(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-12-05
(45)【発行日】2022-12-13
(54)【発明の名称】プロジェクター
(51)【国際特許分類】
G03B 21/14 20060101AFI20221206BHJP
H01S 5/18 20210101ALI20221206BHJP
G02F 1/13 20060101ALI20221206BHJP
G02F 1/13357 20060101ALI20221206BHJP
H04N 5/74 20060101ALI20221206BHJP
【FI】
G03B21/14 A
H01S5/18
G02F1/13 505
G02F1/13357
H04N5/74 A
(21)【出願番号】P 2018155398
(22)【出願日】2018-08-22
【審査請求日】2021-07-26
(73)【特許権者】
【識別番号】000002369
【氏名又は名称】セイコーエプソン株式会社
(73)【特許権者】
【識別番号】502350504
【氏名又は名称】学校法人上智学院
(74)【代理人】
【識別番号】100090387
【氏名又は名称】布施 行夫
(74)【代理人】
【識別番号】100090398
【氏名又は名称】大渕 美千栄
(74)【代理人】
【識別番号】100148323
【氏名又は名称】川▲崎▼ 通
(74)【代理人】
【識別番号】100168860
【氏名又は名称】松本 充史
(72)【発明者】
【氏名】赤坂 康一郎
(72)【発明者】
【氏名】西岡 大毅
(72)【発明者】
【氏名】石沢 峻介
(72)【発明者】
【氏名】野田 貴史
(72)【発明者】
【氏名】今井 保貴
(72)【発明者】
【氏名】岸野 克巳
(72)【発明者】
【氏名】加▲瀬▼谷 浩康
(72)【発明者】
【氏名】金子 剛
【審査官】中村 直行
(56)【参考文献】
【文献】特開2010-219307(JP,A)
【文献】特表2009-542560(JP,A)
【文献】特開2008-306165(JP,A)
【文献】米国特許出願公開第2016/0164045(US,A1)
【文献】米国特許出願公開第2011/0266577(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G03B 21/00 - 21/64
H01S 5/18
G02F 1/13
G02F 1/13357
H04N 5/74
(57)【特許請求の範囲】
【請求項1】
レーザー光源と、
前記レーザー光源から出射された光を、画像情報に応じて変調させる光変調素子と、
を有し、
前記レーザー光源は、
発光素子と、
前記発光素子を収容しているパッケージと、
を有し、
前記発光素子は、
基板と、
光を発する発光層を有し、前記発光層が発する光を、前記基板の面内方向に閉じ込め、前記基板の法線方向に出射させるフォトニック結晶構造体と、
を有し、
前記フォトニック結晶構造体は、周期的に配置された複数の柱状部を有し、
前記複数の柱状部の各々は、
前記発光層
と、
前記基板と前記発光層との間に設けられている第1半導体層と、
前記発光層と前記光変調素子との間に設けられている第2半導体層と、
を有し、
前記基板に、前記第1半導体層と電気的に接続されている第1電極が設けられ、
前記第2半導体層と前記光変調素子の間に、前記第2半導体層と電気的に接続され、かつ、前記フォトニック結晶構造体が出射する光を透過する第2電極が設けられて、
前記パッケージは、
前記基板が設けられた基部と、
前記基部に接合された壁部と、
前記壁部に接合された蓋部と、
を有し、
前記壁部には、
第1ワイヤーを介して、前記第1電極と電気的に接続されている第1接続端子と、
第2ワイヤーを介して、前記第2電極と電気的に接続されている第2接続端子と、
が設けられ、
前記基板の法線方向において、
前記第1電極は、前記発光層よりも前記基部側に位置し、
前記第2電極は、前記発光層よりも前記蓋部側に位置し、
前記第1接続端子は、前記発光層よりも前記基部側に位置し、
前記第2接続端子は、前記発光層よりも前記蓋部側に位置している、プロジェクター。
【請求項2】
請求項
1において、
前記基板の法線方向からみて、前記第1電極は、前記フォトニック結晶構造体および前記第2電極の周囲を囲って設けられている、プロジェクター。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、プロジェクターに関する。
【背景技術】
【0002】
近年、プロジェクターは、特にデジタルサイネージ市場や教育市場において、より明るい環境下で大画面に投影するニーズが高まっており、さらなる高輝度化が求められている。また、従来からプロジェクター用光源として広く利用されている水銀ランプは、次第に暗くなり突然切れるという寿命の問題や、水銀規制という環境問題があった。そこでプロジェクターの光源は、高輝度発光し、長寿命で環境に優しいLED(Light Emitting Diode)やレーザー等の固体光源に、徐々に移行しつつある。
【0003】
例えば特許文献1には、LED光源と、液晶表示パネルと、クロスダイクロイックプリズムと、投射レンズと、を有するプロジェクターが記載されている。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、特許文献1では、LED光源は、液晶表示パネルを均一に照明するため、LED光源と液晶表示パネルとの間に、ロッドインテグレーターを設けている。したがって、サイズが大きくなり小型化を図ることが難しい。
【課題を解決するための手段】
【0006】
本発明に係るプロジェクターの一態様は、
レーザー光源と、
前記レーザー光源から出射された光を、画像情報に応じて変調させる光変調素子と、
を有し、
前記レーザー光源は、
基板と、
光を発する発光層を有し、前記発光層が発する光を、前記基板の面内方向に閉じ込め、前記基板の法線方向に出射させるフォトニック結晶構造体と、
を有する。
【0007】
前記プロジェクターの一態様において、
前記フォトニック結晶構造体は、周期的に配置された柱状部を有してもよい。
【0008】
前記プロジェクターの一態様において、
前記柱状部は、前記発光層を有してもよい。
【0009】
前記プロジェクターの一態様において、
前記フォトニック結晶構造体は、孔が周期的に設けられる層を有してもよい。
【0010】
前記プロジェクターの一態様において、
前記層は、前記発光層を有してもよい。
【0011】
本発明に係るプロジェクターの一態様は、
レーザー光源と、
前記レーザー光源から出射された光を、画像情報に応じて変調させる光変調素子と、
を有し、
前記レーザー光源は、
基板と、
光を発する発光層と、
前記発光層が発する光を、前記基板の面内方向に閉じ込め、前記基板の法線方向に出射させるフォトニック結晶構造体と、
を有する。
【0012】
前記プロジェクターの一態様において、
前記フォトニック結晶構造体は、周期的に配置された柱状部を有してもよい。
【0013】
前記プロジェクターの一態様において、
前記フォトニック結晶構造体は、孔が周期的に設けられる層を有してもよい。
【図面の簡単な説明】
【0014】
【
図1】第1実施形態に係るプロジェクターを模式的に示す図。
【
図2】第1実施形態に係るプロジェクターのレーザー光源を模式的に示す断面図。
【
図3】第1実施形態に係るプロジェクターの発光素子を模式的に示す平面図。
【
図4】第1実施形態に係るプロジェクターのフォトニック結晶構造体を模式的に示す平面図。
【
図5】第1実施形態に係るプロジェクターのレーザー光源の製造工程を模式的に示す断面図。
【
図6】第1実施形態に係るプロジェクターのレーザー光源の製造工程を模式的に示す断面図。
【
図7】第1実施形態に係るプロジェクターのレーザー光源の製造工程を模式的に示す断面図。
【
図8】第1実施形態に係るプロジェクターの光変調素子を模式的に示す平面図。
【
図9】第1実施形態に係るプロジェクターの光変調素子を模式的に示す断面図。
【
図10】透過型の液晶ライトバルブへ入射する光の最大入射角度と、投射レンズにおける光の透過率と、の関係を示すグラフ
【
図11】第1実施形態に係るプロジェクターの発光素子を模式的に示す断面図。
【
図12】第1実施形態の第1変形例に係るプロジェクターのレーザー光源を模式的に示す断面図。
【
図13】第1実施形態の第2変形例に係るプロジェクターの発光素子を模式的に示す断面図。
【
図14】第2実施形態に係るプロジェクターの発光素子を模式的に示す断面図。
【
図15】第2実施形態に係るプロジェクターのフォトニック結晶構造体を模式的に示す平面図。
【
図16】第2実施形態の変形例に係るプロジェクターの発光素子を模式的に示す断面図。
【発明を実施するための形態】
【0015】
以下、本発明の好適な実施形態について、図面を用いて詳細に説明する。なお、以下に説明する実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではない。また、以下で説明される構成の全てが本発明の必須構成要件であるとは限らない。
【0016】
1. 第1実施形態
1.1. プロジェクター
まず、第1実施形態に係るプロジェクターについて、図面を参照しながら説明する。
図1は、第1実施形態に係るプロジェクター1000を模式的に示す図である。
【0017】
プロジェクター1000は、
図1に示すように、例えば、レーザー光源10と、光変調素子20と、クロスダイクロイックプリズム30と、投射レンズ40と、を有している。
【0018】
レーザー光源10は、レーザー光を出射する。レーザー光源10は、複数設けられている。具体的には、レーザー光源10は、3つ設けられている。3つのレーザー光源10のうちの第1レーザー光源10Rは、赤色光を出射する。赤色光の波長は、620nm以上750nm以下である。3つのレーザー光源10のうちの第2レーザー光源10Gは、緑色光を出射する。緑色光の波長は、495nm以上570nm以下である。3つのレーザー光源10のうちの第3レーザー光源10Bは、青色光を出射する。青色光の波長は、400nm以上480nm以下である。
【0019】
光変調素子20は、レーザー光源10から出射された光を、画像情報に応じて変調させる。光変調素子20は、例えば、レーザー光源10から出射された光を透過させる透過型の液晶ライトバルブである。プロジェクター1000は、LCD(liquid crystal display)プロジェクターである。
【0020】
光変調素子20は、複数設けられている。具体的には、光変調素子20は、3つ設けられている。3つの光変調素子20のうちの第1光変調素子20Rは、第1レーザー光源10Rから出射された光を変調させる。3つの光変調素子20のうちの第2光変調素子20Gは、第2レーザー光源10Gから出射された光を変調させる。3つの光変調素子20のうちの第3光変調素子20Bは、第3レーザー光源10Bから出射された光を変調させる。
【0021】
図示の例では、プロジェクター1000は、補償板50と、偏光板52と、を有している。補償板50は、レーザー光源10と光変調素子20との間の光路に設けられている。補償板50は、レーザー光源10から出射された光が、光変調素子20の液晶層において偏光が乱れる分を補償することができる。偏光板52は、光変調素子20とクロスダイクロイックプリズム30との間の光路に設けられている。偏光板52は、光変調素子20を透過した光の偏光を整えることができる。
【0022】
クロスダイクロイックプリズム30は、4つの直角プリズムを貼り合わせて形成され、その内面に赤色光を反射する誘電体多層膜と青色光を反射する誘電体多層膜とが十字状に配置されている。これらの誘電体多層膜によって3つの色光が合成され、カラー画像を表す光が形成される。
【0023】
投射レンズ40は、クロスダイクロイックプリズム30で合成された光を、図示せぬスクリーン上に投射する。スクリーンには、拡大された画像が表示される。
【0024】
次に、レーザー光源10の構成について説明する。
図2は、レーザー光源10を模式的に示す断面図である。
図3は、レーザー光源10の発光素子101を模式的に示す平面図である。レーザー光源10は、
図2に示すように、例えば、発光素子101と、サブマウント130と、パッケージ140と、を有している。
【0025】
発光素子101は、パッケージ140に収容されている。発光素子101は、
図2および
図3に示すように、例えば、基板102と、バッファー層103と、反射層104と、
バッファー層106と、フォトニック結晶構造体108と、半導体層120と、第1電極122と、第2電極124と、を有している。
【0026】
基板102は、例えば、サファイア基板、SiC基板、Si基板、GaAs基板、GaN基板などである。なお、冷却効率を考慮すると、基板102は、熱伝導率の高いSi基板であることが好ましい。発光素子101は、
図2に示すように、基板102側をサブマウント130側に向けて、サブマウント130に実装されている。すなわち、発光素子101は、ジャンクションアップの状態で実装されている。
【0027】
バッファー層103は、基板102上に設けられている。バッファー層103は、基板102と反射層104との間の格子定数の差に基づく応力を緩和することができる。
【0028】
なお、「上」とは、フォトニック結晶構造体108の半導体層112と発光層114との積層方向(以下、単に「積層方向」ともいう)において、発光層114からみて基板102から遠ざかる方向のことであり、「下」とは、積層方向において、発光層114からみて基板102に近づく方向のことである。
【0029】
反射層104は、バッファー層103上に設けられている。反射層104は、例えば、DBR(distribution Bragg reflector)層である。反射層104は、発光層114で発生する光を、第2電極124側に向けて反射させる。
【0030】
バッファー層106は、反射層104上に設けられている。バッファー層106は、例えば、Siがドープされたn型のGaN層などである。図示の例では、バッファー層106上には、柱状部110を選択的に成長させるためのマスク層128が設けられている。マスク層128は、例えば、αSiO2層等の酸化シリコン層、窒化シリコン層などの非極性の層である。
【0031】
フォトニック結晶構造体108は、基板102に設けられている。図示の例では、フォトニック結晶構造体108は、バッファー層103,106および反射層104を介して、基板102上に設けられている。フォトニック結晶構造体108は、柱状部110と、光伝搬層118と、パッシベーション層119と、を有している。フォトニック結晶構造体108は、フォトニック結晶の効果を発現することができ、フォトニック結晶構造体108の発光層114が発する光を、基板102の面内方向に閉じ込め、基板102の法線方向に出射させる。ここで、「基板102の面内方向」とは、積層方向と直交する方向のことである。「基板102の法線方向」とは、積層方向のことである。レーザー光源10は、フォトニック結晶構造体108を有するフォトニック結晶レーザーである。
【0032】
柱状部110は、バッファー層106上に設けられている。ここで、
図4は、フォトニック結晶構造体108を模式的に示す平面図である。なお、便宜上、
図4では、パッシベーション層119の図示を省略している。
【0033】
柱状部110の平面形状は、
図4に示すように、例えば、円である。図示はしないが、柱状部110の平面形状は、正六角形等の多角形であってもよい。柱状部110の径は、例えば、nmオーダーであり、具体的には10nm以上500nm以下である。柱状部110は、例えば、ナノコラム、ナノワイヤー、ナノロッド、ナノピラーとも呼ばれる。柱状部110の積層方向の大きさは、例えば、0.1μm以上5μm以下である。
【0034】
なお、「径」とは、柱状部110の平面形状が円の場合は、直径であり、柱状部110の平面形状が多角形の場合は、該多角形を内部に含む最小の円、すなわち最小包含円の直径である。また、「平面形状」とは、積層方向からみた形状のことである。
【0035】
柱状部110は、複数設けられている。柱状部110は、所定の方向に所定のピッチで周期的に配置されている。
図4に示す例では、複数の柱状部110は、積層方向からみて、例えば、四角格子状に配置されている。
【0036】
柱状部110は、
図2に示すように、半導体層112と、発光層114と、半導体層116と、を有している。
【0037】
半導体層112は、バッファー層106上に設けられている。半導体層112は、例えば、Siがドープされたn型のGaN層である。
【0038】
発光層114は、半導体層112上に設けられている。発光層114は、半導体層112と半導体層116との間に設けられている。発光層114は、例えば、GaN層とInGaN層とから構成された量子井戸構造を有している。発光層114は、電流が注入されることで光を発することが可能な層である。
【0039】
半導体層116は、発光層114上に設けられている。半導体層116は、半導体層112と導電型の異なる層である。半導体層116は、例えば、Mgがドープされたp型のGaN層である。半導体層112,116は、発光層114に光を閉じ込める機能を有するクラッド層である。図示の例では、半導体層112,116および発光層114の上面は、ファセット面である。
【0040】
光伝搬層118は、隣り合う柱状部110の間に設けられている。図示の例では、光伝搬層118は、マスク層128上に設けられている。光伝搬層118は、例えば、GaN層などである。発光層114で発生した光は、光伝搬層118を伝搬することが可能である。
【0041】
パッシベーション層119は、発光層114の側面に設けられている。パッシベーション層119は、発光層114の側面での非発光再結合を抑制することができる。パッシベーション層119は、例えば、酸化シリコン層、窒化シリコン層などである。
【0042】
レーザー光源10では、p型の半導体層116、不純物がドーピングされていない発光層114、およびn型の半導体層112により、pinダイオードが構成される。半導体層112,116は、発光層114よりもバンドギャップが大きい層である。レーザー光源10では、第1電極122と第2電極124との間に、pinダイオードの順バイアス電圧を印加して電流を注入すると、発光層114において電子と正孔との再結合が起こる。この再結合により発光が生じる。発光層114において発生した光は、半導体層112,116により積層方向と直交する方向に光伝搬層118を通って伝搬して、フォトニック結晶構造体108によるフォトニック結晶の効果により定在波を形成し、積層方向と直交する方向(基板102の面内方向)に閉じ込められる。閉じ込められた光は、発光層114において利得を受けてレーザー発振する。すなわち、発光層114において発生した光は、フォトニック結晶構造体108により基板102の面内方向に共振し、レーザー発振する。そして、+1次回折光および-1次回折光は、レーザー光として積層方向に進行する。
【0043】
積層方向に進行したレーザー光のうち反射層104側に向かうレーザー光は、反射層104において反射され、第2電極124側に向かう。これにより、レーザー光源10は、第2電極124側から光を出射することができる。
【0044】
レーザー光源10から出射された光の放射角は、1°未満であり、例えば端面型の半導
体レーザーや、VCSEL(Vertical Cavity Surface Emitting Laser)に比べて、小さい。レーザー光源10は、小さなエテンデューを有することができる。
【0045】
半導体層120は、フォトニック結晶構造体108上に設けられている。半導体層120は、例えば、Mgがドープされたp型のGaN層である。
【0046】
第1電極122は、バッファー層106上に設けられている。バッファー層106は、第1電極122とオーミックコンタクトしていてもよい。図示の例では、第1電極122は、バッファー層106を介して、半導体層112と電気的に接続されている。第1電極122は、発光層114に電流を注入するための一方の電極である。第1電極122としては、例えば、バッファー層106側から、Ti層、Al層、Au層の順序で積層したものなどを用いる。
【0047】
第2電極124は、半導体層120上に設けられている。半導体層120は、第2電極124とオーミックコンタクトしていてもよい。第2電極124は、半導体層116と電気的に接続されている。図示の例では、第2電極124は、半導体層120を介して、半導体層116と電気的に接続されている。第2電極124は、発光層114に電流を注入するための他方の電極である。
【0048】
第2電極124は、例えば、発光層114で生じる光に対して透明な透明部分124aと、発光層114で生じる光に対して透明ではない非透明部分124bと、を有している。透明部分124aの材質は、例えば、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)である。非透明部分124bの材質は、例えば、第1電極122と同じである。
図3に示す例では、非透明部分124bは、積層方向からみて、透明部分124aを囲っている。
【0049】
サブマウント130は、
図2に示すように、基板102と、パッケージ140の基部142と、の間に設けられている。サブマウント130の材質は、例えば、銅、アルミニウムなどである。サブマウント130と基板102とは、接合層132によって接合されている。サブマウント130と基部142とは、接合層134によって接合されている。接合層132,134としては、例えば、はんだ、銀ペーストを用いる。
【0050】
パッケージ140は、基部142と、壁部144と、蓋部146と、を有している。基部142の材質は、例えば、銅である。壁部144は、接合層143を介して、基部142に設けられている。壁部144の材質は、金属である。接合層143としては、例えば、銀ロウを用いる。
【0051】
壁部144には、第1支持部150と、第1支持部150に支持された第1接続端子152が設けられている。第1支持部150および第1接続端子152は、複数設けられている。第1接続端子152は、第1ワイヤー154を介して、第1電極122と電気的に接続されている。
【0052】
壁部144には、第2支持部160と、第2支持部160に支持された第2接続端子162が設けられている。第2支持部160および第2接続端子162は、複数設けられている。第2接続端子162は、第2ワイヤー164を介して、第2電極124と電気的に接続されている。支持部150,160の材質は、例えば、低融点ガラスである。接続端子152,162およびワイヤー154,164の材質は、例えば、金属である。
【0053】
蓋部146は、金属フレーム145を介して、壁部144に接合されている。金属フレーム145の材質は、例えば、コバールである。蓋部146は、例えば、金属フレーム1
45を介して、壁部144にシーム溶接されている。蓋部146は、発光素子101から出射された光を透過する。蓋部146は、例えば、ガラスからなる第1部分146aと、第1部分146aを囲む低融点ガラスからなる第2部分146bと、を有している。
【0054】
なお、上記では、InGaN系の発光層114について説明したが、発光層114としては、出射される光の波長に応じて、電流が注入されることで発光可能なあらゆる材料系を用いることができる。例えば、AlGaN系、AlGaAs系、InGaAs系、InGaAsP系、InP系、GaP系、AlGaP系などの半導体材料を用いることができる。
【0055】
上記のプロジェクター1000では、第1レーザー光源10Rにおける柱状部110の第1の径、第2レーザー光源10Gにおける柱状部110の第2の径、第3レーザー光源10Bにおける柱状部110の第3の径は、異なっていてもよい。すなわち、第1の径は第2の径よりも大きく、第2の径は第3の径よりも大きくてもよい。第1の径は、例えば、50nm以上かつ400nm以下である。第2の径は、例えば、50nm以上かつ300nm以下である。第3の径は、例えば、50nm以上かつ200nm以下である。
【0056】
また、第1レーザー光源10Rにおける柱状部110の第1のピッチ、第2レーザー光源10Gにおける柱状部110の第2のピッチ、第3レーザー光源10Bにおける柱状部110の第3のピッチは、異なっていてもよい。すなわち、第1のピッチは第2のピッチよりも大きく、第2のピッチは第3のピッチよりも大きくてもよい。第1のピッチは、例えば、100nm以上かつ450nm以下である第2のピッチは、例えば、100nm以上かつ350nm以下である第3のピッチは、例えば、100nm以上かつ250nm以下である。
【0057】
また、第1レーザー光源10Rにおける柱状部110の積層方向における第1の大きさ、第2レーザー光源10Gにおける柱状部110の積層方向における第2の大きさ、第3レーザー光源10Bにおける柱状部110の積層方向における第3の大きさは、異なっていてもよい。すなわち、第1の大きさは第2の大きさよりも小さく、第2の大きさは第3の大きさよりも小さくてよい。
【0058】
次に、レーザー光源10の製造方法について、図面を参照しながら説明する。
図5~
図7は、レーザー光源10の製造工程を模式的に示す断面図である。
【0059】
図5に示すように、基板102上に、バッファー層103、反射層104、およびバッファー層106を、この順でエピタキシャル成長させる。エピタキシャル成長させる方法としては、例えば、MOCVD(Metal Organic Chemical Vapor Deposition)法、MBE(Molecular Beam Epitaxy)法などが挙げられる。
【0060】
次に、バッファー層106上に、例えば、MOCVD法やMBE法などでマスク層128を形成し、フォトリソグラフィーおよびエッチングにより所定の形状にパターニングする。
【0061】
図6に示すように、マスク層128をマスクとして、バッファー層106上に、半導体層112、発光層114、および半導体層116を、この順でエピタキシャル成長させる。エピタキシャル成長させる方法としては、例えば、MOCVD法、MBE法などが挙げられる。本工程により、柱状部110を形成することができる。
【0062】
次に、柱状部110の側面および上面に、パッシベーション層119を形成する。パッシベーション層119は、例えば、CVD(Chemical Vapor Deposition)法、スパッタ
法などにより形成される。
【0063】
次に、スピンコート法などにより、隣り合う柱状部110の間に、光伝搬層118を形成する。
【0064】
次に、柱状部110の上面に設けられたパッシベーション層119を、エッチングなどにより除去する。本工程により、フォトニック結晶構造体108を形成することができる。
【0065】
図7に示すように、例えばMOCVD法やMBE法などにより、フォトニック結晶構造体108上に、半導体層120を形成する。
【0066】
次に、例えば真空蒸着法などにより、第1電極122および第2電極124を形成する。本工程により、発光素子101を形成することができる。
【0067】
図2に示すように、サブマウント130をパッケージ140の基部142に接合させた後、発光素子101をサブマウント130に実装する。次に、第1ワイヤー154によって第1電極122と第1接続端子152とを電気的に接続し、第2ワイヤー164によって第2電極124と第2接続端子162とを電気的に接続する。次に、パッケージ140の蓋部146を壁部144に接合する。
【0068】
以上の工程により、レーザー光源10を形成することができる。
【0069】
次に、光変調素子20の構成について説明する。
図8は、光変調素子20を模式的に示す平面図である。
図9は、光変調素子20を模式的に示す
図8のIX-IX線断面図である。
【0070】
光変調素子20は、
図8および
図9に示すように、互いに対向配置された素子基板210および対向基板220と、これら一対の基板によって挟持された液晶層230と、を有している。素子基板210の基材211および対向基板220の基材221は、レーザー光源10から出射された光を透過させる石英基板やガラス基板などである。
【0071】
素子基板210は、対向基板220よりも一回り大きい。素子基板210と対向基板220とは、対向基板220の外縁部に沿って額縁状に配置されたシール材240を介して貼り合わされている。素子基板210と対向基板220との隙間に、正または負の誘電異方性を有する液晶が封入されて、液晶層230が構成されている。シール材240は、例えば、熱硬化性または紫外線硬化性のエポキシ樹脂などの接着剤である。シール材240には、一対の基板の間隔を一定に保持するためのスペーサー(図示省略)が混入されている。
【0072】
シール材240の内側には、複数の画素Pがマトリックス状に配列した表示領域Eが設けられている。対向基板220には、シール材240と表示領域Eとの間に表示領域Eを取り囲む見切り部222が設けられている。見切り部222の材質は、例えば、遮光性の金属または該金属の合金や酸化物などである。なお、表示領域Eは、表示に寄与する複数の画素Pに加えて、複数の画素Pを囲むように配置されたダミー画素を含むとしてもよい。
【0073】
素子基板210には、複数の外部接続端子212が配列した端子部が設けられている。素子基板210の上記端子部に沿った第1の辺部と、シール材240と、の間にデータ線駆動回路250が設けられている。また、第1の辺部に対向する第2の辺部に沿ったシー
ル材240と、表示領域Eと、の間に検査回路251が設けられている。さらに、第1の辺部と直交し互いに対向する第3の辺部および第4の辺部に沿ったシール材240と、表示領域Eと、の間に走査線駆動回路252が設けられている。第2の辺部のシール材240と、検査回路251と、の間には、2つの走査線駆動回路252を繋ぐ複数の配線253が設けられている。
【0074】
これらデータ線駆動回路250、走査線駆動回路252に繋がる配線は、第1の辺部に沿って配置された複数の外部接続端子212に接続されている。
【0075】
図9に示すように、素子基板210は、例えば、基材211と、基材211の液晶層230側の面に形成されたTFT(Thin Film Transistor)213および画素電極214と、画素電極214を覆う配向層215と、を有している。TFT213や画素電極214は、画素Pの構成要素である。
【0076】
TFT213は、入力された画像情報に応じて、画素電極214と対向電極224との間の電圧を変化させ、液晶層230を通過する光を変調させる。これにより、画素Pごとに明るさを変えることができ、画像を形成することができる。TFT213は、薄膜トランジスターである。
【0077】
対向基板220は、例えば、基材221と、基材221の液晶層230側の面に順に積層された見切り部222と、平坦化層223と、対向電極224と、配向層225と、を有している。
【0078】
見切り部222は、
図8に示すように、表示領域Eを取り囲むと共に、平面視において走査線駆動回路252および検査回路251と重なる位置に設けられている。これにより対向基板220側からこれらの駆動回路を含む周辺回路に入射する光を遮り、周辺回路が光によって誤動作することを防止する役割を有している。また、不必要な迷光が表示領域Eに入射しないように遮光して、表示領域Eの表示における高いコントラストを確保している。
図3に示す第2電極124の透明部分124aの大きさは、表示領域Eと同じ、または、1回り大きい。そのため、レーザー光源10から出射された光を、均一に無駄なく表示領域Eに照射することができる。
【0079】
平坦化層223は、例えばシリコン酸化物などの無機材料からなり、透光性を有して見切り部222を覆うように設けられている。平坦化層223は、平坦化層223に形成される対向電極224の表面凹凸を緩和可能な程度の膜厚を有している。
【0080】
対向電極224は、例えば、ITOやIZOなどの透明導電膜からなる。対向電極224は、平坦化層223を覆っている。対向電極224は、
図8に示すように、対向基板220の四隅に設けられた導通部226により素子基板210側の配線に電気的に接続されている。
【0081】
画素電極214を覆う配向層215および対向電極224を覆う配向層225の材質は、例えば、シリコン酸化物などの無機材料である。配向層215,225は、無機配向層の他にポリイミドなどの有機配向層であってもよい。
【0082】
プロジェクター1000は、例えば、以下の特徴を有する。
【0083】
プロジェクター1000では、レーザー光源10は、基板102と、光を発する発光層114を有し、発光層114が発する光を、基板102の面内方向に閉じ込め、基板102の法線方向に出射させるフォトニック結晶構造体108と、を有する。そのため、プロ
ジェクター1000では、例えば光源としてLEDや端面発光型の半導体レーザーを用いた場合に比べて、レーザー光源10から出射された光の放射角を小さくすることができ、集光レンズやロッドインテグレーターなどを用いることなく、光変調素子20を照射することができる。したがって、プロジェクター1000では、小型化を図ることができる。
【0084】
さらに、集光レンズやロッドインテグレーターなどを用いないため、集光レンズ等における光量損失を低減でき、高輝度化を図ることができる。その結果、効率のよいプロジェクター1000を実現することができる。さらに、レーザー光源10から出射された光の放射角を小さくすることができるため、光変調素子20のTFT213や配線に入射する光を減らすことができる。そのため、光変調素子20の透過率を高くすることができ、明るいプロジェクター1000を実現することができる。さらに、TFT213へ光が入射することで発生する、画素ムラやフリッカーといった画質が悪化する現象を抑制することができる。さらに、F値(F-number)が大きな小口径の投射レンズ40を用いることができる。
【0085】
ここで、
図10は、透過型の液晶ライトバルブへ入射する光の最大入射角度と、投射レンズにおける光の透過率と、の関係を示すグラフである。投射レンズにおける光の透過率が高いほど、明るいプロジェクターを実現することができる。光源と液晶ライトバルブとの間にレンズを配置し、該レンズのF値を変化させて、液晶ライトバルブへの光の入射角を変化させた。また、投射レンズは、F値が1.5のものと2.0のものを用意した。
【0086】
図10に示すように、液晶ライトバルブへの光の入射角が小さいほど、投射レンズにおける光の透過率が大きくなり、明るいプロジェクターを実現できることがわかる。
【0087】
さらに、図示はしないが、光変調素子20が光を画素電極214に集光させるためのマイクロレンズアレイを有している場合は、レーザー光源10から出射された光の放射角が小さいので、マイクロレンズアレイのレンズパワーを小さくすることができる。そのため、マイクロレンズアレイにおける偏光解消が小さく、プロジェクター1000のコントラストを向上させることができる。さらに、集光を抑えることができるため、光変調素子20の寿命を向上させることができる。
【0088】
なお、上記では、
図2に示すように、発光素子101の半導体層112,116および発光層114の上面は、ファセット面であったが、
図11に示すように、発光素子101の半導体層112,116および発光層114の上面は、c面であってもよい。例えば、柱状部110の成長条件や材質を変化させることにより、半導体層112,116および発光層114の上面を、c面とすることができる。
【0089】
1.2.変形例
1.2.1. 第1変形例
次に、第1実施形態の第1変形例に係るプロジェクター1100について、図面を参照しながら説明する。
図12は、第1実施形態の第1変形例に係るプロジェクター1100のレーザー光源10を模式的に示す断面図である。
【0090】
以下、第1実施形態の第1変形例に係るプロジェクター1100において、上述した第1実施形態に係るプロジェクター1000の例と異なる点について説明し、同様の点については説明を省略する。このことは、後述する第1実施形態の第2変形例に係るプロジェクターについて同様である。
【0091】
上述したプロジェクター1000では、
図2に示すように、発光素子101は、基板102側をサブマウント130側に向けて、サブマウント130に実装されていた。これに
対し、プロジェクター1100では、
図12に示すように、発光素子101は、第2電極124側をサブマウント130側に向けて、サブマウント130に実装されている。すなわち、発光素子101は、ジャンクションダウンの状態で実装されている。
【0092】
プロジェクター1100では、第1電極122は、バンプである。第1電極122は、接合層135、配線137、および第1ワイヤー154を介して、第1接続端子152と電気的に接続されている。第2電極124は、接合層136、配線138、および第2ワイヤー164を介して、第2接続端子162と電気的に接続されている。第2電極124の材質は、例えば、発光層114で生じる光に対して透明ではない金属である。接合層135,136としては、例えば、はんだを用いる。配線137,138の材質は、例えば、銅、アルミニウムである。
【0093】
反射層104は、半導体層120と第2電極124との間に設けられている。反射層104は、第2電極124側に進行する光を、基板102側に反射させる。これにより、発光素子101は、基板102側から光を出射する。反射層104は、例えば、DBR層、金属層である。基板102は、例えば、サファイア基板である。
【0094】
1.2.2. 第2変形例
次に、第1実施形態の第2変形例に係るプロジェクター1200について、図面を参照しながら説明する。
図13は、第1実施形態の第2変形例に係るプロジェクター1200の発光素子101を模式的に示す断面図である。
【0095】
上述したプロジェクター1000の発光素子101では、
図2に示すように、フォトニック結晶構造体108の柱状部110は、発光層114を有していた。これに対し、プロジェクター1200の発光素子101では、
図13に示すように、柱状部110は、発光層114を有していない。
【0096】
プロジェクター2000では、柱状部110の材質は、例えば、Siがドープされたn型のGaNである。フォトニック結晶構造体108は、柱状部110と、隣り合う柱状部110の間隙111と、によって構成されている。図示の例では、柱状部110上に、上方に向けて徐々に径が大きくなるテーパー部113を有している。テーパー部113の材質は、柱状部110と同じである。なお、テーパー部113は、設けられていなくてもよい。
【0097】
半導体層112は、テーパー部113上に設けられている。発光層114は、半導体層112上に設けられている。半導体層116は、発光層114上に設けられている。第1電極122は、半導体層112上に設けられている。第2電極124は、半導体層116上に設けられている。なお、図示はしないが、半導体層112,116および発光層114は、基板102とフォトニック結晶構造体108との間に設けられていてもよい。
【0098】
プロジェクター2000のように、フォトニック結晶構造体108が発光層114を有していない場合には、発光層114からフォトニック結晶構造体108側に漏れた光が、積層方向と直交する方向に閉じ込められて、積層方向に出射される。
【0099】
2. 第2実施形態
2.1. プロジェクター
次に、第2実施形態に係るプロジェクター2000について、図面を参照しながら説明する。
図14は、第2実施形態に係るプロジェクター2000の発光素子101を模式的に示す断面図である。
図15は、第2実施形態に係るプロジェクター2000のフォトニック結晶構造体108を模式的に示す平面図である。なお、便宜上、
図15では、パッシ
ベーション層119の図示を省略している。
【0100】
以下、第2実施形態に係るプロジェクター2000において、上述した第1実施形態に係るプロジェクター1000の例と異なる点について説明し、同様の点については説明を省略する。
【0101】
上述したプロジェクター1000では、
図2および
図4に示すように、フォトニック結晶構造体108は、周期的に配置された柱状部110を有していた。これに対し、プロジェクター2000は、
図14および
図15に示すように、フォトニック結晶構造体108は、孔170が周期的に設けられたフォトニック結晶層172を有する。これにより、発光素子101は、フォトニック結晶効果を発現することができる。孔170は、複数設けられている。図示の例では、フォトニック結晶構造体108は、孔170が周期的に設けられたフォトニック結晶層172で構成されている。
【0102】
フォトニック結晶層172は、半導体層112と、半導体層112上に設けられた発光層114と、発光層114上に設けられた半導体層116と、を有している。フォトニック結晶層172は、半導体層112、発光層114、および半導体層116を形成した後、例えば、フォトリソグラフィーおよびエッチングによるパターニングによって孔170を形成することにより形成される。
【0103】
孔170の内面には、パッシベーション層119が設けられている。孔170には、光伝搬層118が設けられている。図示の例では、孔170は、光伝搬層118およびパッシベーション層119によって充填されている。
【0104】
プロジェクター2000では、フォトニック結晶層172に孔170を形成するだけで容易に、フォトニック結晶構造体108を形成することができる。
【0105】
2.2. 変形例
次に、第2実施形態の変形例に係るプロジェクター2100について、図面を参照しながら説明する。
図16は、第2実施形態の変形例に係るプロジェクター2100の発光素子101を模式的に示す断面図である。
【0106】
以下、第2実施形態の変形例に係るプロジェクター2100において、上述した第2実施形態に係るプロジェクター2000の例と異なる点について説明し、同様の点については説明を省略する。
【0107】
上述したプロジェクター2000の発光素子101では、
図14に示すように、フォトニック結晶層172は、発光層114を有していた。これに対し、プロジェクター2100の発光素子101では、
図16に示すように、フォトニック結晶層172は、発光層114を有していない。
【0108】
プロジェクター2100では、フォトニック結晶層172の材質は、例えば、Mgがドープされたp型のGaNである。フォトニック結晶層172は、半導体層116上に設けられている。半導体層120は、フォトニック結晶層172条に設けられている。
【0109】
本発明は、本願に記載の特徴や効果を有する範囲で一部の構成を省略したり、各実施形態や変形例を組み合わせたりしてもよい。
【0110】
本発明は、上述した実施形態に限定されるものではなく、さらに種々の変形が可能である。例えば、本発明は、実施形態で説明した構成と実質的に同一の構成を含む。実質的に
同一の構成とは、例えば、機能、方法、及び結果が同一の構成、あるいは目的及び効果が同一の構成である。また、本発明は、実施形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施形態で説明した構成と同一の作用効果を奏する構成又は同一の目的を達成することができる構成を含む。また、本発明は、実施形態で説明した構成に公知技術を付加した構成を含む。
【符号の説明】
【0111】
10…レーザー光源、10R…第1レーザー光源、10G…第2レーザー光源、10B…第3レーザー光源、20…光変調素子、20R…第1光変調素子、20G…第2光変調素子、20B…第3光変調素子、30…クロスダイクロイックプリズム、40…投射レンズ、50…補償板、52…偏光板、102…基板、103…バッファー層、104…反射層、106…バッファー層、108…フォトニック結晶構造体、110…柱状部、111…間隙、112…半導体層、113…テーパー部、114…発光層、116…半導体層、118…光伝搬層、119…パッシベーション層、120…半導体層、122…第1電極、124…第2電極、124a…透明部分、124b…非透明部分、128…マスク層、130サブマウント、132,134,135,136…接合層、137,138…配線、140…パッケージ、142…基部、144…壁部、145…金属フレーム、146…蓋部、146a…第1部分、146b…第2部分、150…第1支持部、152…第1接続端子、154…第1ワイヤー、160…第2支持部、162…第2接続端子、164…第2ワイヤー、170…孔、172…フォトニック結晶層、210…素子基板、211…基材、212…外部接続端子、213…TFT、214…画素電極、215…配向層、220…対向基板、221…基材、222…見切り部、223…平坦化層、224…対向電極、225…配向層、226…導通部、230…液晶層、240…シール材、250…データ線駆動回路、251…検査回路、252…走査線駆動回路、253…配線、1100,1200,2000,2100…プロジェクター