(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-12-06
(45)【発行日】2022-12-14
(54)【発明の名称】ガス供給アセンブリ
(51)【国際特許分類】
F17C 9/04 20060101AFI20221207BHJP
B63B 25/16 20060101ALI20221207BHJP
F02M 21/02 20060101ALI20221207BHJP
F17C 13/00 20060101ALI20221207BHJP
F17C 13/02 20060101ALI20221207BHJP
【FI】
F17C9/04
B63B25/16 D
F02M21/02 M
F02M21/02 U
F17C13/00 302A
F17C13/02 302
(21)【出願番号】P 2020550121
(86)(22)【出願日】2018-03-19
(86)【国際出願番号】 EP2018056858
(87)【国際公開番号】W WO2019179594
(87)【国際公開日】2019-09-26
【審査請求日】2020-09-17
【前置審査】
(73)【特許権者】
【識別番号】503129903
【氏名又は名称】ワルトシラ フィンランド オサケユキチュア
(74)【代理人】
【識別番号】100107766
【氏名又は名称】伊東 忠重
(74)【代理人】
【識別番号】100070150
【氏名又は名称】伊東 忠彦
(74)【代理人】
【識別番号】100135079
【氏名又は名称】宮崎 修
(72)【発明者】
【氏名】プリッティネン,トミ
(72)【発明者】
【氏名】ハット,ビヨルン
(72)【発明者】
【氏名】ビグマスター,ヨナタン
(72)【発明者】
【氏名】ノルゴード,マルクス
(72)【発明者】
【氏名】ニーボ,ラスムス
【審査官】杉田 剛謙
(56)【参考文献】
【文献】特開2017-137978(JP,A)
【文献】特開昭64-032001(JP,A)
【文献】特開2008-064213(JP,A)
【文献】特開2003-175891(JP,A)
【文献】韓国公開特許第10-2015-0089335(KR,A)
【文献】韓国公開特許第10-2015-0096456(KR,A)
【文献】国際公開第2005/087586(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
F17C 1/00-13/12
F02M 21/02
B63B 25/16
(57)【特許請求の範囲】
【請求項1】
ガス供給アセンブリであって、当該アセンブリはタンクを含み、該タンクは気相区画及び液相区画を有するように該タンク内に液化ガスを貯蔵するように構成され、当該アセンブリは、前記タンクの液相区画から1つ以上のガス消費物にガスを届けるように構成された第1のガス供給ラインと、前記タンクの気相区画から1つ以上のガス消費物にガスを届けるように構成された第2のガス供給ラインとをさらに含み、該第2のガス供給ラインは、該第2のガス供給ライン内のガスを加熱するように構成された第2の熱交換器を含み、該第1のガス供給ラインは、該第1のガス供給ライン内の液化ガスを気化するように構成された第1の熱交換器を含み、該第2のガス供給ラインは、該第2のガス供給ライン内のガスの圧力を高めるように構成された圧縮機をさらに含み、該圧縮機は第3の熱交換器を備え、
当該アセンブリは、前記第1の熱交換器、前記第2の熱交換器及び前記第3の熱交換器が接続された伝熱回路を含み、該伝熱回路は、該伝熱回路内の伝熱媒体に熱を伝達するように構成された第4の熱交換器と、該伝熱回路内で伝熱媒体を循環させるように構成されたポンプ手段とを含み、前記第2の熱交換器及び前記第3の熱交換器は互いに直列に配置され、前記第1の熱交換器は、前記第2の熱交換器及び前記第3の熱交換器と並列に配置され、前記第3の熱交換器の伝熱パワーは、前記圧縮機の下流の位置におけるボイルオフガスの温度に基づいて制御可能に構成されている、ガス供給アセンブリ。
【請求項2】
前記アセンブリは、前記圧縮機の下流で前記第2のガス供給ラインに配置される第2の温度プローブを含む、請求項1に記載のガス供給アセンブリ。
【請求項3】
前記伝熱回路は2つの分岐点を含み、前記回路は、第1の分岐点から第2の分岐点に延びる補助回路区画を含み、前記回路は、前記第1の分岐点から前記第2の分岐点に延びる主回路区画を含み、前記第2の熱交換器及び前記第3の熱交換器は、前記第1の分岐点及び前記第2の分岐点の間で前記補助回路区画に配置され、前記第1の熱交換器は、前記第1の分岐点及び前記第2の分岐点の間で前記主回路区画に配置されている、請求項1に記載のガス供給アセンブリ。
【請求項4】
前記補助回路区画は、前記補助回路区画を通る伝熱媒体の部分を制御するために第1の弁を含む、請求項3に記載のガス供給アセンブリ。
【請求項5】
前記アセンブリは、前記第2の熱交換器と前記第3の熱交換器との間で前記伝熱回路に配置される第1の温度プローブを含み、前記第1の弁は該第1の温度プローブに基づいて制御される、請求項
4に記載のガス供給アセンブリ。
【請求項6】
前記圧縮機はオイル回路を含み、該オイル回路は、該回路内のオイルを冷却するために前記第3の熱交換器を通るように構成されている、請求項1に記載のガス供給アセンブリ。
【請求項7】
前記圧縮機を冷却するための前記第3の熱交換器はバイパス導管及び弁を備え、該弁は、前記第3の熱交換器を通る伝熱媒体の流れ及び該バイパス導管を通る伝熱媒体の流れの割合を制御し、前記アセンブリは、前記圧縮機の下流で前記第2のガス供給ラインに配置される第2の温度プローブを含み、前記弁は、前記圧縮機の下流の位置におけるボイルオフガスの温度に基づいて、前記第3の熱交換器を通る伝熱媒体の流れ及び前記バイパス導管を通る伝熱媒体の流れを制御するように構成されている、請求項1に記載のガス供給アセンブリ。
【請求項8】
前記圧縮機はオイル回路を含み、該オイル回路は、該回路内のオイルを冷却するために、前記第3の熱交換器を通るように配置され、前記伝熱回路内の前記第3の熱交換器はバイパス導管及び三方弁を備え、該三方弁は、前記第3の熱交換器を通る伝熱媒体の流れ及び該バイパス導管を通る伝熱媒体の流れの割合を制御し、前記第3の熱交換器を通る伝熱媒体の流れの部分及び前記バイパス導管を通る伝熱媒体の流れの部分は、前記オイル回路内のオイルの温度に基づいて制御される、請求項1に記載のガス供給アセンブリ。
【請求項9】
前記伝熱回路内の前記第2の分岐点は、前記第1の熱交換器及び前記第4の熱交換器の下流側にある、請求項3に記載のガス供給アセンブリ。
【請求項10】
前記伝熱回路内の前記第2の分岐点は、前記第1の熱交換器の下流側且つ前記第4の熱交換器の上流側にある、請求項3に記載のガス供給アセンブリ。
【請求項11】
前記アセンブリは、前記第4の熱交換器及び前記第2の分岐点の下流で前記伝熱回路に配置される第3の温度プローブを含み、前記第4の熱交換器のパワーは該第3の温度プローブを用いて制御されるように構成されている、請求項9又は10に記載のガス供給アセンブリ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、請求項1のプリアンブルに係るガス供給アセンブリに関する。
【背景技術】
【0002】
LNG(液化天然ガス)輸送船等の液化ガスの推進システムは、通常、積み荷のガスを利用して動かされる。タンカーへのガスの貯蔵は、アレージ空間区画及び液相区画が形成された断熱積荷タンクを用いて行われる。積荷タンク内の圧力は、略大気圧のレベルであり、液化ガスの温度は約-163℃である。積荷タンクの断熱性は非常に良好であるが、液化ガスの温度が徐々に上昇すると所謂天然のボイルオフガスが形成される。ボイルオフガスは、積荷タンク内の圧力の大幅な上昇を避けるために、タンクから除去しなければならない。その理由は、積荷タンクは圧力の変化に非常に敏感だからである。ボイルオフガスは、推進システム等の船舶のガス消費物(gas consumers)で利用され得る。しかしながら、天然のボイルオフガスの量は、あらゆる状況において必要となる推進エネルギーの全てを供給には不十分なため、船舶は、余分なガスである所謂強制ボイルオフガス(forced boil-off gas)を得るための追加の手段を備えていなければならない。
【0003】
特許文献1はガス供給装置を示し、本装置では、天然のボイルオフガスが極低温圧縮機に導かれ、極低温圧縮機は、ガスを消費のために供給線を介して供給する前にガスの圧力を高める。加えて、本装置は、強制沸騰気化器を含み、この気化器では、予めより高圧に高められた液体ガスが気化される。この構成では、強制沸騰ガス部分は、天然のボイルオフガスの圧力が高められた後で天然のボイルオフガスと合体される。
【0004】
特許文献2には、LNGの輸送のための外航タンカーのボイラーを加熱するために天然ガス燃料を供給するための装置が開示されている。本装置は、前記タンクの液体貯蔵領域と連通する入口と、ボイラーに関連する燃料バーナーに通じる導管と連通する出口とを有する強制LNG気化器を含む。本装置は、少なくとも1つのLNG貯蔵タンクのアレージ空間と連通する入口及び圧縮機からボイラーに関連する燃料バーナーに通じる導管と連通する出口も含む。圧縮機の動作によりガスの圧力が高められる。圧縮機は、技術的に非常に厳しい極低温度を保つ必要がある。
【先行技術文献】
【特許文献】
【0005】
【文献】欧州特許出願公開1348620号
【文献】欧州特許出願公開1291576号
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明の目的は、従来技術の解決方法と比べて性能が大幅に改善されたガス供給アセンブリの構成を提供することである。
【0007】
本発明の目的は、独立クレーム及び本発明の異なる実施形態のより詳細を記載する他のクレームに開示されているような形で実質的に実現できる。
【課題を解決するための手段】
【0008】
本発明の一実施形態によれば、ガス供給アセンブリはタンクを含み、該タンクは気相区画及び液相区画を有するように該タンク内に液化ガスを貯蔵するように構成され、当該アセンブリは、前記タンクの液相区画から1つ以上のガス消費物にガスを届けるように構成された第1のガス供給ラインと、前記タンクの気相区画から1つ以上のガス消費物にガスを届けるように構成された第2のガス供給ラインとをさらに含み、該第2のガス供給ラインは、該第2のガス供給ライン内のガスを加熱するように構成された第2の熱交換器を含み、該第1のガス供給ラインは、該第1のガス供給ライン内の液化ガスを気化するように構成された第1の熱交換器を含み、該第2のガス供給ラインは、該第1のガス供給ライン内のガスの圧力を高めるように構成された圧縮機をさらに含み、該圧縮機は第3の熱交換器を備える。当該アセンブリは、前記第1の熱交換器、前記第2の熱交換器及び前記第3の熱交換器が接続された伝熱回路を含み、該伝熱回路は、該伝熱回路内の伝熱媒体に熱を伝達するように構成された第4の熱交換器と、該伝熱回路内で伝熱媒体を循環させるように構成されたポンプ手段とを含み、前記第2の熱交換器及び前記第3の熱交換器は互いに直列に配置され、前記第1の熱交換器は、前記第2の熱交換器及び前記第3の熱交換器と並列に配置されている。
【0009】
これにより、単一の熱源及び単純な共有された伝熱媒体回路を用いて第2のガス供給ライン内の天然のボイルオフガス及び第1のガス供給ライン内の強制ボイルオフガスの両方がガス消費物に供給するために準備される。
【0010】
本発明の一実施形態によれば、第3の熱交換器は圧縮機から熱を受け取り、圧縮機の温度を制御するように構成されている。
【0011】
本発明の一実施形態によれば、ガス供給アセンブリはタンクを含み、該タンクは気相区画及び液相区画を有するように該タンク内に液化ガスを貯蔵するように構成され、当該アセンブリは、前記タンクの液相区画から1つ以上のガス消費物にガスを届けるように構成された第1のガス供給ラインと、前記タンクの気相区画から1つ以上のガス消費物にガスを届けるように構成された第2のガス供給ラインとをさらに含み、該第2のガス供給ラインは、該第2のガス供給ライン内のガスを加熱するように構成された第2の熱交換器を含み、該第2のガス供給ラインは、該第1のガス供給ライン内のガスの圧力を高めるように構成された圧縮機を含み、該圧縮機は圧縮機冷却手段を備える。当該アセンブリは圧縮機の下流で第2のガス供給ラインに配置される第2の温度プローブを含み、圧縮機冷却手段のパワーは、圧縮機の下流の位置におけるボイルオフガスの温度に基づいて制御可能である。
【0012】
本発明の一実施形態によれば、アセンブリは、圧縮機の下流で第2のガス供給ラインに配置される第2の温度プローブを含み、第3の熱交換器の伝熱パワーは、圧縮機の下流の位置におけるボイルオフガスの温度に基づいて制御可能に構成されている。これは、第2のガス供給ラインを出るボイルオフガスの温度を制御するための効果的且つ直接的な方法を提供する。
【0013】
本発明の一実施形態によれば、伝熱回路は2つの分岐を含み、該回路は第1分岐点から第2の分岐点に延びる補助回路区画と、第1の分岐点から第2の分岐点に延びる主回路区画とを含み、第2の熱交換器及び第3の熱交換器は2つの分岐点の間で補助回路区画に配置され、第1の熱交換器は2つの分岐点の間で主回路区画に配置される。
【0014】
本発明の一実施形態によれば、補助回路部は、補助回路部を通る伝熱媒体の部分を制御するための第1の弁を含む。
【0015】
本発明の一実施形態によれば、第1の分岐点は、第1の熱交換器の上流側にあり、第2の分岐点は第1の熱交換器の下流側にある。
【0016】
これはアセンブリ内の全体的な伝熱を効率的に制御する効果を提供する。
【0017】
本発明の一実施形態によれば、アセンブリは、第2の熱交換器と第3の熱交換器との間で補助伝熱回路に配置される第1の温度プローブを含み、補助回路区画内の第1の弁は第1の温度プローブに基づいて制御される。
【0018】
本発明の一実施形態によれば、圧縮機はオイル回路を含み、該オイル回路は、該オイル回路内のオイルを冷却するために第3の熱交換器を通るように構成されている。
【0019】
本発明の一実施形態によれば、圧縮機を冷却するための第3の熱交換器はバイパス導管及び弁を備え、第3の熱交換器を通る伝熱媒体の流れ及びバイパス導管を通る伝熱媒体の流れの比率を制御し、アセンブリは、圧縮機の下流で第2のガス供給ラインに配置される第2の温度プローブを含み、該弁は、圧縮機の下流の位置におけるボイルオフガスの温度に基づいて、第3の熱交換器を通る伝熱媒体の流れ及びバイパス導管を通る伝熱媒体の流れを制御するように構成されている。
【0020】
本発明の一実施形態によれば、圧縮機はオイル回路を含み、該オイル回路は、該回路内のオイルを冷却するために第3の熱交換器を通るように構成され、回路内の第3の熱交換器はバイパス導管及び三方弁を備え、該三方弁は第3の熱交換器を通る伝熱媒体の流れ及びバイパス導管を通る伝熱媒体の流れの割合をオイル回路内のオイルの温度に基づいて制御する。
【0021】
本発明の一実施形態によれば、伝熱回路の第2の分岐点は、第1の熱交換器及び第4の熱交換器の下流側にある。すなわち、第2の分岐点は、第4の熱交換器の出口と第1の熱交換器の入口との間にある。
【0022】
本発明の一実施形態によれば、伝熱回路の第2の分岐点は、第1の熱交換器の下流側且つ第4の熱交換器の上流側にある。すなわち、第2の分岐点は第1の熱交換器の出口と第4の熱交換器の入口との間にある。
【0023】
本発明の一実施形態によれば、アセンブリは、第4の熱交換器及び第2の分岐点の下流で伝熱回路に配置される第3の温度プローブを含み、第4の熱交換器のパワーは第3の温度プローブを用いて制御されるように構成されている。
【0024】
本発明は、液化ガスを極低温で且つ実質的に大気圧、少なくとも貯蔵タンクの外でガスの圧力を上げることなくガス消費物でガスを用いるには低すぎる圧力で貯蔵するように適合された液化ガス貯蔵タンクに関連するガス利用構成に関する。
【0025】
本発明により、アセンブリを単一のアセンブリに組み合わせることも可能であり、これにより、その組み立て及び海洋船舶への設置が有利になる。
【0026】
本特許出願において提示されている本発明の例示的な実施形態は、添付の特許請求の範囲の適用可能性に制限を加えるものと解釈すべきでない。本特許出願において、「含む」という動詞は、記載されていない特徴の存在を除外しないオープンな限定として用いられる。従属クレームに記載されている特徴は、別段の明示がない限り、相互に自由に組み合わせることができる。本発明の特徴と考えられる新規な特徴は、とりわけ添付の特許請求の範囲に記載されている。
【図面の簡単な説明】
【0027】
以下では、添付の例示の概略図を参照しながら本発明を説明する。
【
図1】
図1は、本発明の一実施形態に係るガス供給アセンブリを示す。
【
図2】
図2は、本発明の別の実施形態に係るガス供給アセンブリを示す。
【発明を実施するための形態】
【0028】
図1は、ガス供給アセンブリ10を概略的に示す。ガス供給アセンブリ10は、ガス供給アセンブリ10に接続された1つ以上のガス消費物14にガス燃料を供給するように構成されている。ガス供給アセンブリは、1つ以上のタンク12を含み、そのうちの1つのみが図示されている。タンク12は、タンク12内に気相区画12.1及び液相区画12.2を有するようにタンク12内で液化ガスを貯蔵するように構成されている。タンクは、実質的に大気圧と、約-163℃である液化ガスの極低温度とを維持できる構造であるため、ガスは主に液相で留まる。タンクは実質的に大気圧であるため、ガス供給システムには、接続されているガス消費物によって要求されるレベルまでガス圧を高める手段を備えなければならない。ガス供給アセンブリは、ガスが船舶内の内燃機関の燃料として用いられるように、海洋船舶で用いるのに特に有利である。タンクは積荷タンクであってもよいし、船舶内のガス消費物のための専用の燃料貯蔵庫であってもよい。ガス消費物がガス作動の内燃4ストロークピストンエンジン(以下ではガスエンジンという)である場合、燃料の絶対圧は、通常、エンジンへのガス供給において400~800kPaである。当然のことながら、燃料の実際の圧力は、ガス消費物の需要に依存し、1400~1600kPaの場合もある。
【0029】
液化ガスは、ガス供給アセンブリ10に配置された第1のガス供給ライン18によりガスエンジン14において利用できる。第1のガス供給ライン18は、タンク12の液相区画12.2からガス消費物14にガスを届けるように構成されている。第1のガス供給ラインは、その第1の端部(入口端)において、タンク内の液化ガスの表面の下のタンク12の下部に対して開いている。液相区画は、実質的に-163℃の温度で且つ実質的に大気圧で液化ガスを含む。第1のガス供給ライン18は、第1のガス供給ライン18内で液化ガスを気体ガスに気化させるように構成された第1の熱交換器24を含む。したがって、第1の熱交換器24は、主ガス蒸発器と呼ぶこともできる。第1のガス供給ライン18は、ガス圧がガス消費物14の需要を満たすように液化ガスの圧力を高める極低温ポンプ26も含む。第1の熱交換器24は、極低温ポンプ26の下流に位置する。第1の熱交換器24は、伝熱媒体からガス中に熱を伝達して液化ガスを気化させ、ガスの温度を約-163℃からガス消費物にとって好適なガスの温度である+40℃~+50℃、一般的には+45℃に上昇させる。第1の供給ライン18及び第2の供給ライン16は、エンジン14への接続の前に、即ち上流で互いに接続され得る。その場合、天然のボイルオフガス及び強制ボイルオフガスの混合温度は+40℃~+70℃である。
【0030】
ボイルオフガスは、ガス供給アセンブリ10に配置される第2のガス供給ライン16によりガスエンジン14内で利用できる。第2のガス供給ライン16は、タンク12の気相区画12.1からガスエンジン14にガスを届けるように構成されている。第2のガス供給ライン16は、タンク12内の液化ガスの表面の上の気相区画12.1に常に接続されるように、その第1の端部(入口端)においてタンク14の上部に対して開いている。第2のガス供給ライン16は、第2のガス供給ライン16内のガスを所望の温度に加熱するように構成された第2の熱交換器20を含む。第2のガス供給ライン16は、ガス圧がガスエンジン14に適したものとなるようにガスの圧力を高める圧縮機28も含む。圧縮機22はスクリュー又は回転翼圧縮機であることが有利である。第2の熱交換器20は、ガス温度がスクリュー又は回転翼圧縮機に適したレベルまで高めることができるように、圧縮機22の上流に位置する。第2の熱交換器は、ガスの温度を約-163℃から圧縮機22に入るガスの入口温度範囲である-50℃~-20℃に、一般的には-25℃に上げるために、伝熱媒体からガスに熱を伝達するように構成されている。ガスの温度は、エンジン14への導入に適したガスの温度に対応する+40~+70℃に、一般的には60℃に圧縮機22内においても高められることが有利である。
【0031】
第2の供給ライン16における圧縮機22は、圧縮機22の温度を所望の範囲内で維持するための圧縮機冷却手段28、29を備える。圧縮機は、例えば潤滑及び圧縮機22の温度の制御のためにオイルを使用する。圧縮機22はオイルフロー回路29を備え、オイルフロー回路29は第3の熱交換器に油が流れるように導くように構成され、第3の熱交換器28は、圧縮機オイルから伝熱媒体回路30内の伝熱媒体に熱を伝達するように構成され、それにより圧縮機22の温度だけでなく、第2のガス供給ライン16内のボイルオフガスの温度も制御する。必要に応じて、オイルフロー回路は循環ポンプを備えていてもよい。通常、圧縮機は、オイルに対して独自の差圧を発生させ、その場合、別個のポンプを用いずにオイルの流れが提供される。圧縮機が作動している間、オイルフロー回路から圧縮機にオイルが供給される。オイルは圧縮機の動作部を潤滑するとともに、圧縮機内を流れる間にオイルの温度が上昇するように熱を受け取る。圧縮機は、圧縮されたガスからオイルを分離する油分離器22’を備えていてもよい。圧縮機内で加熱されたオイルは第3の熱交換器28によって冷却され、圧縮機22に再度循環される。任意で、圧縮機22に、第3の熱交換器28が連結される間接冷却システムを設けることもできる。圧縮機は第3の熱交換器28を備え、第3の熱交換器28は圧縮機の一体部分として又は伝熱するためだけに圧縮機22と連通するように配置することで実現される。圧縮機22の温度は、圧縮ガスの温度に影響を与えるため、これは、ボイルオフガスの温度を制御する方法として有利に利用される。本方法は、ボイルオフガスの温度を所望の範囲内で維持するために圧縮機冷却手段28、29を利用する。圧縮機22が作動する間に、圧縮機22により圧縮されたボイルオフガスの温度が測定され、ボイルオフガスの温度に基づいて圧縮機冷却手段28、29が作動される。そのため、ボイルオフガスの温度が所定の設定値よりも高い場合、圧縮機の冷却力が高められ、ボイルオフガスの温度が所定の設定値よりも低い場合、圧縮機の冷却力が下げられる。
【0032】
アセンブリは、第1及び第2のガス供給ラインを介してガスエンジン14に供給されるガスの温度を制御するとともに、第2のガス供給ライン16における圧縮機22の温度を制御するように構成された伝熱回路30を含む。伝熱回路30は、伝熱回路30内の伝熱媒体に熱を伝達するように構成された第4の熱交換器32を含む。伝熱媒体は、1つ以上の不凍剤を含有する水ベースの溶液であり得る。好適な熱媒油を使用することもできる。第2の熱交換器20、第1の熱交換器24、第3の熱交換器28及び第4の熱交換器32の全ては伝熱回路30に接続されている。伝熱回路はポンプ34も備え、このポンプにより、伝熱媒体が回路30に流れて循環する。
【0033】
第4の熱交換器32は、回路30内の伝熱媒体に熱を伝え、第4の熱交換器32内の温度を上げるために、アセンブリ10に利用可能な蒸気システム等の熱源42に接続されている。回路30は主回路区画30’を含み、主回路区画30’では伝熱媒体がポンプ34、第4の熱交換器32及び第1の熱交換器24を流れる。これは、第4の熱交換器32内の伝熱媒体に伝えられる熱の大部分は第1の熱交換器24内の液化ガスを気化させるために用いられるからである。回路30は2つの分岐点38、40を含み、2つの分岐点38、40は、第1の分岐点38が第1の熱交換器24の上流側にあり、第2の分岐点40が第1の熱交換器24及び第4の熱交換器32の下流側にあるように配置される。上流及び下流という用語は、回路内のポンプ34に関連して回路区画30における伝熱媒体の流れ方向により定義され、その流れ方向は、回路線の矢印により示される。回路30は、第1の分岐点38及び第2の分岐点40の間の輸送導管(mail conduit)30’の部分と平行に第1の分岐点38から第2の分岐点40に延びる補助回路区画30’’を含む。第2の熱交換器20及び第3の熱交換器28は、第2の熱交換器20が第3の熱交換器28の上流に配置されるように補助回路区画30’’に直列に接続される。これにより、第2の熱交換器20及び第3の熱交換器28は、第1の熱交換器24と平行に配置され、第4の熱交換器32を介して共通の熱源42から得られた熱は、第2の熱交換器20内のガスを加熱するとともに、第1の熱交換器24内の液化ガスを気化させるための熱源として用いられる。補助回路区画30’’は、第1及び第3の熱交換器を流れる伝熱媒体の部分を制御するための第1の制御弁44を備える。
【0034】
圧縮機22から熱を伝達するとともに、その温度を制御するように構成された第3の熱交換器28は、第2の熱交換器20の下流の補助回路区画30’’に配置されている。第3の熱交換器28はバイパス導管31及び三方弁33を備え、三方弁33は、第3の熱交換器28を通る伝熱媒体の流れ及びバイパス導管31を通る伝熱媒体の流れの割合を、ひいては第3の熱交換器28の冷却力を制御する。
【0035】
ガス燃料供給アセンブリの特定の動作状態の一例として、アセンブリは以下の様に動作する。数値は、本発明の特定の実際の用途の例に過ぎず、値は本発明の異なる実用的な解決策において異なり得る。ポンプ34を作動させることによって伝熱媒体が回路30内を流れるようにされると、その温度は第4の熱交換器32内で27℃から47℃に上げられ、伝熱媒体はその温度で第2の熱交換器20及び第1の熱交換器24に入る。補助回路区画30’’に向けられる伝熱媒体の部分は、第2の熱交換器20の後で第3の熱交換器28の前の伝熱媒体の温度に基づいて第1の弁44により制御される。この温度は、補助回路区画30’’内で第2の熱交換器20と第3の熱交換器28との間に配置される第1の温度プローブ46によって測定される。一般に、第2の熱交換器20と第3の熱交換器28との間の伝熱媒体の温度は35℃である。次に、補助回路区画30’’内の伝熱媒体は第3の熱交換器28に流入し、伝熱媒体は、圧縮機22の冷却に用いられるため第3の熱交換器28内で温度が上げられる。第3の熱交換器28を通る伝熱媒体及びバイパス導管31を通る伝熱媒体の流れの比率を制御するための味方弁33は、圧縮機22の下流にある位置におけるボイルオフガスの温度に基づいて制御される。係る位置におけるボイルオフガスの温度は、圧縮機22の下流で第2のガス供給ライン16に配置される第2の温度プローブ48によって測定される。伝熱媒体は第3の熱交換器28内で熱を受け取るため、その温度は一般に50℃に上昇する。
【0036】
第1の分岐点38で、補助回路区画30’’に導かれない伝熱媒体の部分は、第1の熱交換器24を介して主回路区画30’にさらに流れるように導かれる。伝熱媒体は約47℃の温度で第1の熱交換器24に入り、第1のガス供給ライン18内の液化ガスを気化及び加熱するために熱を放出する。一般に、第1の熱交換器24の後の伝熱媒体の温度は25℃である。第1の熱交換器24の後、伝熱媒体が第4の熱交換器32に戻るように構成され、第4の熱交換器32では、伝熱媒体は共通の熱源42から熱を受け取る。第2の分岐点40では、補助回路区画30’’及び主回路区画30’からの伝熱媒体が合流する。第4の熱交換器のパワーは、第4の熱交換器32及び第2の分岐点40の下流の位置における伝熱媒体の温度に基づいて制御される。第4の熱交換器32及び第2の分岐点40の下流で第3の温度プローブ50が主回路区画30’に配置され、それにより、主回路区画30’及び補助回路区画30’’から合流した伝熱媒体の温度が測定される。このようにして、第2の分岐点40で合流した戻り流の混合温度が考慮され、第4の熱交換器のパワーを制御するための変数として用いられる。伝熱媒体が第3の熱交換器28を出るときの温度は通常非常に高く、第1又は第2の熱交換器に供給される前に加熱を必要としないために有利である。
図1の実施形態では、熱源42は、第4の熱交換器に熱をもたらすように配置された蒸気システムを含む。第4の熱交換器32はバイパス導管35を備え、バイパス導管35は、第4の熱交換器32を通る伝熱媒体の流れ及びバイパス導管35を通る伝熱媒体の流れの比率を制御するための三方弁52を備える。三方制御弁52は、第4の熱交換器で伝熱媒体に伝達される熱パワーを制御する。制御弁52の動作は、第3の温度プローブ50の測定データに基づいて制御される。熱源42は任意の好適且つ利用可能な熱源であり、熱がガス供給アセンブリでの使用に利用可能な、蒸気、水ベースの溶液又は伝熱油等の好適な伝熱媒体に熱が伝達され得るシリンダ、ブロック、油、燃焼空気又は他の冷却システム、排ガスボイラ又はエンジン内の他の熱源のうちの1つ又は複数から発生する熱を使用するエンジン14であることが有利である。
【0037】
図2は、本発明の別の実施形態に係るガス供給アセンブリ10を概略的に示す。ガス供給アセンブリ10は、ガス供給アセンブリ10に接続された1つ以上のガス消費物14に気体燃料を供給するように構成されている。
図2に示すガス供給アセンブリは実質的に同一の要素で実質的に同一の動作を提供するが、以下の特徴は
図1に示すものと異なる。
【0038】
第4の熱交換器32は、熱源42としてエンジン14の冷却システムを用い、回路30内の伝熱媒体に熱を伝え、第4の熱交換器32内でその温度を上昇させる。回路30は2つの分岐点38、40を含み、2つの分岐点38、40は第1の分岐点38が第1の熱交換器24の上流側にあり、第2の分岐点40が第1の熱交換器24の下流側にあるが、第4の熱交換器32の上流側にあるように配置される。上流及び下流という用語は、回路区画30における伝熱媒体の流れの方向によって定義され、回路線の矢印で示す。
【0039】
第3の熱交換器28はバイパス導管31及び三方弁33を備え、三方弁33は、第3の熱交換器28を通る伝熱媒体の流れ及びバイパス導管31を通る伝熱媒体の流れの割合を、ひいては第3の熱交換器28の冷却力を制御する。第3の熱交換器28を通る伝熱媒体の流れ及びバイパス導管31を通る伝熱媒体の流れの比率を制御するための三方弁33は、第3の熱交換器28の下流の位置における圧縮機冷却オイルの温度に基づいて制御される。係る温度は、第3の熱交換器28の下流の圧縮機22の冷却オイルラインに配置される第2の温度プローブ48によって測定される。伝熱媒体は、第3の熱交換器28内で熱を受け取るため、その温度は一般に50℃に上げられる。
【0040】
図2も本発明の実施形態を示し、補助回路区画30’内の弁44が連続的な制御に使用されないが、補助回路区画30’を通る流れを一度セットする手動バランス弁である。この特徴は
図1の実施形態にも適用可能である。
【0041】
第1の分岐点38では、補助回路区画30’’に導かれない伝熱媒体の部分は、第1の熱交換器24を介して主回路区画30’に更に流れるように導かれる。伝熱媒体は約47℃の温度で第1の熱交換器24に入り、第1の熱交換器24では、第1のガス供給ライン18内の液化ガスを気化及び加熱するために熱を放出する。一般に、第1の熱交換器24の後の伝熱媒体の温度は25℃である。第2の分岐点40では、補助回路区画30’’及び主回路区画30’からの伝熱媒体が合流して、第4の熱交換器32に戻る。第4の熱交換器のパワーは、第4の熱交換器32の下流の位置における伝熱媒体の温度に基づいて制御される。第4の熱交換器32の下流で第3の温度プローブ50が主回路区画30’に配置され、温度プローブ50により伝熱媒体の温度が測定される。
図2の実施形態では、熱源42は、第3の熱交換器32のパワー出力を制御するための制御弁52を含む。
【0042】
本明細書では、本発明を、現在最も好ましい実施形態と考えられるものに関連して例示してきたが、本発明は、開示した実施形態に限定されず、その特徴の様々な組み合わせ又は変更に加えて、添付の特許請求の範囲で定義される本発明の範囲内に含まれる他の用途もカバーすることを意図する。上記のいずれかの実施形態に関連して言及した詳細は、組み合わせが技術的に可能である場合は、別の実施形態と関連して使用され得る。