IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社サタケの特許一覧

<>
  • 特許-光学式選別機 図1
  • 特許-光学式選別機 図2
  • 特許-光学式選別機 図3
  • 特許-光学式選別機 図4
  • 特許-光学式選別機 図5
  • 特許-光学式選別機 図6
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-12-05
(45)【発行日】2022-12-13
(54)【発明の名称】光学式選別機
(51)【国際特許分類】
   B07C 5/342 20060101AFI20221206BHJP
   G01N 21/85 20060101ALN20221206BHJP
【FI】
B07C5/342
G01N21/85 A
【請求項の数】 8
(21)【出願番号】P 2022502298
(86)(22)【出願日】2021-10-12
(86)【国際出願番号】 JP2021037754
(87)【国際公開番号】W WO2022080373
(87)【国際公開日】2022-04-21
【審査請求日】2022-01-13
(31)【優先権主張番号】P 2020173790
(32)【優先日】2020-10-15
(33)【優先権主張国・地域又は機関】JP
【早期審査対象出願】
(73)【特許権者】
【識別番号】000001812
【氏名又は名称】株式会社サタケ
(74)【代理人】
【識別番号】110003052
【氏名又は名称】特許業務法人勇智国際特許事務所
(72)【発明者】
【氏名】定丸 雅明
(72)【発明者】
【氏名】宮本 知幸
【審査官】山▲崎▼ 歩美
(56)【参考文献】
【文献】特開平09-304182(JP,A)
【文献】特開平09-203709(JP,A)
【文献】特開2002-168778(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B07C 5/342
G01N 21/85
(57)【特許請求の範囲】
【請求項1】
光学式選別機であって、
移送経路上を移送中の被選別物に光を照射するように構成された光源と、
前記光源から照射され、前記被選別物に関連付けられた光を検出するように構成された光学センサと、
前記被選別物に関連付けられた光に関して前記光学センサによって取得される信号に基づいて、前記被選別物についての異物および/または不良品の判定を行うように構成された判定部と、
前記光源から前記被選別物への前記光の照射方向における前記光源と前記移送経路との間の位置であって、前記被選別物に関連付けられた前記光の検出に影響しない位置に配置され、マーキングを有する中間部材と
を備え、
前記光学センサは、さらに、前記光源から照射され、前記マーキングを介して得られるマーキング関連光を検出するように構成され
前記マーキングは、前記マーキング関連光に基づいて前記判定部の判定性能を確保するための少なくとも一つ以上の機能を提供するように構成された
光学式選別機。
【請求項2】
学式選別機であって、
移送経路上を移送中の被選別物に光を照射するように構成された光源と、
前記光源から照射され、前記被選別物に関連付けられた光を検出するように構成された光学センサと、
前記被選別物に関連付けられた光に関して前記光学センサによって取得される信号に基づいて、前記被選別物についての異物および/または不良品の判定を行うように構成された判定部と、
前記光源から前記被選別物への前記光の照射方向における前記光源と前記移送経路との間の位置であって、前記被選別物に関連付けられた前記光の検出に影響しない位置に配置され、マーキングを有する中間部材と
を備え、
前記光学センサは、さらに、前記光源から照射され、前記マーキングを介して得られるマーキング関連光を検出するように構成され、
前記光学式選別機は、前記マーキング関連光の検出結果に基づいて前記光学センサの状態を検出するように構成された検出部を備える
光学式選別機。
【請求項3】
学式選別機であって、
移送経路上を移送中の被選別物に光を照射するように構成された光源と、
前記光源から照射され、前記被選別物に関連付けられた光を検出するように構成された光学センサと、
前記被選別物に関連付けられた光に関して前記光学センサによって取得される信号に基づいて、前記被選別物についての異物および/または不良品の判定を行うように構成された判定部と、
前記光源から前記被選別物への前記光の照射方向における前記光源と前記移送経路との間の位置であって、前記被選別物に関連付けられた前記光の検出に影響しない位置に配置され、マーキングを有する中間部材と
を備え、
前記光学センサは、さらに、前記光源から照射され、前記マーキングを介して得られるマーキング関連光を検出するように構成され、
前記光学式選別機は、前記マーキング関連光の検出結果に基づいてキャリブレーションを実行可能に構成されたキャリブレーション部を備える
光学式選別機。
【請求項4】
請求項1ないし請求項3のいずれか一項に記載の光学式選別機であって、
前記光源は、
被選別物の移送経路に対する第1の側に配置される第1の光源と、
前記第1の側と反対の第2の側に配置される第2の光源と
を備え、
前記光学センサは、前記第1の側に配置される第1の光学センサと、前記第2の側に配置される第2の光学センサと、のうちの少なくとも一方を備え、
前記中間部材は、光非透過性を有し、光が前記移送経路側から前記中間部材を透過して前記光学センサに到達することを実質的に防止する
光学式選別機。
【請求項5】
請求項1ないし請求項4のいずれか一項に記載の光学式選別機であって、
前記マーキングは、
第1の色を有するとともに一定の大きさを有する少なくとも一つの第1の単位領域と、前記第1の色とは異なる第2の色を有するとともに、前記一定の大きさを有する少なくとも一つの第2の単位領域と、を少なくとも含み、
前記第1の単位領域と前記第2の単位領域とが、予め定められた出現パターンで、一次元的または二次元的に並ぶように構成された
光学式選別機。
【請求項6】
光学式選別機であって、
移送経路上を移送中の被選別物に光を照射するように構成された光源と、
前記光源から照射され、前記被選別物に関連付けられた光を検出するように構成された第1の光学センサと、
前記被選別物に関連付けられた光に関して前記光学センサによって取得される信号に基づいて、前記被選別物についての異物および/または不良品の判定を行うように構成された判定部と、
前記光源から前記被選別物への前記光の照射方向における前記光源と前記移送経路との間の位置であって、前記被選別物に関連付けられた前記光の検出に影響しない位置に配置され、マーキングを有する中間部材と、
前記光源から照射され、前記マーキングを介して得られるマーキング関連光を検出するように構成された第2の光学センサと
を備え
前記光学式選別機は、
前記マーキングが、前記マーキング関連光に基づいて前記判定部の判定性能を確保するための少なくとも一つ以上の機能を提供するように構成されることと、
前記マーキング関連光の検出結果に基づいて前記光学センサの状態を検出するように構成された検出部を備えることと、
前記マーキング関連光の検出結果に基づいてキャリブレーションを実行可能に構成されたキャリブレーション部を備えることと
のうちの少なくとも一つを満たす
光学式選別機。
【請求項7】
光学式選別機であって、
移送経路上を移送中の被選別物に光を照射するように構成された光源と、
前記光源から照射され、前記被選別物に関連付けられた光を検出するように構成された光学センサと、
前記被選別物に関連付けられた光に関して前記光学センサによって取得される信号に基づいて、前記被選別物についての品質の判定を行うように構成された判定部と、
前記光源から前記被選別物への前記光の照射方向における前記光源と前記移送経路との間の位置であって、前記被選別物に関連付けられた前記光の検出に影響しない位置に配置され、マーキングを有する中間部材と
を備え、
前記光学センサは、さらに、前記光源から照射され、前記マーキングを介して得られるマーキング関連光を検出するように構成され、
前記マーキングは複数の領域を備え、
前記複数の領域の各々は、前記マーキング関連光に基づいて前記判定部の判定性能を確保するための少なくとも一つ以上の機能を提供するように構成された
光学式選別機。
【請求項8】
請求項1、請求項1を従属元に含む請求項4もしくは請求項5、請求項6、または、請求項7に記載の光学式選別機であって、
前記少なくとも一つの機能は、前記光源の光量検出機能、前記光学センサの位置ずれ検出機能、前記光学センサのフォーカスずれ検出機能、および、前記光学センサのホワイトバランス確認機能のうちの少なくとも一つを含む
光学式選別機。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は光学式選別機に関する。
【背景技術】
【0002】
被選別物に光源から光を照射した際に光学センサによって得られる光情報を使用して、被選別物に含まれる異物や不良品を判別して除去する光学式選別機が従来から知られている(例えば、特開昭61-212734号公報)。光学センサによって得られた光情報(例えば、色階調値)は閾値と比較され、その比較結果に基づいて、被選別物が良品であるか、それとも、異物または不良品であるかが判定される。異物または不良品であると判定された被選別物は、典型的には、エア噴射によって吹き飛ばされ、それによって、被選別物は、良品と、異物および不良品と、に選別される。
【発明の概要】
【発明が解決しようとする課題】
【0003】
しかしながら、従来の光学式選別機は、選別精度の向上のために改良の余地を残している。
【課題を解決するための手段】
【0004】
本開示は、上述の課題を解決するためになされたものであり、例えば、以下の形態として実現することが可能である。
【0005】
本開示の第1の形態によれば、光学式選別機が提供される。この光学式選別機は、移送経路上を移送中の被選別物に光を照射するように構成された光源と、光源から照射され、被選別物に関連付けられた光を検出するように構成された光学センサと、被選別物に関連付けられた光に関して光学センサによって取得される信号に基づいて、被選別物についての異物および/または不良品の判定を行うように構成された判定部と、光源から被選別物への光の照射方向における光源と移送経路との間の位置であって、被選別物に関連付けられた光の検出に影響しない位置に配置され、マーキングを有する中間部材と、を備えている。光学センサは、さらに、光源から照射され、マーキングを介して得られるマーキング関連光を検出するように構成される。
【0006】
「被選別物に関連付けられた光」とは、被選別物で反射した光である反射光であってもよいし、被選別物を透過した光である透過光であってもよいし、あるいは、反射光と透過光との両方であってもよい。
【0007】
この光学式選別機によれば、光学センサによって検出されるマーキング関連光に基づいて、選別精度を向上させるための種々の処理を実施することが可能になる。例えば、マーキング関連光に基づいて光源の光量を検出し、光量が適正範囲内にあるか否かを判定することができる。さらに、中間部材は、光学センサが被選別物に関連付けられた光の検出に影響しない位置に配置されるので、光学式選別機の選別運転中にマーキング関連光を検出することができる。しかも、光学センサは、被選別物に関連付けられた光の検出と、マーキング関連光の検出と、に共用できるので、マーキング関連光の検出のためだけに追加的な光学センサを設ける必要が無い。
【0008】
本開示の第2の形態によれば、第1の形態において、光学式選別機は、マーキング関連光の検出結果に基づいて光学センサの状態を検出するように構成された検出部を備えている。この形態によれば、検出された光学センサの状態に基づいて、光学センサの状態に起因する選別精度の悪化を抑制するための種々の処理を実施することができる。例えば、光学センサの状態に関する異常を報知することによって、光学センサの状態に起因して選別精度が悪化した状態で光学式選別機が運転されることを抑制できる。あるいは、選別精度の悪化が把握された場合に、悪化の原因を解明するための情報として、検出された光学センサの状態を利用できる。検出される光学センサの状態は、例えば、光学センサの設置位置に関連する状態を含んでいてもよい。
【0009】
本開示の第3の形態によれば、第2の形態において、検出部によって検出される光学センサの状態は、光学センサの位置ずれの有無、位置ずれの量、位置ずれの方向、および、光学センサのフォーカスずれの有無のうちの少なくとも一つを含む。この形態によれば、光学センサの位置ずれまたはフォーカスずれに起因する選別精度の悪化を抑制するための種々の処理を実施することができる。
【0010】
検出部によって検出される光学センサの状態が位置ずれの量および方向を含む場合には、位置ずれに起因して選別精度が悪化することを抑制するための処理または措置を実施しやすい。例えば、ユーザは、位置ずれを解消するための調整作業を行う際に、光学センサの設置位置をどの方向にどの程度の距離だけ移動させればよいかを把握しやすい。
【0011】
検出部によって検出される光学センサの状態が光学センサのフォーカスずれ(つまり、被選別物に対する合焦状態が得られない状態)の有無を含む場合には、フォーカスずれに起因する選別精度の悪化を抑制するための種々の処理を実施することができる。例えば、光学式選別機は、フォーカスずれが検出された場合に、ユーザへの報知を行ってもよい。
【0012】
光学式選別機は、判定部による判定結果に基づいて決定される特定の被選別物に向けてエアを噴射して特定の被選別物を移送経路から逸脱させて、異物および/または不良品を選別する選別部を備えていてもよい。移送経路が第1の方向に延在し、被選別物が、第1の方向と直交する第2の方向の所定幅で第1の方向に移送される場合、選別部は、第2の方向における被選別物に関連付けられた光が検出される位置と、第2の方向におけるエアが噴射されるべき位置と、の予め定められた対応関係に基づいて、特定の被選別物に向けて適所からエアを噴射するように構成されてもよい。この場合、光学式選別機は、さらに、第2の方向における光学センサの位置ずれの量に基づいて、予め定められた対応関係を補正する第1の補正部を備えていてもよい。
【0013】
さらに、選別部は、予め定められた遅れ噴射時間に基づいて定まるタイミングでエアを噴射するように構成されてもよい。遅れ噴射時間とは、特定の被選別物に関連付けられた光を検出してからエアを噴射するまでの時間である。この場合、光学式選別機は、第1の方向における光学センサの位置ずれの量に基づいて、予め定められた遅れ噴射時間を補正する第2の補正部を備えていてもよい。
【0014】
本開示の第4の形態によれば、第1ないし第3のいずれかの形態において、光学式選別機は、マーキング関連光の検出結果に基づいて、被選別物に関連付けられた光の検出結果に対して色補正を行うように構成された色補正部を備えている。この形態によれば、光学センサの検出結果が表す画像の色合いを調節することができる。マーキングがモノクロマーキングの場合は、色補正として、線形的なホワイトバランス補正およびダーク補正の少なくとも一方が行われてもよい。マーキングがカラーマーキングである場合は、非線形のカラー補正が行われてもよい。
【0015】
本開示の第5の形態によれば、第1ないし第4のいずれかの形態において、光学式選別機は、マーキング関連光の検出結果に基づいてキャリブレーションを実行可能に構成されたキャリブレーション部を備えている。この形態によれば、光学式選別機の選別運転中にリアルタイムで光源の光量の変動を良好に補償することができる。
【0016】
本開示の第6の形態によれば、第5の形態において、キャリブレーションは、マーキング関連光の検出結果に基づいて光源の光量を調節することを含む。この形態によれば、ノイズを増幅することなく、光源の光量の変動を補償できる。
【0017】
本開示の第7の形態によれば、第5または第6の形態において、キャリブレーションは、光学センサによって取得される信号についてのゲインをマーキング関連光の検出結果に基づいて調節することを含む。この形態によれば、光源の光量調節能力に関係なく、光源の光量の変動を補償できる。
【0018】
本開示の第8の形態によれば、第1ないし第7のいずれかの形態において、光源は、被選別物の移送経路に対する第1の側に配置される第1の光源と、第1の側と反対の第2の側に配置される第2の光源と、を備えている。光学センサは、第1の側に配置される第1の光学センサと、第2の側に配置される第2の光学センサと、のうちの少なくとも一方を備えている。中間部材は、光非透過性を有し、光が移送経路側から中間部材を透過して光学センサに到達することを実質的に防止する。この形態によれば、光学センサが第1の光学センサを備えている場合、中間部材が第1の側に配置され、第2の側に位置する第2の光源から照射される光は、中間部材を透過して第1の側に位置する第1の光学センサに到達することがない。このため、第1の光源から照射され、マーキングを介して得られるマーキング関連光を第1の光学センサで検出する際に、当該マーキング関連光と一緒に、第2の光源から照射される光が第1の光学センサで検出されることがない。同様に、光学センサが第2の光学センサを備えている場合、中間部材が第2の側に配置され、第1の側に位置する第1の光源から照射される光は、中間部材を透過して第2の側に位置する第2の光学センサに到達することがない。したがって、マーキング関連光に基づいて光源の光量を検出する場合、光量をより正確に検出することができる。また、第8の形態を第2の形態と組み合わせれば、光学センサの状態をより正確に検出することができる。また、第5の形態と組み合わせる場合、正確に検出された光源の光量に基づいて、より精度の高いキャリブレーションを行うことができる。さらに、光学センサが第1の光学センサおよび第2の光学センサの両方を備えていれば、第1の光源の光量と、第2の光源の光量と、のバランスを図ることもできる。
【0019】
本開示の第9の形態によれば、第1ないし第8のいずれかの形態において、マーキングは、第1の色を有するとともに一定の大きさを有する少なくとも一つの第1の単位領域と、第1の色とは異なる第2の色を有するとともに、一定の大きさを有する少なくとも一つの第2の単位領域と、を少なくとも含む。マーキングは、第1の単位領域と第2の単位領域とが、予め定められた出現パターンで、一次元的または二次元的に並ぶように構成される。単位領域とは、予め定められた一定の大きさおよび形状を有する領域である。
【0020】
第9の形態が第2の形態と組み合わせられる場合、例えば、予め定められた出現パターンを検出できるか否か、または、予め定められた出現パターンをどの位置で検出できるかに基づいて、光学センサの状態を容易に検出することができる。第1の単位領域と第2の単位領域とが一次元的に並ぶ場合には、マーキング関連光に基づいて、第1の単位領域と第2の単位領域との並び方向における光学センサの位置ずれの量を検出することができる。第1の単位領域と第2の単位領域とが二次元的に並ぶ場合には、複数の出現パターンのうちのいずれの出現パターンが検出されるかに基づいて、および、当該出現パターンがどの位置で検出されるかに基づいて、位置ずれの量と、位置ずれの方向と、を検出することができる。
【0021】
移送経路が第1の方向に延在し、被選別物が、第1の方向と直交する第2の方向の所定幅で第1の方向に移送される場合、第1の単位領域と第2の単位領域とは、第2の方向に一次元的に並んでいてもよい。あるいは、第1の単位領域と第2の単位領域とは、第1の方向および第2の方向に二次元的に並んでいてもよい。この場合、第2の方向における第1の単位領域および第2の単位領域の出現パターンは、第1の方向における第1の単位領域および第2の単位領域の並び位置ごとに互いに異なっていてもよい。この構成によれば、検出される出現パターンの位置および種類に基づいて、位置ずれの量と、位置ずれの方向と、を容易に検出することができる。
【0022】
本開示の第10の形態によれば、第9の形態において、マーキングは、一次元または二次元のコードである。つまり、マーキングは、何らかの情報を表すために、予め定められた体系に基づいて作成された印である。この形態によれば、第10の形態が第2の形態と組み合わせられる場合、コードが表す情報を読み取れるか否かに基づいて、光学センサの状態(例えば、位置ずれの有無、フォーカスずれの有無)を容易に検出できる。さらに、マーキングが二次元のコードである場合には、どのような情報が読み取れたかに基づいて、位置ずれの量を検出できる。
【0023】
本開示の第11の形態によれば、光学式選別機が提供される。この光学式選別機は、第1の形態の光学センサに代えて、光源から照射され、被選別物に関連付けられた光を検出するように構成された第1の光学センサと、光源から照射され、マーキングを介して得られるマーキング関連光を検出するように構成された第2の光学センサと、を備えている。この形態によっても、第1の形態と同様の効果が得られる。第2ないし第10のいずれかの形態を第11の形態と組み合わせることも可能である。第2の形態を第11の形態と組み合わせる場合には、検出部は、第2の光学センサの状態を検出するように構成される。
【0024】
本開示の第12の形態によれば、光学式選別機が提供される。この光学式選別機は、
移送経路上を移送中の被選別物に光を照射するように構成された光源と、光源から照射され、被選別物に関連付けられた光を検出するように構成された光学センサと、被選別物に関連付けられた光に関して光学センサによって取得される信号に基づいて、被選別物についての品質の判定を行うように構成された判定部と、光源から被選別物への光の照射方向における光源と移送経路との間の位置であって、被選別物に関連付けられた光の検出に影響しない位置に配置され、マーキングを有する中間部材と、を備えている。光学センサは、さらに、光源から照射され、マーキングを介して得られるマーキング関連光を検出するように構成される。マーキングは、複数の領域を備えている。複数の領域の各々は、マーキング関連光に基づいて判定部の判定性能を確保するための少なくとも一つ以上の機能を提供するように構成される。この光学式選別機によれば、複数の領域の各々によって、判定部の判定性能、ひいては選別精度を向上させるための種々の処理を実施することが可能になる。
【0025】
本開示の第13の形態によれば、第12の形態において、少なくとも一つの機能は、光源の光量検出機能、光学センサの位置ずれ検出機能、光学センサのフォーカスずれ検出機能、および、光学センサのホワイトバランス確認機能のうちの少なくとも一つを含む。
【0026】
本開示の第14の形態によれば、第13の形態において、光学センサは、直線状に配列された複数の受光素子を備えている。そのような光学センサは、ラインセンサであってもよいし、エリアセンサであってもよい。複数の領域の少なくとも一部は、光学センサの位置ずれ検出機能を提供するように構成された第1の領域を含む。第1の領域は、色の違いによって識別可能な小領域を備えている。複数の光学素子の配列方向における小領域の幅は、配列方向と交差する方向の位置に応じて一意に設定される。「配列方向と交差する方向」は、配列方向と直交する方向であってもよい。この形態によれば、マーキング関連光に基づいて光学センサの位置ずれを容易に検出できる。具体的には、光学センサが配列方向と交差する方向にずれた場合には、光学センサによって検出される小領域の幅に基づいて、ずれの方向および量を把握できる。また、光学センサが配列方向にずれた場合には、光学センサによって検出される小領域の始点および/または終点の位置に基づいて、ずれの方向および量を把握できる。第14の形態は、第12の形態とは独立して実施することも可能である。例えば、マーキングとして、上記の小領域のみが単独で使用されてもよい。
【0027】
本開示の第15の形態によれば、第13または第14の形態において、複数の領域の少なくとも一部は、フォーカスずれ検出機能を提供するように構成された第2の領域を含む。第2の領域は、色の違いによって識別可能な小領域を備えている。この形態によれば、光学センサのフォーカスずれを容易に検出できる。例えば、第2の領域に対応するマーキング関連光の画像データにおける、小領域の境界を表すエッジの検出状況に基づいて、光学センサのフォーカスずれが検出されてもよい。この場合、予め定められた程度のシャープなエッジが検出された場合は、フォーカスずれが発生していないと判断されてもよく、当該シャープなエッジが検出されない場合は、フォーカスずれが発生していると判断されてもよい。あるいは、第2の領域に対応するマーキング関連光の画像データにおける、小領域の検出状況に基づいて、光学センサのフォーカスずれが検出されてもよい。この場合、例えば、サイズ(例えば、幅)が小さい小領域を設定しておき、当該小領域が検出された場合は、フォーカスずれが発生していないと判断されてもよく、当該小領域が検出されない場合は、フォーカスずれが発生していると判断されてもよい。また、当該小領域は、線の形態であってもよい。例えば、第2の領域は、第1の線と、第1の線よりも細い第2の線と、を有していてもよい。この場合、第1の線および第2の線は、光学センサが被選別物の検出位置で合焦しているときに、光学センサで第1の線を検出できるが、第2の線を検出できず、光学センサがマーキングの位置で合焦しているときに、光学センサで第1の線および第2の線の両方を検出できる太さに設定されてもよい。第15の形態は、第12の形態とは独立して実施することも可能である。例えば、マーキングとして、第2の領域のみが単独で使用されてもよい。
【0028】
本開示の一形態によれば、光学センサは、直線状に配列された複数の受光素子を有するラインセンサまたはエリアセンサである。中間部材は、複数の受光素子が配列される方向と直交する任意の方向に見て、移送経路と重複しない位置に配置される。複数の受光素子は、移送中の被選別物に関連付けられた光を検出するが、マーキング関連光を検出しない受光素子と、移送中の被選別物に関連付けられた光を検出しないが、マーキング関連光を検出する受光素子と、を含む。
【図面の簡単な説明】
【0029】
図1】第1実施形態による光学式選別機の概略構成を示す模式図である。
図2】光源と中間部材と光学センサとの位置関係を示す模式図である。
図3】中間部材の断面図である。
図4】中間部材が有するマーキングの一例を示す図である。
図5】第2実施形態によるマーキングを示す図である。
図6】様々なマーキングの例を示す図表である。
【発明を実施するための形態】
【0030】
図1は、第1実施形態としての光学式選別機(以下、単に選別機と呼ぶ)10の概略構成を示す模式図である。本実施形態では、選別機10は、被選別物90としての米粒(より具体的には、玄米または精白米)から異物(例えば、小石、泥、ガラス片など)および不良品(例えば、未熟粒、着色粒など)を選別するために使用される。ただし、被選別物90は、玄米または精白米に限られるものではなく、任意の粒状物であってもよい。例えば、被選別物90は、籾、麦粒、豆類(大豆、ひよこ豆、枝豆など)、樹脂(ペレット等)、ゴム片等であってもよい。
【0031】
図1に示すように、選別機10は、光学検出部20と、貯留タンク71と、フィーダ72と、シュート73と、良品排出樋74と、不良品排出樋75と、選別部76と、コントローラ80と、を備えている。コントローラ80は、選別機10の動作全般を制御する。コントローラ80は、判定部81、検出部82、第1の補正部83、第2の補正部84、色補正部85およびキャリブレーション部86としても機能する。コントローラ80の機能は、所定のプログラムをCPUが実行することによって実現されてもよいし、専用回路によって実現されてもよいし、これらの組み合わせによって実現されてもよい。コントローラ80の各機能は、一体的な一つの装置によって実現されてもよい。例えば、コントローラ80の各機能が、一つのCPUによって実現されてもよい。あるいは、コントローラ80の各機能は、少なくとも二つの装置に分散配置されてもよい。コントローラ80の機能の詳細については後述する。
【0032】
貯留タンク71は、被選別物90を一時的に貯留する。フィーダ72は、貯留タンク71に貯留された被選別物90を、被選別物移送手段の一例としてのシュート73上に供給する。シュート73上に供給された被選別物90は、シュート73上を下方に向けて滑走し、シュート73下端から落下する。シュート73は、多数の被選別物90を同時に落下させることができる所定幅を有している。以下の説明では、シュート73から落下した後の被選別物90の移送経路95(換言すれば、被選別物90の落下軌道)が延在する方向を第1の方向D1とも呼ぶ。また、シュート73の幅方向(換言すれば、シュート73の底面上における被選別物90の落下方向に直交する方向)を第2の方向D2とも呼ぶ。第2の方向D2は、第1の方向D1と直交している。
【0033】
光学検出部20は、シュート73から滑り落ちた被選別物90に対して光を照射し、被選別物90に関連付けられた光(具体的には、被選別物90を透過した透過光、および、被選別物90で反射した反射光)を検出する。光学検出部20からの出力、すなわち、検出された光の強度を表すアナログ信号は、AC/DCコンバータ(図示省略)によって、所定のゲインで増幅され、さらに、デジタル信号に変換される。このデジタル信号(換言すれば、アナログ信号に対応する階調値)は、コントローラ80に入力される。コントローラ80は、入力された光の検出結果(つまり画像)に基づいて、判定部81の処理として、被選別物90が良品(つまり、品質が相対的に高い米粒)であるか、それとも、異物(つまり、米粒ではないもの)ないし不良品(つまり、品質が相対的に低い米粒)であるかを判定する。この判定は、被選別物90の各々について行われる。この判定には、公知の任意の判定手法を採用可能である。この判定は、典型的には、画像データの階調値と、予め定められた閾値と、を比較することによって行われる。
【0034】
異物または不良品であると判定された被選別物90は、選別部76によって選別される。具体的には、選別部76は、被選別物90に向けてエア78を噴射するエジェクタ77を備えている。異物または不良品であると判定された被選別物90は、エア78によって吹き飛ばされ、シュート73からの落下軌道(つまり、移送経路95)から逸脱して不良品排出樋75に導かれる(図1に被選別物91として示す)。一方、良品であると判定された被選別物90には、エア78は噴射されない。このため、良品であると判定された被選別物90は、落下軌道を変えることなく、良品排出樋74に導かれる(図1に被選別物92として示す)。
【0035】
以下、光学検出部20およびコントローラ80の機能の詳細について説明する。図1に示すように、光学検出部20は、第1の光源30aと第1の光学センサ40aと第2の光源30bと第2の光学センサ40bとを備えている。第1の光源30aおよび第1の光学センサ40aは、被選別物90の移送経路95に対して一方側(フロント側とも呼ぶ)に配置されている。第2の光源30bおよび第2の光学センサ40bは、被選別物90の移送経路95に対して他方側(リア側とも呼ぶ)に配置されている。「フロント側」は、特許請求の範囲における「第1の側」の一例として捉えてもよく、「リア側」は、特許請求の範囲における「第2の側」の一例として捉えてもよい。逆に、「フロント側」を特許請求の範囲における「第2の側」の一例として捉えてもよく、「リア側」を特許請求の範囲における「第1の側」の一例として捉えてもよい。
【0036】
第1の光源30aは、移送経路95上を移送中の(つまり、シュート73から落下中の)被選別物90に光31aを照射する。同様に、第2の光源30bは、移送中の被選別物90に光31bを照射する。第1の光源30aは、単一の基板上に複数の発光素子32aが搭載された光源ユニットである。本実施形態では、発光素子32aとしてLEDが使用される。このため、発光素子32aをLED32aとも呼ぶ。複数のLED32aは、赤色の光を放出するLEDと、青色の光を放出するLEDと、緑色の光を放出するLEDと、を含んでいる。第2の光源30bは、第1の光源30aと同一の構成を有しており、複数のLED32bを備えている。
【0037】
図1では、第1の光源30aおよび第2の光源30bの各々の数は一つであるものとして示されているが、第1の光源30aおよび第2の光源30bの少なくとも一方は、複数であってもよい。例えば、二つの第1の光源30aが、移送経路95上の検出位置に対する上側と下側とにそれぞれ配置されてもよい。同様に、二つの第2の光源30bが、移送経路95上の検出位置に対する上側と下側とにそれぞれ配置されてもよい。
【0038】
第1の光学センサ40aおよび第2の光学センサ40bは、第1の光源30aおよび第2の光源30bから照射され、被選別物90に関連付けられた光を検出する。具体的には、フロント側の第1の光学センサ40aは、フロント側の第1の光源30aから照射され、被選別物90で反射した光31aと、リア側の第2の光源30bから照射され、被選別物90を透過した光31bと、を検出可能である。リア側の第2の光学センサ40bは、リア側の第2の光源30bから照射され、被選別物90で反射した光31bと、フロント側の第1の光源30aから照射され、被選別物90を透過した光31aと、を検出可能である。
【0039】
第1の光学センサ40aは、本実施形態では、直線状に配列された複数の受光素子41aを有するラインセンサである。ただし、第1の光学センサ40aは、エリアセンサであってもよい。複数の受光素子41aは、第2の方向D2(つまり、シュート73の幅方向)に配列されている。このため、第1の光学センサ40aは、シュート73の所定幅にわたって移送される多数の被選別物90を同時に撮像することができる。また、第1の光学センサ40aは、本実施形態では、カラーCCDセンサであり、赤色光、緑色光および青色光をそれぞれ個別に検出可能である。ただし、第1の光学センサ40aは、カラーCMOSセンサなどの他の形式のセンサであってもよい。本実施形態では、第2の光学センサ40bは、第1の光学センサ40aと同一の構成を有しており、第2の方向D2に配列された複数の受光素子41bを備えている。ただし、第1の光学センサ40aと第2の光学センサ40bとは互いに異なる構成を有していてもよい。
【0040】
光学検出部20は、さらに、透明部材21a,21bを備えている。透明部材21aは、フロント側において、第1の光源30aおよび第1の光学センサ40aと、移送経路95と、を仕切っている。これにより、第1の光源30aおよび第1の光学センサ40aと、移送経路95と、が互いに隔離され、移送経路95から飛散する粉塵が第1の光源30aおよび第1の光学センサ40aへ付着することが防止される。同様に、透明部材21bは、リア側において、第2の光源30bおよび第2の光学センサ40bと、移送経路95と、を仕切っている。
【0041】
光学検出部20は、さらに、フロント側およびリア側に中間部材50をそれぞれ備えている。フロント側の中間部材50は、第1の光源30aから被選別物90への光31aの照射方向における第1の光源30aと移送経路95との間の位置に配置される。リア側の中間部材50は、第2の光源30bから被選別物90への光31bの照射方向における第2の光源30bと移送経路95との間に配置される。
【0042】
図2は、第1の光源30aおよび第2の光源30bと、中間部材50と、第1の光学センサ40aおよび第2の光学センサ40bと、の第2の方向D2における位置関係を示す模式図である。図示する位置関係は、フロント側とリア側とで同じであるから、以下では、主にフロント側について説明する。図2に示すように、フロント側では、第1の光学センサ40aの複数の受光素子41aが配列される第2の方向D2に、複数(図示する例では18個)の発光素子32aが配列されている。
【0043】
図2に示す「V1」は、第1の光学センサ40aの第2の方向D2の総視野を表している。また、図2に示す「V2」は、原料視野、すなわち、被選別物90が撮像され得る範囲を示している。原料視野V2の幅は、シュート73の幅(換言すれば、移送経路95の幅)に相当する。複数の受光素子41aは、第2の方向D2において原料視野V2よりも外側に延在するように配列されている。これによって、第2の方向D2における原料視野V2の両脇には、第1の光学センサ40aの非原料視野V3が確保されている。
【0044】
中間部材50は、透明部材21aのうちの、非原料視野V3に相当する領域に配置されている。つまり、中間部材50は、被選別物90に関連付けられた光を第1の光学センサ40aが検出することに影響しない位置に配置されている。この位置は、換言すれば、第2の方向D2と直交する任意の方向に見て、移送経路95と重複しない位置である。本実施形態では、中間部材50は、第2の方向D2における移送経路95の両脇に配置されている。
【0045】
フロント側のこの中間部材50は、フロント側の第1の光源30aから照射される光31aを反射する。中間部材50で反射した光31aは、第1の光学センサ40a(より具体的には、非原料視野V3に相当する受光素子41a)によって検出される。中間部材50は、原料視野V2と非原料視野V3との境界よりも、第2の方向D2の外側に位置しているので、中間部材50での反射光は、原料視野V2に相当する受光素子41aによって検出されることはない。逆に、被選別物90に関連付けられた光は、非原料視野V3に相当する受光素子41aによって検出されることはない。同様に、リア側の中間部材50は、リア側の第2の光源30bから照射される光31bを反射する。中間部材50で反射した光31bは、第2の光学センサ40b(より具体的には、非原料視野V3に相当する受光素子41b)によって検出される。
【0046】
この説明から明らかなように、第1の光学センサ40aは、被選別物90に関連付けられた光の検出と、中間部材50で反射した光31aの検出と、に共用される。同様に、第2の光学センサ40bは、被選別物90に関連付けられた光の検出と、中間部材50で反射した光31bの検出と、に共用される。
【0047】
本実施形態では、中間部材50は、透明部材21a,21bに貼り付け可能なシート状部材の形態である。つまり、中間部材50は、片面に接着剤を有するシート状部材である。このため、選別機10の装置構成を簡素化できる。また、製造も容易であり、製造コストも安価となる。ただし、中間部材50は、任意の形態で実現可能である。例えば、中間部材50は、板状部材であってもよい。この場合、中間部材50は、透明部材21a,21bから離間して配置されてもよい。
【0048】
図3は中間部材50の断面図である。図3では、透明部材21bに貼り付けたリア側の中間部材50を示している。図示するように、リア側の中間部材50は2層構造を有している。具体的には、この中間部材50は、移送経路95側に位置する第1の層51と、移送経路95と反対側に位置する第2の層52と、を備えている。第1の層51は、光非透過性を有している。このため、リア側の中間部材50の第1の層51は、フロント側の第1の光源30aからの光31aが移送経路95側から中間部材50を透過して第2の光学センサ40bに到達することを実質的に防止する。図示は省略するが、同様に、透明部材21aに貼り付けたフロント側の中間部材50も、移送経路95側に位置するとともに光非透過性を有する第1の層51と、移送経路95と反対側に位置する第2の層52と、を有している。このため、フロント側の中間部材50の第1の層51は、リア側の第2の光源30bからの光31bが移送経路95側から中間部材50を透過して第1の光学センサ40aに到達することを実質的に防止する。
【0049】
第2の層52は、少なくとも部分的に、光反射性を有する材料から形成されている。フロント側の中間部材50の第2の層52は、第1の光源30aから照射される光31aを反射し、リア側の中間部材50の第2の層52は、第2の光源30bから照射される光31bを反射する。
【0050】
本実施形態では、図3に示すように、中間部材50は、透明部材21a,21bに対して移送経路95と反対側に配置される。このため、中間部材50は、被選別物90の移送に伴って発生する粉塵の影響を受けない。しかも、第1の層51の露出面(つまり、第2の層52と反対側の面)が中間部材50の透明部材21a,21bとの接着面となり、第2の層52の露出面(つまり、光31bを反射する反射面)は、接着剤を有さない。このため、接着剤が第2の層52の反射性能を阻害するおそれがない。ただし、中間部材50は、透明部材21a,21bに対して移送経路95側に配置されてもよい。この場合であっても、第2の層52の反射面は、透明部材21a,21bに密着することになるので、粉塵の影響を受けない。
【0051】
中間部材50(より具体的には、第2の層52)は、その表面(具体的には、移送経路95と反対側の表面)にマーキング53を有している。このため、中間部材50で反射して第1の光学センサ40aによって検出される光31a、および、中間部材50で反射して第2の光学センサ40bによって検出される光31bの各々は、マーキング53を介して得られる光(換言すれば、マーキング53での反射光)であるとも言える。マーキング53を介して得られるこのような光をマーキング関連光とも呼ぶ。マーキング53は、例えば、第2の層52の表面に印刷されていてもよい。
【0052】
図4は、マーキング53の一例を示す図である。図4は、第1の方向D1と第2の方向D2とに直交する方向に見たマーキング53を示している。図4に示す例では、マーキング53は、複数の単位領域UAによって構成されている。単位領域UAは、予め定められた一定の大きさおよび形状を有している。図4では、単位領域UAの大きさおよび形状を右下に示している。単位領域UAは、図4に示す例では正方形であるが、任意の形状とすることができる。マーキング53は、第1の色を有する第1の単位領域54と、第2の色を有する第2の単位領域55と、を含んでいる。本実施形態では、第1の色は黒であり、第2の色は白である。第1の単位領域54および第2の単位領域55は、予め定められた出現パターンで、第1の方向D1および第2の方向D2に二次元的に並ぶように構成される。
【0053】
本実施形態では、図4に示すように、第1の単位領域54および第2の単位領域55の第2の方向D2における出現パターンは、第1の方向D1における第1の単位領域54および第2の単位領域55の並び位置(図4に位置P1~P19として示す)ごとに異なっている。
【0054】
上述した選別機10によれば、マーキング関連光を利用して、選別精度を向上させるための種々の処理を実施することが可能である。以下、そのような処理について説明する。まず、コントローラ80は、検出部82の処理として、マーキング関連光の検出結果に基づいて、第1の光学センサ40aおよび第2の光学センサ40bの状態を検出するように構成される。フロント側の第1の光学センサ40aの状態は、フロント側の透明部材21aに貼り付けられた中間部材50のマーキング53を介して得られるマーキング関連光に基づいて検出される。リア側の第2の光学センサ40bの状態は、リア側の透明部材21bに貼り付けられた中間部材50のマーキング53を介して得られるマーキング関連光に基づいて検出される。
【0055】
検出部82によって検出される第1の光学センサ40aおよび第2の光学センサ40bの状態には、第1の光学センサ40aおよび第2の光学センサ40bの設置位置に関連する状態が含まれる。このような設置位置に関連する状態には、第1の光学センサ40aおよび第2の光学センサ40bの位置ずれの有無、位置ずれの量、位置ずれの方向、および、フォーカスずれの有無のうちの少なくとも一つが含まれ得る。
【0056】
位置ずれの有無、位置ずれの量および方向は、例えば、以下のようにして検出できる。具体例として、第1の光学センサ40aが正常な位置に配置されている場合に、この第1の光学センサ40aによってラインL1上の領域が撮像されると仮定する。この場合、マーキング関連光に基づいて検出された出現パターンが、並び位置P10の出現パターンであるときには、第1の光学センサ40aは、第1の方向D1にずれていないことが検出できる。一方、マーキング関連光に基づいて検出された出現パターンが、並び位置P12の出現パターンであるときには、第1の光学センサ40aが、第1の方向D1(より具体的には、並び位置P1から並び位置P19に向かう方向)にラインL2の位置までずれていることが分かる。このときのずれ量は、単位領域UAの大きさの約2個分(より正確には、単位領域UAの一辺の長さよりも大きく、当該長さの2倍よりも小さい距離)であることが検出される。
【0057】
さらに、第1の光学センサ40aの複数の受光素子41a(これは、第2の方向D2に配列されている)のうちのいずれで、並び位置P1~P19のいずれかの出現パターンが検出されるかに基づいて、第1の光学センサ40aが、第2の方向D2において、どちら側にどれだけずれているかを検出できる。
【0058】
並び位置P1~P19の各々の出現パターンは、選別機10の製造時に、コントローラ80のメモリに記憶されてもよい。また、選別機10の製造段階において第1の光学センサ40aおよび第2の光学センサ40bを適所に取付けた後に第1の光学センサ40aおよび第2の光学センサ40bによって検出されるマーキング関連光から検出される出現パターンを、正常な位置にある第1の光学センサ40aおよび第2の光学センサ40bに対応する出現パターンとして、コントローラ80のメモリに記憶されてもよい。同様に、当該出現パターンを検出した受光素子の位置が、正常な位置にある第1の光学センサ40aおよび第2の光学センサ40bに対応する検出位置として、コントローラ80のメモリに記憶されてもよい。
【0059】
また、フォーカスずれの有無は、例えば、以下のようにして検出できる。一実施形態では、まず、マーキング関連光の画像データ(RAWデータ)が2値化される。この2値化では、フォーカスずれに起因して発生するグレーに対応する画素値が、白に対応する画素値に変換される。そして、パターンマッチングによって、2値化後の画像が表す出現パターンと、予め記憶された複数の出現パターン(つまり、並び位置P1~P19の出現パターン)のいずれかと、が一致するか否かが判断される。2値化によって得られる画像が表す出現パターンが、予め記憶された出現パターンのいずれとも一致しない場合には、フォーカスずれが発生していることを検出できる。代替実施形態では、マーキング関連光の画像データにおいて、予め定められた程度のシャープなエッジが検出されるか否かに基づいて、フォーカスずれが検出されてもよい。
【0060】
本実施形態では、中間部材50は、第2の方向D2における移送経路95の両脇に配置されているので、第1の光学センサ40aまたは第2の光学センサ40bが、第2の方向D2の一方側で、選別精度に影響を与えない程度に僅かにずれて配置されており、他方側で、選別精度に影響を与える程度に大きくずれて配置されている場合であっても、位置ずれを確実に検出できる。
【0061】
第1の光学センサ40aまたは第2の光学センサ40bの位置ずれまたはフォーカスずれが検出部82によって検出された場合、コントローラ80は、検出した内容を、報知部88を介してユーザに報知してもよい。報知部88は、選別機10の操作盤のスクリーン、スピーカ、ライトなどの形態であってもよい。つまり、報知は、スクリーン上での表示、警告音、ライト点灯などの形態で行われ得る。この構成によれば、ユーザは、第1の光学センサ40aまたは第2の光学センサ40bの位置または合焦状態の異常に早期に気付き、異常を解消するための作業を行うことができる。その結果、異常が発生しているにもかかわらず、選別機10の選別運転が継続されて、選別精度が悪化することが抑制される。さらに、コントローラ80が位置ずれの方向や量を報知するように構成される場合には、ユーザは、位置ずれを解消するための調整作業を行う際に、第1の光学センサ40aまたは第2の光学センサ40bの設置位置をどの方向にどの程度移動させればよいかを把握しやすい。第1の光学センサ40aおよび第2の光学センサ40bがオートフォーカス機能を有している場合には、フォーカスずれが検出されたときに、フォーカスずれが自動的に解消されてもよい。
【0062】
本実施形態では、第1の光学センサ40aまたは第2の光学センサ40bの位置ずれが検出された場合、コントローラ80は、さらに、当該位置ずれに起因する選別精度の悪化を抑制するための処理を自動的に行うことができる。この処理は、第1の補正部83および第2の補正部84の少なくとも一方の処理として実行される。
【0063】
まず、第1の補正部83の処理について説明する。選別部76では、シュート73の幅にわたって同時に移送される複数の被選別物90を同時に選別するために、エア78の噴射を制御する複数のバルブ(図示せず)が第2の方向D2に配列されている。そして、第1の光学センサ40aおよび第2の光学センサ40bの第2の方向D2における被選別物90の検出位置ごとに、いずれかのバルブが割り当てられている。換言すれば、第2の方向D2における被選別物90に関連付けられた光が検出される位置(以下、検出位置とも呼ぶ)と、第2の方向D2におけるエア78が噴射されるべき位置(以下、噴射位置とも呼ぶ)と、の対応関係が予め定められている。一つの被選別物90が異物または不良品であると判定されると、当該一つの被選別物90の検出位置に対応する噴射位置からエア78が噴射されることになる。
【0064】
コントローラ80は、第1の補正部83の処理として、第2の方向D2における第1の光学センサ40aまたは第2の光学センサ40bの位置ずれの量に基づいて、検出位置と噴射位置との対応関係を補正する。より具体的には、第1の光学センサ40aまたは第2の光学センサ40bの位置ずれが第2の方向D2に生じると、検出位置と噴射位置との対応関係のうちの検出位置が、当該位置ずれの量だけ位置ずれの方向にずれることになる。そこで、位置ずれの方向と反対の方向に、位置ずれの量だけ、検出位置に対応する噴射位置をずらす補正が行われる。これによって、対応関係は元の正常な状態に戻ることになる。第1の補正部83によれば、第1の光学センサ40aまたは第2の光学センサ40bの位置が第2の方向D2にずれたとしても、当該位置ずれに起因して選別精度が悪化することを自動的に抑制できる。
【0065】
次いで、第2の補正部84の処理について説明する。第1の方向D1において、エジェクタ77からのエア78によって被選別物90の軌道を変更する位置(以下、軌道変更位置とも呼ぶ)は、第1の光学センサ40aおよび第2の光学センサ40bの検出位置よりも下方にある。このため、選別部76は、異物または不良品を第1の光学センサ40aまたは第2の光学センサ40bによって検出してから、所定の時間だけ遅れたタイミングで、当該異物または不良品に向けてエア78を噴射するように構成される。この時間差は、一般的に、遅れ噴射時間とも称される。遅れ噴射時間は、予め定められている。遅れ照射時間は、一定値として予め定められていてもよいし、任意のパラメータ(例えば、被選別物90の種類、被選別物90の実測された落下速度など)に基づいて可変となるように予め定められていてもよい。
【0066】
コントローラ80は、第2の補正部84の処理として、第1の方向D1における第1の光学センサ40aまたは第2の光学センサ40bの位置ずれの量に基づいて、上述の遅れ噴射時間を補正する。例えば、第1の光学センサ40aまたは第2の光学センサ40bが、正常な位置から第1の方向D1の下方にずれている場合には、位置ずれが生じていない場合と比べて、第1の光学センサ40aまたは第2の光学センサ40bによる被選別物90の検出位置と、軌道変更位置と、の距離が小さくなる。このため、コントローラ80は、第1の方向D1のずれ量に応じて、遅れ噴射時間を短縮する。逆に、第1の光学センサ40aまたは第2の光学センサ40bが、正常な位置から第1の方向D1の上方にずれている場合には、コントローラ80は、第1の方向D1のずれ量に応じて、遅れ噴射時間を延長する。
【0067】
遅れ噴射時間は、第1の方向D1における第1の光学センサ40aまたは第2の光学センサ40bの位置ずれの量を変数とする関数を用いて、補正されてもよい。この関数は、実験によって予め定められ、コントローラ80のメモリに記憶されていてもよい。あるいは、第1の光学センサ40aまたは第2の光学センサ40bによる被選別物90の正常な検出位置と軌道変更位置との距離、シュート73の傾斜角度、被選別物90の移送速度(これは、実測されてもよいし、実験によって予め定められていてもよい)、第1の方向D1における第1の光学センサ40aまたは第2の光学センサ40bの位置ずれの量などに基づいて、物理学的な計算によって算出されてもよい。第2の補正部84によれば、第1の光学センサ40aまたは第2の光学センサ40bの位置が第1の方向D1にずれたとしても、当該位置ずれに起因して選別精度が悪化することを自動的に抑制できる。
【0068】
本実施形態では、位置ずれ量は、第2の方向D2における移送経路95の両脇で検出される。そこで、一方側の検出量と他方側の検出量とが異なる場合には、例えば、両側の検出量の平均値を使用して、第1の補正部83および第2の補正部84の処理が行われてもよい。
【0069】
上述した検出部82、第1の補正部83および第2の補正部84の処理は、選別機10の製造時または初期使用時に、初期調整として実行されてもよい。あるいは、これらの処理は、選別機10の使用時(つまり、選別運転時)に所定のタイミングで行われてもよい。第1の光学センサ40aおよび第2の光学センサ40bの設置位置は、選別機10の運搬時に受ける衝撃などに起因してずれる可能性があるが、後者の場合には、このような出荷後の位置ずれにも好適に対応できる。また、第1の補正部83および第2の補正部84の処理は、位置ずれを検出したときに自動的に実行されてもよいし、あるいは、手動操作で実行されてもよいし、あるいは、位置ずれの発生を報知した後、所定の期間、ユーザ操作がなされないときに実行されてもよい。
【0070】
さらに、本実施形態では、コントローラ80は、色補正部85の処理として、マーキング関連光の検出結果に基づいて、被選別物90に関連付けられた光の検出結果に対して色補正を行うように構成される。具体的には、コントローラ80は、黒色の第1の単位領域54の撮像結果に基づいて、ダーク補正を行うことができる。具体的には、第1の単位領域54の画像データの色階調値の代表値(例えば、色階調値の平均値)が黒レベルとして利用され得る。
【0071】
さらに、コントローラ80は、白色の第2の単位領域55の撮像結果に基づいて、ホワイトバランス補正を行うことができる。例えば、画像が256階調で表現される場合には、第1の単位領域54の画像データの色階調値の代表値が階調値0に対応し、第2の単位領域55の画像データの色階調値の代表値が階調値255に対応するように、線形的なホワイトバランス補正が行われてもよい。このような色補正処理は、例えば、選別機10の選別運転開始時に行われてもよい。色補正部85によれば、第1の光学センサ40aおよび第2の光学センサ40b、または、第1の光源30aおよび第2の光源30bを交換したときに、交換前の光検出性能に近づけることができる。この点は、交換前の部品の型番が生産中止になっており、代用品を新たに取り付ける場合には、特に有効である。
【0072】
さらに、上述の選別機10によれば、マーキング関連光(より具体的には、第2の単位領域55の撮像結果)に基づいて、第1の光源30aおよび第2の光源30bの光量を検出できる。マーキング53を有する中間部材50は、被選別物90に関連付けられた光の検出に影響しない位置に配置されるので、選別機10の選別運転中に第1の光源30aおよび第2の光源30bの光量をリアルタイムで検出することができる。しかも、第1の光源30aおよび第2の光源30bの光量を検出するための追加的な光学センサを必要としない。
【0073】
中間部材50の第1の層51は、上述の通り、光非透過性を有している。このため、フロント側の第1の光学センサ40aでマーキング関連光を検出する際に、フロント側の第1の光源30aからの光31aと一緒に、リア側の第2の光源30bからの光31bが第1の光学センサ40aで検出されることがない。したがって、第2の光源30bから照射される光31bの影響を受けることなく、第1の光源30aの光量を正確に検出することができる。同様に、第1の光源30aから照射される光31aの影響を受けることなく、第2の光源30bの光量を正確に検出することができる。換言すれば、第1の光源30aおよび第2の光源30bのうちの一方のみに光量変動が生じても、第1の光源30aの光量と、第2の光源30bの光量と、を別々に正確に検出できる。第1の層51の光非透過性は、マーキング53の形状をより正確に検出すること、ひいては、第1の光学センサ40aおよび第2の光学センサ40bの状態をより正確に検出することにも貢献する。
【0074】
選別機10によれば、第2の方向D2における移送経路95の両脇で、中間部材50を利用して、第1の光源30aおよび第2の光源30bの光量を検出できる。したがって、片側のみで光量を検出する場合と比べて、第1の光源30aおよび第2の光源30bの光量の局所的な傾向を把握しやすい。例えば、第2の方向D2における一方側のみに光量異常が発生した場合に、当該異常を把握しやすい。
【0075】
本実施形態では、選別機10では、さらに、選別精度を向上するために、マーキング関連光を利用して検出される第1の光源30aおよび第2の光源30bの光量に基づいて、キャリブレーションおよび報知を行うことができる。以下、その構成について説明する。本実施形態では、キャリブレーションは、コントローラ80のキャリブレーション部86の処理として、選別機10の選別運転中に繰り返し実行される。具体的には、キャリブレーション部86は、まず、上述のようにマーキング関連光を利用して取得された第1の光源30aおよび第2の光源30bの光量を取得する。この光量は、RGB色成分ごとに取得される。また、この光量は、第2の方向D2の一方側および他方側のそれぞれについて取得される。取得される光量は、非原料視野V3に相当する複数の受光素子41aまたは受光素子41bでの検出結果のうち、白色の第2の単位領域55の検出結果の統計値(例えば、平均値、中央値など)であってもよい。
【0076】
次いで、キャリブレーション部86は、取得された光量が第1の範囲内にあるか否かを判断する。第1の範囲は、RGB色成分ごとに予め設定されてもよい。この第1の範囲は、第1の閾値TH1と第2の閾値TH2とによって境界付けられる範囲であり、理想の光量を表す基準値がこの第1の範囲内に含まれる。例えば、第1の閾値TH1は、基準値に対してマイナス30%の値として設定されてもよく、第2の閾値TH2は、基準値に対してプラス30%の値として設定されてもよい。
【0077】
判断の結果、光量が第1の範囲から外れた色成分が存在するときは、コントローラ80は、報知部88を介してユーザに光量異常を報知する。この構成によれば、選別機10の選別運転中にリアルタイムで第1の光源30aまたは第2の光源30bの光量異常を報知できる。したがって、ユーザは、第1の光源30aまたは第2の光源30bの光量異常に早期に気付くことができる。その結果、光源異常が発生しているにもかかわらず、選別機10の選別運転が継続されて、選別精度が悪化することが抑制される。
【0078】
一方、RGB色成分の全てについて光量が第1の範囲内であれば、次いで、キャリブレーション部86は、取得された光量が第2の範囲内にあるか否かを判断する。第2の範囲は、RGB色成分ごとに予め設定されてもよい。この第2の範囲は、第3の閾値TH3(TH1<TH3)と第4の閾値TH4(TH4<TH2)とによって境界付けられる範囲であり、基準値がこの第2の範囲内に含まれる。そして、判断の結果、取得された光量が第2の範囲内になければ、キャリブレーション部86は、キャリブレーションを実行する。ここでのキャリブレーションとは、検出された光量に応じて第1の光源30a,第2の光源30bの光量を調節する処理である。具体的には、キャリブレーション部86は、色成分ごとに、対応する受光素子41a,41bによる検出結果に基づいて、対応する発光素子32a,32bの光量を調節する。また、本実施形態では、光量は、第2の方向D2における移送経路95の両脇で検出されるので、第2の方向D2における一方側での光量検出結果に基づいて、当該一方側に位置する発光素子32a,32bの光量が調節され、同様に、第2の方向D2における他方側での光量検出結果に基づいて、当該他方側に位置する発光素子32a,32bの光量が調節される。光量の調節によってキャリブレーションを行えば、ノイズを増幅することなく、第1の光源30a,第2の光源30bの光量の変動を補償できる。
【0079】
本実施形態では、コントローラ80は、PWM制御によって、発光素子32a,32bの光量を調節する。より具体的には、選別機10の出荷時には、コントローラ80は、デューティ比50%で発光素子32a,32bに電圧を印加するように設定されている。そして、キャリブレーション部86は、デューティ比を増減させることによって、発光素子32a,32bの光量の変動を補償する。つまり、キャリブレーション部86は、発光素子32a,32bの光量が基準値よりも多いときには、光量が基準値となるようにデューティ比を低減し、発光素子32a,32bの光量が基準値よりも少ないときには、光量が基準値となるようにデューティ比を増大させる。デフォルトのデューティ比を100%未満とすることによって、光量が基準値よりも多いとき、および、基準値よりも少ないときの両方に対応できる。なお、デューティ比を変更しても、光量が基準値に達しないときは、コントローラ80は、報知部88を介して報知を行う。
【0080】
一方、取得された光量が第2の範囲内にあれば、キャリブレーション部86は、キャリブレーションを実行しないと決定する。つまり、光量の変動が、キャリブレーションを行う必要が無い程度に小さい場合には、キャリブレーションの実行は控えられる。この形態によれば、コントローラ80の負荷を低減できる。
【0081】
キャリブレーション部86によれば、選別機10の選別運転中に第1の光源30aおよび第2の光源30bの少なくとも一方の光量の変動が生じても、当該変動をリアルタイムで補償できる。しかも、上述した中間部材50によって、第1の光源30aおよび第2の光源30bの各々の光量を別々に正確に検出できるので、キャリブレーションの精度も高くなる。そして、第1の光学センサ40aによって取得される信号の強度と、第2の光学センサ40bによって取得される信号の強度とが、同一の基準範囲内に収まるようにキャリブレーションを行うことができる。このため、判定部81による判定精度が向上する。
【0082】
さらに、キャリブレーション部86によれば、第1の光源30aおよび第2の光源30bの光量変動の程度が、キャリブレーションによって判定精度を適正に確保できる程度であれば、キャリブレーションが実行され、判定精度を適正に確保できない程度であれば、光量異常が報知される。このため、光量変動の程度に応じて、適切な措置をとることができる。
【0083】
代替実施形態では、キャリブレーション部86は、検出された光量が第1の範囲内であれば、キャリブレーションを実行する。つまり、検出された光量と基準値との差が、光量異常を報知する必要が無い程度であれば、当該差が非常に小さい場合であっても、キャリブレーションが行われる。この形態によれば、第1の光源30aおよび第1の光学センサ40aの光量の変動を、より厳密に補償することができる。
【0084】
さらなる代替実施形態では、キャリブレーション部86は、発光素子32a,32bの光量を調節する態様に代えて、原料視野V2に相当する受光素子41a,41bによって取得される信号についてのゲインを調節することによって、キャリブレーションを実行する。つまり、キャリブレーション部86は、発光素子32a,32bの光量が基準値よりも多いときには、その比率分だけゲインを低減し、発光素子32a,32bの光量が基準値よりも少ないときには、その比率分だけゲインを増大させる。ゲインの変更は、本実施形態では、AC/DCコンバータでのゲインを変更することによって行われるが、第1の光学センサ40aおよび第2の光学センサ40bが増幅回路を内蔵している場合は、当該増幅回路のゲインが変更されてもよい。この形態によれば、第1の光源30aおよび第2の光源30bの光量調節能力に関係なく、第1の光源30aおよび第2の光源30bの光量の変動を補償できる。
【0085】
さらなる代替実施形態では、キャリブレーション部86は、発光素子32a,32bの光量を調節する態様と、ゲインを調節する態様と、を組み合わせて、キャリブレーションを実行する。例えば、デフォルトのデューティ比を100%に設定しておいてもよい。この場合、キャリブレーション部86は、発光素子32a,32bの光量が基準値よりも多いときには、光量が基準値となるようにデューティ比を低減させ、発光素子32a,32bの光量が基準値よりも少ないときには、その比率分だけゲインを増大させる。この形態によれば、発光素子32a,32bの光量が適正な範囲内であるときに、光量を十分に確保できる。あるいは、デフォルトのデューティ比を100%未満(例えば、90%)に設定しておき、デューティ比を100%に増大させても光量が基準値に達しないときに、不足分の光量に関してゲインの調節が行われてもよい。
【0086】
上述したキャリブレーション処理および報知処理は、任意のタイミングで実施可能である。例えば、これらの処理は、選別機10の選別運転中に代えて、または、加えて、選別機10の運転開始前に行われてもよい。さらに、選別機10が、ワイパーによって透明部材21a,21bを清掃可能に構成されており、かつ、選別処理を一時的に中断して清掃を行うように構成されている場合には、キャリブレーション処理および報知処理が当該清掃時に行われてもよい。
【0087】
上述した選別機10において、マーキング53の単位領域UAの大きさは、複数の受光素子41a,41bの各々の視野の大きさと同程度に設定されてもよい。こうすれば、第1の光学センサ40aおよび第2の光学センサ40bの位置ずれを高精度に検出できる。あるいは、単位領域UAの大きさは、被選別物90の最小寸法(例えば、米であれば、粒厚)の半分程度(例えば、米であれば、1.5mm程度)に設定されてもよい。こうすれば、選別精度への影響が大きくなる位置ずれのみを検出できる。あるいは、単位領域UAの大きさは、複数の受光素子41a,41bの各々の視野の大きさと同程度以上、かつ、被選別物90の最小寸法の半分程度以下に設定されてもよい。
【0088】
代替実施形態では、図4に例示したマーキング53に代えて、種々のマーキングが使用され得る。例えば、マーキングは、図4に示した黒色の第1の単位領域54および白色の第2の単位領域55の少なくとも一方に代えて、または、加えて、白および黒以外の任意の色の他の単位領域を含んでいてもよい。この他の単位領域は、互いに色が異なる二種類以上の単位領域を含んでいてもよい。さらに、マーキングは、白および黒以外の色を二つ以上有するカラーマーキングであってもよい。例えば、マーキングは、白、黒、赤、緑、青、シアン、マゼンダ、黄の単位領域をそれぞれ有していてもよい。このようなカラーマーキングが使用される場合、色補正部85は、マーキングの画像の各階調値が予め定められた色に近づくように、非線形のカラー補正を行うように構成されてもよい。さらに、同一色または異色の単位領域同士は、互いに間隔が空いていてもよいし、あるいは、図4に示した例のように間隔無しで隣接していてもよい。
【0089】
さらに、単位領域は、必ずしも2次元的に配列される必要は無く、第2の方向D2のみに一次元的に配列されてもよい。こうすれば、第2の方向D2における位置ずれ量を検出可能である。
【0090】
さらに、二次元コードがマーキングとして使用されてもよい。こうしても、上述の実施形態と同様の効果が得られる。二次元コードは、規格化された公知のコードであってもよく、例えば、スタック型(PDF417、CODE49など)またはマトリクス型(QRコード(登録商標)、Data Matrix、VeriCode(登録商標)など)であってもよい。あるいは、二次元コードは、独自開発されたものであってもよい。
【0091】
さらに、一次元コード(例えば、バーコード)がマーキングとして使用されてもよい。この場合、第2の方向D2にバーが並ぶようにマーキングを配置すれば、第2の方向D2における位置ずれ量を検出可能である。一次元または二次元のコードがマーキングとして使用される場合、コードが表す情報を読み取れるか否かに基づいて、光学センサの状態(例えば、位置ずれの有無、フォーカスずれの有無)を容易に検出できる。さらに、マーキングが二次元のコードである場合には、どのような情報が読み取れたかに基づいて、第1の方向D1の位置ずれの量を検出できる。
【0092】
ただし、マーキングは、上述した例に限られず、任意の形状の単一または複数の印とすることができる。例えば、マーキングは、「+」、「-」、「■」、「▲」などの印であってもよい。
【0093】
以下、第2実施形態について説明する。第2実施形態は、マーキング53に代えてマーキング153を備えている点のみが第1実施形態と異なっており、第2実施形態の選別機10の装置構成は、第1実施形態と同じである。図5に示すように、マーキング153は、第1の領域154と第2の領域155と第3の領域156とを備えている。これらの領域154~156の各々は、マーキング関連光に基づいて判定部81の判定性能を確保するための少なくとも一つ以上の機能を提供する。本実施形態では、領域154~156の各々は互いに異なる機能を提供する。以下、領域154~156について具体的に説明する。
【0094】
第1の領域154は、光学センサ40a,40bの位置ずれ検出機能を提供する。この第1の領域154は、黒色の小領域157を備えている。小領域157は、第2の方向D2に平行な上底および下底を有する台形形状を有している。第2の方向D2における小領域157の両脇には、白色の左側小領域158および右側小領域159が位置している。つまり、小領域157の境界は、色の違いによって識別される。第2の方向D2における小領域157の幅W1は、台形形状に起因して、第1の方向D1(つまり、第2の方向D2に直交する方向)の位置に応じて一意に定まる。
【0095】
この第1の領域154に基づいて得られるマーキング関連光に基づけば、光学センサ40a,40bの位置ずれの有無、方向、および、ずれ量を検出可能である。第1の光学センサ40aが正常な位置に配置されている場合に、この第1の光学センサ40aによって中間線状領域A1が撮像されると仮定して、以下に具体例を説明する。第1の光学センサ40aの位置が第1の方向D1の一方側にずれて、第1の光学センサ40aによって上側線状領域A2が撮像されると、第1の光学センサ40aによって検出される小領域157の幅W1は、正常位置(中間線状領域A1)と比べて、ずれ量に比例して大きくなる。一方、第1の光学センサ40aの位置が第1の方向D1の他方側にずれて、第1の光学センサ40aによって下側線状領域A3が撮像されると、第1の光学センサ40aによって検出される小領域157の幅W1は、正常位置(中間線状領域A1)と比べて、ずれ量に比例して小さくなる。このため、幅W1に基づいて、第1の方向D1における位置ずれの方向および量を検知できる。
【0096】
さらに、小領域157と左側小領域158との境界は、第2の方向D2に直交している(換言すれば、第1の方向D1に平行である)。このため、第1の光学センサ40aの位置が第1の方向D1にずれても、第2の方向D2における当該境界の検出位置は変化しない。一方、第1の光学センサ40aの位置が第2の方向D2にずれると、そのずれの方向およびずれ量に応じて、当該境界(換言すれば、第2の方向D2における小領域157の始点)の検出位置が変化する。このため、当該境界の検出位置に基づいて、第2の方向D2におけるずれの方向および量を検知できる。
【0097】
なお、小領域157と右側小領域159との境界が第2の方向D2に直交している代替実施形態では、小領域157と右側小領域159との境界(換言すれば、第2の方向D2における小領域157の終点)の検出位置に基づいて、第2の方向D2におけるずれの方向および量を検知できる。さらに、小領域157と左側小領域158との境界が第2の方向D2に直交しておらず、かつ、小領域157と右側小領域159との境界が第2の方向D2に直交していない代替実施形態では、第2の方向D2における小領域157の始点および終点の両方の検出位置に基づいて、第2の方向D2におけるずれの方向および量を検知できる。詳しい説明は省略するが、第1の領域154の他の部分(小領域157~159以外の部分)を利用しても、同様の原理によって位置ずれ検出機能を提供できる。さらに、他の代替実施形態では、小領域157の幅W1は、第2の方向D2に交差する方向(以下、交差方向とも呼ぶ)の位置に応じて一意に定まるように設定されてもよい。
【0098】
第2の領域155は、光学センサ40a,40bのフォーカスずれ検出機能を提供する。この第2の領域155は、白色の複数の第1の線161と、白色の複数の第2の線162と、を備えている。第2の線162の各々は、複数の第1の線161のいずれよりも細い。
【0099】
光学センサ40a,40bの各々は、第2の方向D2のいずれの位置においても、被選別物90の検出位置(つまり、移送経路95上の位置)で合焦するように初期設定される。また、フロント側のマーキング153に関して、第1の線161および第2の線162の太さは、第1の光学センサ40aが被選別物90の検出位置で合焦しているときに、第1の光学センサ40aで第1の線161を検出できるが、ぼやけによって第2の線162を検出できず、第1の光学センサ40aが、マーキング153の位置で合焦しているときに、第1の光学センサ40aで第1の線161および第2の線162の両方を検出できるように設定される。リア側のマーキング153と第2の光学センサ40bとの関係も同様である。
【0100】
このような第2の領域155に基づいて得られるマーキング関連光に基づけば、第1の線161および第2の線162の両方が検出されないとき、および、第1の線161および第2の線162の両方が検出されるときには、被選別物90の検出位置に対してフォーカスずれが生じていると判断できる。第1の線161および第2の線162を検出できるか否かの判断は、例えば、光学センサ40a,40bによって取得される信号に基づいて、閾値を用いた2値化処理によって行われてもよいし、あるいは、エッジ検出処理によって行われてもよい。
【0101】
第3の領域156は、ホワイトバランス確認機能を提供する。具体的には、第3の領域156は、白色の領域であり、第3の領域156に基づいて得られるマーキング関連光の階調値から、現在のホワイトバランス設定を確認できる。また、必要に応じて、第3の領域156に基づいて得られるマーキング関連光の階調値が任意の基準値(例えば、階調値255の基準値)となるように、ホワイトバランスが補正されてもよい。第3の領域156は、全体的に白色の領域であるから、光学センサ40a,40bの位置がずれていても、その影響を受けること無く、ホワイトバランス確認機能を提供できる。
【0102】
領域154~156の少なくとも一つは、光源30a,30bの光量検出機能を提供してもよい。つまり、領域154~156の少なくとも一つを介して得られるマーキング関連光に基づいて、光源30a,30bの光量が検出されてもよい。この場合、検出された光量に基づいて、第1実施形態と同様にキャリブレーション部86の処理が実行されてもよい。この場合、キャリブレーション部86は、光学センサ40a,40bのレンズの絞りによる光量調整を実施してもよい。あるいは、キャリブレーション部86は、検出された光量に基づいて、光量異常として、発光素子32a,32bの少なくとも一部が故障、劣化などによって点灯不能状態になっていることを検出してもよい。
【0103】
図6は、マーキング153に代えて使用され得る様々なマーキングの例を示している。例1~4は、位置ずれ検出機能とホワイトバランス確認機能とを提供可能なマーキングの例であり、例5~8は、位置ずれ検出機能およびホワイトバランス確認機能に加えて、フォーカスずれ検出機能を提供可能なマーキングの例である。例5~8では、上述したように、相対的に太い線と相対的に細い線との組み合わせによって、フォーカスずれ検出機能が追加されている。例1~3,5~8は、黒および白のみが使用されたモノクロマーキングであり、例4は、黒および白以外の複数の色を有するカラーマーキングである。ただし、図6に示した例1~8に関して、マーキングの色は、特に限定されるものではなく、任意の数および種類の色がマーキングに使用され得る。この点は、図5に示したマーキング153についても同様である。さらに、マーキングの外郭および内部の形状は、図5および図6に示した様々な例に限定されるものではなく、上述した機能の少なくとも一部を提供できる限りにおいて、任意に設定可能である。
【0104】
以上、本開示の実施形態について説明してきたが、上記した実施形態は、本教示の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得るとともに、本発明にはその均等物が含まれる。また、上述した課題の少なくとも一部を解決できる範囲、または、効果の少なくとも一部を奏する範囲において、請求の範囲および明細書に記載された各構成要素の任意の組み合わせ、または、任意の省略が可能である。
【0105】
例えば、第1の光源30aおよび第2の光源30bは、LEDに代えて、任意の形式の発光素子によって構成されてもよい。発光素子は、例えば、蛍光灯、ELなどであってもよい。また、選別機10は、第1の光源30a,30bに代えて、または、加えて、近赤外線を照射する光源を備えていてもよい。この場合、近赤外光源用に、中間部材50と同等の機能を有する追加的な中間部材が設けられてもよく、近赤外光源に関して、キャリブレーション処理および報知処理が行われてもよい。また、近赤外光を検出するための追加的な光学センサが設けられてもよい。この場合、当該追加的な光学センサに関して、検出部82、第1の補正部83および第2の補正部84の処理が行われてもよい。また、選別機10に使用される光源は、先に例示した可視光や近赤外光を放出する構成に限られるものではなく、任意の波長の電磁波(換言すれば、広義の光)を放出するように構成されてもよい。この場合、光源から放出される電磁波を検出するために、任意の形式のセンサが採用されてもよく、また、当該光源およびセンサの少なくとも一方のために、中間部材50と同等の機能を有する中間部材が設けられてもよい。
【0106】
さらに、中間部材50の第1の層51が省略されてもよい。あるいは、中間部材50は、単層領域と複層領域とを備えていてもよい。さらに、検出部82、第1の補正部83、第2の補正部84、色補正部85およびキャリブレーション部86の少なくとも一部が省略されてもよい。あるいは、上述した報知処理の少なくとも一部が省略されてもよい。
【0107】
また、第1の光学センサ40aおよび第2の光学センサ40bの一方が省略されてもよく、あるいは、第1の光源30aおよび第2の光源30bの一方が省略されてもよい。このような省略に伴い、被選別物90に関連付けられた光は、反射光および透過光の一方とされてもよい。逆に、光源の数は、フロント側において2以上の任意の数であってもよく、リア側において2以上の任意の数であってもよい。同様に、光学センサの数は、フロント側において2以上の任意の数であってもよく、リア側において2以上の任意の数であってもよい。光源および光学センサの各々の数は、フロント側とリア側とで同数であってもよく、互いに異なっていてもよい。また、フロント側およびリア側の光源の総数と、フロント側およびリア側の光学センサの総数とは、同数であってもよく、互いに異なっていてもよい。
【0108】
さらに、中間部材50の設置数は、1以上の任意の数とすることができる。
【0109】
さらに、選別機10は、第1の光学センサ40aおよび第2の光学センサ40bに加えて、マーキング関連光を検出するための追加的な光学センサを備えていてもよい。この場合、第1の光学センサ40aおよび第2の光学センサ40bは、被選別物90に関連付けられた光の検出のみに使用される。
【符号の説明】
【0110】
10...光学式選別機
20...光学検出部
21a,21b...透明部材
30a...第1の光源
30b...第2の光源
31a,31b...光
32a,32b...発光素子
40a...第1の光学センサ
40b...第2の光学センサ
41a,41b...受光素子
50...中間部材
51...第1の層
52...第2の層
53...マーキング
54...第1の単位領域
55...第2の単位領域
71...貯留タンク
72...フィーダ
73...シュート
74...良品排出樋
75...不良品排出樋
76...選別部
77...エジェクタ
78...エア
80...コントローラ
81...判定部
82...検出部
83...第1の補正部
84...第2の補正部
85...色補正部
86...キャリブレーション部
88...報知部
90,91,92...被選別物
95...移送経路
153...マーキング
154...第1の領域
155...第2の領域
156...第3の領域
157...小領域
158...左側小領域
159...右側小領域
161...第1の線
162...第2の線
D1...第1の方向
D2...第2の方向
V1...第1の光学センサおよび第2の光学センサの総視野
V2...第1の光学センサおよび第2の光学センサの原料視野
V3...第1の光学センサおよび第2の光学センサの非原料視野
図1
図2
図3
図4
図5
図6