部材とし、第2の金属部材とFRPは接合されない場合を例として説明する。
図1は、本発明に係る複合体100の一例を示し、
図1(a)はハット型断面の部品に適用した一例を、
図1(b)は平板状の部品に適用した例を示している。
図1(以下、図(a)(b)の両方を指す場合、単に
図1という。)とも、複合体100は、第1の金属部材101と、第2の金属部材102と、それらの間に挟まれたFRP103とを備える。
【0026】
図1に示すように第1の金属部材101と第2の金属部材102は一方の金属部材表面の垂直上方から見た時に重なっており、その重なった部分の少なくとも一部にFRP103を挟んだ構造となっている。FRP103は両金属部材(第1の金属部材101と第2の金属部材102)の間に挟まっているだけであり、接合(接着等)はされていない。FRP103は第1の金属部材101と第2の金属部材102との間に挟まれることにより、両方の金属部材101、102に押し付けられた状態になっている。このことにより、FRP103は、第1の金属部材101と第2の金属部材102から拘束されることはないないが、第1の金属部材101と第2の金属部材102に押し付けられたことにより疑似的な複合状態になっている。
【0027】
図1は、第1の金属部材101と第2の金属部材102が、固定部材104(例えばボルトまたはリベットなどの機械締結手段)により接合している複合体を示す。第1の金属部材101と第2の金属部材102を接合することにより、複合体の構造を維持することができる。
図1に示す接合方法は一例であって、本実施形態における接合方法は特に限定されない。このため、固定部材104は、機械締結だけでなく、接着または溶接であってもよい。ただし、工程コスト及び既存の製造ライン(特に、自動車用部品の製造ライン)への適用性の観点から、機械締結、溶接またはこれらの組み合わせが好ましい。
【0028】
図示はしていないが、他の接合方法として、第1の金属部材101に対し、FRP103の方向に向けて別の部材により外力を加えることで、FRP103を第2の金属部材102に押し付けることができる。すなわち、第一の金属部材101上にFRP103が配置され、FRP103上に第二の金属部材102が配置されており、図示しない部材により、第一の金属部材101を下方より上方に向けて圧力を加えることにで、その圧力は第一の金属部材101とFRP103を介して第二の金属部材102に加えられる。これにより、FRP103は第二の金属部材102の下面に押し付けられ、第1と第2の金属部材の間に挟まれる。例えば、
図1(b)に示す平板状の複合体をプレス加工して、
図1(a)のようなハット型断面にすることができる。
【0029】
図1における複合体100において、第2の金属部材102とFRP103とは、ある押し付け荷重の下で接触してはいるものの、両部材間は接合されておらず互いに拘束されていない。これにより、複合体100は、金属-FRP複合体としての力学特性(強度、剛性等)を得つつ、内部応力の発生を抑制することができる。
【0030】
図2~4も、片方の金属部材(図では第1の金属部材101)とFRP103の間に中間部材105を備えた態様の一例を示している。中間部材105を介して、FRP103が第1の金属部材101と第2の金属部材102の間に挟まれている。本実施形態における中間部材105は、一方の金属部材(第1の金属部材101または第2の金属部材102)とFRP103の間に積層されている。中間部材105は積層方向(金属部材表面に対して垂直な方向)に圧縮されることにより力(復元力)を発生させ、FRP103を金属部材(第1の金属部材101、第2の金属部材102)に押し付けることができるものである。このような機能を有していれば、中間部材105の形状や材料は特に限定されない。中間部材105としては一例として、金属材料、ゴム材料、発泡材料及び板バネなどを適用することができる。
【0031】
発泡材料とは、細かい孔もしくは空隙が多数空いている材料のことを指し、発泡材料の種類としては、圧縮した際に反発(復元)するような材料であれば特に限定されない。発泡材料は具体的には例えば、低反発ウレタン材、発泡ウレタン材、発泡EVA材、ウレタンフォーム、エチレンプロピレンゴム等が挙げられる。
発泡材料の発泡倍率は、第2の金属部材102に対するFRP103の押し付け荷重と関係しているため、発泡倍率は用途に応じて選択することができる。通常、押し付け荷重が高いほど良好な複合化状態を形成できるため、強い弾性力を発揮できるように発泡倍率が小さい方が好ましい。
【0032】
図2は、中間部材105として発泡材料が用いられる場合を示している。発泡材料で構成される中間部材105は、第1の金属部材101とFRP103との間に、金属部材表面に対して垂直な方向に圧縮された状態で配置されている。圧縮された中間部材105の弾性力(復元力)により、第2の金属部材102に対してFRP103を押し付けることができ、それにより疑似的に第2の金属部材102とFRP103とを複合化させることができる。また、
図2に示されるように、第1の金属部材101(平板状)及び第2の金属部材102(ハット型)は必ずしも同一の形状ではないため、中間部材105により、金属部材101、102間の空間を埋めることもできる。
なお、第1の金属部材101(中間部材105が接触する側の金属部材)と中間部材105は、接着層106により接着されていてもよい。
図2は、接着層106を有する場合を例示する。さらに、
図2の態様において、剛性をより向上させるために、中間部材105は、第2の金属部材102の縦壁部と接合(接着も含む)されていてもよい。
中間部材105の復元力は、FRP103と第一の金属部材101の両方に働き、その結果、FRP103が第二の金属部材102に押し付けられる。
【0033】
図3は、
図2と外形上同じハット型断面を有する複合体の一例を示す。
図3の複合体100の中間部材105は金属材料からなり、第2の金属部材102に対応する形状であり、ハット型断面の天板部111’と、縦壁部112’とを有する。その中間部材105の天板部111’と第2の金属部材102との間にFRP103が挟まれるように配置され、かつ、FRP103が配置されていない部分(
図3の場合、ハット型のフランジ部。)において第一の金属部材101と中間部材105と第2の金属部材102とが、固定部材104で互いに接合されている。また、第2の金属部材102と中間部材105を重ねた時に、両者の天板部111、111’が重なる領域での第2の金属部材102と中間部材105との間隔がFRP103の厚さよりも薄いことが好ましい。これにより、中間部材105の天板部111’から第2の金属部材102の天板部111に対しFRP103を介して圧力が加わり、FRP103は第2の金属部材102に押し付けられて、挟まっている。
【0034】
中間部材105を金属材料で構成すると、複合体100の全体重量は増加する可能性があるが、強度面では有利なものとなるため、用途に応じてこのような構成としてもよい。
中間部材105としての金属材料を使用する時、その材質や板厚などは特に限定されない。熱膨張係数を揃えられる観点から、第1及び第2の金属部材(101,102)と同質の材料を用いることが好ましい。この時の中間部材105の板厚は、複合体100の軽量化やFRP103の押し付け力の観点から決めればよい。例えば、鋼板を用いる場合、薄板(例えば0.1~2.0mm)を用いるとよい。
【0035】
図4も、
図2と外形上同じハット型断面を有する複合体の一例を示す。
図4の複合体100の中間部材105は断面形状M字型の板バネである。中間部材105である板バネが第一の金属部材101の上面とFRP103の下面に接するとともに、第一の金属部材101と第2の金属部材102とが
図4のように固定部材104で接合されることで、中間部材(板バネ)105の弾性力が作用してFRP103を第2の金属部材102に押し付けることができる。
【0036】
なお、説明の便宜上、第1の金属部材及び第2の金属部材をそれぞれ「101」及び「102」で示しているが、図中の「101」を第2の金属部材、「102」を第1の金属部材にしてもよい。
【0037】
図示はしていないが、第2の金属部材102(補強対象の金属部材)とFRP103との間に中間部材105を備えていてもよい。したがって、補強対象の第2の金属部材102にFRP103が、中間部材105を介して間接的に押し付けられていてもよい。このような場合は、第2の金属部材102にFRP103が直接的に押し付けられている場合に比べ、複合体の剛性はやや劣る場合がある。しかし、複合体としての強度は、金属部材単体に比べ高いものとすることができると考えられる。
【0038】
また、電食防止のために、中間部材105を第2の金属部材102とFRP103との間に配置してもよい。この場合は、FRP103による補強効果と電食防止効果を有効に得つつ、第2の金属部材102に均一に押し付け荷重がかかるように、中間部材105はゴム材料であるのが好ましい。なお、第2の金属部材(補強される金属部材)とFRPとの間に中間部材を設ける場合、当該中間部材と第2の金属部材との間、及び中間部材とFRPとの間は接合されない。
【0039】
図9(a)~(c)は、
図2~
図4のハット型形状の複合体と同形状であるが、FRPの配置を、ハット型の天板部から縦壁部にかけて配置した場合の一例を示している。
【0040】
図9(a)は
図1に対応し、中間部材がなく、第1の金属部材101と第2の金属部材102の間にFRP103が挟まれている。
図9(a)におけるFRP103はハット型天板部111から縦壁部112にまたがるように(角(コーナー)をまたぐように)配置されている。これにより、ハット型の肩部(天板部111と縦壁部112で構成する角(コーナー))におけるFRPへの押し込み荷重が増加し、全体としてより大きな複合化効果が得られる。つまり、FRP103によりハット型の天板部111から縦壁部112にまたがって補強できるため、部品全体の剛性を高めるだけでなく、捩り剛性も高めることができる。そのため、内部応力を緩和しつつ、複雑な外部応力に対応することができる。
【0041】
また、図示はしていないが、ハット型の天板部111と縦壁部112それぞれに対し、別個にFRPを配置してもよい。しかし、上記効果を得る観点から、天板部111と縦壁部112にかけて連続してFRPを配置することが好ましい。なお、FRPをフランジ部まで配置してもよいが、その場合はFRPを配置する面積が大きくなりすぎる。このため経済的観点、必要な剛性の観点からFRPを配置する領域を決めるとよい。なお、両金属部材は、FRPが配置されていない重なった部分で締結されることが望ましいので、FRPを配置する場合、どの領域で両金属部材を締結するかを考慮する必要がある。
【0042】
図9(b)は
図2に対応し、例えば発泡材料を中間部材105として配置し、ハット型の天板部111と縦壁部112にまたがるようにFRP103を配置した複合体の例である。基本的に
図9(a)の場合と同様な効果が得られる。ただし、中間部材105でFRP103の全面を押し付けるように中間部材105を配置するとよい。FRP103のうち金属部材に押し付けられない部分があると、その部分のFRP103が金属部材間で挟まれた状態とならず、FRPの補強効果が得られないからである。
【0043】
図9(c)は
図3に対応し、例えば金属材料からなる中間部材105を配置し、ハット型の天板部111と縦壁部112にまたがるようにFRP103を配置した複合体の例である。基本的に、この例も
図9(a)の場合と同様な効果が得られる。
【0044】
図9ではハット型断面の複合体を例に説明したが、断面形状で角を有する複合体(断面視多角形状の複合体)であっても、角をまたいで連続してFRPを配置すれば、同様の効果が得られる。例えば、第2の金属部材がL字断面の場合、断面視で第2の金属部材の2つの辺がなす角をまたいでFRPを配置すると(即ち、第2の金属部材の2つの辺に連続してFRPを配置すると)、角部においてFRPの押し込み荷重が増加し、より大きな複合化効果が得られる。
【0045】
もちろん、断面視において、第2の金属部材に角が複数あってもよく、それぞれの角をまたぐように連続的にFRPを配置してもよく、複数の角を連続的にまたぐように配置してもよい。また、角の角度(断面視での角度)も特に限定されず、鋭角、直角、鈍角を問わない。いかなる多角形状であっても、上記説明したハット型断面の場合と同様に、角をまたいで連続的にFRPを配置することで、内部応力を緩和しつつ、複雑な外部応力に対応することができ、より大きな複合効果を得ることができる。
【0046】
[押し付け荷重の判別方法]
FRP103が第2の金属部材102に押し付けられているかの判別は、以下のようにするとよい。複合体が形成された状態での断面図を光学顕微鏡で観察(FRP103と第2の金属部材102の積層方向に切断して観察)し、金属部材間のFRP103、及び存在する場合は中間部材105の厚さ(積層方向の長さ)を測定する。測定した厚さを、各部材の通常状態(すなわち複合化されていない状態)での厚さと比較し、厚さの差(通常状態の厚さ-複合体での厚さ)がある場合(通常状態の厚さ>複合体での厚さ)は、第2の金属部材にFRP103が押し付けられていると判別する。好ましくは、厚さの差が、通常状態の厚さの1%以上、さらに好ましくは2%以上あるとよい。
【0047】
具体的な計測の手段としては、例えば、
図2の複合体100の場合は、複合体100の状態でFRP103と中間部材105の合計の厚さを5箇所で測定してその平均値を平均厚さAとして算出する。次いで、それぞれの部材に解体分離した後に、FRP103と中間部材105の厚さを5箇所で測定してそれぞれの平均値を算出する。FRP103と中間部材105の平均値を合計し平均厚さBを算出する。平均厚さAと平均厚さBに実質的な差がある場合(平均厚さB>平均厚さA)は、第2の金属部材にFRP103が押し付けられていると判別することができる。
【0048】
押し付け荷重の測定は以下のようにするとよい。
まず、複合化された状態での第2の金属部材、FRP、及び存在する場合は中間部材の厚さを記録する。そして、複合体を解体して、複合化されていない状態での、第2の金属部材、FRPの間に薄型の圧力センサーを挿入し、FRPが複合体の時の厚さになるまで圧力をかけ、どれだけの荷重で押し付けられているかを測定する。圧力をかける方法は、油圧の機械を用いても、万力やクランプのような器具を用いても構わず、切断前と同じ形状や厚み等の寸法となっておればよく、その方法は問わない。第2の金属部材とFRPの間に、例えばゴムシートが入っている場合は、ゴムシートの金属部材側でもFRP側でも、どちらかに挿入しても構わない。また、グリース等があっても構わない。すなわち、計測するのは圧力なので、どの位置であっても「押し付け荷重」を測定することができるため、中間部材とFRPの間や、中間部材と第1(または第2)の金属部材の間でも構わない。薄型の圧力センサーとしては、例えば、キャノン化成株式会社製のCKS18L-Fを用いた感圧測定器やTekscan社製の薄型圧力センサーを用いたタクタイル社製のI-Scanシステムがある。センサーは薄い方が好ましく、0.1~0.2mm厚みのものを用いるとよい。測定点数は、部品の中で5点以上選択して測定し、いずれかの点において、0.01kg/cm2以上、好ましくは測定値の平均で0.01kg/cm2以上の圧力がかかっているとよい。
押し付け荷重は用途に応じて適宜選択すればよいが、第2の金属部材とFRPとを良好に複合化する観点から、測定値の平均で、例えば0.01kg/cm2以上、0.10kg/cm2以上、0.20kg/cm2以上、さらには0.30kg/cm2以上であるとよい。
【0049】
金属部材とFRPとの間に、例えば、グリース、ワックス等の潤滑剤を塗布したり、薄いゴムシート等を設けたりすることもできる。
【0050】
[金属部材]
金属部材の材質は、特に限定されず、例えば、鉄、チタン、アルミニウム、マグネシウム及びこれらの合金などが挙げられる。ここで、合金の例としては、例えば、鋼(ステンレス鋼を含む鉄系合金)、Ti合金、Al合金、Mg合金などが挙げられる。
【0051】
また、強度や加工性の観点から、金属部材の材質は鋼が好ましい。使用可能な鋼としては、特に限定されないが、例えば、日本工業規格(JIS)等で規格された鋼があり、一般構造用や機械構造用として使用される炭素鋼、合金鋼、高張力鋼等を挙げることができる。鋼の成分は、特に規定するものではないが、Fe、Cに加え、Mn、Si、P、Al、N、Cr、Mo、Ni、Cu、Ca、Mg、Ce、Hf、La、Zr及びSbから選ばれる1種または2種以上を含有してもよい。例えば、鉄鋼材料は、C、Si、Mn、P、S、Al及びNを含み、残部が鉄及び不純物からなる成分を有することができる。第1の金属部材及び第2の金属部材は、同じ材質でも異なる材質であってもいいが、加工性等の観点から、同じ材質であることが好ましい。よって、第1の金属部材及び第2の金属部材が鋼であることがより好ましい。なお、第1の金属部材及び第2の金属部材は、同一の形状(例えば
図1の態様)を有していても異なる形状(例えば
図2~4の態様)を有していてもよい。
【0052】
金属部材が鋼である場合、任意の表面処理が施されていてもよい。ここで、表面処理とは、例えば、亜鉛めっき(溶融亜鉛めっき鋼板、電気亜鉛めっき等)及びアルミニウムめっきなどの各種めっき処理、クロメート処理及びノンクロメート処理などの化成処理、並びに、サンドブラストのような物理的もしくはケミカルエッチングのような化学的な表面粗化処理が挙げられるが、これらに限定されるものではない。また、めっきの合金化や複数種の表面処理が施されていてもよい。表面処理としては、少なくとも防錆性の付与を目的とした処理が行われていることが好ましい。
【0053】
金属部材の形状は特に限定しない。FRPを挟み易いことから、板状であることが好ましい。ここでいう板状とは、平板状の金属材料を加工したものも含む。例えば断面視でハット型(
図1(a))やL字型などの多角形のもの、さらには管状のものなども含む。金属部材を得るための加工方法も限定しない。既存の加工方法(プレス加工、曲げ加工、テーラードブランクなど)を適宜適用するとよい。また、部品の一部分に、局所的に複合体を形成してもよい。例えば、自動車用ピラーなどの自動車部品の一部分(補強したい部分など)に複合体を形成してもよい。
金属部材が板状である場合、その厚みは、特に限定されないが、複合体100の強度及び加工性等の観点から決めればよい。例えば鋼板の場合、0.1~3.5mmであればよい。また、第1及び第2の金属部材のそれぞれの厚みは同じであっても異なっていてもよい。
【0054】
2つの金属部材の接合方法は、特に限定されない。例えば、接着剤による接着、ボルトまたはリベット等の機械締結、溶接、またはこれら2種以上の組み合わせであってもよい。ただし、接着剤の使用は工程コスト(例えば、塗布、加熱硬化、養生工程等に関するコスト)の増加を招くおそれがあるため、接合方法は、好ましくはボルトまたはリベット等の機械締結、溶接、またはこれらの組み合わせにするとよい。
図1~
図4においては、2つの金属部材の接合方法の一例として、固定部材104(より具体的にはボルト)による機械締結が例示されている。
【0055】
[繊維強化樹脂材料(FRP)]
FRPは、マトリクス樹脂を繊維材料で強化したものであれば、材料や樹脂は特に限定しない。例えば、FRPは、マトリクス樹脂及び繊維材料のみからなっていてもよい。代替的に、FRPは、機能性を付与する等の目的のために、導電性粒子、無機フィラー、ゴム材料、顔料、着色剤、酸化防止剤、難燃剤などを含んでいてもよい。FRPは、単層であっても多層であってもよく、用途に応じて積層数は適宜選択すればよい。FRPの厚みは、好ましくは、0.2~3.0mmであり、当該厚みは複合体100の断面を観察することで求めることができる。
【0056】
また、FRPの形状は特に限定されるものではなく、平板であっても金属部材と部分的に一致するような形状であっても、どのような形状であっても構わない。
【0057】
[マトリクス樹脂]
FRPのマトリクス樹脂は、特に限定されず、熱可塑性樹脂または熱硬化性樹脂のいずれも使用することができる。好ましくは、良好な曲げ強度を有し加工性に優れる熱可塑性樹脂が用いられる。例えば、樹脂成分100質量部に対して、50質量部以上、60質量部以上、70質量部以上、80質量部以上、または90質量部以上の熱可塑性樹脂を含むとよい。マトリクス樹脂は熱可塑性樹脂のみであってもよい。マトリクス樹脂に用いることができる熱可塑性樹脂として、特に制限されないが、例えば、ポリオレフィン及びその酸変性物、ポリプロピレン、ポリスチレン、ポリメチルメタクリレート、AS樹脂、ABS樹脂、ポリエチレンテレフタレートやポリブチレンテレフタレート等の熱可塑性芳香族ポリエステル、ポリカーボネート、熱可塑エポキシ、ポリイミド、ポリアミド、ポリアミドイミド、ポリエーテルイミド、ポリエーテルスルホン、ポリフェニレンエーテル及びその変性物、ポリフェニレンスルフィド、ポリオキシメチレン、ポリアリレート、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルケトンケトン、並びにナイロン等から選ばれる1種または2種以上を使用できる。このうち、マトリクス樹脂に用いることができる熱硬化性樹脂としては、例えば、エポキシ樹脂、ビニルエステル樹脂、フェノール樹脂、及び、ウレタン樹脂から選ばれる1種以上を使用することができる。
【0058】
[繊維材料]
FRPに含まれる繊維材料としては、特に限定されないが、例えば、炭素繊維、ボロン繊維、シリコンカーバイド繊維、ガラス繊維、アラミド繊維などを使用することができる。繊維材料は、長繊維であっても短繊維であってもよい。FRPの強度を効率的に向上させる観点から炭素繊維を使用するのが好ましい。炭素繊維の種類については、例えば、PAN系、ピッチ系のいずれも使用でき、目的や用途に応じて選択すればよい。また、繊維材料として、上述した繊維を1種単独で使用してもよいし、複数種を併用してもよい。
【0059】
上記繊維材料の基材となる強化繊維基材(プリプレグ)としては、例えば、チョップドファイバーを使用した不織布基材や連続繊維を使用したクロス材、一方向強化繊維基材(UD材)などを使用することができる。補強効果の面からは、強化繊維基材としてクロス材やUD材を使用することが好ましい。
【0060】
繊維材料の繊維体積含有率Vfは、特に限定されないが、強度及び加工性の観点から、20体積%以上70体積%以下であると好ましい。FRP中の繊維材料のVfは、好ましくは、25体積%以上、または30体積%以上にするとよく、また、65体積%以下、60体積%以下にするとよい。Vfの測定は、当業者に公知の方法において行うことができる。
【0061】
複合体100の積層構造及び各部材の厚さは、複合体をエポキシ樹脂等の熱硬化性樹脂に埋め込み、切断機にて観察すべき箇所において、厚さ方向と平行となるように試料を切断して断面を出し、当該断面を電子顕微鏡で観察することで測定することができる。より具体的には、断面画像から、第1の金属部材101、第2の金属部材102、及びFRP103、並びに、存在する場合は中間部材105及び他の層の各領域を特定し、画像上で各領域の厚みを測定することができる。
【0062】
[せん断剥離強度及び180°引き剥がし粘着力]
上述したように、金属部材とFRPとが拘束されていないので、金属部材とFRPとの間のこのせん断剥離強度が1N/mm2以下、及び180°引き剥がし粘着力が5N/10mm以下であるとよい。せん断剥離強度及び180°引き剥がし粘着力の下限は特に限定されないが、金属部材にFRPが接合されておらず、直接的または間接的に押し込まれていれば十分であるため、せん断剥離強度及び180°引き剥がし粘着力の下限はそれぞれ0N/mm2及び0N/10mmであってよい。
【0063】
[せん断剥離強度の測定]
金属部材とFRPとの間のせん断剥離強度の測定について、
図5を参照して以下で説明する。まず、対象となる複合体から補強対象の金属部材に該当する部材及びFRPを含む試験片を
図5のような形状で取り出す。なお、
図5(a)は試験片の側面図であり、
図5(b)は試験片の上面図である。取り出す試験片の金属部材及びFRPの厚みtは複合体の形状によるが、それぞれ0.1mm以上とし、幅wは5mm及び長さlは50mmとするとよい。次いで、
図5に示す矢印の方向に、金属部材及びFRP自体が破断しない速度で試験片に荷重を付加して、破断力(N)を求め、これをせん断面積(mm
2)で除することでせん断剥離強度(N/mm
2)を算出する。同様の操作を5個の試験片について行い、それらの平均値を「せん断剥離強度(N/mm
2)」とする。なお、第2の金属部材とFRPとの間に中間部材及び/または他の層を備える場合は、中間部材及び/または他の層も含めて試験片を取り出し、金属部材とFRPとに対して荷重を付加すればよい。もし、試験片のサンプリング中に、金属部材とFRPとが分離した場合は、これらの部材が接着していないことを意味し、せん断剥離強度が0N/mm
2(当然、せん断剥離強度が1N/mm
2以下)であるとみなすことができる。
【0064】
[180°引き剥がし粘着力の測定]
金属部材とFRPとの間の180°引き剥がし粘着力の測定について、
図6を参照して以下で説明する。まず、対象となる複合体から金属部材及びFRPを含む試験片を
図6のような形状で取り出す。金属部材とFRPの面に対して垂直な方向に引き剥がす力の測定ができるように、界面を剥がして試験片を作成する。なお、
図6(a)は試験片の側面図であり、
図6(b)は試験片の正面図である。金属部材、FRPともに
図6に示すような形状に曲げることができない場合は、界面にテープ材等を挟んで、それを測定機に取り付けて、第2の金属部材とFRPの面に対して垂直な方向に引き剥がす力の測定を行う。試験片の金属部材及びFRPの厚みtは複合体の形状によるが、それぞれ0.1mm以上とし、幅wは10mm及び長さlは50mm程度とするとよい。次いで、
図6に示す矢印の方向に、金属部材及びFRP自体が破断しない速度で試験片に荷重を付加して、荷重(N)を求め、これを測定幅(10mm)で除することで180°引き剥がし粘着力(N/10mm)を算出する。同様の操作を5個の試験片について行い、平均値を「180°引き剥がし粘着力(N/10mm)」とする。なお、金属部材とFRPとの間に中間部材及び/または他の層を備える場合は、中間部材及び/または他の層も含めて試験片を取り出し、金属部材とFRPとに対して荷重を付加すればよい。もし、試験片のサンプリング中に、第2の金属部材とFRPとが分離した場合は、これらの部材が接着していないことを意味し、せん断剥離強度が5N/10mm(当然、せん断剥離強度が5N/10mm以下)であるとみなすことができる。
【0065】
[金属-繊維強化樹脂複合ユニット]
本発明に係る金属-繊維強化樹脂複合ユニット(以下、単に「複合ユニット」ということがある。)は、金属-FRP複合体を製造するための中間製品である。複合ユニットは、一つの金属部材(例えば第1の金属部材)と、その金属部材の少なくとも片側に配置されたFRPとを有するものである。また、第1の金属部材とFRPとの間に、発泡材料、金属材料、ゴム材料及び板バネから選択される中間部材を備えてもよい。FRP及び中間部材は、金属部材の両側に配置されていてもよい。特に、複合ユニットにおいても、金属部材は鋼材であると好ましく、及び/または中間部材は発泡材料であると好ましい。
【0066】
金属-繊維強化樹脂複合ユニットは、FRP側を第2の金属部材(補強する金属部材)に押し付け接触させて複合体を形成する。よって、第1の金属部材とFRPを接合する場合(つまり、第2の金属部材とFRPを接合しない複合体の場合)には、複合ユニットにおいても、第1の金属部材とFRPとを接着してもよい。
【0067】
一方、両方の金属部材とFRPを接合しない複合体の場合、第1の金属部材とFRPは接合されないので、金属部材とFRP界面には接着樹脂層は形成されない。しかし、複合ユニットの取り扱い上の観点から、金属部材とFRPを軽度に接着してもよい。中間部材を介在させる場合は、中間部材とFRPとの間、及び/または、金属部材と中間部材との間も軽度に接着されていてもよい。ここで、軽度に接着とは、せん断剥離強度が1N/mm2以下、及び180°引き剥がし粘着力が5N/10mm以下になる接着をいう。
【0068】
[金属-繊維強化樹脂複合体の製造方法]
[複合ユニット形成工程]
複合ユニット形成工程では、第1の金属部材(例えば鋼材)にFRPを配置して金属-繊維強化樹脂複合ユニットを形成する。または、複合ユニット形成工程では、第1の金属部材とFRPとの間に、発泡材料、金属材料、ゴム材料及び板バネ材料から選択される少なくとも1つの中間部材を配置し、その上にFRPを配置して複合ユニットを形成してもよい。
【0069】
上述したように、第1の金属部材とFRPは接合されない場合、第1の金属部材上にFRPを配置する時に接着しないことが望ましい。しかし、複合ユニットの取り扱い上の観点から、金属部材とFRPを軽度に接着してもよい。中間部材を介在させる場合は、中間部材とFRPとの間、及び/または、金属部材と中間部材との間も軽度に接着してもよい。
【0070】
[複合化工程]
複合化工程では、複合ユニット形成工程で得た金属-繊維強化樹脂複合ユニットを第2の金属部材に押し付けて複合化し、金属-繊維強化樹脂複合体を形成する。
複合化方法は特に限定されないが、第1の金属部材と第2の金属部材とを接合することが好ましい。第1の金属部材と第2の金属部材を接合する場合、FRPが配置されていない部分で接合するとよい。FRPも含めて接合すると、金属部材とFRPが拘束され、内部応力を抑制することができないからである。第1の金属部材及び第2の金属部材との接合方法は、特に限定されない。例えば、接着剤による接着、ボルトまたはリベット等の機械締結、溶接(スポット溶接、レーザー溶接、アーク溶接など、溶接方法は特に限定はされない。)、またはこれらの任意の組み合わせであってもよい。しかし、工程コストや既存の製造ラインへの適用性の観点から、ボルトまたはリベット等の機械締結、溶接、またはこれらの任意の組み合わせであると好ましい。複合ユニットを第2の金属部材に押し付ける際の荷重(押し付け荷重)は、用途に応じて適宜決定することができる。例えば発泡材料の発泡倍率を調整する等により変更することができる。
押し付け荷重は0.01/cm2以上であればよい。押し付け荷重は高いほど良好な複合化状態を形成できるため、押し付け荷重は高いほど好ましい。例えば、押し付け荷重は、0.10kg/cm2以上、0.15kg/cm2以上、0.20kg/cm2以上または0.30kg/cm2以上であるとよい。第2の金属部材とFRPとの間に、中間部材を設けることもでき、その場合は、例えば、第2の金属部材の表面に中間部材を配置し、そこに複合ユニットを押し付けて複合体を形成するとよい。
【実施例】
【0071】
以下、実施例を説明するが、実施例は本発明の一態様であり、本発明はこれらの実施例に何ら限定されるものではない。
【0072】
[金属部材]
第1の金属部材及び第2の金属部材としては、日本製鉄社製ティンフリースチール鋼板(板厚0.18mm):「TFS0.18」、日本製鉄社製電気亜鉛めっき鋼板(板厚0.45mm):「EG0.45」、及び日鉄ケミカル&マテリアル社製ステンレス鋼箔SUS304(板厚0.10mm):「SUS0.10」を準備した。次いで、これらを、
図7(a)に示すように、第1の金属部材101(
図7(a)の下側の金属部材)には平板材としてそのまま使用し、第2の金属部材102にはハット型材(
図7(b)の上側のハット型の金属部材)に折り曲げ加工して使用した。ハット材は、
図7(a)に示されるように、縦壁部の高さ5mm及び天板部の幅30mmとした。
【0073】
[補強部材]
FRPとして、東レ社製炭素繊維T-700をクロス織りし、繊維体積含有率(Vf)が60%であり、マトリックス樹脂にエポキシ樹脂を用いた厚さ1mmのCFRPを準備した。当該CFRPの力学特性は引張弾性率75GPa、引張強度は1200MPaであった。
その他の補強部材として、プラスチック板(板厚1.0mm):「PC-1.0」、鋼板(板厚0.4mm)、及び板バネを準備した。板バネは、厚さ0.5mmの焼き入れリボン鋼を
図4に示すようにM字型に折り曲げて使用した。また、試料No.30においては、
図9(a)に示されるように、CFRPの形状を平板ではなく第2の金属部材と天板部と縦壁部にまたがって一致するような形状とした。
【0074】
[中間部材]
中間部材として、発泡材料の「低反発ウレタン」、「発泡EVA」、「ウレタンフォーム」、「エチレンプロピレンゴム」、もしくは「低反発ウレタン(半分)」、板バネ、及び鋼板(ハット状)を準備した。低反発ウレタンはエスコ社製EA944KD-84を用い、無荷重の状態で厚さが約35mmのものを使用した。低反発ウレタン(半分)は、上記低反発ウレタンの厚さを半分にカットし、無荷重の状態で約17.5mmのものを使用した。発泡EVAはuxcell社製スポンジテープ5mm厚さを使用した。ウレタンフォームはHenkel社Sista発泡ウレタンM5250を用い、これを噴射して発泡体の塊を作製し、硬化後、これを厚さ5mm、幅30mmの大きさに切り出して使用した。エチレンプロピレンゴムは厚さ5mmのTRUSCO社製気密防水テープTWST-1050を使用した。鋼板(ハット状)は、
図3に示されるように、中間部材として、第2の金属部材と同形状のハット状の鋼板(板厚0.18mm)を用いた。なお、当該ハット状の鋼板は第2の金属部材の方向へ押し付けて固定した。中間部材として使用される板バネは、補強部材として使用したものと同様である。
【0075】
準備した第1の金属部材、第2の金属部材、補強部材、及び中間部材を表1~表6に記載の組み合わせ及び順番で積層して複合体を作製した。各部材の固定方法は、ネジ径2mmのステンレス製ボルト及びナットで機械締結するか(表中「ボルト」)、またはセメダイン社製のメタルロック(接着剤)により接着した(表中「接着」)。補強部材を含む全ての試料において、補強部材が第2の金属部材に押し付けられて接触することにより、両金属部材に挟まれた状態となった。表中の固定方法の「なし」(No.15)は、各部材を固定せず(すなわち積層のみして)、後述する3点曲げ試験を行ったことを示し、3点曲げ試験により付加した外力により、間接的にCFRPが第2の金属部材に押し付けられている状態となった。
【0076】
表中の補強部材の「位置」は、補強部材と中間部材の位置関係を表している。「上」は補強部材が中間部材に対して上にあり、すなわち補強部材が第2の金属部材と直接接触して積層されていることを意味する。「下」は補強部材が中間部材に対して下にあり、すなわち補強部材が第2の金属部材と中間部材を介して積層されていることを意味する。また、表中の「上側構成」は補強部材の上側(第2の金属部材側)の構成を表しており、「接合なし」は接合していないことを意味し、グリース等を介在する場合は、介在するものも記載している。「接着あり」は補強部材と第2の金属部材が接着剤で接着されていることを意味する。「グリース」はJX日鉱日石社製カップグリース1種3号を5g/m2の量でCFRPの上面、すなわち第2の金属部材と接する面に塗布したことを意味する。「ハイトレル」は、CFRP上に三井化学社製ハイトレル3046を200℃で熱プレスして0.5mmの厚さに作製したシートを設けたことを意味する。「シリコンゴムシート」はCFRP上に厚さ0.5mmのタイガースポリマー社製シリコンゴムシートSR-50を設けたことを意味する。表中の「下側接合」は、補強部材における下側の部材(第1の金属部材または中間部材)との接合(接着)の有無を表す。接着ありの場合は、上記接着剤を使用した。「押し付け荷重」がある場合は、補強部材が第1の金属部材(または中間部材)と第2の金属部材に挟まっている状態を示している。
【0077】
表1~表6のように構成した試料を、
図5及び
図6に従って、第2の金属部材と補強部材との間のせん断剥離強度(N/mm
2)及び180°引き剥がし粘着力(N/10mm)を測定した。それぞれのサンプルの取得方法及び測定は上記説明したとおりである。表中の「せん断剥離強度の測定」及び「180°引き剥がし粘着力」において、サンプルの準備段階、すなわち試験をする前に第2の金属部材と補強部材とが分離された場合、「<0.01」と示した。表中の「押し付け荷重」は、上記説明したように、薄型圧力センサー:キャノン化成株式会社製のCKS18L-Fを用いて測定し、単位面積当たりの応力で示した。
【0078】
[面ひずみ(面歪)の評価]
各試料について、作成直後、大気圧下において150℃に加熱し、1時間保持して、放冷した後に第2の金属部材の面(ハット型材の天板部)の面ひずみの有無を、目視により確認した。確認方法は蛍光灯などの明るい光をあてて、面内の陰影(場合によっては、表面に反射する蛍光灯の直線部の歪みでも観察できる。)から歪みや凹凸の有無を観察した。歪みや凹凸が確認できるものを「面ひずみあり(記号:×)」、確認できないものを「面ひずみなし(記号:○)」とした。各試料の結果を表1~表6に示す。
【0079】
(3点曲げ試験)
各試料について、
図7(b)に示す3点曲げ試験を行い、得られたストローク-荷重曲線から「曲げ荷重最大値」を求め、力学特性として評価した。代表的なストローク-荷重曲線として試料No.4(実施例)及びNo.20(比較例)の結果を
図8に示す。ストロークとは、ハット材の第2の金属部材が押し込まれた距離(mm)をいい、曲げ荷重は、ストローク量に要した荷重(N)をいう。また、3点曲げ試験により得られた最大荷重とは、当該曲線における荷重の最大値を指す。使用した試験条件は以下のとおりである。各試料の結果を表1~表6に示す。
・サンプル長:100mm
・支点間距離:90mm
・圧子半径:5mm
・支点半径:5mm
・負荷速度:1mm/分
【0080】
表1を参照すると、本発明の構成を満たす試料は、CFRPが第2の金属部材に接合されず、両金属部材に挟まっているため、十分な力学特性を有し、面ひずみを抑制できた。一方、試料No.2及び3は、金属部材のみで構成されており、十分な力学特性を有さなかった。
表2を参照すると、本発明の構成を満たす試料No.4~16は、十分な力学特性を有しつつ、面ひずみを抑制できた。また、試料No.4及び10~13を比較すると、中間部材として板バネを用いた場合より発泡材料を用いた場合の方が高い強度を有していた。これは、発泡材料の方がCFRPを均一に第2の金属部材に押し付けることができるのに対し、板バネは押し方にムラが生じたためと考えられる。さらに、試料Np.4と14を比較すると、押し付け荷重が大きい試料No.4の方が力学特性に優れていた。
【0081】
一方、試料No.17は、CFRPと第2の金属部材を接着したことにより、面ひずみが発生した。また、試料No.18~23は、補強部材を用いないか、またはFRP以外を補強部材として用いたため、第2の金属部材を十分に補強できず、十分な力学特性を有さなかった。試料No.24は、補強部材として板バネを使用した結果、板バネが平面でないことに起因して天板部で歪みが発生した。
【0082】
表3、表4、表5を参照すると、本発明の構成を満たす試料No.25、27及び29は、それぞれ補強されていない試料No.26、28及び30に比べて、面ひずみの発生を抑制しつつ、優れた力学特性を有していた。
表6を参照すると、試料No.41のようにFRPを好適な形状(ハット型材の天板部から縦壁部に連続的に沿わせる形状)にすることで、より本発明の効果を向上させる優れた力学特性を有することを示した。
【0083】
【0084】
【0085】
【0086】
【0087】
【0088】
【産業上の利用可能性】
【0089】
本発明に係る金属-繊維強化樹脂材料複合体は、あらゆる産業機器の部品、建材などに利用することができる。例えば、自動車用のアウター部材、インナー部材、レインフォースに適用することができる。また、既存の製造ラインに適用することができるので、産業上の利用可能性は極めて高い。
【符号の説明】
【0090】
100 金属-繊維強化樹脂複合体
101 第1の金属部材
102 第2の金属部材
103 繊維強化樹脂材料(FRP)
104 固定部材(ボルトの例)
105 中間部材
106 接着層
111 天板部
112 縦壁
200 金属-繊維強化樹脂複合ユニット