IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ THK株式会社の特許一覧

<>
  • 特許-アクチュエータ 図1
  • 特許-アクチュエータ 図2
  • 特許-アクチュエータ 図3
  • 特許-アクチュエータ 図4
  • 特許-アクチュエータ 図5
  • 特許-アクチュエータ 図6
  • 特許-アクチュエータ 図7
  • 特許-アクチュエータ 図8
  • 特許-アクチュエータ 図9
  • 特許-アクチュエータ 図10
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-12-05
(45)【発行日】2022-12-13
(54)【発明の名称】アクチュエータ
(51)【国際特許分類】
   H05K 13/04 20060101AFI20221206BHJP
   H02K 41/03 20060101ALI20221206BHJP
【FI】
H05K13/04 B
H02K41/03 A
【請求項の数】 6
(21)【出願番号】P 2018144902
(22)【出願日】2018-08-01
(65)【公開番号】P2020021841
(43)【公開日】2020-02-06
【審査請求日】2021-05-07
(73)【特許権者】
【識別番号】390029805
【氏名又は名称】THK株式会社
(74)【代理人】
【識別番号】100113608
【弁理士】
【氏名又は名称】平川 明
(74)【代理人】
【識別番号】100123098
【弁理士】
【氏名又は名称】今堀 克彦
(74)【代理人】
【識別番号】100131532
【弁理士】
【氏名又は名称】坂井 浩一郎
(74)【代理人】
【識別番号】100176201
【弁理士】
【氏名又は名称】小久保 篤史
(72)【発明者】
【氏名】福島 克也
(72)【発明者】
【氏名】石井 正志
(72)【発明者】
【氏名】丹羽 弘樹
(72)【発明者】
【氏名】鈴木 明
(72)【発明者】
【氏名】大賀 和人
(72)【発明者】
【氏名】和久田 翔悟
(72)【発明者】
【氏名】原 聡史
(72)【発明者】
【氏名】林 茂樹
(72)【発明者】
【氏名】水野 智史
【審査官】福島 和幸
(56)【参考文献】
【文献】特開2014-067860(JP,A)
【文献】特開2012-174751(JP,A)
【文献】特開2009-016512(JP,A)
【文献】特開2008-227402(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H05K 13/00-13/08
H02K 41/03
(57)【特許請求の範囲】
【請求項1】
シャフトと、
前記シャフトを回転可能に支持する支持部と、
固定子及び可動子を有する直動モータであって、前記直動モータの前記固定子に対して前記可動子が前記シャフトの中心軸と平行に移動することにより、前記支持部及び前記シャフトを前記シャフトの前記中心軸の方向に移動させる直動モータと、
前記直動モータの前記可動子と前記支持部とを接続する部材の少なくとも一部である接続部材と、
前記接続部材に設けられ前記接続部材のひずみを検出するひずみゲージと、
前記ひずみゲージにより検出される前記ひずみに基づいて、前記直動モータを制御する制御装置と、
を備え
前記接続部材は、前記シャフトの前記中心軸の方向にずらして設けられる第一部材及び第二部材を有し、
前記ひずみゲージは、前記第一部材及び前記第二部材に夫々に設けられる同じ方向を向く互いに平行な面であって前記シャフトの前記中心軸と直交する面に夫々設けられる、
アクチュエータ。
【請求項2】
前記制御装置は、前記直動モータにより前記シャフトを移動させているときに、前記ひずみゲージにより検出される前記ひずみに基づいて前記シャフトに加わる荷重を検出し、検出した前記荷重が閾値以上の場合に前記直動モータを停止させる、
請求項1に記載のアクチュエータ。
【請求項3】
前記制御装置は、
前記直動モータにより前記シャフトを移動させているときに、前記ひずみゲージにより検出される前記ひずみに基づいて前記シャフトに加わる荷重を検出し、検出した前記荷重が閾値以上の場合には、閾値未満の場合よりも、前記直動モータによって前記シャフトを移動させる速度を低くし、
検出した前記荷重が前記閾値よりも大きな荷重である第二閾値以上の場合に、前記直動モータを停止させる、
請求項1に記載のアクチュエータ。
【請求項4】
前記シャフトは、その先端部側に、その内部が中空となることで形成される中空部を有し、
前記アクチュエータは、前記中空部に負圧を供給する供給部をさらに備え、
前記制御装置は、ワークをピックアップするときに、前記直動モータを停止させた後に、前記供給部から前記中空部に負圧を供給させる、
請求項2または3に記載のアクチュエータ。
【請求項5】
前記シャフトは、その先端部側に、その内部が中空となることで形成される中空部を有し、
前記アクチュエータは、
前記中空部に負圧を供給する供給部と、
前記中空部に負圧を供給する際に前記中空部から吸い出される空気が流通する通路である空気通路の途中に設けられ、前記空気通路を流れる空気の流量を検出する流量センサと、
前記空気通路の途中に設けられ、前記空気通路内の圧力を検出する圧力センサと、
をさらに備え、
前記制御装置は、前記ひずみゲージにより検出される前記ひずみに加えて、前記流量センサにより検出される流量、及び又は前記圧力センサにより検出される圧力に基づいて、前記直動モータを制御する、
請求項1から4の何れか1項に記載のアクチュエータ。
【請求項6】
前記制御装置は、ワークをピックアップするときに、前記供給部から前記中空部に負圧を供給させ、前記流量センサにより検出される流量が所定流量以下まで減少したとき、及び又は前記圧力センサにより検出される圧力が所定圧力以下まで低下したときに、前記直動モータによって前記シャフトを前記中心軸方向の上側へ移動させる、
請求項5に記載のアクチュエータ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、アクチュエータに関する。
【背景技術】
【0002】
中空のシャフトをワークに押し付けた状態でシャフト内を負圧にすることで、ワークをシャフトに吸い付けて、ワークをピックアップすることができる。ここで、ワークをシャフトに吸い付けるときに、ワークとシャフトとの間に隙間があると、ワークがシャフトに勢いよく衝突してワークが破損する虞や、ワークを吸い付けることができない虞がある。一方、ワークを押し付ける荷重が大きすぎると、ワークが破損する虞がある。したがって、シャフトをワークに適切な荷重で押し付けることが望まれている。また、シャフトがワークに接する際にシャフトの速度が高いと、シャフトがワークに衝突することによりワークが破損する虞があるため、この衝撃を緩和することが望まれている。従来では、シャフト本体の先端にばね等の緩衝部材を介して吸着部材を設けている(例えば、特許文献1参照。)。すなわち、吸着部材がワークに接した際に、ばねが縮むことで衝撃を緩和している。その後、さらにシャフトがワークに向かって移動したときには、ばね定数に応じた荷重でワークを押し付けている。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2009-164347号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
ワークによって適切な荷重が異なる場合があるが、上記のような緩衝部材を設ける場合には、ワークに加わる荷重はばね定数によって決まるため、ワークに加わる荷重をワークに応じて変更することは困難であった。このような構成でワークに加わる荷重を調整する場合には、例えば緩衝部材を交換する必要があった。また、上記のような緩衝部材を設ける場合には、ワークに加わる荷重にばらつきが生じやすいため、高い精度で荷重を調整する必要のあるワークに用いることは困難であった。ここで、シャフト及びワークに加わる荷重を検出することができれば、検出した荷重に応じてシャフトを制御することができる。
【0005】
本発明は、上記したような種々の実情を鑑みてなされたものであり、その目的は、アクチュエータにおいて、シャフト及びワークに加わる荷重を制御することにある。
【課題を解決するための手段】
【0006】
本発明の態様の一つは、シャフトと、前記シャフトを回転可能に支持する支持部と、固定子及び可動子を有する直動モータであって、前記直動モータの前記固定子に対して前記可動子が前記シャフトの中心軸と平行に移動することにより、前記支持部及び前記シャフトを前記シャフトの前記中心軸の方向に移動させる直動モータと、前記直動モータの前記可動子と前記支持部とを接続する部材の少なくとも一部である接続部材と、前記接続部材に設けられ前記接続部材のひずみを検出するひずみゲージと、前記ひずみゲージにより検出される前記ひずみに基づいて、前記直動モータを制御する制御装置と、を備える、アクチュエータである。
【発明の効果】
【0007】
本発明によれば、アクチュエータにおいて、シャフト及びワークに加わる荷重を制御す
ることができる。
【図面の簡単な説明】
【0008】
図1】実施形態に係るアクチュエータの外観図である。
図2】実施形態に係るアクチュエータの内部構造を示した概略構成図である。
図3】実施形態に係るシャフトハウジングとシャフトの先端部との概略構成を示した断面図である。
図4】実施形態に係る回転モータの出力軸を支持する軸受にひずみゲージを設けた場合の概略構成を示す図である。
図5】実施形態に係る回転モータの出力軸を支持する軸受にひずみゲージを設けた場合の概略構成を示す図である。
図6】第1実施形態に係るピックアップ処理のフローを示したフローチャートである。
図7】第1実施形態に係るプレイス処理のフローを示したフローチャートである。
図8】第2実施形態に係るピックアップ処理のフローを示したフローチャートである。
図9】第2実施形態に係るプレイス処理のフローを示したフローチャートである。
図10】第3実施形態に係るピックアップ処理のフローを示したフローチャートである。
【発明を実施するための形態】
【0009】
本発明の態様の一つである荷重検出器では、直動モータによって、支持部及びシャフトが可動子の移動方向に移動する。直動モータの可動子の移動方向は、シャフトの中心軸方向と平行であるため、直動モータの駆動により、シャフトが中心軸方向に移動する。直動モータは例えばリニアモータである。また、支持部は例えば、シャフトを回転させる回転モータや、該回転モータの固定子と該回転モータの出力軸との間に設けられるベアリングである。直動モータの可動子は、支持部に接続部材を介して接続されている。なお、接続部材は複数存在していてもよい。また、直動モータの可動子と接続部材とが一体になっていてもよく、また、支持部と接続部材とが一体になっていてもよい。支持部は、直動モータの駆動に関わらずシャフトを回転可能に支持している。したがって、直動モータによってシャフトを中心軸方向に移動することと、シャフトを中心軸回りに回転することと、を個別に行うことができる。
【0010】
直動モータの駆動によりシャフトがワークに接すると、シャフトとワークとの間に荷重が発生する。このため、接続部材の一端側(直動モータ側)には、シャフトをワークに向かわせる方向の力が作用し、接続部材の他端側(支持部側)には、シャフトをワークから離す方向に向かわせる力が作用するため、接続部材にひずみが生じる。このひずみは、シャフトとワークとの間に発生する荷重と相関関係がある。したがって、このひずみをひずみゲージで検出することにより、シャフト及びワークに加わる荷重を検出することができる。このようにして検出される荷重に基づいて、直動モータを制御することにより、ワークに適切な荷重を加えることができるため、ワークの破損を抑制しつつ、より確実にワークをピックアップすることが可能となる。
【0011】
また、前記制御装置は、前記直動モータにより前記シャフトを移動させているときに、前記ひずみゲージにより検出される前記ひずみに基づいて前記シャフトに加わる荷重を検出し、検出した前記荷重が閾値以上の場合に前記直動モータを停止させることができる。なお、閾値は、ワークのピックアップ時において、シャフトがワークに接触したと判定される荷重である。また、閾値は、ワークのピックアップ時において、ワークの破損を抑制しつつワークをより確実にピックアップすることが可能な荷重として設定してもよい。また、閾値は、ワークのプレイス時において、例えば、ワークが接地したと判定される荷重
、または、ワークが他の部材に接触したと判定される荷重である。また、閾値は、ワークのプレイス時において、ワークの破損を抑制しつつより確実にワークを他の部材に押し付けることが可能な荷重として設定してもよい。閾値は、ワークの種類に応じて変更することもできる。検出した荷重が閾値以上の場合に直動モータを停止させることにより、シャフトがワークに接したときにシャフトを直ぐに停止させたり、ワークが接地したときやワークが他の部材に接したときにシャフトを直ぐに停止させたりできる。また、ピックアップ時またはプレイス時において、ワークに適切な荷重を加えることが可能となる。
【0012】
また、前記制御装置は、前記直動モータにより前記シャフトを移動させているときに、前記ひずみゲージにより検出される前記ひずみに基づいて前記シャフトに加わる荷重を検出し、検出した前記荷重が閾値以上の場合には、閾値未満の場合よりも、前記直動モータによって前記シャフトを移動させる速度を低くし、検出した前記荷重が前記閾値よりも大きな荷重である第二閾値以上の場合に、前記直動モータを停止させることができる。なお、閾値は、ワークのピックアップ時において、シャフトがワークに接触したと判定される荷重である。また、閾値は、ワークのプレイス時において、例えば、ワークが接地したと判定される荷重、または、ワークが他の部材に接触したと判定される荷重である。また、第二閾値は、ワークのピックアップ時において、ワークの破損を抑制しつつワークをより確実にピックアップすることが可能な荷重として設定してもよい。また、第二閾値は、ワークのプレイス時において、ワークの破損を抑制しつつより確実にワークを他の部材に押し付けることが可能な荷重として設定してもよい。閾値及び第二閾値は、ワークの種類に応じて変更することもできる。このように、シャフトの速度を最初は高くしておき、ワークのピックアップ時にシャフトがワークに接触した後、または、ワークのプレイス時にワークが接地した後に、シャフトの速度を低くしている。シャフトの速度を低くしながらも、さらに、ワークに荷重を加えているため、より確実なワークのピックアップが可能となる。また、例えば、ワークのプレイス時にワークを他の部材に接着する場合には、適切な荷重を加えることにより、ワークの接着がより適切に行われる。また、荷重が閾値未満の場合には、シャフトが速やかに移動するため、タクトタイムを短縮することができる。
【0013】
また、前記シャフトは、その先端部側に、その内部が中空となることで形成される中空部を有し、前記アクチュエータは、前記中空部に負圧を供給する供給部をさらに備え、前記制御装置は、ワークをピックアップするときに、前記直動モータを停止させた後に、前記供給部から前記中空部に負圧を供給させることができる。このように、適切な荷重がワークに加わった後に中空部に負圧を供給することにより、ワークがシャフトに衝突することによるワークの破損を抑制することができる。また、シャフトをワークに押し付けることにより、ワークとシャフトとの間に隙間ができることを抑制できるため、ワークをより確実にピックアップすることができる。
【0014】
また、前記シャフトは、その先端部側に、その内部が中空となることで形成される中空部を有し、前記アクチュエータは、前記中空部に負圧を供給する供給部と、前記中空部に負圧を供給する際に前記中空部から吸い出される空気が流通する通路である空気通路の途中に設けられ、前記空気通路を流れる空気の流量を検出する流量センサと、前記空気通路の途中に設けられ、前記空気通路内の圧力を検出する圧力センサと、をさらに備え、前記制御装置は、前記ひずみゲージにより検出される前記ひずみに加えて、前記流量センサにより検出される流量、及び又は前記圧力センサにより検出される圧力に基づいて、前記直動モータを制御することができる。
【0015】
ひずみゲージにより検出されるひずみに基づいて、シャフトがワークに接触していることを検出できる。しかし、シャフトがワークに接触していても、中空部内の圧力が十分に低くなければ、ワークをピックアップできなかったり、途中でワークが落下したりする虞がある。ここで、流量センサにより検出される流量及び圧力センサにより検出される圧力
の少なくとも一方の値に基づけば、中空部の圧力が十分に低くなっているか否か判定することができ、これにより、シャフトにワークが吸い付けられた状態であるか否か判定することができる。すなわち、中空部に負圧を供給した後、中空部内の圧力が十分に低くなるまでは、空気通路を空気が流通する。この空気の流通は、流量センサにより検出される。したがって、流量センサの検出値に基づいて、中空部の圧力が十分に低くなっているか否か判定することができる。また、中空部内の圧力が十分に低くなるまでは、空気通路内の圧力も高い(負圧が小さい)ため、圧力センサの検出値に基づいて、中空部の圧力が十分に低くなっているか否か判定することができる。したがって、ひずみゲージにより検出されるひずみに加えて、流量センサにより検出される流量、及び又は圧力センサにより検出される圧力に基づいて直動モータを制御することで、ワークのより確実なピックアップが可能となる。
【0016】
前記制御装置は、ワークをピックアップするときに、前記供給部から前記中空部に負圧を供給させ、前記流量センサにより検出される流量が所定流量以下まで減少したとき、及び又は前記圧力センサにより検出される圧力が所定圧力以下まで低下したときに、前記直動モータによって前記シャフトを前記中心軸方向の上側へ移動させることができる。
【0017】
中空部内の圧力が低くなる(負圧が大きくなる)にしたがって、空気通路内の空気の流通が緩慢になる。また、中空部内の圧力が低くなるにしたがって、空気通路内の空気の圧力も低くなる。そのため、流量センサにより検出される流量が所定流量以下まで減少したとき、及び又は圧力センサにより検出される圧力が所定圧力以下まで低下したときに、中空部内の圧力が十分に低下したと判定することができる。そして、その後にシャフトを中心軸方向の上側に移動させることにより、ワークのより確実なピックアップが可能となる。なお、所定流量は、中空部内の圧力がワークをピックアップできる圧力まで減少したときの流量であり、所定圧力は、中空部内の圧力がワークをピックアップできる圧力まで低下したときの圧力である。
【0018】
また、前記接続部材は、前記シャフトの前記中心軸の方向にずらして設けられる第一部材及び第二部材を有し、前記ひずみゲージは、前記第一部材及び前記第二部材に夫々に設けられる同じ方向を向く互いに平行な面であって前記シャフトの前記中心軸と直交する面に夫々設けられていてもよい。
【0019】
ここで、直動モータが作動すると熱を発生する。また、アクチュエータに備わる他の装置が熱を発生することもある。これらの熱により、直動モータ、支持部、及び接続部材が熱膨張することがある。この場合には、ワークからシャフトに荷重が加わっていなくとも、第一部材及び第二部材にひずみが生じ得る。例えば、第一部材及び第二部材の一端側が接続されている部材と、他端側が接続されている部材とで温度差があると、膨張量に差が生じる場合がある。なお、以下では例示的に、第一部材及び第二部材の一端側が接続されている部材を熱による膨張量が大きな部材(高膨張部材)として説明し、他端側が接続されている部材を熱による膨張量が小さな部材(低膨張部材)として説明する。このように第一部材及び第二部材が高膨張部材及び低膨張部材に接続されている場合には、第一部材と第二部材との距離が低膨張部材側よりも高膨張部材側で大きくなり得る。そして、高膨張部材側では、第一部材と第二部材とを引き離す方向に、第一部材と第二部材とに夫々逆方向の力がかかる。そのため、第一部材及び第二部材に夫々に設けられる同じ方向を向く互いに平行な面であってシャフトの中心軸と直交する面のうちの、一方の面には縮む方向のひずみが発生し、他方の面には伸びる方向のひずみが発生する。そのため、第一部材に設けられているひずみゲージと、第二部材に設けられているひずみゲージとでは、一方が縮む方向のひずみに対応する出力をし、他方が伸びる方向のひずみに対応する出力をする。このときに、第一部材と第二部材とには、夫々に逆方向の同じ大きさの力がかかっているため、一方のひずみゲージの出力と、他方のひずみゲージの出力とは、正負は異なるが
その絶対量は略同じになる。そのため、両ひずみゲージの出力を並列に接続することにより、熱膨張の影響を互いに打ち消し合うため、別途温度に応じた補正を行う必要がなくなる。すなわち、簡易且つ高精度にシャフト及びワークに加わる荷重のみを検出することができる。
【0020】
以下に図面を参照して、本発明を実施するための形態を説明する。ただし、この実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは、特に記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。また、以下の実施形態は可能な限り組み合わせることができる。
【0021】
<第1実施形態>
図1は、本実施形態に係るアクチュエータ1の外観図である。アクチュエータ1は外形が略直方体のハウジング2を有しており、ハウジング2には、蓋200が取り付けられている。図2は、本実施形態に係るアクチュエータ1の内部構造を示した概略構成図である。ハウジング2の内部に、シャフト10の一部を収容している。このシャフト10の先端部10A側は、中空となるよう形成されている。シャフト10及びハウジング2の材料には、例えば金属(例えばアルミニウム)を用いることができるが、樹脂等を用いることもできる。なお、以下の説明においては、XYZ直交座標系を設定し、このXYZ直交座標系を参照しつつ各部材の位置について説明する。ハウジング2の最も大きな面の長辺方向であってシャフト10の中心軸100の方向をZ軸方向とし、ハウジング2の最も大きな面の短辺方向をX軸方向とし、ハウジング2の最も大きな面と直交する方向をY軸方向とする。Z軸方向は鉛直方向でもある。なお、以下では、図2におけるZ軸方向の上側をアクチュエータ1の上側とし、図2におけるZ軸方向の下側をアクチュエータ1の下側とする。また、図2におけるX軸方向の右側をアクチュエータ1の右側とし、図2におけるX軸方向の左側をアクチュエータ1の左側とする。また、図2におけるY軸方向の手前側をアクチュエータ1の手前側とし、図2におけるY軸方向の奥側をアクチュエータ1の奥側とする。ハウジング2は、Z軸方向の寸法がX軸方向の寸法よりも長く、X軸方向の寸法がY軸方向の寸法よりも長い。ハウジング2は、Y軸方向と直交する一つの面(図2における手前側の面)に相当する箇所が開口しており、この開口を蓋200によって閉塞している。蓋200は、例えばネジによってハウジング2に固定される。
【0022】
ハウジング2内には、シャフト10をその中心軸100回りに回転させる回転モータ20と、シャフト10をその中心軸100に沿った方向(すなわち、Z軸方向)にハウジング2に対して相対的に直動させる直動モータ30と、エア制御機構60とが収容されている。また、ハウジング2のZ軸方向の下端面202には、シャフト10が挿通されたシャフトハウジング50が取り付けられている。ハウジング2には、下端面202からハウジング2の内部に向かって凹むように凹部202Bが形成されており、この凹部202Bにシャフトハウジング50の一部が挿入される。この凹部202BのZ軸方向の上端部には、Z軸方向に貫通孔2Aが形成されており、この貫通孔2A及びシャフトハウジング50をシャフト10が挿通される。シャフト10のZ軸方向の下側の先端部10Aは、シャフトハウジング50から外部へ突出している。シャフト10は、ハウジング2のX軸方向の中心且つY軸方向の中心に設けられている。つまり、ハウジング2における、X軸方向の中心およびY軸方向の中心を通ってZ軸方向に延びる中心軸と、シャフト10の中心軸100とが重なるように、シャフト10が設けられている。シャフト10は、直動モータ30によってZ軸方向に直動すると共に、回転モータ20によって中心軸100の回りを回転する。
【0023】
シャフト10の先端部10Aと逆側の端部(Z軸方向の上側の端部)である基端部10B側は、ハウジング2内に収容されており、回転モータ20の出力軸21に接続されている。この回転モータ20は、シャフト10を回転可能に支持している。回転モータ20の
出力軸21の中心軸は、シャフト10の中心軸100と一致する。回転モータ20は、出力軸21の他に、固定子22と、固定子22の内部で回転する回転子23と、出力軸21の回転角度を検出するロータリエンコーダ24とを有する。回転子23が固定子22に対して回転することにより、出力軸21及びシャフト10も固定子22に対して連動して回転する。
【0024】
直動モータ30は、ハウジング2に固定された固定子31、固定子31に対して相対的にZ軸方向に移動する可動子32を有する。直動モータ30は、例えばリニアモータである。固定子31には複数のコイル31Aが設けられ、可動子32には複数の永久磁石32Aが設けられている。コイル31Aは、Z軸方向に所定ピッチで配置され、且つ、U,V,W相の3つのコイル31Aを一組として複数設けられている。本実施形態では、これらU,V,W相のコイル31Aに三相電機子電流を流すことによって直動的に移動する移動磁界を発生させ、固定子31に対して可動子32を直動的に移動させる。直動モータ30には固定子31に対する可動子32の相対位置を検出するリニアエンコーダ38が設けられている。なお、上記構成に代えて、固定子31に永久磁石を設け、可動子32に複数のコイルを設けることもできる。
【0025】
直動モータ30の可動子32と回転モータ20の固定子22とは、直動テーブル33を介して連結されている。直動テーブル33は、直動モータ30の可動子32の移動に伴って移動可能である。直動テーブル33の移動は、直動案内装置34によってZ軸方向に案内されている。直動案内装置34は、ハウジング2に固定されたレール34Aと、レール34Aに組み付けられたスライダブロック34Bとを有する。レール34Aは、Z軸方向に延びており、スライダブロック34Bは、レール34Aに沿ってZ軸方向に移動可能に構成されている。
【0026】
直動テーブル33は、スライダブロック34Bに固定されており、スライダブロック34Bと共にZ軸方向に移動可能である。直動テーブル33は、直動モータ30の可動子32と2つの連結アーム35を介して連結されている。2つの連結アーム35は、可動子32のZ軸方向の両端部と、直動テーブル33のZ軸方向の両端部とを連結している。また、直動テーブル33は、両端部よりも中央側において、2つの連結アーム36を介して回転モータ20の固定子22と連結されている。なお、Z軸方向上側の連結アーム36を第一アーム36Aといい、Z軸方向下側の連結アーム36を第二アーム36Bという。また、第一アーム36Aと第二アーム36Bとを区別しない場合には、単に連結アーム36という。直動テーブル33と回転モータ20の固定子22とが、該連結アーム36を介して回転モータ20の固定子22と連結されているために、直動テーブル33の移動に伴って回転モータ20の固定子22も移動する。また、連結アーム36は、断面が四角である。各連結アーム36におけるZ軸方向の上側を向く面には、ひずみゲージ37が固定されている。なお、第一アーム36Aに固定されるひずみゲージ37を第一ひずみゲージ37Aといい、第二アーム36Bに固定されるひずみゲージ37を第二ひずみゲージ37Bという。第一ひずみゲージ37Aと第二ひずみゲージ37Bとを区別しない場合には、単にひずみゲージ37という。なお、本実施形態の2つのひずみゲージ37は、連結アーム36のZ軸方向の上側を向く面に夫々設けられているが、これに代えて、連結アーム36のZ軸方向の下側を向く面に夫々設けられていてもよい。
【0027】
エア制御機構60は、シャフト10の先端部10Aに正圧や負圧を発生させるための機構である。すなわち、エア制御機構60は、ワークWのピックアップ時において、シャフト10内の空気を吸引することで、該シャフト10の先端部10Aに負圧を発生させる。これによってワークWがシャフト10の先端部10Aに吸い付けられる。また、シャフト10内に空気を送り込むことで、該シャフト10の先端部10Aに正圧を発生させる。これによりシャフト10の先端部10AからワークWを容易に脱離させる。
【0028】
エア制御機構60は、正圧の空気が流通する正圧通路61A(一点鎖線参照。)と、負圧の空気が流通する負圧通路61B(二点鎖線参照。)と、正圧の空気及び負圧の空気で共用される共用通路61C(破線参照。)とを有する。正圧通路61Aの一端は、ハウジング2のZ軸方向の上端面201に設けられた正圧用コネクタ62Aに接続され、正圧通路61Aの他端は正圧用の電磁弁(以下、正圧電磁弁63Aという。)に接続されている。正圧電磁弁63Aは、後述するコントローラ7によって開閉される。なお、正圧通路61Aの一端側の部分はチューブ610によって構成され、他端側の部分はブロック600に開けられた穴により構成されている。正圧用コネクタ62Aは、ハウジング2のZ軸方向の上端面201を貫通しており、正圧用コネクタ62Aにはエアを吐出するポンプ等に繋がるチューブが外部から接続される。
【0029】
負圧通路61Bの一端は、ハウジング2のZ軸方向の上端面201に設けられた負圧用コネクタ62Bに接続され、負圧通路61Bの他端は負圧用の電磁弁(以下、負圧電磁弁63Bという。)に接続されている。負圧電磁弁63Bは、後述するコントローラ7によって開閉される。なお、負圧通路61Bの一端側の部分はチューブ620によって構成され、他端側の部分はブロック600に開けられた穴により構成されている。負圧用コネクタ62Bは、ハウジング2のZ軸方向の上端面201を貫通しており、負圧用コネクタ62Bにはエアを吸引するポンプ等に繋がるチューブが外部から接続される。
【0030】
共用通路61Cはブロック600に開けられた穴により構成されている。共用通路61Cの一端は、2つに分岐して正圧電磁弁63A及び負圧電磁弁63Bに接続されており、共用通路61Cの他端は、ハウジング2に形成されている貫通孔であるエア流通路202Aに接続されている。エア流通路202Aは、シャフトハウジング50に通じている。負圧電磁弁63Bを開き且つ正圧電磁弁63Aを閉じることにより、負圧通路61Bと共用通路61Cとが連通されるため、共用通路61C内に負圧が発生する。そうすると、エア流通路202Aを介してシャフトハウジング50内から空気が吸引される。一方、正圧電磁弁63Aを開き且つ負圧電磁弁63Bを閉じることにより、正圧通路61Aと共用通路61Cとが連通されるため、共用通路61C内に正圧が発生する。そうすると、エア流通路202Aを介してシャフトハウジング50内に空気が供給される。共用通路61Cには、共用通路61C内の空気の圧力を検出する圧力センサ64及び共用通路61C内の空気の流量を検出する流量センサ65が設けられている。
【0031】
なお、図2に示したアクチュエータ1では、正圧通路61A及び負圧通路61Bの一部がチューブで構成され、他部がブロック600に開けられた穴により構成されているが、これに限らず、全ての通路をチューブで構成することもできるし、全ての通路をブロック600に開けられた穴により構成することもできる。共用通路61Cについても同様で、全てチューブで構成することもできるし、チューブを併用して構成することもできる。なお、チューブ610及びチューブ620の材料は、樹脂等の柔軟性を有する材料であってもよく、金属等の柔軟性を有さない材料であってもよい。また、正圧通路61Aを用いてシャフトハウジング50に正圧を供給する代わりに、大気圧を供給してもよい。
【0032】
また、ハウジング2のZ軸方向の上端面201には、回転モータ20を冷却するための空気の入口となるコネクタ(以下、入口コネクタ91Aという。)およびハウジング2からの空気の出口となるコネクタ(以下、出口コネクタ91Bという。)が設けられている。入口コネクタ91A及び出口コネクタ91Bは、夫々空気が流通可能なようにハウジング2の上端面201を貫通している。入口コネクタ91Aにはエアを吐出するポンプ等に繋がるチューブがハウジング2の外部から接続され、出口コネクタ91Bにはハウジング2から流出するエアを排出するチューブがハウジング2の外部から接続される。ハウジング2の内部には、回転モータ20を冷却するための空気が流通する金属製のパイプ(以下
、冷却パイプ92という。)が設けられており、この冷却パイプ92の一端は、入口コネクタ91Aに接続されている。冷却パイプ92は、入口コネクタ91AからZ軸方向にハウジング2の下端面202付近まで延び、該下端面202付近において湾曲して他端側が回転モータ20に向くように形成されている。このように、Z軸方向の下側からハウジング2内に空気を供給することにより、効率的な冷却が可能となる。また、冷却パイプ92は、直動モータ30のコイル31Aから熱を奪うように、該固定子31の内部を貫通している。固定子31に設けられているコイル31Aからより多くの熱を奪うように、冷却パイプ92の周りにコイル31Aが配置されている。
【0033】
ハウジング2のZ軸方向の上端面201には、電力を供給する電線や信号線を含んだコネクタ41が接続されている。また、ハウジング2には、コントローラ7が設けられている。コネクタ41からハウジング2内に引き込まれる電線や信号線は、コントローラ7に接続されている。コントローラ7には、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)が備わり、これらはバスにより相互に接続される。EPROMには、各種プログラム、各種テーブル等が格納される。EPROMに格納されたプログラムをCPUがRAMの作業領域にロードして実行し、このプログラムの実行を通じて、回転モータ20、直動モータ30、正圧電磁弁63A、負圧電磁弁63B等が制御される。これにより、所定の目的に合致した機能をCPUが実現する。また、圧力センサ64、流量センサ65、ひずみゲージ37、ロータリエンコーダ24、リニアエンコーダ38の出力信号がコントローラ7に入力される。なお、回転モータ20、直動モータ30、正圧電磁弁63A、負圧電磁弁63B等の制御を全てコントローラ7が行う必要はなく、コネクタ41に接続される他の制御機器によってこれらの一部が制御されてもよい。また、コネクタ41を介して外部の制御機器からコントローラ7へプログラムが供給されてもよい。
【0034】
図3は、シャフトハウジング50とシャフト10の先端部10Aとの概略構成を示した断面図である。シャフトハウジング50は、ハウジング本体51と、2つのリング52と、フィルタ53と、フィルタ止め54とを有する。ハウジング本体51には、シャフト10が挿通される貫通孔51Aが形成されている。貫通孔51Aは、Z軸方向にハウジング本体51を貫通しており、該貫通孔51AのZ軸方向の上端は、ハウジング2に形成された貫通孔2Aに通じている。貫通孔51Aの直径はシャフト10の外径よりも大きい。そのため、貫通孔51Aの内面とシャフト10の外面とには隙間が設けられている。貫通孔51Aの両端部には、孔の直径が拡大された拡径部51Bが設けられている。2つの拡径部51Bには、夫々リング52が嵌め込まれている。リング52は筒状に形成されており、リング52の内径はシャフト10の外径よりも若干大きい。したがって、シャフト10がリング52の内部をZ軸方向に移動可能である。そのため、リング52の内面とシャフト10の外面との間にも隙間が形成される。したがって、シャフト10がリング52の内部をZ軸方向に移動可能であり、且つ、シャフト10がリング52の内部を中心軸100回りに回転可能である。ただし、拡径部51Bを除く貫通孔51Aの内面とシャフト10の外面との間に形成される隙間よりも、リング52の内面とシャフト10の外面との間に形成される隙間の方が小さい。なお、Z軸方向上側のリング52を第一リング52Aといい、Z軸方向下側のリング52を第二リング52Bという。第一リング52Aと第二リング52Bとを区別しない場合には、単にリング52という。リング52の材料には、例えば金属または樹脂を用いることができる。
【0035】
ハウジング本体51のZ軸方向の中央部には、X軸方向の左右両方向に張り出した張出部511が形成されている。張出部511には、ハウジング2の下端面202と平行な面であって、シャフトハウジング50をハウジング2の下端面202へ取り付けるときに、該下端面202と接する面である取付面511Aが形成されている。取付面511Aは、中心軸100と直交する面である。また、ハウジング2にシャフトハウジング50を取り
付けたときに、シャフトハウジング50の一部であって取付面511AよりもZ軸方向の上側の部分512は、ハウジング2に形成された凹部202Bに嵌るように形成されている。
【0036】
上記のとおり、貫通孔51Aの内面とシャフト10の外面とには隙間が設けられている。その結果、ハウジング本体51の内部には、貫通孔51Aの内面と、シャフト10の外面と、第一リング52Aの下端面と、第二リング52Bの上端面とによって囲まれた空間である内部空間500が形成されている。また、シャフトハウジング50には、ハウジング2の下端面202に形成されるエア流通路202Aの開口部と、内部空間500とを連通して空気の通路となる制御通路501が形成されている。制御通路501は、X軸方向に延びる第一通路501A、Z軸方向に延びる第二通路501B、第一通路501A及び第二通路501Bが接続される空間であってフィルタ53が配置される空間であるフィルタ部501Cを有する。第一通路501Aの一端は内部空間500に接続され、他端はフィルタ部501Cに接続されている。第二通路501Bの一端は、取付面511Aに開口しており、エア流通路202Aの開口部に接続されるように位置が合わされている。
【0037】
また、第二通路501Bの他端はフィルタ部501Cに接続される。フィルタ部501Cには、円筒状に形成されたフィルタ53が設けられている。フィルタ部501Cは、第一通路501Aと中心軸が一致するようにX軸方向に延びた円柱形状の空間となるように形成されている。フィルタ部501Cの内径とフィルタ53の外径とは略等しい。フィルタ53は、X軸方向にフィルタ部501Cへ挿入される。フィルタ部501Cにフィルタ53が挿入された後に、フィルタ止め54によってフィルタ53の挿入口となったフィルタ部501Cの端部が閉塞される。第二通路501Bの他端は、フィルタ53の外周面側からフィルタ部501Cに接続されている。また、第一通路501Aの他端はフィルタ53の中心側と通じている。そのため、第一通路501Aと第二通路501Bとの間を流通する空気は、フィルタ53を通過する。したがって、例えば、先端部10Aに負圧を発生させたときに、内部空間500に空気と一緒に異物を吸い込んだとしても、この異物はフィルタ53によって捕集される。第二通路501Bの一端には、シール剤を保持するように溝501Dが形成されている。
【0038】
張出部511のX軸方向の両端部付近には、該シャフトハウジング50をハウジング2にボルトを用いて固定するときに、該ボルトを挿通させるボルト孔51Gが2つ形成されている。ボルト孔51Gは、Z軸方向に張出部511を貫通して取付面511Aに開口している。
【0039】
シャフト10の先端部10A側には、シャフト10が中空となるように中空部11が形成されている。中空部11の一端は、先端部10Aで開口している。また、中空部11の他端には、内部空間500と中空部11とをX軸方向に連通する連通孔12が形成されている。直動モータ30によってシャフト10がZ軸方向に移動したときのストロークの全範囲において、内部空間500と中空部11とが連通するように連通孔12が形成されている。したがって、シャフト10の先端部10Aと、エア制御機構60とは、中空部11、連通孔12、内部空間500、制御通路501、エア流通路202Aを介して連通している。なお、連通孔12は、X軸方向に加えてY軸方向にも形成されていてもよい。
【0040】
このような構成によれば、直動モータ30を駆動してシャフト10をZ軸方向に移動させたときに、シャフト10がZ軸方向のどの位置にあっても、連通孔12は常に内部空間500と中空部11とを連通する。また、回転モータ20を駆動してシャフト10を中心軸100回りに回転させたときに、シャフト10の回転角度が中心軸100回りのどの角度であっても、連通孔12は常に内部空間500と中空部11とを連通する。したがって、シャフト10がどのような状態であっても、中空部11と内部空間500との連通状態
が維持されるため、中空部11は常にエア制御機構60に通じていることになる。そのため、シャフト10の位置にかかわらず、エア制御機構60において正圧電磁弁63Aを閉じ、負圧電磁弁63Bを開くと、エア流通路202A、制御通路501、内部空間500、および連通孔12を介して、中空部11内の空気が吸引されることになる。その結果、中空部11に負圧を発生させることができる。すなわち、シャフト10の先端部10Aに負圧を発生させることができるので、シャフト10の先端部10AにワークWを吸い付けることができる。なお、上述したように、リング52の内面とシャフト10の外面との間にも隙間が形成されている。しかしながら、この隙間は、内部空間500を形成する隙間(すなわち、貫通孔51Aの内面とシャフト10の外面との間に形成される隙間)よりも小さい。そのため、エア制御機構60において正圧電磁弁63Aを閉じ、負圧電磁弁63Bを開くことで、内部空間500内から空気が吸引されても、リング52の内面とシャフト10の外面との間の隙間を流通する空気の流量を抑制することができる。これにより、ワークWをピックアップできるような負圧をシャフト10の先端部10Aに発生させることができる。一方、シャフト10の位置にかかわらず、エア制御機構60において正圧電磁弁63Aを開き、負圧電磁弁63Bを閉じると、中空部11に正圧を発生させることができる。すなわち、シャフト10の先端部10Aに正圧を発生させることができるので、シャフト10の先端部10AからワークWを速やかに脱離させることができる。
【0041】
(ピックアンドプレイス動作)
アクチュエータ1を用いたワークWのピックアンドプレイスについて説明する。ピックアンドプレイスは、コントローラ7が所定のプログラムを実行することにより行われる。ワークWのピックアップ時において、シャフト10がワークWに接触するまでは、正圧電磁弁63A及び負圧電磁弁63Bは共に閉じた状態とする。この場合、シャフト10の先端部10Aの圧力は大気圧となる。そして、直動モータ30によりシャフト10をZ軸方向下側に移動させる。シャフト10がワークWに接触すると、直動モータ30を停止させる。直動モータ30を停止後に負圧電磁弁63Bを開くことにより、シャフト10の先端部10Aに負圧を発生させ、ワークWをシャフト10の先端部10Aに吸い付ける。その後、直動モータ30によりシャフト10をZ軸方向上側に移動させる。このときに、必要に応じて、回転モータ20によりシャフト10を回転させる。このようにして、ワークWをピックアップすることができる。
【0042】
次に、ワークWのプレイス時には、ワークWが先端部10Aに吸い付いている状態のシャフト10を直動モータ30によりZ軸方向の下側に移動させる。ワークWが接地すると、直動モータ30を停止させることで、シャフト10の移動を停止させる。さらに、負圧電磁弁63Bを閉じ且つ正圧電磁弁63Aを開くことにより、シャフト10の先端部10Aに正圧を発生させる。その後、直動モータ30によりシャフト10をZ軸方向の上側に移動させることにより、シャフト10の先端部10AがワークWから離れる。
【0043】
ここで、ワークWのピックアップ時において、シャフト10の先端部10AがワークWに接触したことをひずみゲージ37を用いて検出する。以下では、この方法について説明する。なお、ワークWのプレイス時においてワークWが接地したことも同様にして検出することができる。シャフト10の先端部10AがワークWに接触して先端部10AがワークWを押すと、シャフト10とワークWとの間に荷重が発生する。すなわち、シャフト10がワークWに力を加えたときの反作用によって、シャフト10がワークWから力を受ける。このシャフト10がワークWから受ける力は、連結アーム36に対してひずみを発生させる方向に作用する。すなわち、このときに連結アーム36にひずみが生じる。このひずみは、ひずみゲージ37によって検出される。そして、ひずみゲージ37が検出するひずみは、シャフト10がワークWから受ける力と相関関係にある。このため、ひずみゲージ37の検出値に基づいて、ワークWからシャフト10が受ける力、すなわち、シャフト10とワークWとの間に発生した荷重を検出することができる。ひずみゲージの検出値と
荷重との関係は予め実験またはシミュレーション等により求めることができる。
【0044】
このように、ひずみゲージ37の検出値に基づいてシャフト10とワークWとの間に発生した荷重を検出することができるため、例えば、荷重が発生した時点でシャフト10の先端部10AがワークWに接触したと判断してもよいし、誤差等の影響を考慮して、検出された荷重が所定荷重以上の場合に、シャフト10の先端部10AがワークWに接触したと判断してもよい。なお、所定荷重は、シャフト10がワークWに接触したと判定される荷重である。また、所定荷重をワークWの破損を抑制しつつワークWをより確実にピックアップすることが可能な荷重として設定してもよい。また、所定荷重は、ワークWの種類に応じて変更することもできる。
【0045】
ここで、ひずみゲージ37のひずみによる抵抗値変化は極めて微少であるため、ホイートストンブリッジ回路を利用して、電圧変化として取り出している。アクチュエータ1では、第一ひずみゲージ37Aに係るブリッジ回路の出力と、第二ひずみゲージ37Bに係るブリッジ回路の出力とを並列に接続している。このように、両ブリッジ回路の出力を並列に接続することにより、以下のような温度の影響を取り除いた電圧変化を得ている。
【0046】
ここで、温度の影響による連結アーム36のひずみがないと仮定した場合には、第一ひずみゲージ37Aと第二ひずみゲージ37Bとの夫々で検出される荷重は略同じになる。しかし、例えば、直動モータ30の作動頻度が高く、且つ、回転モータ20の作動頻度が低い場合には、直動モータ30側の温度が回転モータ20側の温度よりも高くなるため、第一アーム36Aと第二アーム36Bとの間では、直動テーブル33のZ軸方向の膨張量が、回転モータ20のZ軸方向の膨張量よりも大きくなる。これにより、第一アーム36Aと第二アーム36Bとが平行でなくなり、回転モータ20側よりも直動モータ30側の方が、第一アーム36Aと第二アーム36Bとの距離が大きくなる。このときには、第一ひずみゲージ37Aは縮み、第二ひずみゲージ37Bは伸びる。この場合、第一ひずみゲージ37Aの出力は、見かけ上、荷重の発生を示し、第二ひずみゲージ37Bの出力は、見かけ上、負の荷重の発生を示す。このときには、第一アーム36A及び第二アーム36Bに、直動テーブル33のZ軸方向の膨張量と回転モータ20のZ軸方向の膨張量との差によって生じる力が逆方向に等しくかかっているため、第一ひずみゲージ37Aの出力と、第二ひずみゲージ37Bの出力とは、絶対値が等しく正負が異なっている。そのため、両ひずみゲージの出力を並列に接続することにより、温度の影響による出力を互いに打ち消すことができるため、別途温度に応じた補正を行う必要がない。そのため、簡易且つ高精度に荷重を検出することができる。このように、両ブリッジ回路の出力を並列に接続することにより、温度の影響を取り除いた電圧変化を得ることができ、この電圧変化はシャフト10とワークWとの間に発生する荷重に応じた値になる。
【0047】
なお、本実施形態においては、ひずみゲージ37を2つ設けているが、これに代えて、第一ひずみゲージ37Aまたは第二ひずみゲージ37Bの何れか一方のみを設けていてもよい。この場合、ひずみゲージの検出値を周知の技術を用いて温度に応じて補正する。ひずみゲージ37を1つ設けた場合であっても、ひずみゲージ37の出力はシャフト10とワークWとの間に発生する荷重に応じた値になるため、ひずみゲージ37の出力に基づいて、シャフト10とワークWとの間に発生する荷重を検出することができる。
【0048】
このように、連結アーム36にひずみゲージ37を設けることにより、ワークWにシャフト10が接したことを検出することができる。ここで、従来では、ワークWにかかる力を検出することが困難であった。そのため、シャフト10の先端部10Aに、衝撃を吸収するばね又は柔軟性の高い部材(例えばゴム)を取り付けていた。この場合、ワークWにかかる力を精密に調整することが困難であった。また、シャフト10がワークWに当接したときの衝撃を低減するため、シャフト10をワークWに近付ける速度を低下させること
もあった。この場合、タクトタイムが長くなってしまう。一方、本実施形態に係るアクチュエータ1によれば、ワークWにシャフト10が接したことをひずみゲージ37により正確に検出することができるため、シャフト10の速度を低下させずにワークWにかかる力をより精密に調整することができる。
【0049】
また、ワークWに適切な力をかけることが可能となるため、ワークWのピックアップをより確実に実行することができる。例えば、ワークWをピックアップするときには、シャフト10の先端部10AにワークWを押し付けた状態で中空部11に負圧を発生させることにより、ワークWをより確実にピックアップすることが可能となると共に、ワークWを吸引したときにワークWが勢いよくシャフト10に衝突して破損することを抑制できる。一方、ワークWを押し付ける荷重が大きすぎると、ワークWが破損する虞がある。したがって、ワークWにかかる力を検出しつつワークWに適切な荷重をかけることにより、ワークWの破損を抑制しつつ、より確実なワークWのピックアップが可能となる。また、プレイス時においても、ワークWに適切な荷重をかけることが求められる場合もある。例えば、ワークWを他の部材に接着剤を用いて接着する場合には、接着の特性に応じた荷重をかける必要がある。このときにも、ワークWにかかる力を適切に制御することにより、より確実な接着が可能となる。
【0050】
(ひずみゲージ37の他の態様1)
上記アクチュエータ1においては、連結アーム36にひずみゲージ37を設けているが、シャフト10とワークWとの間に荷重が発生したときに、その荷重に応じてひずみが発生する部材であれば、他の部材にひずみゲージ37を設けることもできる。
【0051】
図4及び図5は、回転モータ20の出力軸21を支持する2つの軸受25に夫々ひずみゲージ37を設けた場合の概略構成を示す図である。図4は、Z軸方向上側に設けられる軸受25Aの周りの図であり、図5は、Z軸方向下側に設けられる軸受25Bの周りの図である。なお、両軸受を区別しない場合には、単に軸受25という。軸受25は、出力軸21において回転子23よりもZ軸方向の上側(図4参照。)と下側(図5参照。)とに夫々設けられている。
【0052】
まず、図4を用いて回転子23よりもZ軸方向の上側に設けられるひずみゲージ37について説明する。軸受25Aは、内周面が出力軸21の外周面に嵌め込まれており、外周面が固定子22に形成されている固定部220Aの内周面に嵌め込まれている。固定部220Aは、軸受25AのZ軸方向の上側に接するように、中心軸100側に向かって突出する上部突出部221Aを有している。上部突出部221AのZ軸方向の上側の面に第一ひずみゲージ37Aが設けられている。
【0053】
次に、図5を用いて回転子23よりもZ軸方向の下側に設けられるひずみゲージ37について説明する。軸受25Bは、内周面が出力軸21の外周面に嵌め込まれており、外周面が固定子22に形成されている固定部220Bの内周面に嵌め込まれている。固定部220Bは、軸受25BのZ軸方向の上側に接するように、中心軸100側に向かって突出する下部突出部221Bを有している。下部突出部221BのZ軸方向の上側の面に第二ひずみゲージ37Bが設けられている。
【0054】
したがって、第一ひずみゲージ37A及び第二ひずみゲージ37Bは、同じ方向を向く互いに平行な面であってシャフト10の中心軸100と直交する面に夫々設けられている。このような構成では、シャフト10とワークWとの間に発生した荷重により、上部突出部221A及び下部突出部221Bにはひずみが生じる。このひずみは、シャフト10とワークWとの間に発生した荷重と相関関係にあるため、ひずみゲージ37により、ひずみを検出することにより、シャフト10とワークWとの間に発生した荷重を検出することが
できる。また、第一ひずみゲージ37Aと第二ひずみゲージ37Bとは、温度の影響により逆方向のひずみを検出する。すなわち、上部突出部221Aと下部突出部221Bとの間の固定子22の膨張量と出力軸21の膨張量とに差がある場合には、上部突出部221A及び下部突出部221Bに逆方向で同じ大きさの力がかかる。このときには、第一ひずみゲージ37Aの出力と、第二ひずみゲージ37Bの出力とは、絶対値が等しく正負が異なっている。そのため、両ひずみゲージの出力を並列に接続することにより、温度の影響による出力を互いに打ち消すことができるため、別途温度に応じた補正を行う必要がない。したがって、簡易且つ高精度に、シャフト10及びワークWに加わる荷重を検出することができる。
【0055】
(ひずみゲージ37の他の態様2)
上記アクチュエータ1においては、連結アーム36にひずみゲージ37を設けているが、これに代えて、連結アーム35にひずみゲージ37を設けることもできる。すなわち、2つの連結アーム35の夫々において、Z軸方向の上側を向く面にひずみゲージ37を夫々設けることもできる。また、2つの連結アーム35の夫々において、Z軸方向の下側を向く面にひずみゲージ37を夫々設けることもできる。連結アーム36のZ軸方向の上側を向く面または下側を向く面にも、シャフト10とワークWとの間に発生する荷重の大きさに応じたひずみが発生する。したがって、このひずみを検出することにより、荷重を検出することができる。また、連結アーム35も、Z軸方向にずらして2つ配置されており、夫々の中心軸が互いに平行であり、且つ、夫々の中心軸がシャフト10の中心軸100と直交している。そのため、上記したように、熱膨張によって連結アーム35にひずみが生じた場合であっても、2つのひずみゲージの出力を並列に接続することにより、熱膨張によるひずみの影響を打ち消すことができる。したがって、簡易且つ高精度に、シャフト10及びワークWに加わる荷重を検出することができる。
【0056】
(ピックアンドプレイス制御)
次に、ピックアンドプレイスの具体的な制御について説明する。このピックアンドプレイスは、コントローラ7が所定のプログラムを実行することにより行われる。なお、本実施形態では、ひずみゲージ37の出力を荷重に置き換えて、この荷重に基づいて直動モータ30を制御するが、これに代えて、ひずみゲージ37の出力に基づいて、直動モータ30を直接制御してもよい。まずは、ピックアップ処理について説明する。図6は、ピックアップ処理のフローを示したフローチャートである。本フローチャートは、コントローラ7によって所定の時間毎に実行される。この所定の時間は、タクトタイムに応じて設定される。初期状態では、シャフト10は、ワークWから十分に距離がある。
【0057】
ステップS101では、正圧電磁弁63A及び負圧電磁弁63Bを共に閉じた状態とする。すなわち、シャフト10の先端部10Aの圧力を大気圧とする。ステップS102では、シャフト10を下降させる。すなわち、シャフト10がZ軸方向の下側に移動するように、直動モータ30を駆動させる。ステップS103では、ひずみゲージ37の出力に基づいて、シャフト10に加わる荷重を検出する。ステップS104では、シャフト10に加わる荷重が、所定荷重以上であるか否か判定される。ここでいう所定荷重は、シャフト10がワークWに接触したと判定される荷重である。なお、所定荷重をワークWの破損を抑制しつつワークWをより確実にピックアップすることが可能な荷重として設定してもよい。ステップS104で肯定判定された場合には、ステップS105へ進み、否定判定された場合にはステップS103へ戻る。したがって、シャフト10に加わる荷重が所定荷重以上になるまで、直動モータ30がシャフト10をZ軸方向の下側に移動させる。
【0058】
ステップS105では、直動モータ30を停止させる。なお、直動モータ30が停止した場合であっても、シャフト10に対して所定荷重が継続して加わるように、直動モータ30への通電がフィードバック制御される。
【0059】
ステップS106では、負圧電磁弁63Bが開かれる。なお、正圧電磁弁63Aは閉弁状態が維持される。これにより、シャフト10の先端部10Aに負圧を発生させ、ワークWをシャフト10の先端部10Aに吸い付ける。ステップS107では、シャフト10を上昇させる。このときには、直動モータ30によりシャフト10をZ軸方向上側に所定距離だけ移動させる。このときに、必要に応じて、回転モータ20によりシャフト10を回転させてもよい。このようにして、ワークWをピックアップすることができる。
【0060】
次に、プレイス処理について説明する。図7は、プレイス処理のフローを示したフローチャートである。プレイス処理は、図6に示したピックアップ処理の後に、コントローラ7によって実行される。プレイス処理の開始時には、シャフト10の先端にワークWが吸い付けられている。すなわち、正圧電磁弁63Aが閉じ、負圧電磁弁63Bが開いた状態となっている。ステップS201では、シャフト10を下降させる。すなわち、シャフト10がZ軸方向の下側に移動するように、直動モータ30を駆動させる。ステップS202では、ひずみゲージ37の出力に基づいて、シャフト10に加わる荷重を検出する。ステップS203では、シャフト10に加わる荷重が、第二所定荷重以上であるか否か判定される。なお、第二所定荷重は、ワークWが接地したと判定される荷重、または、ワークWが他の部材に接触したと判定される荷重である。第二所定荷重は、ステップS104における所定荷重と同じあってもよく、異なっていてもよい。ステップS203で肯定判定された場合には、ステップS204へ進み、否定判定された場合にはステップS202へ戻る。したがって、シャフト10に加わる荷重が第二所定荷重以上になるまで、直動モータ30がシャフト10をZ軸方向の下側に移動させる。
【0061】
ステップS204では、直動モータ30を停止させる。なお、直動モータ30が停止した場合であっても、シャフト10に対して第二所定荷重が継続して加わるように、直動モータ30への通電がフィードバック制御される。
【0062】
ステップS205では、正圧電磁弁63Aが開かれ、負圧電磁弁63Bが閉じられる。これにより、シャフト10の先端部10Aに正圧を発生させ、シャフト10からワークWを脱離させる。ステップS206では、シャフト10を上昇させる。すなわち、直動モータ30によりシャフト10をZ軸方向上側に所定距離だけ移動させる。このときに、必要に応じて、回転モータ20によりシャフト10を回転させてもよい。このようにして、ワークWをプレイスすることができる。
【0063】
以上説明したように本実施形態に係るアクチュエータ1によれば、ひずみゲージ37の出力に基づいて、シャフト10に加わる荷重を検出することができる。そして、検出される荷重に基づいて、直動モータ30を制御することにより、ワークWに適切な荷重を加えることができるため、ワークWの破損を抑制しつつ、より確実にワークWをピックアップすることが可能となる。
【0064】
<第2実施形態>
ここで、ピックアップ処理において、シャフト10がワークWに接触した瞬間に直動モータ30を停止させると、シャフト10の先端部10AとワークWとが十分に密着せずに、シャフト10の先端部10Aの一部とワークWとの間に隙間が生じる場合がある。このような状態で先端部10Aに負圧を発生させると、先端部10AとワークWとの隙間がある箇所において、ワークWが先端部10Aに向かって移動し、ワークWが先端部10Aに衝突する。この衝突により、ワークWが破損する虞がある。また、シャフト10の先端部10Aの一部とワークWとに隙間があると、シャフト10の外部から内部空間500に空気が流入する。これにより、内部空間500の圧力が十分に低くならずに、ワークWをピックアップできなくなる虞がある。したがって、シャフト10の先端部10A全体がワー
クWと密着することが望ましい。そのため、ピックアップ処理において、ワークWにある程度の荷重が加わるまで、シャフト10をワークWに押し付けることが考えられる。
【0065】
しかし、ピックアップ処理において、シャフト10の移動速度が高すぎると、直動モータ30を停止させようとしても応答遅れ等の要因により直動モータ30が直ぐには停止しない場合もあり得る。この場合、ワークWに必要以上の荷重が加わり、ワークWが破損する虞がある。一方、シャフト10の移動速度を低くすると、タクトタイムが増加してしまう。
【0066】
そこで、本実施形態では、シャフト10がワークWに接するまでは、シャフト10を比較的高速で移動させ、シャフト10がワークWに接した後、ワークWに適切な荷重が加わるまでの間は、シャフト10を比較的低速で移動させる。これにより、ワークWの破損を抑制しつつ、シャフト10とワークWとをより確実に密着させる。
【0067】
このようなピックアップ処理について説明する。図8は、ピックアップ処理のフローを示したフローチャートである。本フローチャートは、コントローラ7によって所定の時間毎に実行される。この所定の時間は、タクトタイムに応じて設定される。なお、図6に示したピックアップ処理と同じ処理が行われるステップについては、同じ符号を付して説明を省略する。
【0068】
図8に示したフローチャートでは、ステップS103の処理が終了するとステップS301へ進む。ステップS301では、シャフト10に加わる荷重が、第三所定荷重以上であるか否か判定される。第三所定荷重は、シャフト10がワークWに接触したと判定される荷重である。本ステップS301では、シャフト10がワークWに接触したか否か判定している。ステップS301で肯定判定された場合には、ステップS302へ進み、否定判定された場合にはステップS103へ戻る。したがって、シャフト10に加わる荷重が第三所定荷重以上になるまで、直動モータ30がシャフト10をZ軸方向の下側に比較的高速で移動させる。ステップS302では、シャフト10の移動速度を低下させる。すなわち、直動モータ30がシャフト10をZ軸方向の下側に移動する速度を低下させる。このときには、ステップS102において設定されるシャフト10の移動速度よりも低下される。
【0069】
ステップS303では、ひずみゲージ37の出力に基づいて、シャフト10に加わる荷重を検出する。ステップS304では、シャフト10に加わる荷重が、第四所定荷重以上であるか否か判定される。第四所定荷重は、ワークWの破損を抑制しつつワークWをより確実にピックアップすることが可能な荷重である。ステップS304で肯定判定された場合には、ステップS105へ進み、否定判定された場合にはステップS303へ戻る。したがって、シャフト10に加わる荷重が第四所定荷重以上になるまで、直動モータ30がシャフト10をZ軸方向の下側に低速で移動させる。このようにして、ワークWの破損を抑制しつつワークWをより確実にピックアップすることができる。
【0070】
プレイス処理においても同様な制御が可能である。図9は、プレイス処理のフローを示したフローチャートである。プレイス処理は、図6または図8に示したピックアップ処理の後に、コントローラ7によって実行される。図7に示したプレイス処理と同じ処理が行われるステップについては、同じ符号を付して説明を省略する。
【0071】
図9に示したフローチャートでは、ステップS202の処理が終了するとステップS401へ進む。ステップS401では、シャフト10に加わる荷重が、第五所定荷重以上であるか否か判定される。なお、第五所定荷重は、例えば、ワークWが接地したと判定される荷重、または、ワークWが他の部材に接触したと判定される荷重である。ステップS4
01で肯定判定された場合には、ステップS402へ進み、否定判定された場合にはステップS202へ戻る。したがって、シャフト10に加わる荷重が第五所定荷重以上になるまで、直動モータ30がシャフト10をZ軸方向の下側に比較的高速で移動させる。
【0072】
ステップS402では、シャフト10の移動速度を低下させる。すなわち、直動モータ30がシャフト10をZ軸方向の下側に移動する速度を低下させる。このときには、ステップS201において設定されるシャフト10の移動速度よりも低下される。ステップS403では、ひずみゲージ37の出力に基づいて、シャフト10に加わる荷重を検出する。ステップS404では、シャフト10に加わる荷重が、第六所定荷重以上であるか否か判定される。第六所定荷重は、ワークWを他の部材に適切に押し付けることが可能な荷重である。ステップS404で肯定判定された場合には、ステップS204へ進み、否定判定された場合にはステップS403へ戻る。したがって、シャフト10に加わる荷重が第六所定荷重以上になるまで、直動モータ30がシャフト10をZ軸方向の下側に低速で移動させる。このようにして、ワークWの破損を抑制しつつワークWをより確実に対象物に押し付けることができる。
【0073】
以上説明したように、本実施形態に係るアクチュエータ1によれば、シャフト10の速度を最初は高くしておき、ワークWのピックアップ時にシャフト10がワークWに接触した後、または、ワークWのプレイス時にワークWが接地した後に、シャフト10の速度を低くしている。シャフト10の速度を低くしながらも、さらに、ワークWに加える荷重を大きくしているため、より確実なワークWのピックアップが可能となる。また、例えば、ワークWのプレイス時にワークWを他の部材に接着する場合には、適切な荷重を加えることにより、ワークWの接着がより適切に行われる。また、シャフト10がワークWに接するまでは、シャフト10が高速で移動するため、タクトタイムを短縮することができる。
【0074】
<第3実施形態>
上記実施形態では、直動モータ30を停止後に負圧電磁弁63Bを開くことにより、シャフト10の先端部10Aに負圧を発生させ、ワークWをシャフト10の先端部10Aに吸い付けている。しかし、ワークWがシャフト10の先端部10Aに実際に吸い付けられたか否かの判定はしていない。そのため、ワークWのピックアップに失敗する虞がある。そこで、本実施形態では、ワークWをピックアップするようにシャフト10をZ軸方向の上側に移動させる前に、中空部11内の圧力が十分に低くなっているか否かを判定する。中空部11内の圧力が十分に低くなっていれば、ワークWがシャフト10の先端部10Aに吸い付けられており、ワークWのピックアップが可能であると判定できる。そして、中空部11内の圧力が十分に低くなっている場合に、直動モータ30によってシャフト10をZ軸方向の上側に移動させる。
【0075】
中空部11内の圧力が十分に低くなっているか否かは、圧力センサ64及び流量センサ65の少なくとも一方の検出値を用いて判定する。シャフト10がワークWに接触した後、正圧電磁弁63Aを閉じ、負圧電磁弁63Bを開くと、共用通路61C内に負圧が発生する。シャフト10の先端部10Aと、共用通路61Cとは、中空部11、連通孔12、内部空間500、制御通路501、エア流通路202Aを介して連通しているため、共用通路61内に負圧が発生すると、シャフト10の先端部10Aから共用通路61へ向かって、中空部11、連通孔12、内部空間500、制御通路501、及びエア流通路202Aを空気が流通する。このときに、圧力センサ64によって検出される圧力は、中空部11内の圧力と相関がある。すなわち、圧力センサ64によって検出される圧力が低いほど、中空部11内の圧力は低く、したがって、シャフト10の先端部10Aの圧力が低い。また、このときに流量センサ65によって検出される流量も、中空部11内の圧力と相関がある。すなわち、流量センサ65によって検出される流量が少ないほど、中空部11内の圧力は低く、したがって、シャフト10の先端部10Aの圧力が低い。
【0076】
そこで、本実施形態では、圧力センサ64によって検出される圧力が所定圧力以下まで低下したとき、及び、流量センサ65によって検出される流量が所定流量以下まで減少したときの少なくとも一方のときに、中空部11内の圧力が十分に低下したと判定して、直動モータ30によってシャフト10をZ軸方向の上側に移動させる。なお、所定流量は、中空部11内の圧力がワークWをピックアップできる圧力まで減少したときの流量であり、所定圧力は、中空部11内の圧力がワークをピックアップできる圧力まで低下したときの圧力である。所定流量及び所定圧力は、予め実験またはシミュレーション等により求めておく。
【0077】
このようなピックアップ処理について説明する。図10は、ピックアップ処理のフローを示したフローチャートである。本フローチャートは、コントローラ7によって所定の時間毎に実行される。この所定の時間は、タクトタイムに応じて設定される。なお、図6に示したピックアップ処理と同じ処理が行われるステップについては、同じ符号を付して説明を省略する。
【0078】
図8に示したフローチャートでは、ステップS106の処理が終了するとステップS501へ進む。ステップS501では、圧力センサ64により圧力を検出し、且つ、流量センサ65により流量を検出する。なお、本フローチャートでは、次のステップS502において、圧力センサ64の検出値及び流量センサ65の検出値の両方を用いて中空部11内の圧力が十分に低下したか否か判定するため、ステップS501において、圧力及び流量を共に検出しているが、圧力センサ64の検出値及び流量センサ65の検出値の何れか一方を用いて中空部11内の圧力が十分に低下したか否か判定する場合には、ステップS501において、圧力及び流量の何れか一方を検出すればよい。
【0079】
次に、ステップS502では、圧力センサ64により検出される圧力が所定圧力以下、且つ、流量センサ65により検出される流量が所定流量以下であるか否か判定される。ステップS502で肯定判定された場合には、ステップS107へ進み、否定判定された場合にはステップS501へ戻る。したがって、圧力センサ64により検出される圧力が所定圧力以下、且つ、流量センサ65により検出される流量が所定流量以下になるまで、直動モータ30停止される。なお、ステップS502では、圧力センサ64により検出される圧力が所定圧力以下であるか否か、又は、流量センサ65により検出される流量が所定流量以下であるか否かの何れか一方だけを判定してもよい。
【0080】
以上説明したように、本実施形態に係るアクチュエータ1によれば、圧力センサ64により検出される圧力、及び又は流量センサ65により検出される流量に基づいて、中空部11内の圧力が十分に低くなったか否か判定し、その後にシャフト10をZ軸方向の上側に移動させるため、ワークWのより確実なピックアップが可能となる。
【符号の説明】
【0081】
1・・・アクチュエータ、2・・・ハウジング、10・・・シャフト、10A・・・先端部、11・・・中空部、20・・・回転モータ、22・・・固定子、23・・・回転子、30・・・直動モータ、31・・・固定子、32・・・可動子、36・・・連結アーム、37・・・ひずみゲージ、50・・・シャフトハウジング、60・・・エア制御機構
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10